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Fully three-dimensional numerical simulations of concentrated suspensions of O(1000)
particles in a Couette flow at zero Reynolds number are performed with the goal of
determining the wall effects on concentrated suspensions of non-colloidal particles.
The simulations, based on the force-coupling method, are performed for 0.2 �
φ � 0.4 and 10 < Ly/a < 30, where φ denotes the volume fraction and Ly and a

are, respectively, the channel height and the particle radius. It is shown that the
suspensions can be divided into three regions depending on the microstructures; the
wall region where a structured particle layering is dominant, the core region in which
the suspension field is quasi-homogeneous, and the buffer region which shows the
characteristics of both the particle layer and the shear structure. The width of the
inhomogeneous region (wall and buffer) is a function of φ and not sensitive to Ly/a,
once Ly/a is larger than a threshold. Rheological properties in the inhomogeneous
and quasi-homogeneous regions are investigated. The particle stresses are compared
with previous rheological models.

1. Introduction
Due to its relevance to many engineering processes as well as biological applications,
such as materials processing, waste treatment, particle coating and blood flow, the
rheology of suspensions of spheres at low Reynolds numbers has been extensively
studied (Stickel & Powell 2005). Since the pioneering studies of Einstein (Einstein
1956) and Batchelor (Batchelor 1970; Batchelor & Green 1972a ,b), the rheological
behaviour of dilute and semidilute suspensions, in which the lubrication interactions
are neglected or limited to particle doublets, is well understood. In concentrated
suspensions, however, not only long-range far-field hydrodynamics but also short-
range hydrodynamic (lubrication forces) and non-hydrodynamic interactions (surface
roughness or electrostatic force) play an important role. This results in the complex
rheological and non-Newtonian behaviour of concentrated suspensions of non-
colloidal particles in shear flow, as reported by Brady & Morris (1997); Zarraga
et al. (2000); Stickel & Powell (2005), amongst others.

The complex nature of concentrated suspensions makes it challenging to
construct a theoretical model. Most of our current understanding of non-colloidal
suspensions comes from experimental and numerical observations. In providing
detailed information about the microstructure as well as the rheological properties,
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numerical simulations greatly contribute to our understanding on concentrated
suspensions in ways not always available in experiments. The most widely used
numerical method to study concentrated suspensions is the Stokesian dynamics (SD)
method (Brady & Bossis 1988; Brady 2001). In the case of homogeneous sheared
suspensions in which periodic boundary conditions are used for all three-directions,
modelling an infinite domain, SD has been used for a wide range of volume fractions
to investigate the rheology and microstructure (Sierou & Brady 2002) and shear-
induced diffusion (Drazer et al. 2002; Sierou & Brady 2004).

Although the understanding of concentrated suspensions in the unbounded domain
is now much more advanced, much less is known about the behaviour of suspensions
in the wall-bounded domain, where the presence of a solid boundary makes the
characteristics of the suspension dramatically different. There have been several
observations on the distinctive mechanisms in the wall-bounded suspensions, such as
shear-induced migration of particles (Leighton & Acrivos 1987; Nott & Brady 1994;
Lyon & Leal 1998), apparent wall-slip (Jana et al. 1995), particle structuring (Komnik
et al. 2004) and swapping of particle trajectories (Zurita-Gotor et al. 2007). There have
been a few numerical studies on the wall-bounded suspensions using the SD, where
a wall is replaced with a chain of fixed spheres (Nott & Brady 1994; Singh & Nott
2000). Due to the high computational cost, dynamic simulations in the wall-bounded
flows have been limited to a monolayer simulation with O(10) particles. Bossis et al.
(1991) and Swan & Brady (2007) have extended SD for particle-wall interactions
using image methods (Blake & Chwang 1974). However, dynamic simulations of
concentrated suspensions using these modification have not been reported yet.

There are only a few three-dimensional simulations of concentrated suspensions in
Couette flow. Most of the simulations are performed using the lattice-Boltzmann (LB)
method as developed by Nguyen & Ladd (2002). Kromkamp et al. (2006) performed
both two- and three-dimensional LB simulations of concentrated suspensions in a
Couette flow. They showed that the wall structuring in two-dimensional simulation
differs from the three-dimensional results. They observed dependency of some results
on the computational resolution and ascribed the dependency to the ragged particle
surface in the LB method. Kulkarni & Morris (2008) performed three-dimensional
LB simulations for the volume fraction up to 0.3 in a Couette flow to investigate the
finite-Reynolds-number effects on the suspension rheology.

The force-coupling method (FCM) was developed by Maxey & Patel (2001) to
simulate a large system of particles in suspension. For example, using FCM, Dance &
Maxey (2003b) performed numerical simulations of sedimentation flows bounded by
top and bottom walls with up to 10 000 particles. In the FCM, far-field hydrodynamic
interaction between particles is calculated by solving the Stokes equations (Lomholt &
Maxey 2003). As in LB method, the wall boundary is treated naturally by imposing
the no-slip boundary condition.

The FCM for Stokes flows is a far-field approximation of the grand-mobility
matrix (Yeo & Maxey, 2010). FCM does not represent the exact solution if the
distance between two particles is closer than r/a < 2.4 (Lomholt & Maxey 2003),
in which r and a denote the particle centre-to-centre distance and the particle
radius, respectively. Most FCM simulations have been performed in the semidilute
regime, where the volume fraction φ < 0.2. Dance & Maxey (2003a) suggested a
fast lubrication correction method to resolve the lubrication effects between particles,
summing pairwise interactions within a mobility formulation. This is adequate for low
volume fractions, but more recently Yeo & Maxey (2010) developed a more robust
lubrication correction method for the simulations of concentrated suspensions.
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The main goals of this paper are to extend the lubrication correction developed in
Yeo & Maxey (2010) to the wall-bounded flows and investigate the effects of the wall
on the suspension rheology. The present simulations are among the first computational
results on the dynamics of concentrated Stokes suspensions in a Couette flow with a
full representation of no-slip conditions at a rigid wall. It is shown that particle layers
are formed near the wall due to the strong particle-wall lubrication interactions. As a
result of the particle layering, the rheological properties such as the relative viscosity
and the normal stresses are found to be functions of Ly/a in which Ly is the channel
height. At high volume fractions the suspension can be divided into three regions
depending on the microstructure; the wall region where particle layering is dominant,
the core region in which suspension behaves similarly to homogeneous suspensions
and the buffer region in which the microstructure shows the characteristics of both
the shear structure and the particle layer.

In § 2, brief review of the FCM and the particle-wall lubrication models are
presented. The numerical results for a single particle in a channel flow are compared
with the previous results in § 3. Section 4 provides the main results of the numerical
simulations in the Couette flow.

