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The Wilemski–Fixman model of diffusion controlled-reactions@J. Chem. Phys.58, 4009~1973!# is
combined with a generalized random walk description of chain conformations to predict the
dependence of the closure timet on the chain lengthN of polymers with reactive end groups and
nonlocal interactions. The nonlocal interactions are modeled by a modification to the connectivity
term in the Edwards continuum representation of the polymer. The modification involves a
parameterh lying between 0 and 1 that is a measure of the extent of correlation between adjacent
monomers on the chain backbone. Different choices ofh correspond to chain conformations of
different average radial dimensions. In particular, the values 1/3, 1/2 and 3/5 provide approximations
to the statistics of polymers in poor, theta and good solvents, respectively. The closure timet of such
chains is calculated analytically for differentN. In all cases,t is found to vary as a power law in
N, Nb, with b a function ofh. For the special caseh51/3, which models collapsed polymers and
globular proteins,b is about 1.6–1.7.
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I. INTRODUCTION

Loop formation in polymers can often serve as a pa
digm for biological processes in which distant parts of
macromolecule come together and initiate a series of ph
cal or chemical events that lead to permanent conformatio
changes. Such processes frequently occur through the a
ciation of specific pairs of residues or domains within t
macromolecule, which are brought into proximity with ea
other through the random thermal fluctuations of the m
dium. If the first encounter of the reactive pair is rat
determining, knowledge of the mean first passage timet for
chain closure can provide insights into the nature of the c
formational transition.1

Although biopolymers are structurally complex, ev
simple statistical models can sometimes describe their p
erties successfuly when short-range interactions are
dominant controlling factor in their behavior.2 In theoretical
descriptions of molecules like DNA, RNA, and ho
mopolypeptides, many of the structural details at the leve
the repeat unit can often be ignored, and the molecule re
sented as a succession of elementary units with interact
that extend at most to the nearest or next nearest neigh
If these units are further reduced to points, the molecule
in fact be represented as a continuous one-dimensi
string. Continuum models of this kind have recently be
used with some success to calculate closure times in
thetic sticky-ended single-stranded DNA.3,4

The extension of such calculations to more general s
ations, in particular to polymers with non-negligible lon
range interactions, is nontrivial. In these cases, even
problem of simple cyclization involving the ends of th
chain, much less the problem of contact pairing between

a!Electronic mail: cherayil@ipc.iisc.ernet.in
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terior elements and other more realistic folding pathwa
has not been systematically investigated. A number of qu
tions about the problem have, therefore, not been fully
dressed. It is not yet known, for instance, howt, the mean
closure time, varies with the molecular weightM in chains
with long-range interactions. Such knowledge may prov
clues to the factors behind important conformation
changes, including those that direct the course of pro
folding, which can be accomplished within microseconds
less, after somehow circumventing the problem of multip
local minima.5

It is, therefore, of considerable interest to calculatet for
chains with long-range interactions, particularly attractive
teractions, since such interactions govern the formation
compact globular configurations. However, a full-scale
tack on the problem, starting from even a minimal co
tinuum representation of the chain—such as the Edwa
model, with two and possibly three-body interactio
included6—is generally intractable under any but the mo
severe approximations. One way to overcome the difficul
associated with nonlocal effects is to incorporate these
fects into a description of the chain that is effectively loc
and that is, therefore, simpler to treat, in principle. A realiz
tion of this idea may be found in polymer models that a
formulated around the statistics of ‘‘generalized’’ rando
walks,7 rather than the simple random walks that under
more conventional approaches. In the path integral repre
tation of these models, the Hamiltonian is a generalization
the connectivity term in the Edwards model, all the effects
excluded volume and other long-range interactions be
contained in a single parameterh that appears there. By suit
able choice ofh, long wavelength properties of the chai
such as the end-to-end distance, or the radius of gyration,
be calculated in fairly close agreement with results obtain

http://dx.doi.org/10.1063/1.1637574
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by more sophisticated models, without the explicit inclusi
of excluded volume effects.

A similar calculation oft may therefore provide a usefu
preliminary theory of its behavior under conditions whe
other models would be difficult or impossible to treat. T
subject of this paper is the calculation oft within such an
approach.

