Dynamics of chain closure: Approximate treatment of nonlocal interactions
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The Wilemski—Fixman model of diffusion controlled-reactigdsChem. Phys58, 4009(1973] is
combined with a generalized random walk description of chain conformations to predict the
dependence of the closure timeon the chain lengtiN of polymers with reactive end groups and
nonlocal interactions. The nonlocal interactions are modeled by a modification to the connectivity
term in the Edwards continuum representation of the polymer. The modification involves a
parameteh lying between 0 and 1 that is a measure of the extent of correlation between adjacent
monomers on the chain backbone. Different choice$ abrrespond to chain conformations of
different average radial dimensions. In particular, the values 1/3, 1/2 and 3/5 provide approximations
to the statistics of polymers in poor, theta and good solvents, respectively. The closur@fimueh
chains is calculated analytically for differeNt In all casesy is found to vary as a power law in

N, N°, with b a function ofh. For the special case=1/3, which models collapsed polymers and
globular proteinsp is about 1.6-1.7.

I. INTRODUCTION terior elements and other more realistic folding pathways,
has not been systematically investigated. A number of ques-

. Loop formation in polymers can often serve as a paragions apout the problem have, therefore, not been fully ad-
digm for biological processes in which distant parts of A4ressed. It is not yet known, for instance, hawthe mean

macromolecule come together and initiate a series of phySEIosure time, varies with the molecular weightt in chains

cal or chemical events that lead to permanent conformation%ith long-range interactions. Such knowledge may provide
changes. Such processes frequently occur through the aS¥es to the factors behind important conformational
ciation of specific pairs of residues or domains within the

. . - : changes, including those that direct the course of protein

macromolecule, which are brought into proximity with each_ . . ) e
) folding, which can be accomplished within microseconds or
other through the random thermal fluctuations of the me;

dium. If the first encounter of the reactive pair is rate- :ess,l af'te-r s%mehow circumventing the problem of multiple
determining, knowledge of the mean first passage tifa ocal minima.

chain closure can provide insights into the nature of the con- |t iS: therefore, of considerable interest to calculafer
formational transitior. chains with long-range interactions, particularly attractive in-

Although biopolymers are structurally complex, even teractions, since such.intera.ctions govern the formation of
simple statistical models can sometimes describe their profompact globular configurations. However, a full-scale at-
erties successfuly when short-range interactions are thi@ck on the problem, starting from even a minimal con-
dominant controlling factor in their behavidin theoretical ~ tinuum representation of the chain—such as the Edwards
descriptions of molecules like DNA, RNA, and ho- model, with two and possibly three-body interactions
mopolypeptides, many of the structural details at the level ofncluded—is generally intractable under any but the most
the repeat unit can often be ignored, and the molecule repréevere approximations. One way to overcome the difficulties
sented as a succession of elementary units with interactiorgssociated with nonlocal effects is to incorporate these ef-
that extend at most to the nearest or next nearest neighboifects into a description of the chain that is effectively local,
If these units are further reduced to points, the molecule caand that is, therefore, simpler to treat, in principle. A realiza-
in fact be represented as a continuous one-dimensiongbn of this idea may be found in polymer models that are
string. Continuum models of this kind have recently beenformulated around the statistics of “generalized” random
used with some success to calculate closure times in symwalks, rather than the simple random walks that underlie
thetic sticky-ended single-stranded DNA. more conventional approaches. In the path integral represen

The extension of such calculations to more general situtation of these models, the Hamiltonian is a generalization of
ations, in particular to polymers with non-negligible long the connectivity term in the Edwards model, all the effects of
I’ange inteI’aCtionS, is nontrivial. In these cases, even théxcluded Vo|ume and Other |0ng_range interactions being
problem of simple cyclization involving the ends of the ¢ontained in a single parametethat appears there. By suit-
chain, much less the problem of contact pairing between ingzpie choice ofh, long wavelength properties of the chain,
such as the end-to-end distance, or the radius of gyration, can
3Electronic mail: cherayil@ipc.iisc.ernet.in be calculated in fairly close agreement with results obtained
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by more sophisticated models, without the explicit inclusionon the magnitude of the separation between the chain ends.
of excluded volume effects. An expression foiS(R) will be provided later. Equatioli3)