2. Force-coupling method in the wall-bounded flows
2.1. Review of force-coupling method and lubrication correction

In the FCM, the delta function of the standard singular multipole expansion is
replaced by a finite, smoothly varying function Δ(x − Y ) and the multipole expansion
is truncated at the dipole level (Maxey & Patel 2001; Lomholt & Maxey 2003). The
equation of fluid motion in the FCM is

∂p

∂xi

= μ∇2ui +

Np∑
n=1

{
F n

i ΔM (x − Y n) + Gn
ij

∂

∂xj

ΔD(x − Y n)

}
, (2.1)

where p is pressure, μ is viscosity, u is fluid velocity, Y n is the location of a particle
centre and Fi and Gij are the force monopole and force dipole moments, respectively.
The FCM force envelopes ΔM and ΔD are given by

ΔM (x) =
1(

2πσ 2
M

)3/2
exp

(
− x2

2σ 2
M

)
, (2.2)

ΔD(x) =
1(

2πσ 2
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)3/2
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D

)
, (2.3)

in which σM = a/
√

π and σD = a/(6
√

π)1/3. As a consequence of the finite envelope,
FCM essentially resolves too the potential dipole and the potential quadrupole flows
associated with the force monopole and force dipole. See Lomholt & Maxey (2003)
for detailed discussions.

The force monopole represents the force exerted on the fluid by a particle resulting,
for example, from the force due to gravity, short-range inter-particle forces, Brownian
motion or electromagnetic forces on the particle. The force dipole consists of a
symmetric part, Sij and an antisymmetric part Tij . Sij corresponds to the stresslet and
Tij is the couplet. Tij is related with the external torque T ext as

Tij =
1

2
εijkT

ext
k . (2.4)
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Sij is obtained from the rigidity constraint on the particle (Lomholt & Maxey 2003),∫
eijΔD(x − Y n)d3x = 0, (2.5)

in which eij denotes the strain rate,

eij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (2.6)

The velocity of each particle V n is obtained by the weighted volume integral of
u(x) (Maxey & Patel 2001),

V n =

∫
u(x)ΔM (x − Y n)d3x. (2.7)

Similarly, the angular velocity of each particle Ωn is

Ωn
i =

1

2

∫
εijk

∂uk

∂xj

ΔD(x − Y n)d3x. (2.8)

These relations ensure that the flow satisfies the corresponding reciprocal theorem
and captures to a good approximation the Faxen corrections for non-uniform flows
(Happel & Brenner 1965).

In the FCM, long-range multi-body interactions are computed by solving the Stokes
equations (2.1). In Yeo & Maxey (2010), it is shown that the force-coupling procedure
is equivalent to solving a mobility problem. Symbolically, the force-coupling procedure
can be written as[

V − V∞

E∞

]
= MFCM

[
F
S

]
=

[
MFV MSV

−MFE −MSE

] [
F
S

]
, (2.9)

in which MFCM is the FCM grand mobility matrix and a submatrix MAB is a mobility
matrix to calculate a value B from a given coefficient A. V is the (6Np) vector
of the translational and angular velocities, while F is the (6Np) vector containing
the monopole coefficients and torques. S is a (5Np) vector consisting of the five
independent stresslet coefficients, S11, S12, S13, S22, S23. Similarly, V∞ is the (6Np)
vector of the translational and angular velocities of the imposed external flow field
and E∞ is a (5Np) vector of the five independent components of the corresponding
strain rate of the imposed field. The FCM grand mobility matrix provides a far-field
approximation of the exact mobility problem.

On the right-hand side of (2.9), F is given while S is determined by the rigidity
constraint (2.5),

E∞ + MFEF = −MSE S. (2.10)

The matrix −MSE is symmetric and positive semidefinite. The system of equations
thus can be solved by using a conjugate gradient method.

In order to incorporate the near-field interactions, Yeo & Maxey (2010) employed
the pair-wise additivity of the lubrication interactions to the grand resistance matrix
(Durlofsky et al. 1987; Brady & Bossis 1988). FCM with the lubrication interactions
included then results in the system of equations[

MFVFtot

MFEFtot + E∞

]
=

[
R−1 + MFV −MSV

MFE −MSE

] [
Flub

Stot

]
, (2.11)
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in which R is the lubrication correction to the resistance matrix relating the
translational and angular velocities to the hydrodynamic forces and torques. R is
constructed as the sum of the particle-pair resistance matrices R2B = RE

2B − RFCM
2B ,

where RE
2B and RFCM

2B denote the exact and FCM two-body resistance matrices,
respectively, for individual pairs of particles. Ftot and Stot are given as

Ftot = F + REF E∞, (2.12)

Stot = S + RES E∞ − RVS(V − V∞), (2.13)

in which RAB is a resistance matrix relating A to B .
The matrix on the right-hand side of (2.11) is the FCM grand mobility matrix

with the lubrication correction R−1. By use of a preconditioned conjugate gradient
method, R−1 in (2.11) can be replaced by a recursive formula which consists of a
summation of two vectors. Hence, the computational cost is largely determined by
the choice of the Stokes solver to solve (2.1). Once the relevant lubrication forces and
torques, given by Flub , are determined, then the translational and angular velocities
are computed from either

V = V∞ + R−1Flub, (2.14)

or

V = V∞ + MFV(Ftot − Flub) + MSV Stot . (2.15)

Further details are given in Yeo & Maxey (2010). Note that FCM calculates Stot and
not the stresslet S in the computation. The stresslet is calculated from (2.13) as a
post-processing step.

2.2. Modification of the force-coupling method envelopes near a wall

For wall-bounded flows, (2.1) is solved numerically with the appropriate no-slip
boundary conditions for rigid walls to obtain the incompressible Stokes flow field u.
This gives the far-field flow and then, in addition to the viscous lubrication forces
between particles, particle-wall lubrication interactions need to be accounted for as
described next in § 2.3. The force envelopes, ΔM and ΔD , while narrowly confined
to each particle do extend beyond the physical size of the particle. As a result, it is
possible that when a particle is close to a wall the envelope overlaps the boundary.
Similarly, in evaluating the integrals for the particle velocity (2.7) or for the rate of
strain (2.5) and the angular velocity (2.8) the range of integration goes outside of the
physical flow domain. In previous simulations of wall-bounded flows based on FCM
(Liu et al. 2002, 2004; Lomholt & Maxey 2003; Dance & Maxey 2003b), if a particle
is close to a wall then the FCM envelope is truncated at the wall boundary in (2.1)
and integration is confined to the physical flow domain.

