DYNAMICS OF CHARGED PARTICLES AND THEIR RADIATION FIELD

This book provides a self-contained and systematic introduction to classical electron theory and its quantization nonrelativistic quantum electrodynamics. The first half of the book covers the classical theory. It discusses the well-defined Abraham model of extended charges in interaction with the electromagnetic field, and gives a study of the effective dynamics of charges under the condition that, on the scale given by the size of the charge distribution, they are far apart and the applied potentials vary slowly. The second half covers the quantum theory, leading to a coherent presentation of nonrelativistic quantum electrodynamics. Topics discussed include nonperturbative properties of the basic Hamiltonian, the structure of resonances, the relaxation to the ground state through emission of photons, the nonperturbative derivation of the electron, and the stability of matter.

Suitable as a supplementary text for graduate courses, this book will also be a valuable reference for researchers in mathematical physics, classical electrodynamics, quantum optics, and applied mathematics.

HERBERT SPOHN is Professor of Mathematical Physics at Zentrum Mathematik, Technische Universität München. He obtained his Ph.D. from Ludwig-Maximilians-Universität München in 1975. He has done research at universities and institutes throughout the world. His research interests are in statistical physics, particularly dynamics and nonequilibrium statistical mechanics, with one focus on the derivation of macroscopic evolution equations from the dynamics of atoms. He has had numerous publications in these areas. From 2000 to 2002 he has been the president of the International Association of Mathematical Physics. Cambridge University Press 0521836972 - Dynamics of Charged Particles and their Radiation Field Herbert Spohn Frontmatter <u>More information</u>

DYNAMICS OF CHARGED PARTICLES AND THEIR RADIATION FIELD

HERBERT SPOHN Technische Universität München

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

> CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

> > http://www.cambridge.org

© H. Spohn 2004

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2004

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 11/14 pt. System $IAT_FX 2_{\mathcal{E}}$ [TB]

A catalog record for this book is available from the British Library

Library of Congress Cataloging in Publication data

Spohn, Herbert, 1946– Dynamics of charged particles and their radiation field/Herbert Spohn. p. cm. Includes bibliographical references and index. ISBN 0 521 83697 2 (hardback) 1. Electromagnetic theory. 2. Quantum elecrodynamics. I. Title. QC670.S65 2004 530.14'1 – dc22 2004040408

ISBN 0 521 83697 2 hardback

Cambridge University Press 0521836972 - Dynamics of Charged Particles and their Radiation Field Herbert Spohn Frontmatter <u>More information</u>

To the memory of my parents Ortrud Knopp and Karl Spohn

Contents

	Preface		<i>page</i> xi
	List	of symbols	xiii
1	Scope, motivation, and orientation		1
Pa	rt I	Classical theory	5
2	A ch	arge coupled to its electromagnetic field	7
	2.1	The inhomogeneous Maxwell–Lorentz equations	8
	2.2	Newton's equations of motion	12
	2.3	Coupled Maxwell's and Newton's equations	13
	2.4	The Abraham model	17
	2.5	The relativistically covariant Lorentz model	22
		2.5.1 The four-current density	24
		2.5.2 Relativistic action, equations of motion	27
3 Historical notes		33	
	3.1	Extended charge models (1897–1912)	33
	3.2	Nonrelativistic quantum electrodynamics	36
	3.3	The point charge	37
	3.4	Wheeler–Feynman electrodynamics	41
4	The	energy-momentum relation	44
	4.1	The Abraham model	44
	4.2	The Lorentz model	48
	4.3	The limit of zero bare mass	51
5	Long	g-time asymptotics	54
	5.1	Radiation damping and the relaxation of the acceleration	55
	5.2	Convergence to the soliton manifold	59
	5.3	Scattering theory	61