A similar calculation ofr may therefore provide a useful is not exact; it makes use of a self-consistent approximation
preliminary theory of its behavior under conditions where introduced by Wilemski and Fixman, and also imposes the
other models would be difficult or impossible to treat. Thelimit k— .8 The first approximation corresponds to the as-
subject of this paper is the calculation efwithin such an  sumption of local equilibrium, while the second corresponds
approach. to the assumption that the chain ends react immediately and

As reviewed in Sec. Il below, the dynamics of chainsirreversibly whenever they satisfy the distance constraints
with reactive end-groups is described by a Smoluchowskdefined by the sink function.
equation with an added sink term, the sink term representing The calculation ofC(t) requires knowledge of the con-
the loss of probability from chain closure. When this term isditional probability G(R,t|R,,0). For a completely flexible
chosen to be a function solely of the magnitude of the sepgsolymer, this probability can be taken as Gaussian, because
ration between the ends of the chain, its time correlatiorR is the sum of a large number of independent, random bond
function C(t) can be expressed in terms of the time correla-vectors, and the central limit theorem may therefore be
tion function of the end-to-end distance. Further, the integrainvoked? For a self-avoiding or self-attracting chain, or a
of C(t) is related to the mean first passage timeC(t) chain of limited flexibility, the probability is no longer nec-
depends critically on the details of the chosen model, and isssarily Gaussian, but it will be assumed to be so in order to
therefore an important intermediate step in the calculation ofender the calculations tractable. A future publication will
7. The calculation of>(t), and from itr, is discussed in Sec. discuss how the assumption may be lift&d.

[l within the formalism of generalized random walks. Sec- The requisite Gaussian form of the conditional probabil-

tion IV presents the principal results of this calculation. ity in Eq. (4) is®
3 3/2 1
Il. DYNAMICS OF CHAIN CLOSURE G(R,t|Rp,0) = 27r<R2>eq) PO
In a neutral solvent, the dynamics of an isolated polymer 3(R= b(1)Ry)?
having reactive end-groups can be described by the follow- X F{— . g } (5)
ing Smoluchowski equatioh® 2(R%) e 1—#%(1))
ap({rit) where the functionp(t) is defined as
————=Dy({r},t) —kS({r rht). 1
Here, #({r},t) denotes the probability density that the chain <R2>eq '

the position of theth monomer in a chain af monomersk  gyer Yeq-
is a rate constantS is a sink function that prescribes the After substituting Eq(5) into Eq. (4), and carrying out

conditions under which reaction between the ends of th@he angu|ar part of the integrations over the vecterand
chain takes place; arit is a differential operator, defined as R,  Cc(t) becomes

D=D i i +(9U t) (2 2 ’ !
=Po2 G ar, " |PUTHY: SO 2@y (T )™
with D, the diffusion constant, defined as the inverse of the o o )
friction coefficient per unit length of the polymer, ahdthe X fo dRRS(R) fo dRyR5S(Ro)
potential energy of the chain.
An approximate expression for the mean first passage F{ 3 (R%+ RS) }
time 7 can be derived from Eq1). The derivation has been 2<R2>eq (1-$2(D)

discussed at length in earlier referenées only the final

result will be given here: SINHB3PRR/(R?)ef 1= $*(1))] @)
- c) 3¢RRy/(R¥)ed 1= ¢%(1)
= fo dt C(») -1/, 3 To complete the calculation dE(t), the sink function
S(R) must be specified. Heré5(R) is chosen to be the
where Heaviside sink, defined as
C<t>=fdedRosm)G(R,tlRo,0>S<Ro>weq<Ro>. SR)=1; R<a
(4 =0, R>a (8