For a particle in contact with a rigid boundary, the truncated volume in (2.7) is
approximately 3.8 % of the total and similarly for (2.5) is 1.4 %. The effects of this
truncation procedure can be included and accounted for at low volume fractions in
the estimates of the particle-wall lubrication forces (Dance & Maxey 2003a). This
procedure is self-consistent. However, it presents a minor problem for evaluating
results directly related to an imposed external shear flow.

As an illustration, consider a flow bounded by a rigid wall at x2 = 0 so that the flow
domain ΩD is the semi-infinite region ΩD =(−∞, ∞) × (0, ∞) × (−∞, ∞) and the wall
is located on the boundary ∂ΩD . A particle in a linear shear flow u∞ = (γ̇ x2, 0, 0)T ,
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in which γ̇ is the shear rate, would usually give the result from FCM that

V ∞ = u∞(Y ) =

∫
In(Y )

u∞(x)ΔM (x − Y )d3x. (2.16)

The domain of numerical integration is In(Y ) = {x : x ∈ �3, |x − Y | <a × n},
representing a sphere of larger radius na where n is a positive real number. In order
to obtain full accuracy, n is usually chosen such that n � 2.5. If a particle is close to a
wall such that In(Y ) � ΩD , then the FCM envelope is truncated at the wall boundary,
i.e. the integration is performed only in In(Y ) ∩ ΩD . This results in V ∞ �= u∞(Y ).

As a remedy to this problem, the FCM envelope is modified for particles near a
wall (Y2 <a ×n) and an image envelope is introduced. That is for the force monopole
term,

ΔWall
M (x − Y ) = ΔM (x − Y ) − ΔM (x − Y Img ), (2.17)

in which Y Img = (Y1, −Y2, Y3)
T . Similarly, the dipole envelope is given as,

ΔWall
D (x − Y ) = ΔD(x − Y ) + ΔD(x − Y Img ). (2.18)

The modified wall envelopes ensure that

V ∞ = u∞(Y ) =

∫
In(Y )∩ΩD

u∞(x)ΔWall
M (x − Y )d3x, (2.19)

and

E∞
ij = e∞

ij (Y ) =

∫
In(Y )∩ΩD

e∞
ij (x)ΔWall

D (x − Y )d3x, (2.20)

as well as ensuring that the particle angular velocity matches the fluid vorticity
(2.8) for the imposed external flow. This modified procedure is also self-consistent.
Coincidentally, the image envelope ΔWall

M would correspond to the lowest order image
Stokeslet as given by Blake & Chwang (1974), where they apply image methods to
solve for Stokes flow in the presence of a rigid boundary. However, the reasons for the
formulation of the wall-envelopes are different and the underlying numerical solution
to (2.1) already ensures that the no-slip conditions are satisfied.

2.3. Particle-wall lubrication correction

Close to a rigid no-slip boundary, additional viscous lubrication corrections are
required for the motion of a particle relative to the wall boundary. This modification
for FCM is given by Dance & Maxey (2003a) in the simpler context of dilute
suspensions. We summarize briefly, and with more general notation, the steps for
adding these corrections in the resistance matrix.

The resistance relation of a single particle moving in a flow near a wall is

[
F

T

]
= μ

[
A B G

BT C H

] ⎡
⎢⎣

V − V ∞(Y )

Ω − Ω∞(Y )

−E∞

⎤
⎥⎦ . (2.21)
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Following the notation in Kim & Karrila (1991), the resistance tensors are

Aij/6πa = XAdidj + Y A(δij − didj ),

Bij/6πa2 = Y Bεjikdk,

Cij/8πa3 = XCdidj + Y C(δij − didj ),

Gkij /6πa2 = Y G(diδjk + djδik − 2didjdk),

Hkij /8πa3 = Y H (εikldldj + εjkldldi),

in which d is the unit vector from the particle centre to a wall. The exact, theoretical
values for the various wall resistance functions are summarized in the Appendix,
where they are given as asymptotic series in the gap width aε between the particle
and the wall.

Second, the non-singular estimates of the corresponding wall resistance functions
from FCM are determined numerically for a single particle. This computation is done
in the domain ΩD = (0, Lx)× (0, Ly)× (0, Lz), where periodic boundary conditions are
applied in the x1 and x3 directions with the no-slip boundary conditions (u = 0) on
x2 = 0 and Ly . A Fourier spectral method is used in the horizontal (x1, x3) directions
and a spectral element method is employed in the vertical direction (x2) (see appendix
in Dance & Maxey 2003b). The Stokes equations are solved by applying the Uzawa
algorithm. The Uzawa algorithm provides a saddle decoupling of the velocity and
pressure fields, which is computationally more efficient than solving the fully coupled
system (for details, see Maday et al. 1993; Karniadakis & Sherwin 2005). In order to
estimate the FCM resistance functions, the numerical simulations were performed in a
large channel, Lx/a = Ly/a = Lz/a = 60, so as to minimize the effects of the periodicity
and the presence of the upper wall. A sphere is located at Lx/a = Lz/a = 30. The
hydrodynamic drag and torque were computed, varying the distance from the lower
wall for the different configurations of particle motion or flow. The results were then
matched to a regular asymptotic expansion for the FCM resistance function for small
values of the gap aε between the particle and the lower wall. The FCM resistance
functions used in the simulations are also given in the Appendix.

The lubrication correction is implemented in the same way as described in Yeo &
Maxey (2010). First, R is constructed by summing all the particle-pair interactions.
Since the lubrication force arises from the relative motion between particles, R2B

is written in the relative velocity formulation (Nguyen & Ladd 2002; Cichocki
et al. 1999). Then, the resistance tensors for the particle-wall lubrication are added
to R.

3. Single particle in a channel
We first illustrate the methods described above by applying them to the motion of a
single particle in a channel bounded by two parallel planar walls. The first example
is of a spherical particle moving perpendicular to the walls under the action of an
external force but in the absence of any other flow. The configuration of the channel
geometry is shown in figure 1. Numerical results for the non-dimensional resistance
coefficient λt , defined by

λt =
F2

6πμaV2

, (3.1)

have been obtained previously by Ganatos, Weinbaum & Preffer (1980) using a series
solution and boundary collocation scheme for a channel with infinite planar walls.
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V2

x2 = Ly

x2 = 0

Figure 1. Geometry for a sphere placed between two walls.

s = b/(b + c)

λt
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Figure 2. Drag coefficient λt from �, Ganatos et al. (1980); 	, FCM with wall lubrication;
�, FCM with monopole and dipole.