viii	Contents		
6	Adiat	patic limit	65
	6.1	Scaling limit for external potentials of slow variation	66
		6.1.1 Appendix 1: How small is ε ?	71
		6.1.2 Appendix 2: Adiabatic protection	72
	6.2		74
	6.3	Point-charge limit, negative bare mass	75
7	Self-f	orce	80
	7.1	Memory equation	81
	7.2	Taylor expansion	83
	7.3	How can the acceleration be bounded?	86
8	Comp	parison dynamics	91
	8.1	An example for singular perturbation theory	94
	8.2	The critical manifold	95
	8.3	Tracking of the true solution	97
	8.4	Electromagnetic fields in the adiabatic limit	100
	8.5	Larmor's formula	101
9	The L	corentz–Dirac equation	106
	9.1	Critical manifold, the Landau-Lifshitz equation	107
	9.2	Some applications	109
	9.3	Experimental status of the Lorentz-Dirac equation	114
10	Spinn	ing charges	119
	10.1	Effective spin dynamics of the Lorentz model	119
	10.2	The Abraham model with spin	121
	10.3	Adiabatic limit and the gyromagnetic ratio	125
11	Many charges		130
	11.1	Retarded interaction	130
	11.2	Limit of small velocities	132
	11.3	The Vlasov–Maxwell equations	138
	11.4		139
12		nary and preamble to the quantum theory	145
Par		Quantum theory	147
13		tizing the Abraham model	149
	13.1	Lagrangian and Hamiltonian rewriting of the Abraham model	150
	13.2	The Pauli–Fierz Hamiltonian	153
	13.3	Fock space, self-adjointness	160
	13.4	Energy and length scales	164
	13.5	Conservation laws	167
	13.6	Boundary conditions and the Casimir effect	169
	13.7	Dipole and single-photon approximation	171

		Contents	ix
14	The s	tatistical mechanics connection	177
	14.1	Functional integral representation	177
	14.2		187
	14.3		191
15	States	s of lowest energy: statics	200
	15.1	Bound charge	201
	15.2	Energy-momentum relation, effective mass	204
		15.2.1 Appendix: Properties of $E(p)$	211
	15.3	Two-fold degeneracy in the case of spin	216
16	States	s of lowest energy: dynamics	220
	16.1	The time-adiabatic theorem	221
	16.2	The space-adiabatic limit	224
	16.3	Matrix-valued symbols	228
	16.4	Adiabatic decoupling, effective Hamiltonians	232
	16.5	Semiclassical limit	236
	16.6	Spin precession and the gyromagnetic ratio	239
17	Radia	ation	247
	17.1	N-level system in the dipole approximation	248
	17.2	The weak coupling theory	250
	17.3	Resonances	257
	17.4	Fluorescence	263
	17.5	6	268
18	Relay	ation at finite temperatures	279
	18.1	Bounded quantum systems, Liouvillean	280
	18.2	Equilibrium states and their perturbations, KMS condition	283
	18.3	1	285
	18.4		288
	18.5	Atom in interaction with the photon gas	290
	18.6	Complex translations	293
	18.7	Comparison with the weak coupling theory	297
19		vior at very large and very small distances	300
	19.1	Infrared photons	301
	19.2	Energy renormalization in Nelson's scalar field model	304
	19.3		312
		19.3.1 Self-energy	313
		19.3.2 Effective mass	316
		19.3.3 Binding energy	319
		19.3.4 Lamb shift and line width	321
		19.3.5 <i>g</i> -factor of the electron	322

x		Contents	
20	Many	charges, stability of matter	326
	20.1	Stability of atoms and molecules	328
	20.2	Quasi-static limit	331
	20.3	H-stability	334
	References		339
	Index		358

Preface

Physical theories, while devised to model a particular range of phenomena, are evidently linked in a hierarchical fashion. It is this structure which keeps fascinating me. In statistical mechanics, my scientific home-town, the link between atomic and macroscopic properties is one central issue. There we are taught that the emergence of a more restricted theory from a more general one has a richer structure than merely letting some parameter tend to infinity. I understood at some point, by accident, that similar issues appear in the dynamics of classical charges coupled to the Maxwell field. Since I could not find a satisfactory discussion in the literature, I decided to write up my own account. The theory so covered is the classical electron theory, a subject which is commonly regarded as settled with some modest revival through astrophysical applications. On the other hand, the quantized version of this theory is more lively than ever through the amazing advances in atomic physics and quantum optics. It thus seemed to me a welcome opportunity to expand my enterprise and to cover also nonrelativistic quantum electrodynamics, stressing its classical counterpart more than is done usually.