In the above expressiorG(R,t|R,,0) is the conditional wherea is the distance of closest approach of the chain ends
probability that a chain with the end-to-distanieg at time  prior to irreversible cyclization. Whe§(R) is chosen in this
t=0 has the end-to-end distanBeat timet; .{Ro) is the  way, the integrals in Eq(7) cannot be carried out exactly.
equilibrium distribution of the end-to-end distance; &{&R) However, the expansion of the integrand in the small para-
is the sink function, which is assumed here to depend onlyneter



B 3a? to V, such as the delta function pseudopotentigh(r ()
X°_2(R2>eq’ ©  _ r(7')) introduced by Edwards, but they simplify consider-

. . . ably when the nonbonded interaction terms are neglected
followed by term by term integration leads to an approximate y 9

. . . altogether. The neglect of these interactions yields a model in
result that is expected to be accurata.this way, it is found which the chain is completely flexible, with no penalty for

that unphysical self-intersections. The statistics of such a chain
xg 6Xg are described by a Gaussian distribution of chain segments,
C(t)= om(1= 9 1- 5(1-47) +ee (100 so that the mean square of the distaRdeom one end of the

o , . chain to other is given byR?)=NI.
To the same order of approximation, this equation may be Although the terH, in Eq. (14) is not strictly an ener-

resummed as getic contribution, it is commonly interpreted as the energy
Xg -3/2 of a chain ofn harmonic oscillators with near neighbor cou-
C(t)= W( 1- %+ gxo) , (11)  plings in the limitn—o, | -0, nl—N. But it may also be

interpreted as the weight function for the trajectory of a point
which is of exactly the same functional form as the expresparticle that evolves in “time”r under the action of a sto-
sion derived by Ddit using the following Gaussian sink chastic force with white noise statistitsThe equation of

function: motion of this particle is
3 2
_ _ ar,
SR =Next - 30 @2 D =y, 19

where A/ is a normalization constant. Equatiohl) differs

from the corresponding result in Ref. 11 in the value of thewhere the random variablé(7) is defined by

coefficient ofxq; it is 4/5 above, and 4/3 in Doi’s calcula-

tion. (0,(7))=0, (16)
It only remains to determineb(t) to proceed further

with the calculation ofr. The calculation of(t) is discussed

I
in the following section. (0a(7)0p(7"))= §5a,85( 1) (17)
lll. CHAIN CONFORMATIONS AS GENERALIZED These “dynamics” may be reformulated in terms of path
RANDOM WALKS integrals; one then obtains an expression for the partition
function of the particle trajectories in which the Boltzmann
A. The model factor is found to be exp{Ho), with H, identical to the
The defining ingredient in most models of the the statis-eXpression given in Eq14). _ . _
tical mechanics of polymers is the chain Hamiltontdn In SinceHy may be interpreted in terms of particle trajec-

models where the polymer is depicted as the locus of a strinfpries (which are equivalent, at the coarse-grained level, to

typically written as? namics defined by Ed15) can be expected to yield alterna-
tive representations of the polymer backbone. This idea was
H=Ho+H,, 13 explored in Ref. 7 by assuming that the noise term in Eq.
3 (N [or(n)\2 1 (N (15) is not white, but colored, and is defined completely by
=— | df\——| + = | dr the following values of its first two moments:
2l Jo aT 2J)o
N (8a())=0, (18)
Xf dr'V[r(7)—r(7")], (14
0 2-2h
wherel corresponds, effectively, to a bond lengtkiy) de- (0a(7) Op(7"))= 6T2(h+1/2) Sapd(T—1")
fines the trajectory of the string in three-dimensional space in - -
terms of a continuous variable which specifies the location X{r i (7)Y, (19

of individual monomergimagined to be poinjsalong the _ ) _
backbone of the chain, and[r(7)—r(7')] is a potential W_herel“(x) is the gamma function, _anU is a parameter
energy term that accounts for the effects of pair'y'”g between 0 and 1 that characterizes the degree of corre-
interactions—both attractive and repulsive—between nonlation between particle po_sitions at succ_essive instants_of
bonded segments. Higher body contributions to the potentiaitime” 7. The same path integral analysis as used earlier
if non-negligible, may also be included in E(.4) as addi- NOW leads to the Boltzmann factor exifig) in the expres-
tional additive terms, along with any other terms that may beion for the part|t|on7 function of the particle trajectories,
necessary to describe the interactions of the polymer with it¢/hereHg is given by.
environment.