The corresponding FCM simulations are performed for a periodic channel, where
Lx/a = Lz/a = 60. The height of the channel Ly is varied according to the parameter
s = b/(b+ c) used by Ganatos et al. (1980). The gap between the particle and the wall
is 0.1a so that b/a =1.1.

A comparison of the results for λt from the two different approaches is shown in
figure 2. Also shown are the values from FCM without the lubrication correction,
which are roughly half the total for λt . This configuration is the most challenging to
calculate with FCM, the gap being larger than at which near-field lubrication forces
would dominate, and tests the matching procedure for the near-field and far-field
conditions. In general the agreement of the results is very good, with differences of
2 % or less for the most part. For the larger values of s the discrepancies are larger.
For s = 0.5, the channel height is only 2.2a and the calibration procedures used to
obtain the FCM wall resistance functions, which were based on widely separated
channel walls are no longer appropriate. The results for the Couette flow suspension
presented in § 4 correspond to s � 0.11.

The second example is for the translational velocity of a force-free and torque-free
sphere in a Couette flow. The computational domain here is Lx =30, Lz = 20 and
Ly =10 and the particle radius a = 1. The upper wall is moving in the x1 direction with
the velocity Vupp = −1.0, while the lower wall velocity is Vlow = 1.0. Figure 3 shows the



Dynamics of concentrated suspensions in Couette flow 213

V

y
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Figure 3. Translational velocity of a sphere V in a Couette flow: solid line, Ganatos
et al. (1982); �, Singh & Nott (2000); �, present FCM.

translational velocity of a sphere centred at various y locations, close to the upper
wall at y =10. The FCM results are compared with the boundary collocation results
of Ganatos, Weinbaum & Preffer (1982) and the SD simulation by Singh & Nott
(2000). The results in Ganatos et al. (1982) are used as the reference. In the FCM
simulations, the lubrication corrections are used when y/a > 8.8, that is when the gap
between the particle and the wall is less than 0.2a. In the region where the far field
solution plays the dominant role, the FCM results match those of Ganatos et al.
(1982) without any corrections. In the near-wall region, FCM gives more accurate
results than the SD results reported in Singh & Nott (2000). In the latter, a rigid wall
was represented as a layer of fixed spherical ‘wall particles’ rather than a smooth wall
with no-slip boundary conditions. Further, the domain size was smaller, with periodic
dimensions Lx/a =Lz/a = 14.

4. Couette flow suspensions
The main focus of this study is on the dynamics of concentrated suspensions of
non-Brownian particles in Couette flow, where the presence of the rigid walls has
a significant effect on the particle motion. To this end, numerical simulations are
performed for three different volume fractions (φ =0.2, 0.3, 0.4) using the same
numerical method described in § 2. The computational domain in the horizontal
directions is fixed (Lx/a = 30, Lz/a = 20), while the channel height is varied to
investigate the effect of the wall (Ly/a = 10, 20, 30). The number of Fourier modes in
x and z directions are 96 and 64, respectively. The simulation parameters are shown in
table 1. The radius of a sphere (a) and the shear rate (γ̇ ) are fixed at reference values:
a =1, γ̇ = 1. The upper wall is moving with the velocity V wall = (γ̇ Ly/2, 0, 0)T and
the lower wall is moving in the opposite direction with the same speed. The equation
for the particle position,

dY n

dt
= V n, (4.1)

is solved by the third-order Adam–Bashforth scheme.
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φ Ly Ny Np Rref Fref dt

C2S 0.2 10 4 285 2.01 100 2 × 10−3

C3S 0.3 10 4 430 2.01 100 2 × 10−3

C4S 0.4 10 4 567 2.01 100 2 × 10−3

C2L 0.2 20 8 570 2.01 100 2 × 10−3

C3L 0.3 20 8 860 2.01 100 2 × 10−3

C4La 0.39 20 8 1122 2.01 100 2 × 10−3

C4Lb 0.39 20 8 1122 2.004 100 2 × 10−3

C4Lc 0.39 20 8 1122 2.001 1000 1 × 10−3

C4H 0.4 30 12 1718 2.01 100 2 × 10−3

Table 1. Simulation parameters. Ny is the number of elements in the vertical direction. Every
elements has the same length EL = 2.5 and quadrature points Qy = 9. dt is the computational
time-step size.

When the separation distance between two particles becomes very small (less than
10−2a), non-hydrodynamic effects, such as surface roughness, residual Brownian forces
and electrostatic forces, may play an important role. These effects will break the fore-
after symmetry of particle interactions in Stokes flow. For example, Smart & Leighton
(1989) showed that the roughness of particles ranging from 43 to 6350 μm in diameter
is of the order of 10−2a ∼ 10−3a. Brady & Morris (1997) showed the importance of
these non-hydrodynamic forces on the non-Newtonian aspect of suspension flows.
To model the non-hydrodynamic interactions, and specifically the effects of surface
roughness of non-Brownian particles, a short-range contact force Fij

P is used in the
present simulations when the distance between particle i and j is less than a barrier
cutoff distance Rref . The form of the contact force is chosen to be similar to Dance
et al. (2004),

Fij
P =

⎧⎪⎪⎨
⎪⎪⎩

−6πμγ̇ a2Fref

(
R2

ref − |r |2

R2
ref − 4a2

)6

r
|r| if |r | <Rref ,

0 otherwise,

(4.2)

in which r = Y i − Y j and Fref is a constant. It has been discussed that, as long as
the contact force is sufficiently short ranged, the detailed expression of the contact
force does not change the simulation results significantly (Dratler & Schowalter 1996;
Marchioro & Acrivos 2001). The effects of the roughness model or the contact force
on the suspension rheology has been of interest and can be found in the literature
(Da Cunha & Hinch 1996; Brady & Morris 1997; Meunier & Bossis 2004; Abbas
et al. 2006; Ingber et al. 2008).

Since the system is chaotic and ergodic, a time average is used to obtain
statistics once the suspension flow reaches a statistically stationary state. The initial
configurations are obtained by two different approaches; body-centred cubes with
small random perturbations and a molecular dynamics simulation. It is observed
that, once the suspension reaches a statistically stationary state, the statistics does
not depend on the initial configuration. Simulations are performed for γ̇ t � 50 to
reach the stationary state. Then, the time average is performed over the period
T = 100γ̇ t except for C4Lc for which the simulation is performed until T =
40γ̇ t .
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Figure 4. Concentration profiles for C2S (solid), C3S (dashed) and C4S (dash-dot).

