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ABSTRACT
How do online conversations build? Is there a common
model that human communication follows? In this work we
explore these questions in detail. We analyze the structure
of conversations in three different social datasets, namely,
Usenet groups, Yahoo! Groups, and Twitter. We propose a
simple mathematical model for the generation of basic con-
versation structures and then refine this model to take into
account the identities of each member of the conversation.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications—Data mining

General Terms: Algorithms, Experimentation, Measure-
ment, Theory

Keywords: Conversations, Threads, Graph models, Hu-
man response, Usenet, Groups, Twitter

1. INTRODUCTION
In today’s world, information networks such blogs, on-

line forums, and other online content-generating communi-
ties are among the most important sources of knowledge.
In such networks, information is provided and disseminated
through social interaction among members of the commu-
nity. Understanding the dynamics of such interactions is
therefore essential in making sense of how this information is
generated, how reliable is each piece of information, and how
the content generation process can be influenced to achieve
better results.

There has been significant research on the dynamics of
networks of linked information such as the web, where con-
tent providers (webpage authors) form a graph by linking to
each other. We know various properties of such graphs, the-
oretical generative models that provide simple explanations
for underlying processes that gives rise to these properties,
and methods for using the graph structure in order to ex-
tract information about the reliability and importance of
various nodes.
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Another important class of information networks that have
not received enough attention from a theoretical point of
view are those where units of information have relatively
short life-spans (shorter than that of webpages), and there-
fore time is an essential part of the dynamics of network
creation. This class includes Twitter, online discussion fo-
rums, and news websites. With the modern-day shortened
news cycle, such networks are becoming increasingly impor-
tant.

In this paper, we seek to study a class of such networks,
namely, the network formed by conversation threads in on-
line communities. We will examine three different data sam-
ples: Yahoo! Groups, Usenet, and Twitter. In addition to
the important role time plays in the growth of such networks,
a factor that makes them a particularly desirable object of
study is that the links in these networks have a more or less
uniform meaning: a link from a node u to another v means
that the message corresponding to u is in reply to that of v.
Each node is in response to only one other node (if any), and
furthermore, each node is identified with a distinct author.
In other words, nodes in these networks are more atomic
units of information than, say, webpages.

Our goal is to shed light on how conversations form in
different online groups by studying several questions: What
are the common properties of conversation threads? What
similarities and differences can be observed between different
groups? Can we build models to capture these properties?
Can we analyze them? How can we characterize group con-
versations (i.e., conversations that engage a group of users)
as opposed to those that are primarily pairwise exchanges?

The rest of this paper is organized as follows: We start
by reviewing the related work in Section 2. In Section 3, we
describe the three main datasets that we use in this study:
Yahoo! Groups, Usenet, and Twitter. We will first examine
the properties of the threads and the induced social net-
works in Section 4. In addition to the usual observations of
the power-law/heavy-tailed distributions, we make two key
observations by analyzing the data:

(1) the depth of such threads grow sub-linearly but super-
logarithmically in the size of the thread, and

(2) a law similar to Heaps’ law [15] holds for the number
of distinct authors in a thread.

Section 5 and Section 6 contain a description of gener-
ative models for conversation threads. For each model we
prove a number of theoretical results, show simulation re-
sults, and give results of learning algorithms on our datasets
on the model (to learn the parameters of the model). We
start with the branching process model, which is the clas-
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sical model in probability theory for generating trees (sim-
ilar to what Erdös–Rényi model is for generating graphs);
this serves as a baseline model. Next, in Section 6 we give
a preferential-attachment-type model [1] that combines the
rich-gets-richer principle with the element of time. We also
give a model for the distribution of the authors of the mes-
sages in a thread that is based on a variant of the copying
process [18] in Section 6.3. Finally, we give a mixture model
for forums such as Twitter where the types of threads we
observe are not homogeneous, and show how expectation-
maximization algorithms can be used to partition the con-
versations into different classes. Section 8 contains some
anecdotal examples from our dataset, based on our study.
Section 9 contains concluding remarks.