As reviewed in Sec. II below, the dynamics of chai
with reactive end-groups is described by a Smoluchow
equation with an added sink term, the sink term represen
the loss of probability from chain closure. When this term
chosen to be a function solely of the magnitude of the se
ration between the ends of the chain, its time correlat
function C(t) can be expressed in terms of the time corre
tion function of the end-to-end distance. Further, the integ
of C(t) is related to the mean first passage timet. C(t)
depends critically on the details of the chosen model, an
therefore an important intermediate step in the calculation
t. The calculation ofC(t), and from itt, is discussed in Sec
III within the formalism of generalized random walks. Se
tion IV presents the principal results of this calculation.

II. DYNAMICS OF CHAIN CLOSURE

In a neutral solvent, the dynamics of an isolated polym
having reactive end-groups can be described by the foll
ing Smoluchowski equation:8,9

]c~$r%,t !

]t
5Dc~$r%,t !2kS~$r%!c~$r%,t !. ~1!

Here,c($r%,t) denotes the probability density that the cha
has the conformation$r%[r1 ,r2 ,...rn at time t, wherer i is
the position of thei th monomer in a chain ofn monomers;k
is a rate constant;S is a sink function that prescribes th
conditions under which reaction between the ends of
chain takes place; andD is a differential operator, defined a

D[D0(
i 51

n
]

]r i
•F ]

]r i
1

]U

]r i
Gc~$r%,t !, ~2!

with D0 the diffusion constant, defined as the inverse of
friction coefficient per unit length of the polymer, andU the
potential energy of the chain.

An approximate expression for the mean first pass
time t can be derived from Eq.~1!. The derivation has bee
discussed at length in earlier references,3 so only the final
result will be given here:

t5E
0

`

dtS C~ t !

C~`!
21D , ~3!

where

C~ t !5E dRE dR0S~R!G~R,tuR0,0!S~R0!ceq~R0!.

~4!

In the above expression,G(R,tuR0,0) is the conditional
probability that a chain with the end-to-distanceR0 at time
t50 has the end-to-end distanceR at time t; ceq(R0) is the
equilibrium distribution of the end-to-end distance; andS(R)
is the sink function, which is assumed here to depend o
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on the magnitude of the separation between the chain e
An expression forS(R) will be provided later. Equation~3!
is not exact; it makes use of a self-consistent approxima
introduced by Wilemski and Fixman, and also imposes
limit k→`.8 The first approximation corresponds to the a
sumption of local equilibrium, while the second correspon
to the assumption that the chain ends react immediately
irreversibly whenever they satisfy the distance constra
defined by the sink function.

The calculation ofC(t) requires knowledge of the con
ditional probabilityG(R,tuR0,0). For a completely flexible
polymer, this probability can be taken as Gaussian, beca
R is the sum of a large number of independent, random b
vectors, and the central limit theorem may therefore
invoked.9 For a self-avoiding or self-attracting chain, or
chain of limited flexibility, the probability is no longer nec
essarily Gaussian, but it will be assumed to be so in orde
render the calculations tractable. A future publication w
discuss how the assumption may be lifted.10

The requisite Gaussian form of the conditional probab
ity in Eq. ~4! is9

G~R,tuR0,0!5S 3

2p^R2&eq
D 3/2 1

~12f2~ t !!3/2

3expF2
3~R2f~ t !R0!2

2^R2&eq~12f2~ t !!G , ~5!

where the functionf(t) is defined as

f~ t !5
^R~ t !•R~0!&eq

^R2&eq
, ~6!

the angle bracketŝ(¯)&eq denoting an ensemble averag
over ceq.

After substituting Eq.~5! into Eq. ~4!, and carrying out
the angular part of the integrations over the vectorsR and
R0 , C(t) becomes

C~ t !516p2S 3

2p^R2&eq
D 3 1

~12f2~ t !!3/2

3E
0

`

dRR2S~R!E
0

`

dR0R0
2S~R0!

3expF2
3

2^R2&eq

~R21R0
2!

~12f2~ t !!
G

3
sinh@3fRR0 /^R2&eq~12f2~ t !!#

3fRR0 /^R2&eq~12f2~ t !!
. ~7!

To complete the calculation ofC(t), the sink function
S(R) must be specified. Here,S(R) is chosen to be the
Heaviside sink, defined as

S~R!51; R<a

50; R.a ~8!

wherea is the distance of closest approach of the chain e
prior to irreversible cyclization. WhenS(R) is chosen in this
way, the integrals in Eq.~7! cannot be carried out exactly
However, the expansion of the integrand in the small pa
meter
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2^R2&eq
, ~9!

followed by term by term integration leads to an approxim
result that is expected to be accurate.9 In this way, it is found
that

C~ t !5
16x0

3

9p~12f2!3/2F12
6x0

5~12f2!
1¯G . ~10!