4.1. Wall effects on particle concentration

In wall-bounded suspensions, once a particle moves close to a wall, the particle tends
to stay near the wall for a long time due to the strong particle-wall lubrication force,
which then results in the formation of stable particle layers near the wall. Using LB
simulations, both Kromkamp et al. (2006) and Kulkarni & Morris (2008) observed
a pronounced local concentration peak near the wall at high volume fractions,
which was not reported in the earlier simulations of coplanar particles in Couette
flow (Singh & Nott 2000). In this section, the concentration profiles and the two-
dimensional pair-distribution functions are presented to characterize the particle
layering and the near-wall effects on suspensions.

The local concentration is defined as

〈c(x2)〉 =
1

Lx × Lz

〈∫∫
χ(x)dxdz

〉
, (4.3)

in which χ(x) is an indicator function that is only non-zero if x is inside of a particle
and 〈·〉 denotes the ensemble (time) average.

Figure 4 shows the concentration profiles in the small domain (Ly/a = 10).
Considering the symmetry, only half of the channel is drawn. The concentration
profiles for C2S and C3S have a local peak in the wall region and become relatively
flat away from the wall. On the other hand, the plateau is not observed in C4S,
indicating that the wall effect is dominant across the whole channel. As the layering
in the wall region becomes stronger, it is seen that the ratio of the first local peak
concentration near the wall to the concentration in the centre is an increasing function
of φ. For C4S, the peak concentration in the particle layer is almost 1.5 times larger
than that in the centre region. Consistent with Kromkamp et al. (2006), the location
of the peak concentration moves towards the wall as φ increases. The local peaks are
observed around 1.2, 1.1 and 1.08 for C2S, C3S and C4S, respectively. Due to the
finite size of the particles, there is a particle depletion layer around y/a � 2.1 even for
the lowest volume fraction in the present simulation (C2S).

Further insight about the relative position of particles comes from the particle
pair-distribution. The pair-distribution functions projected onto the velocity/velocity-
gradient plane, g(Δx, Δy), and velocity-gradient/vorticity plane, g(Δy, Δz), are shown
in figure 5 for C4S. The pair-distribution functions are obtained for the reference
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Figure 5. The pair-distribution function projected onto (a) x–y and (b) y–z planes for C4S.
Light contours represent high probability.

particles centred in 4.5 � y/a � 5.5. Two distinct streaks of high probability region
are observed around Δy/a � ± 2 and ±4, which correspond to the parallel particle
layers at y/a � 1 and 3. Due to the strong layering, there is a depletion layer between
two particle layers (Δy/a � ± 3 ∼ 3.5) in which the probability of finding another
particle is low. In the core region −2.5 <Δy/a < 2.5 or 2.5 <y/a < 7.5, g(Δx, Δy)
shows two shells of high probability near the compressional axis of the linear shear
flow, similar to the results for sheared suspensions in an unbounded domain (Sierou &
Brady 2002).

Figure 6 shows the concentration profiles in a large channel (Ly/a = 20). The
concentration profiles for C2L and C3L are similar to those in the smaller channel
(Ly/a =10). For φ =0.4, the plateau of the concentration is observed when y/a > 7.
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Figure 6. Concentration profiles for C2L (solid), C3L (dashed), C4La (dash-dot)
and C4Lc (dotted).

In addition, to show the effect of the contact force or particle roughness, the
concentration profiles for C4La and C4Lc are compared in figure 6. In C4Lc, the
contact force is activated when the distance between two particles is aε < 0.001. A
very large Fref is used to make the contact force behave similarly as the hard sphere
potential. The minimum separation distances for C4La and C4Lc are εmin � 3 × 10−3

and 5 × 10−4, respectively. Comparison of the profiles for C4La and C4Lc shows
that indeed the specific details of the contact force has only a slight effect on the
concentration profile.

The pair-distribution function g(Δx, Δy) for C4La is obtained for two different
regions for the reference particles; 5.5 <y/a < 6.5 (figure 7a), a middle zone between
the wall and the centreline, and 8 <y/a < 12 (figure 7b), close to the centreline. In
figure 7(a), three particle layers are observed in the lower half around Δy/a � −1.5,
−3 and −5, which correspond to the local concentration peaks near the wall. When
Δy > 0, the particle layering is weak and the suspension is essentially homogeneous.
Similar to suspensions in an unbounded domain, two shells of high probability
region are observed oriented with the compressional axis of the mean rate of strain.
Observation of the instantaneous suspension field reveals that the second and third
particle layers are formed and then broken repeatedly with some period. In other
words, unlike the first particle layer, the second and third particle layers exist on
average not at each time instance. The pair-distribution function obtained in the
core region (figure 7b) is similar to the previous results for an unbounded domain
(Sierou & Brady 2002; Yeo & Maxey, 2010), implying the rheological properties in
the core region may be explained by the results in the unbounded domain.

The concentration profiles for different Ly/a at φ = 0.4 is compared in figure 8.
It is shown that, as Ly/a increases, the peak concentration at the location of the
first particle layer decreases. It is interesting to see that the concentration profiles for
different Ly/a are almost similar except for the value of the first peak, indicating the
width of particle layers is independent of Ly/a, if Ly/a is large enough. At φ =0.4,
the suspension field is homogeneous if y/a > 8. This observation is consistent with
the experimental result in Zarraga et al. (2000) that the rheological properties are
functions of the channel width when the channel is not wide enough. As Ly increases,
the ratio of the homogeneous region to the particle layers becomes bigger, which
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Figure 7. The pair-distribution functions for C4La projected onto x–y plane for particles in
(a) 5.5 < y/a < 6.5 and (b) 8 <y/a < 12. Light contours represent high probability.

makes the volume-averaged rheological properties independent of Ly/a in a wide
channel.

Similar to the concentration, the average particle flux is defined as

cv(x2) =
1

Lx × Lz

Np∑
i=1

∫∫
H (a − |x − Y i |)V ndxdz, (4.4)

where H (x) is the Heaviside step function. Then, the averaged particle-phase velocity
is obtained from

〈v(x2)〉 =
〈cv(x2)〉
〈c(x2)〉

. (4.5)
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Figure 8. Concentration profiles for C4S (solid), C4La (dashed) and C4H (dash-dot).
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Figure 9. Average particle velocities for C3L (solid) and C4La (dash-dot). The dashed line is
the linear velocity profile of Couette flow without suspensions.

The particle-phase velocity profiles for C3L and C4La are shown in figure 9. Consistent
with the previous results of Singh & Nott (2000) and Kromkamp et al. (2006), the
particle-phase velocity profile is almost linear in the core region (5< y/a < 15). Near
the wall (y/a < 0.7), the particle-phase velocity is faster than the linear profile, which
is responsible for the apparent wall slip observed experimentally in concentrated
suspension flows (Jana et al. 1995).

