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Abstract The contour motion of the belt drive, i. e. the motion with the constant tra-
jectory is addressed. The belt is considered as a closed Cosserat line whose particles
have translational and rotational degrees of freedom. The problem is considered in
the framework of geometrically nonlinear formulation with no restrictions on the
smallness of displacements and rotations. The spatial (Eulerian) coordinate which
is the arc coordinate in the actual configuration is introduced. The belt is divided
into four segments: two contact segments on the pulleys and two free spans. The
friction forces are assumed to obey the Coulomb law. The study is limited to the sta-
tionary case with the constant angular velocities of the pulleys and the equations in
components are derived for both contact and free spans. In the contact segment two
assumptions are employed to eliminate the unknown contact pressure and friction:
(i) the full contact i. e. coincidence between the pulley and the belt and (ii) the stick
condition i. e. the belt velocity is related to the pulley angular velocity. A nondi-
mensional coordinate is introduced in the segments to obtain the boundary value
problem with fixed boundaries. The boundary coordinates of the contact zones are
the integration constants of the derived problem along with the other constants.

1 Introduction

Friction belt drives were studied extensively as they are interesting from a mechan-
ical perspective. Until recently, one-dimensional models of extensible strings were

Alexander K. Belyaev
Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, St. Petersburg,
Russia

Vladimir Eliseev
Deceased on October 14, 2017, Peter the Great St. Petersburg Polytechnic University, Russia

Hans Irschik · Evgenii A. Oborin
Johannes Kepler University Linz, Austria, e-mail: evgenii.oborin@jku.at

1



2 Alexander K. Belyaev, Vladimir V. Eliseev†, Hans Irschik, and Evgenii A. Oborin

widely used [13, 15]. However it turned out that the string model captures just a
part of important effects in belt mechanics. Friction forces transmit power between
the belt and the pulley. They are applied on the belt from one side and result not
only in tangent forces, but also in distributed moments. The model without bending
stiffness cannot describe the effects related to the moment loading. For this reason
we apply the rod model accounting for the bending stiffness. In contact problems of
the rod theory, the account of shear is known to be of crucial importance, cf. [2, 8].
The introduction of shear deformation causes the absence of lumped contact forces
and promotes better understanding of the contact force distribution [3, 4]. Shear is
also required to describe the effect of elastic microslip [5].

The goal of this study is to present a rational model of the belt as a rod with
bending, extension and shear in the steady dynamic problem, see the results of other
authors on rod steady dynamics in [9, 11] which are obtained without account for
shear.

2 Basic equations

We consider the motion of a drive belt on two pulleys rotating with the angular
velocities Ω1, Ω2 (see Fig. 1). κ

−1
1 , κ

−1
2 are the pulley radii; they are inverse to cur-

vature. In the initial undeformed state the belt is a circle of radius κ
−1
0 . Before fitting

the belt on the pulleys ∆0 = 2κ
−1
0 −κ

−1
1 −κ

−1
2 is the center distance – the pulleys

are just tangent to the belt. Then the distance increases up to the value ∆ > ∆0, and
the belt deforms and extends forming the contact segments on the pulleys; the stress
state with forces and bending moments in the belt and the contact pressure on the
pulleys arises [3, 4].

Fig. 1 Belt on pulleys
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It is reasonable to formulate the corresponding model of nonlinear elastic rod as
Cosserat material line [1, 7]. We introduce the material coordinate 0 < s < 2π/κ0
in the rod; it is the arc coordinate of the belt axis in the initial state (see Fig. 1). The
position vector of a rod particle is a function of coordinate and time r(s, t). In the
initial state

r0(s) = κ
−1
0 [i(1− cosκ0s)− jsinκ0s] ,

where i, j are the unit vectors of Cartesian axes x, y (zero refers to the values in the
initial state). We differentiate and obtain the tangent and normal unit vectors

r′0 = isinκ0s− jcosκ0s = τττ0 = e10, κ
−1
0 τττ

′
0 = icosκ0s+ jsinκ0s = n0 = e20. (1)