2. RELATED WORK
The related work falls into the following main categories:

work on conversations and human activity in general, cross-
community group dynamics, and graph models.

Conversations and human activity. The work closest
to ours is that of Liben-Nowell and Kleinberg, who studied
the structure of chain letter propagation [25], showed that
the structure was characterized by a deep tree-like pattern,
and proposed a probabilistic model to generate such trees.
Golub and Jackson [12] built on this to show that a basic
branching process model combined with the selection bias
of observing only large diffusion can explain the results in
[25]. These lines of work concern a mechanism for the spread
of information in a social network. We, on the other hand,
are interested in studying the patterns of interactions and
repeated interactions (i.e., conversations) in closed groups.

Another work related to ours is that of Leskovec, Back-
strom, and Kleinberg [20], who considered the propagation
of “memes” across the Web in the context of news cycle.
In course of studying this problem, they consider a model
where they combine recency and the preferential attachment
process. However, their focus is not on a graph generation
model and, as they indicate, the combining form they pro-
pose does not seem to be analysis-friendly.

There has also been some exploration into the dynamic
processes of conversation and information propagation. Barabasi
[3] postulated that the bursty nature of human behavior is a
consequence of a decision-based queuing process and used it
to explain the heavy-tailed activity patterns in e-mail com-
munications; Vazquez et al. [8, 31] further explored this
model. This was reproduced in [23], where response times
to blog posts were shown to have a similar heavy-tailed dis-
tribution.

Conversations can also be characterized as information
cascades, phenomena in which an action or idea becomes
adopted due to the influence of others, typically, neighbors
in some network [4, 11, 13]. Cascades on random graphs us-
ing a threshold model have been theoretically analyzed [33].
There has been empirical analysis of the topological patterns
of cascades in various contexts, such as recommendation net-
works [24, 19] and blog posts [23]. In the latter, authors ex-
tracted “cascades”, or conversation threads, from a large set
of blog posts, and studied patterns with respect to the sizes
and shapes of these cascades, as well as topological aspects
of the network at large. They continued this to show that
different genres of blogs have different patterns of cascade
shapes [27].

Cross-community studies. There have been several pre-
vious studies across social networks data. Backstrom et al.
studied Yahoo! Groups data, defining “thriving” groups and
tracking engagement of core users in groups [2]; see also [7].
Kumar, Novak, and Tomkins studied the topological struc-
ture and component size distribution of Flickr and Yahoo!
360 networks, identifying “star” structures and showing how
they persisted and eventually joined the giant component
[17]. Leskovec et al. studied the edge arrivals of different
online networks, proposing a generative model [21].

There has been a significant body of work on forum data.
Microsoft’s Netscan Project has conducted a very thorough
study of Usenet discussion patterns, depicting hierarchy of
newsgroups and their changes between 2000 and 2004 [30],
studying the social roles of Usenet authors [10], and creating
a visualization tool for different author roles identified [32].
Other authors explored the network structure of different
groups and studied cross-posting behavior [26].

Graph models. There has been a lot of work on developing
tractable mathematical models for real-world graphs and so-
cial networks, starting with the legendary Erdös–Rényi Gnp
model. For a detailed survey of these models, the readers
are referred to [6, 9, 16]. There have been a few develop-
ments on graph models since these surveys, e.g., [22, 21];
these are beyond the scope of our work. To the best of
our knowledge, group conversations have not been explicitly
addressed in any of the previous works.

For a detailed background on branching processes, the
readers are referred to the classic book by Harris [14].

3. PRELIMINARIES

3.1 Data description
We first describe the three sources of data that will be

used in our study, namely, messages from a set of Usenet
groups, messages from a set of public Yahoo! Groups, and
Twitter tweets over a month. The first and the last datasets
are publicly available and hence our experiments and obser-
vations are repeatable.

Each dataset consists of records, where each record has the
ID of message, the ID of its parent message (if applicable),
the author of the message, and a timestamp. Notice that
all the three datasets enable conversations among users, i.e.,
messages can be posted in response to earlier messages. We
will use these sources to show some commonalities in thread
structures.

