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a b s t r a c t

In this paper, acceleration-based connected cruise control (CCC) is proposed to increase

roadway traffic mobility. CCC is designed to be able to use acceleration signals received

from multiple vehicles ahead through wireless vehicle-to-vehicle (V2V) communication.

We consider various connectivity structures in heterogeneous platoons comprised of

human-driven and CCC vehicles. We show that inserting a few CCC vehicles with appropri-

ately designed gains and delays into the flow, one can stabilize otherwise string unstable

vehicle platoons. Exploiting the flexibility of ad-hoc connectivity, CCC can be applied in a

large variety of traffic scenarios. Moreover, using acceleration feedback in a selective man-

ner, CCC provides robust performance and remains scalable for large systems of connected

vehicles. Our conclusions are verified by simulations at the nonlinear level.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Advanced driver assistance systems (ADAS) have been developing rapidly in the last decade, leading to significantly

improved passenger comfort and active safety of road vehicles. However, mobility of road traffic has not experienced similar

transformation, as traffic jams still plague highways and major cities in the United States and around the world (Schrank

et al., 2012). Mobility depends on the properties of individual vehicles as well as on their interactions, i.e., on the control

strategies used to react to the motion of other vehicles. A control strategy that is based solely on local traffic information

has limited ability to change the dynamics at the system level, which is necessary if one wishes to eliminate traffic

congestion.

Past research has shown that maintaining smooth traffic flow is closely related to the so-called string stability of the local

controllers that represents their ability to attenuate velocity fluctuations coming from the vehicles in front (Orosz et al.,

2010). Human drivers who rely on distance and velocity information are typically unable to maintain string stability in

the entire velocity range due to their reaction time (Zhang and Orosz, 2013). A possible solution may be to use adaptive

cruise control (ACC) where the distance and the velocity difference between the vehicle and its predecessor is measured

by radar and the vehicle is actuated accordingly. Since the delay in these systems is smaller than the human reaction time,

controllers may be designed to ensure attenuation of velocity fluctuations, which results in string stable platoons if all vehi-

cles are controlled by the same ACC algorithm. A past study (Davis, 2004) has shown that traffic jams can be suppressed in a

mixed traffic of human-driven and ACC vehicles, when ACC vehicles constitute at least 20% of the traffic flow. However, the
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current ratio of ACC vehicles on the road is estimated to be orders of magnitude smaller than this. Consequently, the

improvement of traffic efficiency through ACC systems is very limited.

In order to overcome the limitations of ACC systems, one may use information about the motion of more than one preced-

ing vehicles that can be obtained through wireless vehicle-to-vehicle (V2V) communication, such as dedicated short range

communication (DSRC). In this way, the performance of ACC controllers, particularly the string stability, may be improved.

Such augmented ACC systems are often referred to as cooperative adaptive cruise control (CACC) (van Arem et al., 2006).

Experimental work in integrating ACC systems and wireless communication dates back to the PATH program in 1997, when

a platoon of eight cars performed longitudinal motion control with the help of inter-vehicle communication on a closed high-

way (Rajamani and Shladover, 2001). Since 2009, the SARTRE project has been experimenting with vehicle platoons where

each following vehicle is driven automatically using signals sensed by radars and transmitted from a designated platoon lea-

der (the first vehicle in the platoon) that is equippedwith high-quality sensors and driven by a professional driver (Chan et al.,

2012). In 2011, the grand cooperative driving challenge (GCDC) in the Netherlands implemented the idea of feedback from the

vehicle immediately ahead and the platoon leader (van Nunen et al., 2012; Geiger et al., 2012; Lidström et al., 2012). These

experiments pointed out the benefits of using signals received from vehicles farther ahead. However, it was required that

all vehicles in the platoon were equipped with ACC and the connectivity structures were fixed relying on a prescribed platoon

leader. Such assumptions not only restrict the application of CACC in real traffic but also limit the feedback design to a par-

ticular connectivity structure. Considering the low penetration of ACC vehicles and the additional requirements to create

CACC systems, the chance that three or more of these vehicles get close to each other in traffic is extremely low. Two recent

papers (Wang et al., 2014a,b) discuss different control setups and heterogeneity for CACC platoons by lowering the require-

ment on penetration rate. However, specific repetitive connectivity patterns are assumed where vehicles only monitor the

motion of the vehicles ahead and immediately behind. Therefore, the benefits of using information from distant vehicles

are not exploited and requiring fixed connectivity may limit modularity in the entire transportation system.

Connected cruise control (CCC) is proposed to resolve these problems, where ad hoc platoons can be formed based on the

available communication and platoons may be heterogeneous, i.e., include human-driven vehicles that only transmit data or

do not participate in the communication at all. In this scenario, the leader is considered to be the furthest vehicle ahead that

transmits signals to the CCC vehicle, and this may be different for each CCC vehicle. Since this framework neither requires a

designated platoon leader nor a fixed communication structure, it allows modular design that is scalable for large systems.

Moreover, the flexibility in the connectivity structure permits CCC design that is robust against the uncertainties in the

parameters of human drivers. In fact, even a CCC vehicle may be human-driven in which case the communication-based con-

trol acts as a driver assistance system. Indeed, CCC can also be used to supplement ACC, or even to substitute sensors like

radars with communication.

CCC can be designed based on the various signals received via V2V communication, including distance, velocity, and

acceleration. Distance and velocity information has been used frequently when designing ACC controllers, but acceleration

is seldom used since it requires taking derivatives of (noisy) velocity signals generated by the sensors. On the other hand,

human drivers often use acceleration signals provided by the taillights, but they cannot determine the exact deceleration

value, and can only observe the taillight of the vehicle immediately ahead. Using accurate acceleration information from

multiple vehicles ahead may enable the host vehicle to better respond to traffic conditions. In this paper, we consider an

acceleration-based CCC design, where the host vehicle is actuated using acceleration information broadcasted by other

vehicles and local headway and velocity information monitored by sensors or human drivers. Moreover, we propose a

delay-based control design where both the gains and the delays are tuned in the feedback loop. We show that this design

is robust against variations of human parameters (driver gains and driver reaction time) and we derive the ranges of feasible

acceleration gains and delays that ensure string stability. It has been shown that acceleration feedback can be effective in

other applications involving human reaction time, e.g., human balancing (Insperger et al., 2013).

The layout of the paper is the following. In Section 2, we introduce a general class of the nonlinear car-following models

that can be used to describe CCC as well as conventional vehicles. This general class of models allow us to consider a large

variety of communication structures where a few CCC vehicles are inserted into the platoon to exploit V2V information. In

Section 3, we linearize the system about the uniform flow equilibrium and analyze the head-to-tail string stability for

different communication structures. The linear stability results are summarized using stability charts and the results are

verified at the nonlinear level using numerical simulations. We conclude our results in Section 4.