Calculations with this and related Hamiltonians are gen-
erally nontrivial, even for relatively simple approximations

3r2(h+1/2) (N
6= gz | dr

(20

2
ar(r) 1-2h
aT ’




If Hg is regarded as the Hamiltonian of the equivalent poly- ¢ (7)=A,7"3,(y,(7/N)""1?), (25)

mer configuration, the average square of the distance be-

tween the ends of the chain in these configurations is easilyfh?hre”’ Al‘“’ and y, darl.e POEt?n;S rtilat](:._d ;[otvtvhe parametters
calculated formally. The result is € polymer model, in Ret. 7, the 1irst o parameters

were given expressly by

1
(R?) = 5ig—e N2 2720, (21) ~2h
2hI'“(h+1/2) = Shi1’ (26)
Equation(21) is a generalization of the corresponding result
for random walks, and reduces to it whénr=1/2. Other _ N2h+1 27)
choices ofh can model the scaling behavior of polymers "TNPFIZY (y,) (

with fglly devel_oped repulsive or a}ttractlve Ic_)ng-ranged " while the third was found to be determined by the solution of
teractions. For instance, self-avoiding walks, i.e., chains W|tqhe equation

strong excluded volume forces between nonbonded seg-
ments, can be modeled by=3/5,"% and collapsed poly- J,_1(yn)=0. (28)
mers, such as compact globular proteins and the like, can
modeled byh=1/3.141°

The utility of the above generalized random walk model

of chain statistics has been investigated in a series of PaPeSS the fimit h=1/2 corresponding to the case of the simple
from this laboratory.1®~18Although the model is not realis- random walk(or a polymer at the theta pojntthe normal

tic at_th_e microscopic I(.avel,.it does provide a satiSf""Ctorymodes of the generalized random walk reduce to sines. Al-
description oimacroscopichain properties for different val- though sine functions are an acceptable basis set with which

ues ofh. Apart from (R?) itself, these include the scaling to decouple the dynamics of the Rouse md]. (22) with
exponents of the thermodynamic anomalies characterizingzllz] the boundary conditions they satisfy do not cor-

phase separating polymer solutidfisicaling exponents for rectly describe the behavior of the ends of the chain; their

relzxatlt_)n times n th_e F;ouse_ and R?uie_—th]g m(;]jd'els, estimates of quantities related to relaxation times, therefore,
and various quqnutatlve. escrlpFors orchain s p_e.t € tend to differ from conventional treatments based on cosines.
present calculation, our interest is essentially confined to th%ither basis set yields exactly the same exponents in the
chayn Igngth dependence of the mean t|m¢ of chain Clpsur olecular weight dependence of the relaxation times, but not
which is governed by the gross conformational dynamics o he same amplitude.The differences can be minimized by

the't:: h;\ig ' andhis, thedrelf o;e, expecteq tcr)1 be badequattfaly r?ﬁ'ormalizing the amplitudes to some standard state, as shown
scribed by such a model. At any rate, in the absence of othgf, pag 17, but it is preferable that the formalism exactly

models_ of cha!n dynam|c_s that could treat the effects of longze over the Rouse limit under the appropriate conditions.
range interactions analytically, the generalized random walk This can be achieved by a simple change of sign in Eq

bfane parametery, is, therefore, thenth zero of the Bessel
function of orderv—1.
From the properties of Bessel functiofispne sees that

model is a convenient zeroth-order approximation. (26), i.e., by definingw not as+2h/(2h+ 1) but as
B 2h
B. Dynamics VT ohT 1 (29