To the same order of approximation, this equation may
resummed as

C~ t !>
16x0

3

9p S 12f21
4

5
x0D 23/2

, ~11!

which is of exactly the same functional form as the expr
sion derived by Doi11 using the following Gaussian sin
function:

S~R!5N expS 2
3R2

2a2 D , ~12!

whereN is a normalization constant. Equation~11! differs
from the corresponding result in Ref. 11 in the value of t
coefficient ofx0 ; it is 4/5 above, and 4/3 in Doi’s calcula
tion.

It only remains to determinef(t) to proceed further
with the calculation oft. The calculation off(t) is discussed
in the following section.

III. CHAIN CONFORMATIONS AS GENERALIZED
RANDOM WALKS

A. The model

The defining ingredient in most models of the the sta
tical mechanics of polymers is the chain HamiltonianH. In
models where the polymer is depicted as the locus of a st
of contour lengthN, and in units wherekBT is unity, H is
typically written as12

H5H01Hv , ~13!

5
3

2l E0

N

dtS ]r ~t!

]t D 2

1
1

2 E0

N

dt

3E
0

N

dt8V@r ~t!2r ~t8!#, ~14!

where l corresponds, effectively, to a bond length,r (t) de-
fines the trajectory of the string in three-dimensional spac
terms of a continuous variablet, which specifies the location
of individual monomers~imagined to be points! along the
backbone of the chain, andV@r (t)2r (t8)# is a potential
energy term that accounts for the effects of p
interactions—both attractive and repulsive—between n
bonded segments. Higher body contributions to the poten
if non-negligible, may also be included in Eq.~14! as addi-
tional additive terms, along with any other terms that may
necessary to describe the interactions of the polymer with
environment.

Calculations with this and related Hamiltonians are g
erally nontrivial, even for relatively simple approximation
e
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to V, such as the delta function pseudopotentialv0d(r (t)
2r (t8)) introduced by Edwards, but they simplify conside
ably when the nonbonded interaction terms are neglec
altogether. The neglect of these interactions yields a mode
which the chain is completely flexible, with no penalty fo
unphysical self-intersections. The statistics of such a ch
are described by a Gaussian distribution of chain segme
so that the mean square of the distanceR from one end of the
chain to other is given bŷR2&5Nl.

Although the termH0 in Eq. ~14! is not strictly an ener-
getic contribution, it is commonly interpreted as the ene
of a chain ofn harmonic oscillators with near neighbor co
plings in the limitn→`, l→0, nl→N. But it may also be
interpreted as the weight function for the trajectory of a po
particle that evolves in ‘‘time’’t under the action of a sto
chastic force with white noise statistics.7 The equation of
motion of this particle is

]r a~t!

]t
5ua~t!, a5x,y,z, ~15!

where the random variableu(t) is defined by

^ua~t!&50, ~16!

^ua~t!ub~t8!&5
l

3
dabd~t2t8!. ~17!

These ‘‘dynamics’’ may be reformulated in terms of pa
integrals; one then obtains an expression for the parti
function of the particle trajectories in which the Boltzman
factor is found to be exp(2H0), with H0 identical to the
expression given in Eq.~14!.

SinceH0 may be interpreted in terms of particle traje
tories ~which are equivalent, at the coarse-grained level,
individual polymer configurations!, modifications to the dy-
namics defined by Eq.~15! can be expected to yield alterna
tive representations of the polymer backbone. This idea
explored in Ref. 7 by assuming that the noise term in E
~15! is not white, but colored, and is defined completely
the following values of its first two moments:

^ua~t!&50, ~18!

^ua~t!ub~t8!&5
l 222h

6G2~h11/2!
dabd~t2t8!

3$t2h211~t8!2h21%, ~19!

where G(x) is the gamma function, andh is a parameter
lying between 0 and 1 that characterizes the degree of co
lation between particle positions at successive instants
‘‘time’’ t. The same path integral analysis as used ear
now leads to the Boltzmann factor exp(2HG) in the expres-
sion for the partition function of the particle trajectorie
whereHG is given by:7

HG5
3G2~h11/2!

2l 222h E
0

N

dtS ]r ~t!