2. Connected car-following models with acceleration feedback

We consider a platoon of nþmþ 1 vehicles traveling on a single lane as shown in Fig. 1(a). The preceding nþm vehicles

are not equipped with CCC and are assumed to be human-driven. The tail vehicle (the last vehicle of the platoon) implements

acceleration-based CCC using acceleration signals received through V2V communication from n preceding vehicles. The

car-following dynamics of the CCC vehicle is modeled by

_hðtÞ ¼ v1ðtÞ � vðtÞ;

_vðtÞ ¼ a Vðhðt � sÞÞ � vðt � sÞ
� �

þ b _hðt � sÞ þ
Xn

k¼1

ck _vkðt � rkÞ;
ð1Þ
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which can be obtained as a simplification of the physics-based model presented in Orosz (2014) and Orosz and Shah (2012).

Here the dot stands for differentiation with respect to time t;h is the headway, i.e., the distance between the CCC vehicle and

the vehicle immediately ahead, v is the velocity of the CCC vehicle, while vk; k ¼ 1; . . . ;n denotes the velocities of the pre-

ceding vehicles. The gains a and b are used for the headway and relative velocity, while s represents the driver reaction time

(0:5 – 1 [s]) or the sensing delay of the automated system (0:05� 0:2 [s]). The gains and the delays for the acceleration sig-

nals are denoted by ck and rk; k ¼ 1; . . . ;n. Note that rk represents the sum of communication delay and human reaction

time when CCC is used to warn the human driver, while it stands for the sum of communication delay and the delay in

the controller when CCC is used to actuate the vehicle. We emphasize that in the latter case CCC can either be used to assist

the human driver or to fully actuate the longitudinal dynamics of the vehicle. Even though wireless V2V communication can

be considered to be instantaneous, communication delay of magnitude 0:1 – 0:4 [s] is reported due to the intermittencies

and packet drops (Bai and Krishnan, 2006), that shall be incorporated in the rk � s.

In model (1), the acceleration of the CCC vehicle is determined by three terms: the difference between the desired velocity

and the actual velocity, the velocity difference between the vehicle immediately ahead and the host vehicle, and the accel-

eration of multiple vehicles ahead. The desired velocity is determined by the headway using the range policy

VðhÞ ¼

0 if h 6 hst;

vmax

2
1� cos p h�hst

hgo�hst

� �� �
if hst < h < hgo;

vmax if hP hgo;

8
>><
>>:

ð2Þ

that is depicted in Fig. 1(b). This represents that when the headway is small (h < hst) the vehicle aims to stop, for large head-

way (h > hgo) the vehicle aims to travel with maximum speed vmax, and between these the desired velocity increases with

the headway monotonically. Here we consider vmax ¼ 30 [m/s], hst ¼ 5 [m], hgo ¼ 35 [m] that corresponds to realistic traffic

data (Orosz et al., 2010). Notice that function (2) and its derivative are continuous at hst and hgo, which ensures smooth lon-

gitudinal dynamics even in the jerk. Indeed, many other range policies may be chosen (Orosz et al., 2010), but the qualitative

dynamics remain similar if the above characteristics are kept.

The driving behavior of the preceding non-CCC vehicles is described by the car-following model

_hiðtÞ ¼ v iþ1ðtÞ � v iðtÞ;

_v iðtÞ ¼ a Vðhiðt � sÞÞ � v iðt � sÞ
� �

þ b _hiðt � sÞ;
ð3Þ

where i ¼ 1; . . . ;nþm. For simplicity, we consider that all drivers are identical and that CCC is used as a driver assistance

system. Thus (1) and (3) contain the same range policy VðhÞ, headway gain a, relative velocity gain b, and driver reaction

time s. To evaluate the robustness of our acceleration-based CCC design against uncertainties in driver parameters, we will

investigate the dynamics for different values of a; b, and s. On the other hand, the acceleration gains ck and delays rk will be

used as design parameters. Indeed, these delays have minimal values as explained above, but we will show that they may be

increased intentionally in order to obtain desired performance.

The longitudinal stability of a connected vehicle system includes plant stability and string stability. For the CCC vehicle,

plant stability is defined as follows. Suppose that the vehicles whose signals are used by the CCC vehicle are driven at the

same constant velocity. Then the CCC vehicle is plant stable if its velocity approaches this constant velocity. Consequently,

Fig. 1. (a) A heterogeneous vehicle platoon of nþmþ 1 vehicles with nþm non-CCC vehicles and a CCC vehicle at the tail. The delays are indicated along

the links. (b) The nonlinear range policy (2) used in this paper.
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a platoon is said to be plant stable, if all vehicles approach the velocity of the head vehicle (the first vehicle in a platoon)

when it is driven at a constant velocity.

Broadly speaking, string stability is achieved when velocity fluctuations are attenuated as they propagate upstream

(Seiler et al., 2004). In predecessor-follower systems, where each vehicle reacts to the motion of the vehicle immediately

ahead, string stability can be ensured by considering pairs of successive vehicles. However, this may not be suitable when

incorporating CCC vehicles, whose control law depends on several preceding vehicles in the platoon. Moreover, many

vehicles in the platoon can be purely human-driven, and their string stability cannot be ensured. Thus, the string stability

of heterogeneous platoons containing CCC and conventional vehicles cannot be simplified to the string stability of pairs

of successive vehicles. Here, we define the head-to-tail string stability and compare the velocity fluctuations of the head

vehicle and the tail vehicle (that is assumed to be a CCC vehicle without loss of generality). This way, all the influences

on the tail vehicle’s motion are considered and we are able to compare the string stability of platoons with different struc-

tures of connectivity that may include multiple CCC vehicles. Notice that this definition allows that some vehicles in the pla-

toon may amplify the velocity fluctuations of the head vehicle, but fluctuations are attenuated when they reach the tail.

3. Head-to-tail string stability for connected vehicle configurations

In this section, we focus on the dynamics of the connected vehicle system (1, 3) in the vicinity of an equilibrium that is

achieved when all vehicles travel with the same constant velocity and maintain constant headways. While the equilibrium

velocity v� is determined by the head vehicle, the equilibrium headway h
�
i is obtained for each vehicle using the range policy

v
� ¼ V iðh

�
i Þ. Since the range policies are assumed to be identical, here we obtain the uniform flow equilibrium

hðtÞ � hiðtÞ ¼ h
�
; ð4Þ

vðtÞ � v iðtÞ ¼ v
� ¼ Vðh

�
Þ;

for i ¼ 1; . . . ;nþm, where the vehicles are equidistant.