Given the above expression fii; , the actual dynamics  The change is permitted, as either definition provides a le-
of the chain(the dynamics in real timé as opposed to dy- gitimate solution to the Bessel equation that formed the basis
namics in the space of monomer positiorjs can be de- for Maccone’s original treatment of extensions to Brownian

scribed by the following Langevin equation: motion2® The basis functiong,(7) continue to be given by
ar (7,t) 1 6Hg Eq. (25), with A, given by Eq.(27), but the parametey,, as
==73 " +9,(7t), a=xy,z, (22 may be shown, is now determined, not by the solution of Eq.
a7 arg(mt) (28), but by the solution of
where ¢ is the monomer friction coefficient, ang is a 3, 1(y0)=0 (30)
Gaussian random variable with statistics defined by v+1¥n '
In other words, they, are now defined as the zeros of the
(7a(7,1)=0, (23 Bessel function of order+ 1, with v given by Eq.(29). This

2 choice of basis set yields cosines in the lirhit=1/2, and

(no(T) (7' 1)) = Z5a,ﬁ5( T—71')6(t=t").  (24)  exactlyreproduces the relaxation times of the Rouse chain,
as will be shown later.

Equation(22), along with Eq(20) for Hg, may be solved by

a normal mode decomposition if a complete orthonormal ba-

sis set can be found that separates the dynamics of the. Time correlation function

coupled chain segments into independent motions of the nobf the end-to-end distance

mal modes. Based on results derived by Macctrtae ap-

propriate basis set, denoted heredag7), was identified in

Ref. 7 as being proportional to Bessel functidhp¢z). Spe-

cifically, R(t)=r(N,t)—r(0;). (3D

At any given timet, the distancdk between one end of
the chain and the other is given by



Introducing the normal mode expansion

r(r,t>=n§l Xn(t) (1), (32

into this definition, where théX} are the normal modes, and
the ¢,(t) are given by Eq(25), one can show that

(ynl2)”
I'v+1)

R(t)=n21 xn<t>AnN“{JV<yn>— : (33

The second term on the r.h.s. of this equation uses the serie

representation of the Bessel functro define the expan-
sion of r(0). It now follows that:

o ©

<R<t>~R(0>>=n§1 m; (Xn(t) - Xm(0)) AL AN

(¥al2)”
X JV(Vn)—m
(yml2)"

The correlation function of the normal modes in the above

equation is obtained from the solution of ER2) re-
expressed in terms of the variableg. After several steps of
algebra involving various Bessel identit®spne can show
that this equation is

IXp, 1) 32(h+1/2)y?
ot :_4(1+V)2§|2*2hN2h+1Xn,a(t)
+0,(1), a=xy,z, (35
where
N
9a(t)=f d77( 7AYo 7/N) L), (36)
0

From Eg.(35), the time correlation function oK, can be
calculated as

(Xn,a(1) X 5(0))=(Xp o(0) Xy g(0) )€™ #nf, (37)
where
- 3r2(h+1/2)y2
Nn_4(1+v)2§|2—2hN2h+1
3T2(h+1/2)y2(h+1/2)?
_ ( ) Vn( ) @9

é«l 2*2hN2h+l

The use of the normal mode expansidig. (32)] in the
expression for the Hamiltoniaklg [Eq. (20)] reduces the
latter to a quadratic form:

3(h+1/2)°T?(h+1/2) -
G— 7 2R\ 2h T 1 > Xﬁ,wﬁ, (39
2l N a=Xx,y,zn=1
so that
N2h+l|2—2h
(Xn.o(0)Xim (00) = 0. 313 17212, 2 2 (T 172)
(40

and, hence, eventually

800

1000
t

FIG. 1. The normalized time correlation function of the end-to-end distance
@(t) as calculated from Egqg41) and (21) vs timet for three different
values of the parametdr (3/5, 1/2, and 1/Bat a fixed chain length o
=100.