Usenet groups. Usenet is a decentralized set of fo-
rums across different subjects and languages. We sam-
pled Usenet based on groups posted to in early January
2010, according to http://newsadmin.com/top100tmsgs.

asp, using the server Giganews. For a complete list
of the groups crawled, refer to http://www.cs.cmu.edu/

˜mmcgloho/pubs/groupthreads-list.txt. This gave us a
broad sample of newsgroups, including some on political
discussion (alt.politics, it.politica), recreational ac-
tivities and hobbies (rec.outdoors.rv-travel, rec.music.
beatles), and general news or ads (news.lists.filters,
alt.marketplace.online.ebay). This crawl produced
around 10 million posts in total. Most groups had be-
tween 1,000 and 5,000 users, with some as few as 20.
We also had a deeper crawl that focused only on political
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Dataset Messages Threads Users
(×106) (×106) (×106)

Usenet 22.61 3.896 1.659
Y!Groups 5.869 1.558 0.690
Twitter 69.94 36.24 5.023

Table 1: Synopsis of the datasets.

groups, see [26]. This consisted of around 200 groups with
posts from 2004–2008. This included several general poli-
tics groups (alt.politics, talk.politics.misc), some na-
tional politics groups (it.politica, uk.politics), state or
regional groups (pa.politics, bc.politics), and topical
groups (uk.politics.guns, talk.politics.drugs). This
produced 37 million posts.

While Usenet is declining in popularity, it has the feature
that it is public, easy to crawl, and has an obvious thread
structure (with reply-to as a line in the header). Further-
more, certain Usenet groups are still very active, and have
not declined in usage. This is the rationale for having Usenet
as part of our data sample.

Yahoo! Groups. Yahoo! Groups is a popular on-
line groups application. We chose public groups from
Yahoo! that were moderated (unmoderated groups were
mostly spam); we restricted our attention to groups that
were still active, i.e., they were not deleted or suspended.
We also restricted the sample to groups that had at least
ten messages and had at least ten distinct users. This
resulted in 13,102 groups in the dataset with over 14.9
million posts. The groups in our data included ones
such as WrestlingGear, cookbook-reviews, IndianaSPCA,
welcometomorocco, neurosurgeonsclub, etc. These groups
covered a broad set of topics and interests. Most groups
contain 500 to 5,000 users, with some as few as ten (our
minimum threshold for including in the dataset). The data
was collected in January 2010.

Twitter. Twitter is an extremely popular social application
where users send short messages (called tweets), sometimes
in response to other messages. We examined a large sub-
set of tweets for the month of September 2009. Since the
tweets are small (at most 140 characters), in addition to the
message meta-data (which includes reply-to information),
we have the entire message itself! This allows us to use the
message content for our study, if needed.

For each of these datasets, we first ran an algorithm to
find the threads, which in this case are the connected com-
ponents. This partitioned the data into threads, forming
the basis of our study. Table 1 gives a high-level view of the
datasets.

3.2 Notation
We use the following conventions in our paper. We denote

messages by letters u, v, w, . . .. Messages are assumed to
have a thread structure, i.e., each message v is either a new
message or is a message in response to an earlier message u.
In the latter case, we call u to be the parent of v (denoted
parent(v)) and v to be a child of u. A message with no
children is a leaf message and a message with no parent is
the root message. Thus, the root message, along with its
descendants form a connected component (in particular, a

rooted tree), which we call a thread. All the messages in
a group can be decomposed into disjoint threads. For a
given thread and a message u, let path(u) denote the set of
messages from u to the root of the thread.

Each message u has a timestamp t(u) associated with it.
The messages in a thread are created chronologically and
hence if u is a parent of v, then t(u) ≤ t(v). The author
a(u) of a message u is the person who wrote it. A single
person can author multiple messages in a thread. Let A
be the set of all authors; a ∈U A denotes that a is chosen
uniformly at random from A.

4. PROPERTIES OF CONVERSATIONS
In this section we state the main observations about the

threads from our three datasets. The observations we make
here are the basis behind the development of our generative
models.