We define headway perturbations ~hðtÞ ¼ hðtÞ � h
�
; ~hiðtÞ ¼ hiðtÞ � h

�
and the velocity perturbations ~vðtÞ ¼ vðtÞ � v

�; ~v iðtÞ ¼

v iðtÞ � v
�; i ¼ 1; . . . ;nþm, and linearize (1, 3) about the equilibrium (4). This yields

_~hðtÞ ¼ ~v1ðtÞ � ~vðtÞ;

_~vðtÞ ¼ a f �~hðt � sÞ � ~vðt � sÞ
� �

þ b
_~hðt � sÞ þ

Xn

k¼1

ck
_~vkðt � rkÞ;

ð5Þ

for the CCC vehicle and

_~hiðtÞ ¼ ~v iþ1ðtÞ � ~v iðtÞ;

_~v iðtÞ ¼ a f �~hiðt � sÞ � ~v iðt � sÞ
� �

þ b
_~hiðt � sÞ;

ð6Þ

for the other vehicles i ¼ 1; . . . ;nþm. Here f � ¼ V 0ðh
�
Þ is the derivative of the range policy at the equilibrium h ¼ h

�
and the

corresponding time headway is th ¼ 1=f �. It was shown in Orosz et al. (2010) that having larger f � (i.e., smaller th) typically

poses stricter conditions on string stability. In this paper, we use ðh
�
;v�Þ ¼ ð20 ½m�;15 ½m=s�Þ, which results in the maximum

slope f � ¼ p=2 [1/s] corresponding to the minimum time headway th ¼ 2=p [s] (cf. (2) with vmax ¼ 30 [m/s], hst ¼ 5 [m], and

hgo ¼ 35 [m]).

We consider the velocity perturbation ~vnþm of the head vehicle as the input and the velocity perturbation ~v of the tail

vehicle as the output. Taking the Laplace transform of the system (5, 6) with zero initial conditions, and eliminating the

velocities of the other vehicles and the headways, we obtain the head-to-tail transfer function

CðsÞ ¼
eV ðsÞ
eV nþmðsÞ

¼
FðsÞ

GðsÞ

� �nþm

1þ
Xn

k¼1

FkðsÞ GðsÞð Þk�1

FðsÞð Þk

 !
: ð7Þ

Here eV ðsÞ and eV nþmðsÞ denote the Laplace transform of ~vðtÞ and ~vnþmðtÞ, respectively, and we have

FðsÞ ¼ bsþ af �;

FkðsÞ ¼ cks
2 eðs�rkÞs;

GðsÞ ¼ s2 ess þ ðaþ bÞsþ af �:

ð8Þ

We remark that without V2V communication (ck ¼ 0 ) FkðsÞ ¼ 0; k ¼ 1; . . . ;n), the second term in (7) disappears and the

transfer function degrades to FðsÞ=GðsÞð Þnþm, representing a platoon of human-driven vehicles.

Plant stability is determined by the denominator of the transfer function (7), that is, by GðsÞ in (8), and it is influenced only

by the driver parameters a; b, and s. That is, the acceleration feedback does not improve the plant stability in this simple

model. The system is linearly plant stable if and only if all solutions of the characteristic equation GðsÞ ¼ 0 are located in

the left half complex plane. One may substitute s ¼ iX;XP 0 into the characteristic equation, separate the real and

imaginary parts, and obtain the plant stability boundary in parametric form:

J.I. Ge, G. Orosz / Transportation Research Part C 46 (2014) 46–64 49



a ¼ X
2

f �
cosðXsÞ;

b ¼ X

f �
f � sinðXsÞ �X cosðXsÞð Þ:

ð9Þ

In the following sections, we will depict this boundary using a circled curve when applicable. In most cases, the car-following

model is plant stable, and we can focus on string stability.

Since perturbation signals can be represented using Fourier component, and superposition holds for linear systems,

head-to-tail string stability is ensured when sinusoidal signals are attenuated between the head and the tail vehicles for

all excitation frequencies. Therefore, at the linear level the necessary and sufficient condition for head-to-tail string stability

is given by

PðxÞ ¼ jCð ixÞj2 � 1 < 0; 8x > 0; ð10Þ

where Cð ixÞ is as defined by (7, 8). Since string stability is violated when the maximum of PðxÞ is larger than 0, the stability

boundary is given by the equations

PðxcrÞ ¼ 0;
@PðxcrÞ

@x ¼ 0;
ð11Þ

subject to @2PðxcrÞ

@x2 < 0, where xcr indicates the location of the maximum of PðxÞ. Note that PðxÞ also depends on the system

parameters a; b; s; ck; rk; k ¼ 1; . . . ;n, but they are not spelled out in (10, 11) for the sake of simplicity. To generate string

stability boundaries in the ðck;aÞ-plane, we fix the other parameters and solve (11) for ðckðx
crÞ;aðxcrÞÞ. Since it is not pos-

sible to solve (11) analytically, we use the continuation package DDE-BIFTOOL (Engelborghs et al., 2001) to obtain numerical

solutions while varying the critical frequency xcr. In fact, we search for the equilibria of the mock differential equation

_ck ¼ Pða; ck;x
crÞ;

_a ¼ @Pða;ck ;x
crÞ

@x ;
ð12Þ

that satisfy @2Pða;ck ;x
crÞ

@x2 < 0. First, for a specific xcr, an initial guess for a and ck is corrected by the Newton–Raphson method.

Then the obtained solution is used as initial guess for nearby values ofxcr. This way the solution can be continued, and cðxcrÞ

and aðxcrÞ can be obtained numerically.

Substituting xcr ¼ 0 into Eqs. (7, 8, and 11). We obtain Pð0Þ ¼ 0 and @Pð0Þ
@x ¼ 0. Thus, for zero frequency we require

@2Pð0Þ

@x2
¼ �ðnþmÞðaþ 2bÞ þ 2f � nþm�

Xn

k¼1

ck

 !
< 0; ð13Þ

which is a necessary condition for string stability.

3.1. Monitoring the vehicle immediately ahead

First, we consider the case when the CCC vehicle only receives acceleration signals from the vehicle immediately ahead,

i.e., n ¼ 1;m ¼ 0 in (1, 3) cf. Fig. 2(a). In this case, (7, 8) result in

CðsÞ ¼
eV ðsÞ
eV 1ðsÞ

¼
c1 s2 eðs�r1Þs þ bsþ af �

s2 ess þ ðaþ bÞsþ af �
; ð14Þ

and the string stability condition (10) can be written as

PðxÞ¼ ðc21�1Þx4þ2 ðaþbÞsinðsxÞ�bc1 sinððs�r1ÞxÞð Þx3�a aþ2b�2f � cosðsxÞþ2f �c1 cosððs�r1ÞxÞð Þx2 <0:

ð15Þ

For xcr > 0 the corresponding boundaries are given by (11), while for xcr ! 0 (13) gives the conditions

a > 2 �bþ f �ð1� c1Þð Þ; ð16Þ

a > 0: ð17Þ

As the acceleration gain c1 varies, the range of string stable parameters change for the gains a; b and the delays s;r1. Here we

fix the velocity gain b ¼ 0:9 [1/s] and show this change using stability charts in the ðc1;aÞ-plane for different values of the

delays s;r1 in Fig. 2. The string stability boundaries (11, 15, 16 and 17) are plotted as black curves enclosing the gray string

stable area. The dashed lines in Fig. 2(c, e, g) show the sections of (16) that do not bound the string stable domains.