]t D 2

t122h. ~20!
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If HG is regarded as the Hamiltonian of the equivalent po
mer configuration, the average square of the distance
tween the ends of the chain in these configurations is ea
calculated formally. The result is

^R2&5
1

2hG2~h11/2!
N2hl 222h. ~21!

Equation~21! is a generalization of the corresponding res
for random walks, and reduces to it whenh51/2. Other
choices ofh can model the scaling behavior of polyme
with fully developed repulsive or attractive long-ranged
teractions. For instance, self-avoiding walks, i.e., chains w
strong excluded volume forces between nonbonded
ments, can be modeled byh53/5,7,13 and collapsed poly-
mers, such as compact globular proteins and the like, ca
modeled byh51/3.14,15

The utility of the above generalized random walk mod
of chain statistics has been investigated in a series of pa
from this laboratory.7,16–18Although the model is not realis
tic at the microscopic level, it does provide a satisfacto
description ofmacroscopicchain properties for different val
ues ofh. Apart from ^R2& itself, these include the scalin
exponents of the thermodynamic anomalies characteri
phase separating polymer solutions,16 scaling exponents fo
relaxation times in the Rouse and Rouse–Zimm mode17

and various quantitative descriptors of chain shape.18 In the
present calculation, our interest is essentially confined to
chain length dependence of the mean time of chain clos
which is governed by the gross conformational dynamics
the chain, and is, therefore, expected to be adequately
scribed by such a model. At any rate, in the absence of o
models of chain dynamics that could treat the effects of lo
range interactions analytically, the generalized random w
model is a convenient zeroth-order approximation.

B. Dynamics

Given the above expression forHG , the actual dynamics
of the chain~the dynamics in real timet as opposed to dy
namics in the space of monomer positionst) can be de-
scribed by the following Langevin equation:

]r a~t,t !

]t
52

1

z

dHG

dr a~t,t !
1ha~t,t !, a5x,y,z, ~22!

where z is the monomer friction coefficient, andh is a
Gaussian random variable with statistics defined by

^ha~t,t !&50, ~23!

^ha~t,t !hb~t8,t8!&5
2

z
da,bd~t2t8!d~ t2t8!. ~24!

Equation~22!, along with Eq.~20! for HG , may be solved by
a normal mode decomposition if a complete orthonormal
sis set can be found that separates the dynamics of
coupled chain segments into independent motions of the
mal modes. Based on results derived by Maccone,19 the ap-
propriate basis set, denoted here asfn(t), was identified in
Ref. 7 as being proportional to Bessel functionsJp(z). Spe-
cifically,
-
e-
ily
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fn~t!5AnthJn~gn~t/N!h11/2!, ~25!

wheren, An , andgn are constants related to the paramet
of the polymer model; in Ref. 7, the first two paramete
were given expressly by

n5
2h

2h11
, ~26!

An5
A2h11

Nh11/2Jn~gn!
, ~27!

while the third was found to be determined by the solution
the equation

Jn21~gn!50. ~28!

The parametergn is, therefore, thenth zero of the Besse
function of ordern21.

From the properties of Bessel functions,20 one sees tha
in the limit h51/2, corresponding to the case of the simp
random walk~or a polymer at the theta point!, the normal
modes of the generalized random walk reduce to sines.
though sine functions are an acceptable basis set with w
to decouple the dynamics of the Rouse model@Eq. ~22! with
h51/2], the boundary conditions they satisfy do not co
rectly describe the behavior of the ends of the chain; th
estimates of quantities related to relaxation times, theref
tend to differ from conventional treatments based on cosin
Either basis set yields exactly the same exponents in
molecular weight dependence of the relaxation times, but
the same amplitudes.17 The differences can be minimized b
normalizing the amplitudes to some standard state, as sh
in Ref. 17, but it is preferable that the formalism exac
recover the Rouse limit under the appropriate conditions

This can be achieved by a simple change of sign in
~26!, i.e., by definingn not as12h/(2h11) but as

n52
2h

2h11
. ~29!

The change is permitted, as either definition provides a
gitimate solution to the Bessel equation that formed the b
for Maccone’s original treatment of extensions to Browni
motion.19 The basis functionsfn(t) continue to be given by
Eq. ~25!, with An given by Eq.~27!, but the parametergn , as
may be shown, is now determined, not by the solution of E
~28!, but by the solution of

Jn11~gn!50. ~30!