Most of the observations are illustrated for Usenet; the
other two datasets follow mostly similar qualitative patterns,
although the actual parameters vary, and are omitted for
space.

4.1 Size and depth
We study the distribution of thread sizes and depth (which

is the length of the maximum path to a leaf from the root
in a thread). Figure 1(a) shows the size and the depth dis-
tribution in Usenet. As we note, not surprisingly, these are
both heavy-tailed.
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Figure 1: (a) Size and depth distributions and (b)
size vs depth in Usenet.

Next, we consider the relationship between size and depth:
what is the average depth of a thread of a given size? Figure
3(b) plots this data. It somewhat surprising that there is a
power law relationship between size and depth — the size
is roughly quadratic in depth. This observations hints that
traditional models such as preferential attachment are prov-
ably insufficient to model conversation threads, since such
models generate graphs with logarithmic diameter.

4.2 Degree
We next study the degree distribution p of the threads.

The degree distribution for Usenet is shown in Figure 2.
From Figure 2, it is arguable that the degree distribution is
close to a power law, i.e., p(k) ∝ k−� for some � > 2.

Let � = E[p], the mean of the distribution p. Values of �
and � for the three datasets are shown in Table 2.

Next we ask the question: is the degree distribution inde-
pendent of the level of a thread? Figure 3 shows the degree
distribution at each level of the thread (the root is assumed
to be at level 1). It is easy to see that the distribution be-

555



 1e-008
 1e-007
 1e-006
 1e-005
 0.0001
 0.001
 0.01
 0.1

 1
 10

 1  10  100

fra
ct

io
n

degree

Usenet: degree distribution

empirical
powerlaw fit (-3.488)

Figure 2: Degree distribution of threads in Usenet.

Dataset � �
Usenet 0.906 3.488

Y!Groups 0.762 2.302
Twitter 0.657 2.260

Table 2: Values of � = E[p] and �.

comes “steeper” with the level since having more children
becomes less likely at higher levels.
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Figure 3: Per-level degree distribution in Usenet.

4.3 Authorships
We study the properties of authors of messages in a

thread. We first consider the size of a thread and the average
number of distinct authors in the thread. We also consider
the average of the most number of times an author occurs in
a thread. Figure 4 shows these plots. We find that there is
a polynomial relationship between the size of a thread and
the number of authors participating in the thread. In fact,
this relationship is very reminiscent of the Heap’s Law in
information retrieval [15], which relates the vocabulary size
to the document collection size.

5. BRANCHING PROCESSES
The Galton–Watson branching process is a classical model

in probability theory for generating a random tree. This
models many phenomena like the growth of a population
(birth processes), and are important objects in random
graph theory [5]. In this section we study this model as
a generative model for threads, and discuss properties of
the real conversations that they do or do not satisfy. This
is perhaps the most basic tree generation model, and serves
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Figure 4: Average number of unique authors and
maximum author activity vs thread size in Usenet.

as a benchmark for us, similar to the role the Erdös–Rényi
Gn,p model plays in graph generation.

Recall that in branching processes, each individual in gen-
eration i produces a random number of individuals in gener-
ation i+1 according to a probability distribution. These ran-
dom numbers are drawn independently for different nodes.

5.1 The branching process model: BP-Model

Let p be a fixed probability distribution on non-negative
integers. The messages in a thread are generated by the
following process. Each thread starts with a root node and
proceeds in discrete steps. At the ith step of the process,
each leaf at the ith level of the thread constructed so far
independently generates a certain number of children ac-
cording to the distribution p, i.e., a leaf u has k children
with probability p(k). If k = 0, then u is a leaf. If k > 0,
then the children of u participate in the (i+ 1)st step. The
process terminates when there are no more new children.

Notice that the only parameter of the model is the dis-
tribution p. We can fit the real dataset to BP-Model and
compute the maximum likelihood estimate for this param-
eter: p(k) is estimated to be the fraction of nodes with k
children in the data; it can be easily shown that this is in-
deed the maximum-likelihood estimator. BP-Model can
simulate the inferred distribution in order to generate the
threads.