Parameters outside the gray area result in that the transfer function (14) has magnitude larger than 1 at certain frequency

ranges, which is represented by a color code: deep blue indicates low frequency and dark red indicates high frequency. More

precisely, we solve (15) for frequencies xP
j > 0; j ¼ 1;2; . . . satisfying PðxP

j Þ ¼ jCð ixP
j Þj � 1 ¼ 0 and color the points in the

ðc1;aÞ-plane according to the largest xP
j . In the vicinity of the string stability boundary, the color corresponds to the

frequency at which string stability is lost.
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Fig. 2(b, d, f) depicts the stability charts for s ¼ 0, i.e., when the driver reaction time is omitted. In this case, for small val-

ues of c1, the string stability condition is given by (16), that is, string stability may be obtained by choosing sufficiently large

a. When c1 ¼ 0, we need a > 2ðf � � bÞ. As c1 increases, the required a decreases and becomes zero at c1 ¼ 1� b=f �. This

boundary is independent of acceleration delay r1 as can be seen when comparing Fig. 2(b, d, f). In the vicinity of this bound-

ary, deep blue color indicates that string stability is lost at low frequencyxcr ! 0. On the other hand, large c1 results in string

instability for high frequencies, as indicated by the dark red domains at the right side of Fig. 2(b, d, f). This boundary is at

c1 ¼ 1 when r1 ¼ 0 (Fig. 2(b)), and it moves to the left decreasing the string stable domain as the acceleration delay r1

increases (Fig. 2(d, f)).

As shown in Fig. 2(c, e, g), the string stable area shrinks significantly when choosing realistic driver reaction time s ¼ 0:4

[s]. In this case, the string stability can be maintained when choosing c1 � 0:5, but there is no string stable domain without

Fig. 2. (a) Connectivity structure for a single look-ahead platoon when a CCC vehicle monitors the car immediately ahead (i.e., n ¼ 1;m ¼ 0). The delays are

indicated along the links. (b–g) String stability diagrams in the (c1;a)-plane for velocity gain b ¼ 0:9 [1/s] and different driver reaction times s and

acceleration delays r1 as indicated. The gray areas are string stable. The color represents the highest frequency of string stability changes. The dashed lines

in panels (b, d, f) represent the section of (16) that does not bound the string stable domain. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 3. Magnitude of the transfer function when a CCC vehicle monitors the car immediately ahead (i.e., n ¼ 1;m ¼ 0) for the points marked (A–G) in

Fig. 2(e). The horizontal dashed line at 1 indicates the threshold for string stability. The horizontal dotted line shows the magnitude of transfer function

when the frequency approaches infinity.
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acceleration feedback (c1 ¼ 0). In fact, in the latter case the system is string unstable for all choices of human parameters a
and b, since s exceeds a critical delay time as will be discussed below. As the acceleration delay r1 increases, the string sta-

bility domain shrinks and disappears at r1 � 0:55 [s]. The critical frequencies of string stability loss are still low on the left

and high on the right side, as can be seen from the coloring of the string unstable domains.

To illustrate the stability loss at different critical frequencies, we mark the points A–G in Fig. 2(e) and and plot the mag-

nitude of the transfer function Cð ixÞ in Fig. 3 (cf. (14)). Comparing cases A, B and C, one can observe a string stability loss at

low frequency (xcr ! 0). In case A, the system is string unstable for low frequenciesx < xP � 1:22 [rad/s] (Fig. 3(a)), which

corresponds to the blue color at A in Fig. 2(e). Point B is located at the string stability boundary (Fig. 3(b)), that is, @
2 jCð0Þj

@x2 ¼ 0

(cf. (10), (13)), while the system is string stable in case C as shown in Fig. 3(c). Comparing cases C, D and E, a string stability

loss at higher frequency can be observed. Point D is located at the string stability boundary, that is, CðxcrÞ ¼ 1; @jCðx
crÞj

@x ¼ 0 (cf.

(10), (11)) where xcr � 2:34 [rad/s]. In case E, the system is string unstable in the frequency domain xP
1 < x < xP

2 (Fig. 3(e))

and the orange color at point E in Fig. 2(e) corresponds to the higher frequency xP
2 � 3:61 [rad/s].

Notice that as x ! 1, the magnitude of the transfer function approaches c1, i.e., limx!1jCð ixÞj ¼ c1 (cf. (14)), which is

indicated by the dotted horizontal lines in Fig. 3. Therefore, as c1 ! 1�, string instabilities appear in higher frequency ranges.

This is demonstrated in Fig. 3(f) where the system is string unstable forxP
1 < x < xP

2 andx
P
3 < x < xP

4. The dark red color at

point F in Fig. 2(e) corresponds to the highest frequency xP
4 � 22:97 [rad/s]. Finally we remark that when c1 > 1 the system

becomes unstable for almost all frequencies as demonstrated in Fig. 3(g), where the system is unstable for x > xP � 1:18

[rad/s], which corresponds to the coloring at G in Fig. 2(e).

Now we evaluate the robustness of the design against uncertainties of the human gains a and b. In the right panels of

Fig. 2, it can be observed that the stable regions cover the largest a interval for c1 � 0:5. Moreover, when every packet is

delivered, DSRC communication has the average communication delay r1 ¼ 0:15 [s], which goes up to r1 ¼ 0:2 [s] when

every second packet is lost (Qin et al., 2013; Qin et al., 2014). To evaluate the robustness, we use c1 ¼ 0:5 and r1 ¼ 0:2

Fig. 4. (a) Connectivity structure for a single look-ahead platoon with delays indicated along the links. (b and c) String stability diagrams in the (b;a)-plane
and (r1; c1)-plane for s ¼ 0:4 [s]. In panel (b), points P, Q and R locate the intersections of (16), (17) and (11), (15), while S1 is located at ða; bÞ ¼ ð0:6;0:9Þ

and corresponds to the parameters used in panel (c). In panel (c), point T locates the intersection between (16) and (11), (15), while S2 is located at

ðr1; c1Þ ¼ ð0:2;0:5Þ and corresponds to the parameters used in panel (b). (d and e) The corresponding critical frequencies along the string stability

boundaries. The same color coding is used as in Fig. 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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[s]. Stability charts in the ðb;aÞ-plane are shown in Fig. 4(b) for c1 ¼ 0:5;r1 ¼ 0:2 [s], s ¼ 0:4 [s]. The circled line is the plant

stability boundary (9), below which the parameters ensure plant stability. The gray string stable region (enveloped by the

curves (11, 15, 16 and 17) covers a large portion of realistic driver parameters a and b, showing the robustness of acceler-

ation-based CCC design against variations in driver gains.

Now we investigate the robustness against the increase of the driver reaction time s. The sections PR, PQ and QR of the

string stability boundary in Fig. 4(b) are given by (16), (17), and (11), (15), respectively. The corresponding critical frequen-

cies xcr are shown in Fig. 4(d). Notice that at the codimension-two points P, Q and R the critical frequency is zero. When s is

increased, the string stable domain decreases, and the points P, Q and R move closer to each other. At the critical reaction

time scr, they collide at a codimension-three point, and for s > scr there exists no combination of gains a and b that can

ensure string stability.