In other words, thegn are now defined as the zeros of th
Bessel function of ordern11, with n given by Eq.~29!. This
choice of basis set yields cosines in the limith51/2, and
exactlyreproduces the relaxation times of the Rouse cha
as will be shown later.

C. Time correlation function
of the end-to-end distance

At any given timet, the distanceR between one end o
the chain and the other is given by

R~ t !5r ~N,t !2r ~0,t !. ~31!
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Introducing the normal mode expansion

r ~t,t !5 (
n51

`

Xn~ t !fn~t!, ~32!

into this definition, where the$X% are the normal modes, an
the fn(t) are given by Eq.~25!, one can show that

R~ t !5 (
n51

`

Xn~ t !AnNhFJn~gn!2
~gn/2!n

G~n11!G . ~33!

The second term on the r.h.s. of this equation uses the s
representation of the Bessel function20 to define the expan
sion of r (0,t). It now follows that:

^R~ t !•R~0!&5 (
n51

`

(
m51

`

^Xn~ t !•Xm~0!&AmAnN2h

3FJn~gn!2
~gn/2!n

G~n11!G
3FJn~gm!2

~gm/2!n

G~n11!G . ~34!

The correlation function of the normal modes in the abo
equation is obtained from the solution of Eq.~22! re-
expressed in terms of the variables$X%. After several steps o
algebra involving various Bessel identities,20 one can show
that this equation is

]Xn,a~ t !

]t
52

3G2~h11/2!gn
2

4~11n!2z l 222hN2h11 Xn,a~ t !

1ua~ t !, a5x,y,z, ~35!

where

ua~ t !5E
0

N

dtha~t,t !AnthJn~gn~t/N!h11/2!. ~36!

From Eq. ~35!, the time correlation function ofXn can be
calculated as

^Xn,a~ t !Xm,b~0!&5^Xn,a~0!Xm,b~0!&e2mnt, ~37!

where

mn5
3G2~h11/2!gn

2

4~11n!2z l 222hN2h11

5
3G2~h11/2!gn

2~h11/2!2

z l 222hN2h11 . ~38!

The use of the normal mode expansion@Eq. ~32!# in the
expression for the HamiltonianHG @Eq. ~20!# reduces the
latter to a quadratic form:

HG5
3~h11/2!2G2~h11/2!

2l 222hN2h11 (
a5x,y,z

(
n51

`

Xn,a
2 gn

2 , ~39!

so that

^Xn,a~0!Xm,b~0!&5dn,mda,b

N2h11l 222h

3~h11/2!2gn
2G2~h11/2!

,

~40!

and, hence, eventually
ies

e
^R~ t !•R~0!&5

2l 222hN2h

~h11/2!G2~h11/2!

3 (
n51

`
1

gn
2 F12

~gn/2!n

Jn~gn!G~n11!G
2

3expH 2
3gn

2~h11/2!2G2~h11/2!

l 222hN2h11z
tJ .

~41!

As may be verified, in the limith51/2, corresponding to
simple Brownian motion,n521/2, gn5np, and

^R~ t !•R~0!&58Nl (
n:odd

1

n2p2 exp~23n2p2t/N2l z!,

~42!

which is the well-known expression for the decay of t
end-to-end correlations for the Rouse chain.21

IV. RESULTS AND DISCUSSION

If the time correlation function of the end-to-end di
tance@Eq. ~41!# is normalized by its equilibrium value@Eq.
~21!#, one obtains the functionf(t) @Eq. ~6!# required for the
calculation oft. The variation off(t) with time t ~expressed
in units in which the monomer friction coefficientz and the
Kuhn lengthl are unity! at fixedN5100 is shown in Fig. 1
for the three values ofh that model polymers in poor, thet
and good solvents, viz., 1/3, 1/2, and 3/5, respectively.
these values ofh, the characteristic relaxation times@the
time it takes, roughly, forf(t) to fall to 1/e of its initial
value# are significantly different. Given thath is expected to
provide a measure of how strongly chain segments attrac
repel one another, the differences can be taken to reflec
importance of nonbonded interactions in the rate of conf
mational decay.