5.2 Properties of BP-Model

Let Zi be the random variable denoting the number of
children at the ith level of the threads. Let Z =

∑
i Zi be

the random variable denoting the size of the thread. From
the definition of a branching process, the mean size of a
thread is given by the recurrence

E[Z] = 1 +

∞∑
j=1

ip(i)E[Z] =⇒ E[Z] = (1− �)−1.

In our case, from Table 2, since � < 1 for all three datasets,
the branching process dies out almost surely.

We now analyze the tails of two properties of the threads
generated by the model, namely, their size and their depth.
We first show that the tail of the size distribution is quanti-
tatively similar to that of the degree distribution. Let X ∼ p
be a random variable distributed according to p.

Lemma 1. For any i > 0 and k > 0, E[Xk] < ∞ if and
only if E[Zki ] <∞.
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Proof Sketch. It is easy to see that the size distribution
stochastically dominates the degree distribution. Therefore,
if the degree distribution does not have a finite kth moment,
then the size distribution also does not have a finite kth
moment.

Conversely, we show that if the degree distribution has
a finite kth moment, then the kth moment of the size dis-
tribution is also finite. For simplicity, we illustrate this for
k = 2. From the basic theory of branching processes [14],
the generating function for Zi is given by the ith iterate fi
of the generating function f of p. The second moment of Zi
is given by f ′′i (1). We know that f ′1(1) = f ′(1) = � and let
f ′′1 (1) = f ′′(1) = � < ∞ by assumption. It is also easy to
see that f ′′i (1) = �i. By simple calculations, one can obtain
the recurrence

f ′′i (1) = f ′(1)f ′′i−1(1)+f ′′(1)(f ′i−1(1))2 = �f ′′i−1(1)+��2(i−1),

from which

f ′′i (1) = i��i+1 �
i − 1

�− 1
<∞.

An important corollary of the above lemma is that the dis-
tribution of the size of a the tree generated using a branching
process follows a heavy-tail distribution1 if and only if the
distribution of the number of children is heavy tailed.

Next, we analyze the depth of threads generated by the
model. We show that the depth has an exponential vanishing
tail.

Lemma 2. If � < 0, the probability that the tree generated
by the branching process has depth at least i is exponentially
small in i.

Proof. The expected number of children in the ith gen-
eration is given by E[Zi] = �i. For a tree to have depth
at least i, this number must be at least 1. By the Markov
inequality, the probability of this event is at most Pr[Zi ≥
1] ≤ E[Zi] = �i.

From this, we see that the distribution of depths of threads
generated by BP-Model does not in particular have a heavy
tail.

5.3 A critique of BP-Model

The main advantage of BP-Model is its conceptual sim-
plicity. Furthermore, it is also easy to estimate the param-
eters of the model, and as we observed, the parameter (i.e.,
the degree distribution) can be succinctly approximated by
a power law. By Lemma 1, it also leads to a heavy-tailed
size distribution, provided the degree distribution is heavy-
tailed (see Figure 1). As we will see in Section 7, BP-Model
is sufficient to elicit different types of conversations.

The main drawbacks of BP-Model are the following.
(1) The model is not generative, i.e., the degree distribu-

tion is stipulated and the messages are created according to
this distribution. In this sense, this model is similar to the
configuration model [28] in random graph theory, where a
random graph with a specified degree sequence is generated.
The model does not try to abstract the social processes be-
hind the creation of messages and the growth of threads.

1By a heavy-tail distribution we mean a distribution that
dominates a power law distribution for some exponent.

(2) This model cannot capture the depth distributions of
threads that are observed in reality (Figure 1(a)). From
Lemma 2, we know that the depth cannot be heavy-tailed;
this is seen in the in Figure 5. BP-Model also cannot cap-
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ing BP-Model (with p estimated from Usenet).

ture the quadratic relationship between size and depth in
Figure 1(b).