Using (11, 15, 16 and 17), we may obtain the location of P, Q, R as

ðbP;aPÞ ¼ ð1� c1Þf
�;0ð Þ;

ðbQ ;aQ Þ ¼
c21 � 1

2ðc1ðs� r1Þ � sÞ
; 0

� �
;

ðbR;aRÞ ¼
r1
r3

;
r2
r3

� �
;

ð18Þ

where

r1 ¼ ð1� c1Þ c1 1� 2f �2ðs� r1Þ
2

� �
þ 2f �sðf �s� 2Þ þ 1

� �
;

r2 ¼ 2f �ðr1 � sÞ � 1ð Þc21 þ 2f �ð2s� r1Þc1 � 2f �sþ 1;

r3 ¼ c1ðs� r1Þ f �ðs� r1Þ þ 1ð Þ þ sð1� f �sÞ:

ð19Þ

Fig. 5. (a) Connectivity structure with the delays indicated along the links. (b and c) Stability diagrams in the (b;a)-plane and in the (r1; c1)-plane (the

string stable domains are shaded). The cross in panel (b) is located at ðb;aÞ ¼ ð0:9;0:6Þ and corresponds to the parameters chosen in panel (c). Similarly, the

cross in panel (c) is located at ðr1; c1Þ ¼ ð0:2;0:5Þ and corresponds to the parameters chosen in panel (b). (d and e) Critical frequencies along the string

stability boundaries. For all panels, s ¼ 0:4 [s] is used. The notation is the same as in Fig. 4, except that the color code is omitted for simplicity. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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For r2 ¼ 0, P, Q, and R coincide, which yields the critical driver reaction time

scr ¼
1

2f �
þ

c1
1� c1

1

f �
� r1

� �
¼

th
2
þ

c1
1� c1

th � r1ð Þ: ð20Þ

Without acceleration feedback (c1 ¼ 0), scr ¼ 1
2f �

¼ th
2
, which means that human drivers can only maintain string stability

when travelling at a time headway that is at least twice as long as their reaction time. This result also corresponds to the

conclusion in Zhang and Orosz (2013); Zhang and Orosz (2014). The second term is positive for the physically realistic

parameters 0 < c1 < 1 and r1 < th and thus the critical delay scr increases with c1. In particular, considering c1 ¼ 0:5 without

communication delay (r1 ¼ 0 [s]), we have scr ¼ 3th=2, which is a threefold increase. Even if the communication delay is as

large as the human reaction time, we have scr ¼ th, which is a twofold increase. This demonstrates the benefits of acceler-

ation-based driver assistance systems.

When c1 > 1, with r1 < th, we can have scr < 0 [s], as in Case G in Fig. 2(e). Finally, when c1 ! 1�; scr approaches infinity.
The cost of such a dramatic increase is the robustness of string stability: a and b both approach zero, resulting in a follower

driving with its leader’s acceleration (delayed by r1). In this case, the headway and velocity feedback terms are missing and

thus the vehicle is unable to maintain a velocity-dependent headway.

The available values of the design parameters r1 and c1 are shown in Fig. 4(c) for human parameters ðb;aÞ ¼ ð0:9;0:6Þ

(point S1 in panel (b)) while the corresponding critical frequencies xcr are shown in Fig. 4(e). Since the plant stability is

not influenced by acceleration feedback, the choice of human parameters ensures plant stability for all values of r1 and

c1. The string stability boundaries (11, 15 and 16) envelope the gray string stable area, where the point S2 corresponds to

the design parameters used in panel (b). Notice that c1 shall be chosen between 0:2 and 0:8 and r1 shall be smaller than

0:4 [s] to ensure string stability. According to the coloring, choosing smaller c1 leads to string instability at low frequencies,

while larger c1 or longer r1 results in higher-frequency string instabilities.

Fig. 6. (a) Connectivity structure with the delays indicated along the links. (b and c) Stability diagram in (b;a)- plane and the (r2; c2)-plane (the string

stable domain is shaded). The cross in panel (b) is located at ðb;aÞ ¼ ð0:9; 0:6Þ and corresponds to the parameters chosen in panel (c). Similarly, the cross in

panel (c) is located at ðr2; c2Þ ¼ ð0:6; 0:5Þ and corresponds to the parameters chosen in panel (b). (d and e) Critical frequencies along the string stability

boundaries. For all panels s ¼ 0:4 [s] is used and the notation is the same as in Fig. 5.
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Using c1 � 0:5 ensures robustness against the variations of the acceleration delay r1. In fact, we will show that c1 � 0:5 is

a good choice for all other connectivity structures considered in the rest of this paper. Moreover, we will also demonstrate

that this holds for all ck. While there is no formal proof why this value shall be chosen, this seems to be a compromise

between using no acceleration feedback (ck ¼ 0) and using excessive acceleration feedback (ck > 1) which typically leads

to high-frequency instabilities.

Note that one may also use a ring configuration to obtain the results shown above, which gives analogous results and also

provides an insight into the pattern formation along the road as explained in Appendix A.

Fig. 7. (a) Three connectivity configurations A, B and C for a five-car platoon with a CCC vehicle at the tail using two acceleration links. The delays are

marked along the links. (b and c) String stability diagrams in the (rk; ck)-plane for r1 ¼ 0:2 [s], c1 ¼ 0:5, and in the (rk;r1)-plane for c1 ¼ c2 ¼ c3 ¼ c4 ¼ 0:5.

The three configurations are indicated by labels and color. (d and e) The critical frequencies along the string stability boundaries. Color code is used to help

identify the domains and the frequencies. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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3.2. Monitoring two vehicles ahead

Since an advantage of connectivity is providing the host vehicle with non-local information, we consider larger platoons

and exploit the use of acceleration feedback from vehicles farther downstream. For simplicity, we start with a platoon where

a CCC vehicle follows two other non-CCC vehicles and receives acceleration signals from the vehicle immediately ahead, as

shown in Fig. 5(a). Therefore, using n ¼ 1;m ¼ 1 in (7) results in the transfer function

CðsÞ ¼
FðsÞ

GðsÞ

� �2

1þ
F1ðsÞ

FðsÞ

� �
: ð21Þ

The resulting stability charts are shown in the ðb;aÞ-plane and ðr1; c1Þ-plane in Fig. 5(b) and (c), respectively. The

corresponding critical frequencies are plotted in Fig. 5(d) and (e). The same notation is used as in Fig. 4, but the color code

is omitted for simplicity.

When comparing Figs. 4(b) and 5(b), it can be observed that when a CCC vehicle only monitors acceleration information

of the vehicle immediately ahead, the longer platoon is more sensitive to uncertainties in the human parameters a and b.

Moreover, comparing Figs. 4(c) and 5(c) shows that, while the stable domain is still around c1 � 0:5, the domain of feasible

control parameters decreases for the larger platoon, including the largest allowable acceleration delay. These results are not

surprising: for the larger platoon the CCC vehicle needs to eliminate the perturbations that have been amplified by the

human-driven vehicle 1, which is string unstable for s ¼ 0:4 [s] (for any combination of a and b) since s is larger than

the critical time delay scr � 0:32 [s], cf. (20) for c1 ¼ 0.