2] 2—2hN2h
(h+1/2T?(h+1/2)

o1 (7al2)"
Xgly_ﬁ{l_%mr(wn

-
(41)

As may be verified, in the limih=1/2, corresponding to
simple Brownian motiony=—1/2, y,=nm, and

(R(1)-R(0))=

2

3y2(h+1/2)%T'?(h+1/2)
- |2*2hN2h+1§ .

(R(t)-R(0))=8N |n%d Hzl?zexq —3n272tIN2 ),
(42)

which is the well-known expression for the decay of the
end-to-end correlations for the Rouse chéin.

IV. RESULTS AND DISCUSSION

If the time correlation function of the end-to-end dis-
tance[Eq. (41)] is normalized by its equilibrium valugeq.
(21)], one obtains the functiog(t) [Eq. (6)] required for the
calculation ofr. The variation of¢(t) with timet (expressed
in units in which the monomer friction coefficiegtand the
Kuhn lengthl are unity at fixedN=100 is shown in Fig. 1
for the three values df that model polymers in poor, theta
and good solvents, viz., 1/3, 1/2, and 3/5, respectively. For
these values oh, the characteristic relaxation timgthe
time it takes, roughly, forp(t) to fall to 1/le of its initial
valug] are significantly different. Given thét is expected to
provide a measure of how strongly chain segments attract or
repel one another, the differences can be taken to reflect the
importance of nonbonded interactions in the rate of confor-
mational decay.

The closure timer is calculated from Eq(3) using the
above expression fap(t) and the expression fd(t) given



55— T T T T T A. Polymers at the theta point (h=1/2)

The caséh=1/2 can be taken to correspond to polymers
in theta solvents, where the counterbalancing effects of the
attractive and repulsive components of the intermolecular
potential lead to chain configurations that on average are
unperturbed and follow Gaussian statistics. This case has
been discussed at length in Refs. 3 and 4, and will not be
discussed again in detail here. However, a number of addi-
tional observations are worth making.

The calculated values df in Table | at the indicated
values ofa are not in perfect agreement with the previous
results derived from our model of semiflexible chains in the
limit of large flexibility,>* (although the respective curves of
¢(t) vs t agree nearly quantitative)y.For instance, the
5 2 22 24 26 28 s present estimate df for the case=0.1 is 2.02, whereas the

Log(N) previous estimafss 2.18. The difference, we believe, can be
FIG. 2. Log—log plot of the mean first passage time of chain closlas ascribed to round-off and other errors in the numerical rou-
calculated from Eq(3) [using Eq.(11) for C(t) and Eqs(41) and(21) for tines that are used in the two calculations. The earlier calcu-
¢(t)] vs chain Ien_gtH\l for three different values_ of the_paramete(3/5, lation, which required solutions to highly nonlinear coupled
1/2, and 1/3at a fixed value of 0.5 for the reaction radis equations, was considerably more involved, and therefore,
likely to have been subject to greater uncertainty.

The finding that the closure timein these calculations
by Eg. (11). The calculations at this stage are done numeri—and n the calculgtmns Of. Refs. 3 and 4 scale rough_lwés .

) : agree with certain analytic results based on the Wilemski—
cally. The results are a function of the following parameters

The chain lengtiN, the reaction radiua, and the parameter F|xman (W.F) formalism in the."f“'t of Iar'g.el\%éa}t fixed re-
h (I andZ being set to 1.Figure 2 shows the variation of action radiusa under free-draining conditions™ and with

with N on a log—log scale foh=3/5, 1/2, and 1/3 at an the results of at least some simulations of long flexible poly-
arbitrary fixed value of 0.5 for the r’eacti,on radias The ~ M€S under similar conditiorfs’ **Within the WF formalism
curves ofrvs N for these \./alues ofi at two other values of itself, and provided excluded volume effects are absent and

a considered in the work of Pastet al.’ viz., 0.1 and 1.0, N/a remains large, thél dependence of is expected to be