Particles of the Cosserat line are elementary bodies with translational and rota-
tional degrees of freedom. Therefore we associate the directors e1, e2 with every
particle, see Fig. 1. Their coincidence with the tangent and normal (as in (1)) dis-
appears after the deformation – it is a consequence of transversal shear. The angles
ϕ(s), ϕ0(s) between the unit vectors e1, e10 and x-axis are important; their difference
θ is rather more important, determines the particle rotation

e1 = icosϕ + jsinϕ, e2 = k× e1 =−isinϕ + jcosϕ;
ϕ0(s) = κ0s−π/2; θ(s) = ϕ−ϕ0. (2)

The system of equations [7] of nonlinear elastic rods deforming in plane is

Q′+q = ρ r̈, M′+k · r′×Q+m = 0, θ
′ = AM, r′ = e1 +B ·Q. (3)

Here q, m are the force and moment loads distributed per unit length, ρ is the mass
density per unit length, A is the bending compliance, B is the compliance tensor of
tension and shear. Usually

B = B1e1e1 +B2e2e2⇒ r′ = (1+B1Q1)e1 +B2Q2e2. (4)

We have two contact segments and two free spans in the belt (see the similar
approach in [6]). In the free spans q = 0, m = 0. In the contact segments q =−pn+
f τττ, m =−h f/2, where p≥ 0 is the contact pressure, f is the friction force, h is the
belt thickness. For the driver pulley (with the angular velocity Ω1) there is f > 0 and
for the driven pulley (Ω2) f < 0 . According to the Coulomb law we have | f | ≤ µ p
where µ is the friction coefficient; after exceeding the boundary of this inequality
the slip begins.

The point about the character of contact is of importance: is it point-wise contact
or distributed. In works [3, 4] based on the exact equations of the nonlinear theory
of elastic rods, it is stated that the contact is distributed.

In the present paper we consider the simplest motion of the belt, which is the
contour motion [15]. It means that the spatial configuration does not change in ap-
pearance in the course of time, the belt flows along the fixed closed curve with
the position vector R(σ). We take the new coordinate σ ∈ [0,L] to be the arc co-
ordinate on this curve. The boundaries of the contact segments correspond to the



4 Alexander K. Belyaev, Vladimir V. Eliseev†, Hans Irschik, and Evgenii A. Oborin

values σ1, . . . ,σ4, see Fig. 1; they are unknown and are subject to the determination
(in contrast to the string model, they are not determined by the position of the circles
tangents). The new length of belt L is also unknown. The contour motion law reads

σ = σ(s, t)⇔ s = S(σ , t). (5)

The inverse function S is constructed for every fixed time instance.
For the velocity and acceleration we have the well-known formulae of kinematics

v = ṙ(s, t) = R′(σ)σ̇ = vτττ, w = v̇τττ +κv2n. (6)

We use the formulae of differential geometry: R′(σ) = τττ , τττ ′(σ) = κn, where κ

is the trajectory curvature. In (6) the velocity of the belt motion v = σ̇ = ∂tσ(s, t)
appears (with the reduced notation of the partial derivative).

Below we will use also the value D = |r′|= ∂sσ(s, t). From the equality of mixed
derivatives the following is valid:

∂tD = ∂sv. (7)

3 Eulerian description of motion

Thus far we have mostly used the Lagrangian description of motion [7]. However
for the contour motion the spatial (Eulerian) description is more advantageous; it
has the arguments σ and t. Transition from one description to another is based on
(5):

u(s, t) = u(S(σ , t), t)≡ ũ(σ , t) = ũ(σ(s, t), t),

∂su = D∂σ ũ, D≡ ∂sσ = |r′|, ∂tu≡ u• = ∂t ũ+ v∂σ ũ. (8)

We introduce the material time derivative here (a bullet point in the superscript de-
notes it). Then in formula (6) for the tangential acceleration we have

wτ = v• = ∂tv+ vv′ = ∂tv+∂σ (v2/2). (9)

Besides the linear velocity v, the angular velocity ω appears in the equations

ω = θ
• = (∂t + v∂σ )θ̃(σ , t). (10)

Because the model with shear is considered, the linear and angular velocities are
independent.