Notice that there are points along the stability boundaries that correspond to multiple critical frequencies. Some of these

codimension-two points corresponds to zero frequencies, but there are points where one or both critical frequencies are

non-zero. In the latter case, when crossing the string stability boundary at these points (from stable to unstable), stability

is lost in two distinct frequency domains and we obtain Bode plots that are qualitatively similar to the one in Fig. 3(f).

If the CCC vehicle receives acceleration feedback from the head vehicle as shown in Fig. 6(a), i.e., n ¼ 2;m ¼ 0 in (7), the

transfer function becomes

CðsÞ ¼
FðsÞ

GðsÞ

� �2

1þ
F2ðsÞGðsÞ

FðsÞð Þ2

 !
: ð22Þ

Fig. 8. Velocity and acceleration responses of the CCC vehicle to a sinusoidal velocity perturbation of the head vehicle (black curves) for configurations A

(red), B (green), and C (blue) shown in Fig. 7(a). The human parameters a; b, and s are the same as in Fig. 7 and the acceleration gains are kept ck ¼ 0:5 for all

k-s. Panels (a, b) are for acceleration delays rk ¼ 0:2 [s], k ¼ 1;2;3;4, while panels (c, d) are for delays r1 ¼ 0:2 [s], r2 ¼ 0:4 [s], r3 ¼ 1:2 [s], r4 ¼ 2:0 [s] (cf.

the crosses A, B and C in Fig. 7(b, c)). The initial headways and velocities are set at the equilibrium where h
�
¼ 20 [m], v� ¼ 15 [m/s] along the time interval

[�maxfrk; sg;0] for all vehicles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Comparing the string stable areas in Fig. 5(b) and Fig. 6(b), one may observe that using longer acceleration link provides bet-

ter robustness against uncertainties in the human parameters a and b. The comparison of Fig. 5(b) and Fig. 6(c) reveals that

the acceleration feedback gains ck; k ¼ 1; 2, shall be kept around 0:5, independent of the source of acceleration signals.

Surprisingly, for the longer communication links, the delay in the acceleration feedback loop must be larger than zero. This

means that one must artificially increase the delay in order to maintain string stability. Therefore, it is not necessary to use

higher communication rate, but instead the received packets shall be stored in buffers, so that they can be used at suitable

times. The frequency plots shown in Fig. 6(d, e) are similar to Fig. 5(d, e), but there are multiple codimension-two points with

non-zero critical frequencies.

3.3. Using multiple communication links for a CCC vehicle

Because the average broadcast range of DSRC is approximately 300 [m], a CCC vehicle may acquire acceleration informa-

tion from a car that is approximately four vehicles ahead when driving at highway speed. Thus, here we consider a platoon of

five cars, place the CCC vehicle at the tail, and assume that it receives acceleration signals from two other vehicles down-

stream: the vehicle immediately ahead and another vehicle that is 2;3, or 4 vehicles ahead; see Fig. 7(a) for the different

configurations labelled A, B, and C. Considering these configurations in (7), we obtain the head-to-tail transfer functions

CAðsÞ ¼
FðsÞ

GðsÞ

� �4

1þ
F1ðsÞ

FðsÞ
þ
F2ðsÞGðsÞ

FðsÞð Þ2

 !
; ð23Þ

CBðsÞ ¼
FðsÞ

GðsÞ

� �4

1þ
F1ðsÞ

FðsÞ
þ
F3ðsÞ GðsÞð Þ2

FðsÞð Þ3

 !
; ð24Þ

CCðsÞ ¼
FðsÞ

GðsÞ

� �4

1þ
F1ðsÞ

FðsÞ
þ
F4ðsÞ GðsÞð Þ3

FðsÞð Þ4

 !
: ð25Þ

Fig. 7(b,c) show the stability diagrams for a ¼ 0:6 [1/s], b ¼ 0:9 [1/s], s ¼ 0:4 [s]. Fig. 7(b) depicts the stability charts in the

ðck;rkÞ-plane for k ¼ 2;3;4, when c1 ¼ 0:5 and r1 ¼ 0:2 [s]. The different configurations are distinguished by color. Notice

again that while ck shall be kept around 0:5 for k ¼ 2;3;4;rk shall increase with k to ensure string stability. That is, the con-

troller has to delay acceleration signals coming from distant vehicles, and the longer the link is, the larger delays are needed.

Similarly, Fig. 7(c) shows the stability charts in the ðrk;r1Þ-plane when ck ¼ 0:5 for k ¼ 1;2;3;4, using the same labeling and

color scheme. While the range of r1 is not significantly influenced by the link length, longer links shall have larger delays to

Fig. 9. Velocity and acceleration responses of the CCC vehicle to a triangular velocity perturbation of the head vehicle (black curves) for configurations A

(red), B (green), and C (blue) shown in Fig. 7(a). The parameters and initial conditions are the same as in Fig. 8. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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maintain string stability. Fig. 7(d,e) give the critical frequencies along the string stability boundaries, showing multiple

codimension-two points with two distinct frequencies. Notice that the codimension-two points in Fig. 7(d) have at least

one critical frequency at zero, while all codimension-two points in Fig. 7(e) have only non-zero critical frequencies.

(a)
E

F

G

H

β

Case E (b)
α

β

Case F (c)
α

β

Case G (d)α

β

Case H (e)α

Fig. 10. (a) Four connectivity configurations for a five-car platoon with multiple CCC vehicles and multiple acceleration links. The delays are shown along

the links. (b–e) String stability diagrams in the ðb;aÞ-plane for the different configurations while using s ¼ 0:4 [s], c2 ¼ 0:5;r2 ¼ 0:6 [s]. The same notation

is used as in Fig. 5.
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To illustrate the necessity of increasing the delay, we perform simulations for the three configurations A, B and C shown in

Fig. 7(a) using the nonlinear model (1, 3). We use the same a; b and s parameters as in Fig. 7. Fig. 8 depicts the velocity and

acceleration responses of the CCC vehicle when all cars in the platoon start with equilibrium headway and velocity along the

time interval [�maxfrk; sg;0]. The head vehicle applies a periodic perturbation with frequencyx ¼ 2 [rad/s] and amplitude

jDv j ¼ 1 [m/s] (black curves in Fig. 8). This particular frequency is chosen based on the range of critical frequencies in

Fig. 7(d, e). In Fig. 8(a, b), the acceleration delays are kept the same for all links, that is, rk ¼ 0:2 [s], ck ¼ 0:5; k ¼ 1;2;3;4.

Case A (red curve) is string stable, i.e., the amplitude of the steady-state velocity response is smaller than the amplitude

of the disturbance (black curve). However, cases B (green curve) and C (blue curve) are not string stable as the velocity

disturbance is amplified. Fig. 8(c, d) show the velocity and acceleration responses when the acceleration delays are increased

with link length. In particular, we choose r1 ¼ 0:2 [s], r2 ¼ 0:4 [s], r3 ¼ 1:2 [s], r4 ¼ 2:0 [s] and ck ¼ 0:5; k ¼ 1;2;3;4, cor-

responding to the crosses in Fig. 7(b, c). In this setting, all three configurations are string stable, i.e., the velocity perturba-

tions for the red, green and blue curves are all smaller compared to the black curve. This is consistent with results of the

linear analysis presented above.