The research which has led to this book goes back about seven years and in part much longer. I am grateful for the constant help from my collaborators Volker Betz, Brian Davies, Rolf Dümcke, Detlef Dürr, Christian Hainzl, Masao Hirokawa, Fumio Hiroshima, Frank Hövermann, Matthias Hübner, Valery Imaikin, Sasha Komech, Markus Kunze, Joel Lebowitz, József Lőrinczi, Robert Minlos, Gianluca Panati, and Stefan Teufel. In this list I also include Michael Kiessling for many illuminating observations. In addition I thank him for a careful reading of a draft of the book.

As the project expanded I received comments, criticisms, remarks, and questions which in their total sum shaped my understanding of the subject and the way things were written down eventually. All I can do here is to deeply thank Robert Alicki, Asao Arai, Volker Bach, Gernot Bauer, Jens Bolte, Thomas Chen, Stephan xii

Preface

De Bièvre, Jan Dereziński, Thomas Erber, László Erdös, Raffaele Esposito, Jürg Fröhlich, Luigi Galgani, Christian Gérard, Shelly Goldstein, Vittorio Gorini, Marcel Griesemer, Vojkan Jakšić, Caroline Lasser, Elliott Lieb, Michael Loss, Claude-Alain Pillet, Mario Pulvirenti, Markus Rauscher, Luc Rey-Bellet, Fritz Rohrlich, Wolfgang Schleicher, Michael Sigal, and Hong-Tzer Yau. In addition, I appreciate the help with the figures from Patrik Ferrari.

This book is dedicated to my parents in deep gratitude for a wonderful childhood. My father furnished stability and my mother cared for the three boys, encouraging our curiosity to learn about the world around us. This gift constitutes a marvellously complex lasting source of joy.

> Herbert Spohn München May 2004

Symbols

Symbols for physical quantities

A	quantized vector notantial
	quantized vector potential
A	vector potential
\mathcal{A}	action
$A_t(x)$	fluctuating vector potential
$A_{\parallel}, A_{\perp}, E_{\parallel}, E_{\perp}$	longitudinal, tranverse fields
В	magnetic field
E	electric field
ε	total energy
$E(\boldsymbol{p})$	energy-momentum relation
$E^{0}, B^{0}, q^{0}, v^{0}$	initial conditions
$E_{\rm s}$	soliton energy
$E_{\rm bin}$	binding energy
$\boldsymbol{E}_{\mathrm{ex}}, \boldsymbol{B}_{\mathrm{ex}}$	external fields
$\boldsymbol{E}_{\mathrm{ini}},\boldsymbol{B}_{\mathrm{ini}}$	initial fields
$\boldsymbol{E}_{\mathrm{out}}, \boldsymbol{B}_{\mathrm{out}}$	outgoing fields
$\boldsymbol{E}_{\mathrm{ret}}, \boldsymbol{B}_{\mathrm{ret}}$	retarded fields
$\boldsymbol{E}_{\mathrm{sc}}, \boldsymbol{B}_{\mathrm{sc}}$	scattered fields
E_{self}	self-energy
E_v, B_v	soliton fields
F	electromagnetic field tensor
F	force
Н	Hamiltonian
H_{f}	field Hamiltonian
$H_p, H(p)$	Hamiltonian at fixed total momentum p
$H_{\rm sp}$	spin Hamiltonian
$I_{\rm b}, I_{\rm f}$	moment of inertia

xiv	List of symbols
J	total angular momentum
$J_{ m f}$	field angular momentum
$L, L_{at}, L_{f}, L_{int}$	Liouvillean
L, \mathcal{L}	Lagrangian
L _D	Davies generator
M _e	electric moment
$M_{ m m}$	magnetic moment
Ν	number of particles
N	torque
${\cal P}$	total momentum
$\boldsymbol{P}_{\mathrm{s}}$	soliton momentum
\pmb{P}_{f}	field momentum
$\mathcal{P}_{\mathrm{f}}, P_{\mathrm{f}}$	field momentum
S	soliton manifold
Т	temperature
V _{coul}	Coulomb potential
V _{dar}	Darwin potential
Ζ	partition function, nucleon charge
a^*, a	creation, annihilation operators
С	velocity of light
$e\varphi$	charge distribution
е	electric charge
e_{λ}	polarization vectors
f	Minkowski force
f_{α}	distribution function
8	g-factor
$g_{\mu\nu}$	metric tensor
\hbar .	Planck's constant
J ·	current density
j z	four-current
k k	momentum Boltzmann's constant
k _B	mass
m	bare mass
mb	field mass
m _f	gyrational mass
$m_{\rm g}$ $m_{\rm eff}$	effective mass
\hat{n}	unit vector
p	four-momentum
r	