The closure timet is calculated from Eq.~3! using the
above expression forf(t) and the expression forC(t) given

FIG. 1. The normalized time correlation function of the end-to-end dista
f(t) as calculated from Eqs.~41! and ~21! vs time t for three different
values of the parameterh ~3/5, 1/2, and 1/3! at a fixed chain length ofN
5100.
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by Eq. ~11!. The calculations at this stage are done num
cally. The results are a function of the following paramete
The chain lengthN, the reaction radiusa, and the paramete
h ( l andz being set to 1.! Figure 2 shows the variation oft
with N on a log–log scale forh53/5, 1/2, and 1/3 at an
arbitrary fixed value of 0.5 for the reaction radiusa. The
curves oft vs N for these values ofh at two other values of
a considered in the work of Pastoret al.,9 viz., 0.1 and 1.0,
are virtually the same, and are not included in the figure
clarity. The three curves in Fig. 2 are all linear for essentia
the entire range ofN, from about 50 to 1000, but hav
slightly different slopes. The timet is, therefore, a power law
in N of the form Nb, with b a function of h that is not
strongly depenendent ona in the largeN regime of interest
in our calculations. The slopesb of these various curves hav
been determined, and are shown in Table I for the giv
values ofh and the different values ofa. @Because of sensi
tivity to numerical errors, results for still smaller values ofa
(a,O(1022)) do not seem to be especially reliable.# The
implications of these results for the casesh51/2, 3/5, and
1/3 are now considered in turn.

FIG. 2. Log–log plot of the mean first passage time of chain closuret as
calculated from Eq.~3! @using Eq.~11! for C(t) and Eqs.~41! and~21! for
f(t)] vs chain lengthN for three different values of the parameterh ~3/5,
1/2, and 1/3! at a fixed value of 0.5 for the reaction radiusa.

TABLE I. Calculated scaling exponentsb in the relationt;Nb for different
reaction distancesa and different correlation parametersh.

a h Exponent

0.1 1/3 1.67
1/2 2.02
3/5 2.24

0.5 1/3 1.70
1/2 2.04
3/5 2.25

1.0 1/3 1.76
1/2 2.09
3/5 2.28
i-
:

r
y

n

A. Polymers at the theta point „hÄ1Õ2…

The caseh51/2 can be taken to correspond to polyme
in theta solvents, where the counterbalancing effects of
attractive and repulsive components of the intermolecu
potential lead to chain configurations that on average
unperturbed and follow Gaussian statistics. This case
been discussed at length in Refs. 3 and 4, and will not
discussed again in detail here. However, a number of a
tional observations are worth making.

The calculated values ofb in Table I at the indicated
values ofa are not in perfect agreement with the previo
results derived from our model of semiflexible chains in t
limit of large flexibility,3,4 ~although the respective curves o
f(t) vs t agree nearly quantitatively.! For instance, the
present estimate ofb for the casea50.1 is 2.02, whereas the
previous estimate3 is 2.18. The difference, we believe, can b
ascribed to round-off and other errors in the numerical r
tines that are used in the two calculations. The earlier ca
lation, which required solutions to highly nonlinear coupl
equations, was considerably more involved, and theref
likely to have been subject to greater uncertainty.

The finding that the closure timet in these calculations
and in the calculations of Refs. 3 and 4 scale roughly asN2

agree with certain analytic results based on the Wilems
Fixman ~WF! formalism in the limit of largeN at fixed re-
action radiusa under free-draining conditions9,11 and with
the results of at least some simulations of long flexible po
mers under similar conditions.8,9,22Within the WF formalism
itself, and provided excluded volume effects are absent
N/a remains large, theN dependence oft is expected to be
altered toN3/2 when the polymer becomes nonfree draini
through the incorporation of hydrodynamic effects.8,23

But the aboveN3/2 behavior is seen in several other a
ternative models of cyclization that neglect hydrodynam
interactions altogther. It is seen, for instance, in the mode
Brereton and Rusli, in which the terminal monomers of t
chain are treated as completely independent Brownian
ticles whose equilibrium interparticle separation follows t
same Gaussian distribution they would have obeyed had
been joined byN other segments.24 It is also seen in the
harmonic spring approximation to the WF model,8,11 and in
the Gaussian chain model of Floryet al.25 And more re-
cently, it is the predicted behavior in the model of Szab
Schulten, and Schulten26 ~SSS!, in which chain dynamics is
assumed to be governed by the Smoluchowski equation
diffusion on a one-dimensional potential of mean force.