To further emphasize this principle, Fig. 9 shows the velocity and acceleration responses when the head vehicle has a tri-

angular velocity perturbation between t 2 ½0;4� [s] with perturbation size jDv j ¼ 2 [m/s] (black curves in Fig. 9). Since the

triangular signal can be written as a sum of Fourier components, and is more common in real traffic than pure sinusoidal

signals, the attenuation of triangular perturbation may be considered as an indication of string stability. In Fig. 9(a, b), we

have rk ¼ 0:2 [s], for k ¼ 1;2;3;4, and the perturbation is only attenuated in case A but amplified in cases B and C. On

the other hand, panels (c, d) are for r1 ¼ 0:2 [s], r2 ¼ 0:4 [s], r3 ¼ 1:2 [s], r4 ¼ 2:0 [s], and the perturbation is attenuated

in all cases. These simulation results demonstrate that near the equilibrium, the nonlinear model reproduces the predictions

of the linear analysis.

3.4. Multiple CCC vehicles: effects of link intersections

As seen in the last section, multiple links may be used to improve string stability when there is a CCC vehicle in the

platoon. However, when more than one CCC vehicles appear, complicated connectivity structures may arise. In this section,

we demonstrate that increasing the number of links may not always provide larger string stability domains.

Here we consider a five-car platoon and compare the head-to-tail string stability in configurations E–H depicted in

Fig. 10(a). In each case, we use links that allow CCC vehicles to obtain acceleration information from a vehicle that is two

vehicles ahead and choose the parameters for this acceleration link to be c2 ¼ 0:5;r2 ¼ 0:6 [s], cf. the cross in Fig. 6(c). Notice

that the number of links increases when going from E to H. The corresponding ðb;aÞ stability charts are shown in Fig. 10(b-e).

Since we still consider s ¼ 0:4 [s] as in Fig. 7, without acceleration feedback the platoon is string unstable. In case E, the CCC

vehicle at the tail can make the platoon head-to-tail string stable, though the stable domain is fairly small as shown in

Fig. 10(a). Case F is a cascade configuration with two CCC vehicles involved and the corresponding string stable domain is

identical to the one in Fig. 6 (a). In case G, there are two CCC vehicles, but the two links intersect each other and the stability

region shrinks significantly as shown in Fig. 10(d). This result indicates that intersection of acceleration links may deteriorate

string stability. Finally, to investigate whether the stabilizing effect of acceleration links outweighs the destabilizing effect of

link intersections, we consider three CCC vehicles with three acceleration links in case H. The corresponding stability plot in

Fig. 10(e) shows that, surprisingly, the stable domain becomes much smaller. These results suggest that CCC vehicles shall

use the available acceleration signals in a selective manner, to avoid link intersections which deteriorate string stability.

4. Conclusion

In this paper, we found that connected cruise control (CCC) that is based on acceleration signals can improve the string

stability of vehicle platoons and that CCC can be used in human-driven vehicles without instrumenting them with expensive

sensors. Such improvements are robust against driver reaction time and communication delay. We observed that the critical

driver reaction time increases significantly when using appropriately designed acceleration feedback. We also demonstrated

that the gain of the acceleration feedback shall be kept around 0:5 at all circumstances. Having too low acceleration gains

would lead to low frequency oscillations (that are typical for human driven platoons), while too high acceleration gains lead

to high frequency string instabilities. As the length of acceleration feedback link increases, the corresponding delay time shall

also be increased, in order to maintain string stability. This indicates a necessity of designing the delay times when using

acceleration feedback, instead of treating the delays as system limitations. Furthermore, we showed that string stability

can be preserved when building larger connected vehicle systems, under the condition that link intersections are avoided.

In the future, optimization of acceleration gains for different link lengths and heterogeneity arising from non-identical

human reaction times shall be considered.

Appendix A

Here we show that the necessary and sufficient conditions of string stability for a platoon are equivalent to the stability

conditions of the system constructed by placing N vehicles on a ring and considering N ! 1. That is, the string stability of a
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platoon of CCC and non-CCC vehicles (cf. Fig. 1(a)) can be analyzed by repeating the configuration along a circular track. This

setting introduces periodic boundary conditions and results in an autonomous system. Previous research has shown the

equivalence of the ring and platoon configurations for predecessor-follower models based on headway and velocity feedback

(Orosz et al., 2011). Here we give a brief demonstration of their equivalency for connected vehicle systems with delayed

acceleration feedback. First, we analyze the simple scenario discussed in Section 3.1 where only the acceleration of the vehi-

cle immediately ahead is used and then extend this analysis to the platoons discussed in Sections 3.2 and 3.4.

Let us define

x ¼
~v
~h

� �
; x1 ¼

~v1

~h1

� �
; ð26Þ

consider n ¼ 1 and write the linear model (5) into the form

_xðtÞ ¼ A x1ðtÞ þ B xðtÞ þ C x1ðt � sÞ þ D xðt � sÞ þ E _x1ðt � r1Þ; ð27Þ

where the coefficient matrices are

A ¼
0 0

1 0

� �
; B ¼

0 0

�1 0

� �
; C ¼

b 0

0 0

� �
; D ¼

�a� b af �

0 0

� �
; E ¼

c1 0

0 0

� �
: ð28Þ

Placing N vehicles on a ring and defining the state X ¼ col½x1 � � � xN� result in the neutral delay differential equation (NDDE)

_XðtÞ ¼

B A

. .
. . .

.

B A

A B

2
66664

3
77775
XðtÞ þ

D C

. .
. . .

.

D C

C D

2
66664

3
77775
Xðt � sÞ þ

0 E

. .
. . .

.

0 E

E 0

2
66664

3
77775
_Xðt � r1Þ: ð29Þ

Block-diagonalizing (29), we can decompose it into Nmodal equations, which can be analyzed separately (Ge et al., 2013;

Avedisov and Orosz, 2014). The dynamics of the k
th

mode is given by

_zkðtÞ ¼ ðBþKk AÞ zkðtÞ þ ðDþKk CÞ zkðt � sÞ þKk E _zkðt � r1Þ; ð30Þ

where zk 2 R
2 is the modal coordinate for the k

th
mode representing the amplitude of the corresponding traveling wave

(Orosz et al., 2010), while

Kk ¼ e2ihk ; hk ¼
kp
N

; ð31Þ

k ¼ 0; . . . ;N � 1 are the corresponding modal eigenvalues.