4.2. Relative viscosity

The particle contribution to the bulk stresses is given by

〈σP
ij 〉 =

Ns

QD

(
〈Sij 〉 + 〈Se

ij 〉
)
, (4.6)

in which QD is the volume of the sampling domain over which the contribution is
summed and Ns is the number of particles in the sampling domain. The hydrodynamic
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Figure 10. Relative viscosity μr : solid line, Krieger & Dogherty (1959); dashed line, Eilers
fit; �, C2S, C3S and C4S; �, C2L, C3L and C4La; �, C4Lb; �, C4Lc; �, C4H; +, Yeo &
Maxey (2010).

Sij and contact-force contributions Se
ij to the total stresses are calculated by

〈Sij 〉 =
1

Ns

Ns∑
n=1

Sn
ij , (4.7)

〈Se
ij 〉 =

1

Ns

Ns∑
n=1

Ns∑
k=n+1

−1

2

(
rnk
i F nk

P,j + rnk
j F nk

P,i

)
. (4.8)

The relative viscosity of the suspension μr in a linear shear flow is

μr = 1 +
1

μγ̇
〈σP

12〉. (4.9)

In figure 10, μr for QD = |ΩD| is compared with two viscosity models,
(a) Krieger & Dogherty (1959),

μr =

(
1 − φ

φm

)−[η]φm

, (4.10)

(b) Eilers fit (Stickel & Powell 2005),

μr =

(
1 +

1
2
[η]φ

1 − φ/φm

)2

, (4.11)

in which φm is the maximum packing fraction and [η] is a fitting parameter. Stickel &
Powell (2005) showed that the relevant experimental data are well represented by
Eilers’ fit with [η] = 2.5 and φm =0.65. The high-frequency dynamic viscosity μ∞
in Yeo & Maxey (2010) is obtained by the ensemble average of 100 random
configurations at each φ. It is shown that μr in the present simulation is in the
range of previous empirical results. As microstructures form in sheared suspensions,
μr is typically larger than μ∞. The difference between μr and μ∞, called the excess
viscosity Δμ = μr − μ∞, is positive and an increasing function of φ (Sierou & Brady
2002).

Of particular note, Zarraga et al. (2000) found in their parallel plate experiments for
φ = 0.45 that μr is an increasing function of Ly/a when Ly/a < 40 and then reaches
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ΩC ΩW

C4La 4.18 3.65
C4H 4.58 3.86

Sierou & Brady (2002) 4.49 ± 0.037

Table 2. The deviatoric stress 〈σP
12〉 estimated in the core region ΩC and the wall region ΩW .

Rref Fref εmin μr

C4La 2.01 100 3 × 10−3 4.92
C4Lb 2.004 100 1 × 10−3 5.31
C4Lc 2.001 1000 5 × 10−4 5.70

Table 3. The relative viscosity for different Rref at φ = 0.4.

a plateau if Ly/a > 40. It was suggested that the wall slip is a major mechanism
responsible for the decrease in the relative viscosity (Acrivos 1993; Zarraga et al.
2000). It appears instead that the Ly/a dependency of μr is largely due to the
organized microstructure in the near-wall region (particle layering). In homogeneous
concentrated suspensions, the dominant contribution to the relative viscosity comes
from the normal lubrication interactions between particles, which is proportional
to ∼ 1/ε for a gap width aε (Frankel & Acrivos 1967). On the other hand, the
lubrication interactions between two particle layers is mainly through tangential
motions between particles in each layers for which the singularity is ∼ log ε. Hence,
if the particle layering is dominant, the viscosity may be smaller than that in a
corresponding homogeneous suspension.

These observations may be compared with the simulation results for μr at different
φ and Ly/a shown in figure 10. Since the particle layering is weak at low volume
fractions, μr is less sensitive to Ly/a when φ � 0.3. On the other hand, μr is a
non-decreasing function of Ly/a at φ = 0.4.

The comparison may be refined by dividing the channel into zones and evaluating
the average particle stresses in each zone as opposed to the whole domain ΩD of the
channel. Table 2 shows the deviatoric particle stress estimated from the particles in
the core region ΩC and wall region ΩW . ΩC and ΩW are chosen as

ΩW = (0, Lx) × {(0, Lw) ∪ (Ly − Lw, Ly)} × (0, Lz), (4.12)

ΩC = ΩD \ ΩW, (4.13)

in which Lw is the width of the wall region. Here, Lw =5a is used at φ = 0.4. For the
comparison, the result for a homogeneous suspension from Sierou & Brady (2002)
is included. It may be seen that σP

12 in ΩC is close to the results obtained in an
unbounded domain, and further that σP

12 in ΩC is consistently larger than that in ΩW .
The ratios of the deviatoric stress in ΩC to that in ΩW are about 1.15 and 1.19 for
C4La and C4H, respectively.

Typically, μr obtained in the numerical simulations is somewhat lower than the
experimental results. Sierou & Brady (2002) argued that the discrepancy may come
from the uncertainty in the contact force model. To show the effects of the contact
force on rheological parameters, the relative viscosity μr at φ = 0.4 is computed for
three different values of Rref ; Rref =2.01 (C4La), 2.004 (C4Lb) and 2.001 (C4Lc).
Together with the values of μr , the minimum separation distances εmin in each case
are shown in table 3. It is apparent that μr is dependent on the choice of the contact
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force. Since the major contribution to μr from the viscous lubrication interaction is
proportional to 1/ε, μr increases as the minimum separation decreases. Comparing
C4Lc and C4La, there is about 16 % difference in μr .

4.3. Normal stresses

In sheared suspensions of non-colloidal particles, the irreversible effects originating
from any non-hydrodynamic forces will result in an anisotropic microstructure, which
in turn lead to the development of the non-Newtonian stresses. Among these, the
normal stresses in suspensions are of interest because of their importance in the
prediction of the particle migration in inhomogeneous flows (Nott & Brady 1994;
Morris & Boulay 1999; Miller & Morris 2006).