List of symbols

	m om ontum
р, р , Р	momentum
<i>q</i> , <i>q</i>	position
$\mathbf{q}(au)$	world line
r	position
r _B	Bohr radius
S	spin angular momentum
t	Minkowski torque
t	time
u	four-velocity
u, <i>u</i>	velocity
<i>v</i> , <i>v</i>	velocity
X	four-space vector
<i>x</i> , <i>x</i>	space
Δ	Laplacian
Λ	ultraviolet cutoff
Ω	four-gyration
Ω^{\pm}	wave operator
α	fine structure constant
eta	inverse temperature
γ	relativistic velocity factor
δ^{\perp}	transverse delta function
λ_{c}	Compton wavelength
μ	magnetic moment
ρ	charge distribution
ρ	density matrix
σ	Pauli spin matrices
τ	eigentime
ϕ	electrostatic potential
ϕ,π	scalar field, scalar momentum field
$\phi_{\rm ex}, A_{\rm ex}$	external potentials
\widehat{arphi}	form factor
ψ	wave function
$\psi_{ m g}$	ground state wave function
ω	angular velocity
$\omega_{\rm c}$	cyclotron frequency
$\omega_{\rm s}$	spin precession frequency
ω	free-field dispersion relation
ω_{eta}	KMS state
$\widehat{\omega}^{r}$	unit vector

xv

xvi

XVI	List of symbols
	Mathematical symbols
A(q, p)	operator-valued function
$B(\mathcal{H})$	bounded operators on \mathcal{H}
$C, C(\mathbb{R}, \mathbb{R}^d)$	continuous functions on $\mathbb R$ with values in $\mathbb R^d$
C^{∞}	infinitely often differentiable functions
C^k	k times differentiable functions
\mathbb{C}	complex numbers
$D(\cdot, \cdot)$	Dirichlet form
D(A)	domain of operator A
\mathbb{E}	expectation
${\cal F}$	Fock space
\mathcal{H}_{f}	field Hilbert space
\mathcal{H}_{p} $L^{2}, L^{2}(\mathbb{R}^{3}, \mathbf{d}^{3}x)$	particle Hilbert space
$L^2, L^2(\mathbb{R}^3, \mathbf{d}^3 x)$	Hilbert space of square-integrable functions on \mathbb{R}^3
\mathcal{M}_N	algebra of $N \times N$ matrices
\mathbb{N}	positive integer numbers
\mathbb{P}	probability measure
\mathbb{R}	real numbers
Ran A	range of operator A
$\mathcal{T}_1(\mathcal{H})$	trace class operators on \mathcal{H}
$\mathcal{T}_2(\mathcal{H})$	Hilbert–Schmidt operators on \mathcal{H}
$\mathcal{W}_arepsilon$	Weyl quantization
Z	integer numbers
$rac{d(\cdot,\cdot)}{\widehat{f}}$	metric
	Fourier transform of <i>f</i>
ℓ, r	left, right representation
tr	trace
Ω	Fock vacuum
$\sigma(H)$	spectrum of operator <i>H</i>
·	Hilbert space norm L^1 -norm
$\ \cdot\ _1$	L° -norm L^{∞} -norm
$\ \cdot\ _{\infty}$	
$\ \cdot\ _R$	local energy norm Hilbert space scalar product
$egin{array}{l} \langle \cdot, \cdot angle_{\mathcal{H}} \ \langle \cdot \cdot angle \end{array}$	scalar product for Hilbert–Schmidt operators
(· ·) ··	normal order, Wick order
$\cdot \cdot \{\cdot, \cdot\}$	Poisson bracket
$\left[\cdot,\cdot\right]$	commutator
$\int \mathbf{d}q_s$	stochastic integration
∫ u q _s ♯	Moyal product
∇	nabla operator
	nuora operator

List of symbols