We make an additional simplifying assumption: the contour motion is stationary
in the same sense as in the fluid mechanics [10]: v(σ , t) = v(σ) etc. The full list
of values depending only on σ is: R, v, Q, M, ω, ϕ, B, τττ , n, e1, e2, w. In particular,
the values r, θ ,r0, ϕ0, e10 are absent in this list. This brings up the question about
the bending deformation and the elasticity relation which can be written as follows:
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θ
′(s, t) = ϕ

′(s, t)−ϕ
′
0(s) = D∂σ ϕ−κ0 = AM. (11)

By now we have the system of ordinary differential equations (ODE) of station-
ary motion of the nonlinear elastic belt. Let us write it denoting the derivative with
respect to σ by prime:

DQ′+q = ρw, D(M′+n ·Q)+m = 0, D≡
√
(1+B1Q1)2 +(B2Q2)2,

Dϕ
′−κ0 = AM, R′ = τττ = D−1 [(1+B1Q1)e1 +B2Q2e2] . (12)

However the system (12) is not full; the equations for v, ω are missing. We de-
duce the equations from (7) and (10):

vD′ = Dv′⇒ v = cD, c = const; ω = vϕ
′ = c(AM+κ0). (13)

We use the first equation in the second one.
The system (12), (13) consists of six ODE for the unknowns Q1, Q2, M, ϕ , x, y

– as the system in the ”usual” nonlinear theory of rods deforming in plane [3, 4, 8].
In the free spans (see Fig. 1) the distributed load is absent, and on the pulleys it is the
unknown normal pressure and friction force.

4 Contact segment

For the case without slip, i. e. when | f | ≤ µ p, we assume

v = Ω1κ
−1
1 +ωh/2 (14)

(for the left contact segment). When the limiting friction is achieved at a certain
segment of belt, the tangent load becomes proportional to the normal one, as the
distributed moment does. Then we need to obtain the solution again accounting for
these circumstances – an iteration process is probably required. The curvature radius
of the belt line is κ̃−1 = κ−1 +h/2. The belt coinciding with the pulley circle have
the position and tangent vectors as follows:

R = κ̃
−1
1 [i(1− cos κ̃1σ)− jsin κ̃1σ ] , R′ = isin κ̃1σ − jcos κ̃1σ . (15)

We note that different assumptions may be used for the present contact model.
Using the formulae (15) and elasticity relations (12), we write the projections

of the tangent unit vector into the directions of unit vectors e1 and e2:

R′ ·e1 =(1+B1Q1)/D=−sinα, R′ ·e2 =B2Q2/D=−cosα, α ≡ϕ− κ̃1σ . (16)

Then similarly to the static considerations [3, 4] we may express the force com-
ponent Q2 as a function of coordinate σ , angle ϕ and force component Q1 in the
form:
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Q2 = B−1
2 (1+B1Q1)cotα. (17)

For the second contact segment we express the transverse force in the same way:

Q2 = B−1
2 (1+B1Q1)cot

[
ϕ− κ̃2

(
σ − L̃

)]
. (18)

Here L̃ is the arc coordinate of the belt point lying at the rigthmost point of the
second pulley. In the following we focus on the first contact segment, however in
the second one the analogous equations are valid. From equations (13) and (14) we
obtain

M =−κ0

A
+

2
Ah

D− 2Ω1

Ahκ1
c−1. (19)

This can be used to determine the friction force from the balance of moments (12)

f =
2
h

D(M′+Qn) =
4

h2A
DD′+

2
h

DQn. (20)

Also we need the equation for ϕ ′ derived from (12) with the use of (19)

ϕ
′ =

2
h

(
1− Ω1

κ1

1
cD

)
. (21)

In the balance equations of contact segments we express Q1, Q2 in terms of the
tangent Qτ and normal Qn components:

Q1 =−Qτ sinα +Qn cosα, Q2 =−Qτ cosα−Qn sinα. (22)

Then we rewrite the equation (17) and equation for D in (12)

Qn =
(B1−B2)Qτ sin2α/2− cosα

(1+ cos2α)(B1−B2)/2+B2
, D =− 1

sinα
−B1Qτ +B1Qn cotα. (23)

The acceleration components are

wτ =

(
v2

2

)′
=

c2

2
(
D2)′ = c2DD′; wn = κ̃1v2 = κ̃1c2D2. (24)

Now we write the balance of forces (12) with the use of (20) as follows:

Q′τ =
(

κ̃1−
2
h

)
Qn +

(
ρc2− 4

h2A

)
D′, Q′n =−κ̃1Qτ +D−1 p+ρκ̃1c2D, (25)

where we need the derivative D′. Now we may transform the first equation of (25)
into the normal form which is not stated here, because it is lengthy. Finally from the
second equation of (25) we determine the contact pressure

p = DQ′n + κ̃1DQτ −ρκ̃1c2D2. (26)
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So, in the contact zone we have two unknown functions ϕ and Qτ and one con-
stant c determining all the remaining variables.

5 Free span

The expression for curvature κ is cumbersome and includes the derivatives of the
unknown functions under the square root. Therefore it is advisable to exclude the
curvature from the system of equations. To do this we use the derivative of the
tangent vector τττ ′′′ and write the acceleration vector in the form w = wτ τττ +wnn =
wτ τττ +w∗nτττ ′. Exploiting the stationarity, we account for (9) and (13) and determine
the acceleration components

wτ =
c2

2
(
D2)′ = c2 (1+B1Q1)B1Q1

′+ c2B2
2Q2Q2

′, w∗n = v2 = c2D2. (27)

Now we rewrite the balance equations without distributed loads and the remain-
ing equations of system (12):

Q1
′ =

(1−ρc2B2D)Q2 (κ0 +AM)

D(1−ρc2B1D)
, Q2

′ =
[ρc2D(1+B1Q1)−Q1](κ0 +AM)

D(1−ρc2B2D)
,

M′ = [(B2−B1)Q1−1]Q2/D, x′ = [(1+B1Q1)cosϕ−B2Q2 sinϕ]/D,

ϕ
′ = (κ0 +AM)/D, y′ = [(1+B1Q1)sinϕ +B2Q2 cosϕ]/D. (28)

Now we subdivide the belt into four segments, σ4−L ≤ σ ≤ σ1, σ1 ≤ σ ≤ σ2,
σ2 ≤ σ ≤ σ3 and σ3 ≤ σ ≤ σ4. For convenience, we eventually will introduce the
new nondimensional coordinate 0≤ ξ ≤ 1 similarly to the previous works [3, 4, 8].
The main advantage of this transformation is dealing with the boundary value prob-
lem (BVP) with known boundaries. As a result we have 16 functions: Qτ and ϕ in
the contact segments; Q1, Q2, M, ϕ , x and y in the free segments and eight con-
stants: c from (13); four boundary arc coordinates σ1, . . . ,σ4, L̃, actual belt length L
and center distance ∆ . The boundary conditions are the conditions of continuity in
force, moment, position vector and angle at the segments ends; altogether there are
24 conditions in components. The formulated BVP can be numerically solved, e. g.
by the collocation method of Chebfun package in Matlab.

6 Conclusion

The main results of the present research are listed below:

• the drive belt is modelled as a plane nonlinear elastic rod with account for bend-
ing, tension and shear; its steady motion is generalised to the case of friction
contact;
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• the spatial (Eulerian) description of motion is introduced;
• the belt is divided into four segments, two contact and two free segments; the

equations for these segments are combined in a single ODE system;
• the formulated BVP is written down in the form appropriate for numerical anal-

ysis;
• the simulation results will be further used to substantiate the FEM solutions,

presented in [12, 14].
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