3/2 .
are virtually the same, and are not included in the figure fmaltered toN™* when the polymer becomes nonfree draining

clarity. The three curves in Fig. 2 are all linear for essentiallythrough the incorposr/?tion of hydrodynamic effetfs.
But the abova\*'< behavior is seen in several other al-

the entire range oN, from about 50 to 1000, but have - v ]
slightly different slopes. The timeis, therefore, a power law ternative models of cyclization that neglect hydrodynamic
interactions altogther. It is seen, for instance, in the model of

in N of the form N°, with b a function ofh that is not =l ; >
strongly depenendent anin the largeN regime of interest Brereton and Rusli, in which the terminal monomers of the

in our calculations. The slopésof these various curves have chain are treated as completely independent Brownian par-
been determined. and are shown in Table | for the gi\,e,{icles whose equilibrium interparticle separation follows the
values ofh and the different values af. [Because of sensi- Same Gaussian distribution they would have obeyed had they
tivity to numerical errors, results for still smaller valuesaof ~been joined byN other segment! It is also seen in the
(a<O(10°2)) do not seem to be especially reliaflghe harmonic spring approximation to the WF mofiéf,and in

implications of these results for the cagdes 1/2, 3/5, and the Gaussian chain model of Flost al?® And more re-
1/3 are now considered in turn. cently, it is the predicted behavior in the model of Szabo,

Schulten, and Schultéh(SSS, in which chain dynamics is

assumed to be governed by the Smoluchowski equation for

diffusion on a one-dimensional potential of mean force.
TABLE I. Calculated scaling exponerisin the relationr~ NP for different The SSS model has been widely invoked to rationalize
reaction distancea and different correlation parametérs experimenta| data on |00p formation in small po|ypept|des of
controlled length. The experiments typically monitor the rate

a h Exponent . . . .
at which an excited state species at one end of the chain is
01 13 1.67 quenched by contact with a suitable molecular species at the
12 2.02 . o o7
35 594 other. In one such experiment, by Biet al,’ the closure
05 13 1.70 rate x for chains of between 1 and 4 repeat units of the
172 2.04 glycine-serine dimer was found to scale 536026 in
3/5 2.25 apparent agreeement—as claimed—uwith the SSS prediction.
1.0 11//5’ 21.;96 However, in the study by Hudginet al?® of a series of
a5 228 polypeptides of thesamedimer with up to 10 repeat unitg,

was found to scale abl~105°006 5 result less consistent




with the SSS model. Agreement with the SSS model wa<. Collapsed polymers (h=1/3)
also claimed in experiments by Lapidesal?® on 10—20

. . . . . ) The casén=1/3 can be taken to correspond to collapsed
residue polypeptides of the alanine-glycine-glutamine trimer

h found t 8-%2in th totic limit polymers, where attractive interactions between monomer
where« was found to vary a In the asymptotic imi segments dominate, and the average end-to-end distance of

of large N, although it was founq to be much l?SS the chain scales a'®. At present there appear to be no
deep'e?ndent for shprter Ch‘.”“ns’ possﬂ;ly reflecting the In"’méxperimental or simulation data on cyclization in such sys-
plicability of Gaussian statistics to stiff polymers. A later tems, so our predictiofiTable ) that their average closure
experimental study by the same grolifhacked by molecu- j

. . ’ . R . c}ime scales approximately & " must remain untested.
lar dynamics simulations using a simplified potential base

- ; The average radial dimensions of a number of compact
on Ramachandran maps, accounted explicitly for prewousl;g?l:

lected dist d d ftocts of th hi obular proteins in their native state can also be Satl
neglected distance ,ee,,gen ence eflects of the quenching raig.q asN'® but a direct comparison of the= 1/3 results
and confirmed theN dependence ok, but only if the
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