The first (N1) and second (N2) normal stress differences are defined as

N1 = σP
11 − σP

22, (4.14)

N2 = σP
22 − σP

33. (4.15)

Zarraga et al. (2000) measured linear combinations of the normal stresses in
suspensions of non-colloidal particles. They showed that, in Couette flow, both
N1 and N2 are negative and |N2| > |N1| for φ = 0.3 − 0.5. Brady & Morris (1997)
showed theoretically that all three normal stress components should be compressive
in a uniform shear flow. Using SD simulation, Sierou & Brady (2002) calculated
the normal stress differences for a wide range of φ (0.1 � φ � 0.5) for a uniform
shear flow. Their results show qualitatively consistent behaviour with the experimental
results in Zarraga et al. (2000). However, it was observed that |N2| � |N1| in contrast
to the experimental fit |N2| � 3.6|N1| found by Zarraga et al. (2000). Origin of this
difference between the numerical simulations and experiments is not clear. Possible
influences include the effects of the particle–particle contact force or the shear-
induced migration of particles in the circular Couette flow device, which introduces
curvilinear flow effects, as opposed to the simple homogeneous shear of the SD
simulations. Additionally, there is the influence of the walls and the layered structures
in the experiments.

Figure 11 shows the normal stress differences from the present simulations
normalized by the shear stress τ =μrμγ̇ . For comparison, the previous numerical
results from SD simulations (Sierou & Brady 2002) are also presented. Since there is
an appreciable wall effect even in the larger channels for the present simulations, a
quantitative match with the previous SD simulations in an unbounded domain is not
expected. Nevertheless, N1 and N2 in the larger domains (Ly/a = 20, 30) correspond
well with the SD results. At φ = 0.4, reducing Rref , the differences in N1 and N2

between the present simulations and Sierou & Brady (2002) decrease.
The second normal stress difference (N2) calculated in the small channel (Ly/a = 10)

shows a similar trend with the results in the larger domain but is larger in magnitude.
On the other hand, there is a significant difference in N1. Other SD simulations of
unbounded sheared suspensions of non-colloidal particles have shown that the normal
stresses are all negative and that |σP

11| > |σP
22| > |σP

33| (Yurkovetsky 1997). However, in
the small channel (C4S), it is found that |σP

11| ≈ |σP
22| > |σP

33| with all negative values.
It seems that the large N2/N1 in C4S is related with the particle layering, which spans
the whole channel.

The ratio of the normal stress differences, N2/N1, estimated in the present
simulations are shown in figure 12 along with the SD data of Sierou & Brady
(2002). It is shown that N2/N1 > 1 for all the simulations while, from SD, N2/N1 < 1.
Since the normal stress is sensitive to the microstructure, the particle layers may
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Figure 11. Normalized normal stress differences (a) −N1/τ and (b) −N2/τ . �, C2S, C3S
and C4S; �, C2L, C3L and C4La; �, C4Lc; ∗, C4H; �, Sierou & Brady (2002).

be responsible for the difference. For example, in C4S where the wall effect is the
strongest, N1 � 0. To identify the effects of the walls, N2/N1 in the core ΩC and the
wall ΩW regions are shown in figure 12(b), where Lw = 2a and 3a are used for φ = 0.2
and 0.3, respectively, in (4.12). N2/N1 in ΩC quantitatively agrees well with Sierou &
Brady (2002). On the other hand, N2/N1 estimated in ΩW is larger than 3. In C2L,
C3L and C4La, 1<NΩW

2 /NΩC

2 < 1.6 while 0.2 <NΩW

1 /NΩC

1 < 0.3. This results suggest
that the normal stresses measured in the wall-bounded domain will be different from
those obtained the numerical simulation in the unbounded flows. If Ly/a is large
enough such that |ΩC |/|ΩW | � 1, it is expected that the rheological properties would
be similar to those observed in an unbounded domain. However, in figure 12(a),
it is observed that the difference between C4La and C4H is negligible, in which
|ΩC |/|ΩW | =1 and 2 for C4La and C4H, respectively. It seems that, in the largest
channel used in the present simulation (Ly/a = 30), the presence of the wall has a
significant effect on the suspension rheologies. As a result, it is not straightforward
how to extrapolate the rheological properties for large |ΩC |/|ΩW | from the present
simulation results.

4.4. Normal stresses and continuum models

While numerical simulations based on the individual particle motion provide
invaluable insight into the detailed dynamics, most of the simulation techniques
are computationally too intensive to apply for engineering problems with complex
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geometries. To predict the behaviour of the suspensions in such a flow condition,
there have been several attempts to develop a continuum model (Leighton & Acrivos
1987; Nott & Brady 1994; Morris & Boulay 1999; Miller & Morris 2006; Yapici et al.
2009). One of the successful approaches is proposed by Morris & Boulay (1999), in
which the constitutive law for the particle stress for shear flows is given by

σ P = −μμn(φ)γ̇ Q + 2μμr (φ)e. (4.16)

In this formulation, μn is the normal stress viscosity defined as

μn(φ) = Kn

(
φ/φm

1 − φ/φm

)2

, (4.17)

where Kn is a rheological fitting parameter. The material property tensor Q is

Q =

⎡
⎢⎣

1 0 0

0 λ2 0

0 0 λ3

⎤
⎥⎦ , (4.18)

in which the anisotropy parameters are λ2 = σP
22/σ

P
11 and λ3 = σP

33/σ
P
11.
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C4Lc; �, C4H; Morris & Boulay (1999).

Morris & Boulay (1999) suggested that λ2 ≈ 0.8 and λ3 ≈ 0.5 provide a good
approximation to the suspension rheology and migration. Figure 13 shows the
anisotropy parameters λ2 and λ3 as a function of φ. It is shown that both λ2

and λ3 approach the suggested value at high φ. In the experiments by Zarraga et al.
(2000), a measure of the anisotropy (N2 − N1)/σ33 is an increasing function of φ for
φ < 0.4 and then reaches a plateau. Hence, there is a possibility that both λ2 and λ3

become constants at higher φ.
The values of μn calculated from FCM and (4.17) are shown in figure 14. Kn = 0.75

and the maximum packing φm =0.63 are used. The qualitative agreement of the model
equation with the FCM results are satisfactory.

4.5. Microstructure

In this section, we investigate further the details of the microstructure using the
pair distribution function g(r, θ, ψ) for C4La. Here, θ denotes the azimuthal angle
measured from the flow direction (positive x) and ψ is the polar angle about the
x-axis, measured from the vorticity direction (positive z). Since most contributions to
the rheological properties come from the particles near contact, the pair distribution
function is shown only for 2 <r/a < 2.1.
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Figure 15. The pair distribution function for particles of which centre is located in
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Figure 16. The pair distribution function for particles of which centre is located in
2 � y/a � 5. Solid line, 1 − θ/π; dashed line, θ/π − 1.