Using the trial solution zk ¼ Zk est; Zk 2 C
2; s 2 C, we obtain the characteristic equation for the k

th
mode as

s2 1� c1 e2ihk�sr1
� 	

þ s aþ b 1� e2ihk
� 	� 	

e�ss þ af � 1� e2ihk
� 	

e�ss ¼ 0: ð32Þ

The necessary and sufficient condition of stability is that all modes are stable, that is, all eigenvalues s are in the left-half

complex plane for all k (Insperger and Stépán, 2011). The stability boundaries are located at the parameter values where

eigenvalues cross the imaginary axis, i.e., s ¼ ix;xP 0. Substituting this into (32) and separating the real and imaginary

parts, we obtain

Fig. 11. (a) Stability chart in the (c1;a)-plane for the ring configuration using N ¼ 33 vehicles and the same parameters as in Fig. 2(e). (b and c) Stability

charts in the (b;a) and (r1; c1) planes for the ring configuration using N ¼ 33 vehicles and the same parameters as in Fig. 4(a, b). Each colored curve

represents a stability boundary for a mode (a traveling wave along the ring) and the color describes the frequency of arising oscillations at the boundaries.

The black lines are the string stability boundaries obtained when analyzing platoon configuration. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 12. (a–g) Eigenvalue distributions for the ring configuration for the points A–G in Fig. 11(c). (h–n) The zoom-ins for panels (a–g). The color of

eigenvalues changes from blue through purple to green as the mode number k ¼ 0; . . . ;32 increases. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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RðxÞ � c1x
2 cosð2hk � r1xÞ ¼ 0;

TðxÞ � c1x
2 sinð2hk � r1xÞ ¼ 0; ð33Þ

where

RðxÞ ¼ x2 � ax sinðsxÞ � 2 sinðhkÞ bx cosðhk � sxÞ þ af � sinðhk � sxÞð Þ;

TðxÞ ¼ �ax cosðsxÞ � 2 sinðhkÞ bx sinðhk � sxÞ þ af � cosðhk � sxÞð Þ: ð34Þ

Solving (33,34) for a and c1, we obtain the stability boundaries in the parametric form

a ¼
x2 sinð2hk � r1xÞ � 2bx sinðhkÞ sin hk þ ðs� r1Þxð Þ

2f � sinðhkÞ cos hk þ ðs� r1Þxð Þ �x cos 2hk þ ðs� r1Þxð Þ
;

c1 ¼
RðxÞ

x2 cosð2hk � r1xÞ
; ð35Þ

for k ¼ 0; . . . ;N � 1. Similarly one may solve (33,34) for a and b and obtain

a ¼
x2 sinð2hk � r1xÞ � 2bx sinðhkÞ sin hk þ ðs� r1Þxð Þ

2f � sinðhkÞ cos hk þ ðs� r1Þxð Þ �x cos 2hk þ ðs� r1Þxð Þ
;

b ¼
x cos 2hk þ ðs� r1Þxð Þ � 2f � sinðhkÞ cos hk þ ðs� r1Þxð Þ þ 2f � sinðhkÞ cos hk � sxð Þ �x cosðsxÞð Þ=c1

2 sinðhkÞ 2f � sinðhkÞ �x cosðhkÞð Þ=ðc1xÞ
; ð36Þ

for k ¼ 0; . . . ;N � 1. Finally, solving (33,34) for r1 and c1, we obtain

r1 ¼
1

x
2hk � arctan

TðxÞ

RðxÞ

� �� �
;

c1 ¼
RðxÞ

x2 cosð2hk � r1xÞ
; ð37Þ

for k ¼ 0; . . . ;N � 1. The corresponding stability diagrams are shown in the ðc1;aÞ; ðb;aÞ; ðr1; c1Þ planes in Fig. 11(a, b, c),

respectively. In all three panels, the gray areas are stable and each colored curve is a stability boundary for a mode number

k. Black curves indicate the string stability boundaries obtained for the platoon configuration (cf. Figs. 2(e) and 4(b, c)).

Clearly, the stability areas for the ring configuration match with those for the platoon configuration, except for a small corner

in the low frequency part. Because there are only a finite number of vehicles on the ring (N ¼ 33 is used here), the continuum

of frequencies in the string unstable domain are ’’sampled’’ by a finite number of modes. This is demonstrated using similar

coloring in Fig. 11 as in Figs. 2(e) and 4(b,c). When the number of vehicles in the ring is increased, the discrepancy between

platoon and the ring diminishes.

Fig. 12 shows the eigenvalue distribution for the points marked A–G in Fig. 11(a) using the semi-discretization method

(Insperger and Stépán, 2011). They correspond to the Bode plots in Fig. 3. Since (29) is a neutral delayed differential equation

(NDDE), there are infinitely many eigenvalues. We only plot the eigenvalues close to the imaginary axis, which dominate the

dynamics. Case C is asymptotically stable, because all the eigenvalues are on the left-half complex plane. Cases B and D are

marginally stable, with a pair of eigenvalues crossing the imaginary axis. The crossing frequencies are very close to the

critical frequencies xcr in Fig. 3(b) and (d). In case A, eigenvalues with small imaginary values are on the right-half complex

plane, indicating instabilities for low frequencies, while in case E, eigenvalues with larger imaginary parts crossed the

Fig. 13. Stability diagrams in the (b;a)-plane for the ring configuration using N ¼ 32 vehicles. (a) Every second vehicle is equipped with acceleration-based

CCC, cf. Fig. 6(a) and configuration F in Fig. 10(a). The black lines are the string stability boundaries obtained when analyzing the platoon configuration. (b)

Every vehicle is CCC and all acceleration links intersect, cf. Fig. 6(a) and configuration H in Fig. 10(a).
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imaginary axis, resulting in instabilities with higher frequencies. In case F, both low frequency and high frequency instabil-

ities occur and in case G, there are infinitely many eigenvalues on the right-half complex plane. We remark that the appear-

ance of such ’hyperbolic-like’ spectrum in a dissipative systemmay reconcile the conflict that arose for the continuum traffic

models, regarding whether the model should be fundamentally hyperbolic (Aw and Rascle, 1999) or parabolic (Daganzo,

1995).

Stability analysis for more general connectivity structures can be done by placing the platoons on a ring repetitively. Here

we show that the intersection of acceleration links for the ring configuration generates similar results as for the platoon con-

figuration. Fig. 13 compares the stability in the ðb;aÞ-plane between two 32-vehicle rings. Panel (a) depicts the stability chart

when 16 CCC vehicles are evenly distributed in the ring of 32 vehicles and acceleration links do not intersect, see configu-

ration F in Fig. 10(a). Panel (b) shows the stability chart when 32 vehicles are all equipped with CCC, and the connectivity is

similar to configuration H in Fig. 10(a). Even though the number of acceleration links in panel (a) is half the number in panel

(b), the stable area is significantly larger. The stable domain in Fig. 13(a) matches the string stability boundary obtained for

the platoon configuration in Fig. 6(c), except a corner in the low-frequency area; see black curves for comparison. Such dif-

ference diminishes when increasing the number of vehicles on the ring. Also, the stability chart in Fig. 13(b) resembles the

chart in Fig. 10(e). Again, by increasing the number of vehicles in the platoon as well as on the ring, better match can be

obtained.
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