The SSS model has been widely invoked to rational
experimental data on loop formation in small polypeptides
controlled length. The experiments typically monitor the ra
at which an excited state species at one end of the cha
quenched by contact with a suitable molecular species at
other. In one such experiment, by Bieriet al.,27 the closure
rate k for chains of between 1 and 4 repeat units of t
glycine-serine dimer was found to scale asN21.3660.26, in
apparent agreeement—as claimed—with the SSS predic
However, in the study by Hudginset al.28 of a series of
polypeptides of thesamedimer with up to 10 repeat units,k
was found to scale asN21.0560.06, a result less consisten
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with the SSS model. Agreement with the SSS model w
also claimed in experiments by Lapiduset al.29 on 10–20
residue polypeptides of the alanine-glycine-glutamine trim
wherek was found to vary asN23/2 in the asymptotic limit
of large N, although it was found to be much les
N-dependent for shorter chains, possibly reflecting the in
plicability of Gaussian statistics to stiff polymers. A lat
experimental study by the same group,30 backed by molecu-
lar dynamics simulations using a simplified potential bas
on Ramachandran maps, accounted explicitly for previou
neglected distance dependence effects of the quenching
and confirmed theN23/2 dependence ofk, but only if the
diffusion coefficient used in the SSS formalism was ma
roughly tenfold smaller than expected of free diffusion b
tween the terminal monomers.

Portman31 has recently argued that the SSS mean fi
passage time is actually a lower bound on the true clos
time, and would therefore require a smaller-than-expec
diffusion coefficient to fit experimental or simulation dat
essentially to correct for discrepancies that result from us
Gaussian statistics to describe an intrinsically non-Gaus
process. Junet al.32 have used Kramers rate theory to su
gest that theN-dependence ofk actually reflects the compe
tition between energetic and entropic components of ch
closure, the former being dominant for short chains and
latter for long chains. Much the same kind of argument h
been advanced in Ref. 9, where different limits~small a at
fixed N, on the one hand, or largeN at fixeda on the other!
were said to account for differentN dependences ofk. How-
ever, the calculations of Junet al.32 do not appear to produc
N23/2 scaling under conditions expected to be relevant to
systems, but they do predict a minimum in the closure ti
at a distance of about 3 and 4 persistence lengths, as in
work of Refs. 28 and 30. At the same time, no such ex
mum is evident in another recent simulation, by Wang a
Makarov;33 and althoughk;N21.65 at largeN in this simu-
lation, in fair agreement with the SSS prediction, the dif
sion coefficient that fits the data is actually close to the f
diffusion value.

As these results indicate, the microscopic basis for
distance dependence of closure times cannot always be
tified unambiguously, and other more stringent tests may
required to discriminate between rival mechanistic scenar

B. Polymers in good solvents „hÄ3Õ5…

The caseh53/5 can be taken to correspond to polyme
in good solvents, where repulsive interactions betwe
monomer segments dominate, and the average radial dim
sions of the chain are those of a self-avoiding walk. T
prediction thatt;N2.2 ~Table I! is consistent with numerou
prior studies, including the independent particle model
Brereton and Rusli,24 the renormalization group calculation
of Friedman and O’Shaughnessy,34 Brownian dynamics
simulations35 and at least some experimental data.36 It is
probably reasonable to conclude therefore that the enha
N dependence oft ~or k! ~as compared to the Gaussia
model! originates wholly in the effects of long-range e
cluded volume effects between different parts of the cha
s
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C. Collapsed polymers „hÄ1Õ3…

The caseh51/3 can be taken to correspond to collaps
polymers, where attractive interactions between monom
segments dominate, and the average end-to-end distan
the chain scales asN1/3. At present there appear to be n
experimental or simulation data on cyclization in such s
tems, so our prediction~Table I! that their average closur
time scales approximately asN21.7 must remain untested.

The average radial dimensions of a number of comp
globular proteins in their native state can also be said15 to
scale asN1/3, but a direct comparison of theh51/3 results
with these systems is not necessarily warranted. Native
teins when unfolded adopt configurations that depe
strongly on how they have been denatured; high temp
tures, high pressures and chemical denaturants all ten
produce open configurations that are either random coils
possibly self-avoiding walks.37 It is only under ‘‘cold dena-
turing’’ conditions that these configurations are thought to
essentially collapsed, with the size scaling asN1/3. The
polypeptide data of Sec. IV A above, are therefore, proba
best compared to results for the caseh51/2, as has been
done, but the results for the caseh51/3 indicate that the
presence of nonbonded attractive interactions can also
tribute to decreasing theN-dependence of loop formatio
rates relative to flexible polymers in the free-draining lim
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