Figure 15 shows the pair-distribution function g(θ) in the x–y plane, the plane
of shear, obtained by averaging over π/2 − δ <ψ < π/2 + δ, in which δ = π/60, and
over the reference particles whose centres are located in the core region. Considering
the mirror symmetry, only 0<θ < π is shown. It is shown that the probability to
encounter another particle around the compressive axis is much higher than that in
the extensive axis, which is consistent with g(Δx, Δy) (figure 7b). The asymmetry,
which is responsible for the non-Newtonian behaviour, has been observed both in
experiments (Parsi & Gadala-Maria 1987) and in numerical simulations (Sierou &
Brady 2002; Kulkarni & Morris 2008).

The corresponding pair-distribution function g(θ) for the reference particles centred
in 2 <y/a < 5 is shown in figure 16. Because the particles are in a buffer region between
the strongly structured particle layer around y/a � 1 and the free shear region (core
region), the pair-distribution function is no longer mirror-symmetric. In other words,
g(θ) in the upper hemisphere 0< θ/π < 1 is different from the lower hemisphere
1 <θ/π < 2. It is observed that g(θ) in the upper hemisphere resembles that in the
core region qualitatively. However, g(θ) in the lower hemisphere is distinguished by
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Figure 17. The pair distribution function for particles of which centre is located in
1 � y/a � 2.

the increased probability near θ/π � 3/2, which comes from the interaction with the
particle layer below.

Figure 17 shows g(θ) for the reference particles close to the wall, 1 � y/a � 2.
Distinctive peaks are observed near θ/π � 0 and 1, indicating that it is much more
probable for a particle near the wall to experience the lubrication interaction with
another particle in the same particle layer than particles in another region. A plateau
is observed near θ/π = 0.5 due to the interaction with the second particle layer. The
location of this plateau is consistent with g(θ) for the lower hemisphere shown in
figure 16 for particles centred further away from the wall. Although g(θ) is not
symmetric, the asymmetry is much weaker compared to the core region (figure 15),
which is responsible for the small |N1| in the wall region (figures 11 and 12).

5. Conclusions
Here, we have reported on the fully three-dimensional numerical simulations of
concentrated suspensions of non-colloidal particles in Couette flow using the FCM.
The FCM, with more robust lubrication corrections as given by Yeo & Maxey
(2010), is modified to incorporate the particle-wall lubrication interaction. The far-
field particle-wall interaction is resolved naturally in FCM, while the particle-wall
lubrication matrix is constructed for particles whose distance from a wall is less than
1.2a. The particle-wall lubrication correction is compared to the boundary collocation
results in Ganatos et al. (1980, 1982) with good agreement.

In concentrated suspensions, the strong particle-wall lubrication inhibits particles
near the wall from being resuspended into the core region. As a result, one or more
particle layers are formed near the wall depending on the volume fraction. Although
the present simulations are performed only for the plane Couette flow, it seems
that the particle layering at high volume fraction is common in most wall-bounded
flows. Even in the Poiseuille flows where most particles migrate towards the centre
of the channel, there is evidence of the particle layering (Hampton et al. 1997).
Since the microstructure inside of the particle layer is significantly different from
that in homogeneous suspensions, it is not straightforward to predict the rheological
properties in wall-bounded flows from the results obtained in unbounded domain. It
is found that the width of the particle layer is not sensitive to Ly/a once the channel
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is wide enough. At φ = 0.4, it is observed that the layering of particles is dominant
for 0 � y/a � 7 and beyond this the suspension is quasi-homogeneous similar to
unbounded suspensions. Based on the observation, the rheological properties are
calculated separately in the core and wall regions.

The rheological properties, such as the relative viscosity and normal stress
differences, in the core region agree well with the results in an unbounded domain. In
the wall region, the formation of particle layers leads to rheology of the suspension
distinct from unbounded suspensions. As Ly/a increases, the ratio of the core region
to wall region grows larger so that the bulk rheological properties should resemble
more those in unbounded suspensions. Interestingly, there is no difference in the
normal stress differences between Ly/a =20 and Ly/a = 30 at φ = 0.4 in the present
simulations, even though the ratio of the core to wall region increases from 1 to 2. It
should be noted that even at Ly/a = 30 it seems that suspensions are still in a discrete
regime. Hence, a simple extrapolation to higher Ly/a from the present results may
not be appropriate.

The microstructure clearly shows the different dynamics depending on the distance
from the wall. At φ = 0.4, the microstructure in the core region resembles that
in the homogeneous suspensions. The shear structure (higher probability near the
compressive axis) is missing in the pair-distribution function g(θ) for particles in the
particle layer (y/a < 2). In the particle layer, most particle–particle interactions arise
from the normal motion between the particles in the same particle layer (θ =0 or π)
or from the tangential interaction with particles above (θ = π/2). In the buffer layer
(2 <y/a < 5), the pair-distribution function g(θ) shows the characteristics of both the
homogeneous suspension and the particle layer.

This work was partially supported by the NICS under TG-CTS090097 and utilized
the NICS Cray XT5.

Appendix. Wall resistance function
The theoretical, asymptotic expressions for the particle-wall resistance functions can

be found in the literature Corless & Jeffrey (1988), Bossis et al. (1991) and Dance &
Maxey (2003a). Due to the typographical errors in some sources, we list the near-field
forms of the resistance functions used in the simulation. As ε → 0, where the gap
between the particle and the wall is aε,

XA =
1

ε
− 1

5
log ε + 0.8193 − 1

21
ε log ε,

Y A = − 8

15
log ε + 0.9557 − 64

375
ε log ε,

Y B =
2

15
log ε + 0.2568 +

86

375
ε log ε,

XC = 1.2021 +
1

2
ε log ε,

Y C = −2

5
log ε + 0.3720 − 66

125
ε log ε,

Y G = −2

3

(
7

10
log ε + 0.923 +

221

250
ε log ε

)
,

Y H =
1

10
log ε + 0.923 − 2

250
ε log ε.
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C0 C1 C2 C3 C4

XA 8.1108 −26.117 62.532 −84.151 46.472
Y A 2.3514 −3.6192 8.5516 −13.557 9.8027
Y B −0.2295 1.2393 −3.7731 6.6984 −5.0789
XC 1.1239 −0.3084 0.3610 −0.1688 −0.0030
Y C 1.4205 −1.4217 3.0026 −4.1003 2.6037
Y G 0.5629 −1.7656 4.0292 −6.1515 4.3758
Y H −0.0447 −0.1588 1.0918 −2.3320 1.7748

Table 4. FCM resistance functions.

The FCM resistance functions are given by

R = C0 + C1ε + C2ε
2 + C3ε

3 + C4ε
4.

The coefficients are shown in table 4. The particle-wall resistance function XC is finite
at the wall, ε =0, and is matched satisfactorily by the FCM result so that in practice,
special treatment of this term is not necessary.
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