Moreover, the size distribution generated by the model
has a tail that is quantitatively similar to that of the degree
distribution. However, in reality, the size distribution has a
flatter tail than the degree distribution (for sake of brevity,
we do not show these figures).

(3) In the branching process model, the number of chil-
dren at each node is determined by a single distribution.
However, this is not realistic as seen in Figure 3. A vanilla
branching process model cannot capture this phenomenon.

(4) The branching process model does not capture the or-
der in which the messages are created, i.e., the timestamps
associated with the messages are left out. Furthermore, the
model does not capture the author of messages. These are
two critical parameters that distill the essence of conversa-
tions in social settings.

6. MODELS WITH TIME AND IDENTITY
In this section, we propose new models for the growth of

threads of conversation.
First, we consider a model that incorporates recency. The

idea behind this model (called T-Model) is based on the fol-
lowing observation: as in the preferential attachment model,
messages that have already received many replies are more
likely to receive a new reply. But in addition to this, new
messages receive more attention than the old ones. This
effect might not be very pronounced in the growth of net-
works such as the web where the nodes (webpages) have a
relatively long“lifespan”. On discussion forums and Twitter,
however, messages quickly become outdated, and therefore
(as we will demonstrate later in the paper using data and
simulation) there is a clearly observable tendency that a new
message added to a thread is in response to a relatively re-
cent message. Our model captures this fact by assigning a
higher probability of being the next message that receives
a reply not only to high-degree messages, but also to the
recent messages.

As noted in Section 2, a similar high-level idea was ex-
plored in the context of tracking news phrases [20].
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6.1 Definition of T-Model

We now give a formal definition of T-Model. We assume
the thread grows in discrete time steps. Each time, either a
decision is made to stop the thread (i.e., no more message
will be added to it), or to add a message in reply to one of
the current messages in the thread denoted by v (i.e., the
new node will be added as a child of v). The probability of
the latter decision depends on two parameters of the node
v. One parameter is the current degree of v; we denote this
by degv. The other parameter, called the recency of v and
denoted by rv, is the number of time steps since v was added
to the thread.

In general, we take the probability of the decision to add
a child to v to be proportional to some function ℎ(degv, rv)
of the degree and recency of v, and the probability of death
to be proportional to a constant �. That is, the probability

of adding a child to v is ℎ(degv,rv)∑
u ℎ(degu,ru)+�

and the probability

of termination is �∑
u ℎ(degu,ru)+�

, where the summation in

the denominator is over all nodes u currently in the thread.
For the rest of this paper, we focus on a particular form

of the function ℎ: when ℎ is a linear combination of degv
and and an exponentially decreasing function in rv. That is,
ℎ(degv, rv) = �degv+�rv for constants � ≥ 0 and � ∈ (0, 1).
We choose this form of function because of the following:

(1) An exponential “discounting” function like �rv is the
standard way to model dependence on time.

(2) A linear combination is perhaps the simplest and most
natural way to combine the recency and the degree2.

(3) Considering a linear combination (as opposed to, e.g.,
the square root of the degree plus the exponential discount)
allows us to compute the denominator of the probability ex-
pressions independent of the current degrees, and this makes
this model particularly amenable to mathematical analysis,
as we see in this Section.3

Note that both the degree and recency components play
a role in generating different types of threads. If the former
plays a prominent role, then we get“bushy”threads — where
many messages are in response to a single earlier message.
If the latter plays a prominent role, then we get “skinny”
threads — where the thread is essentially a path and mes-
sages appear in succession as a cascade of responses.

6.2 Properties of T-Model

In this section we show that the degree distribution of
graphs generated from T-Model has a heavy tail.

Theorem 3. Let G be a thread with n nodes generated
from the model in the above section with ℎ(degv, rv) =
�degv + �rv . Then for every d, the fraction of nodes of
G that have at least d children is at least Ω(d−1).

Proof Sketch. With ℎ(degv, rv) = �degv + �rv , at the
time that the thread has k nodes, we have

2Another natural alternative that we considered is the prod-
uct of the degree with the exponential discounting term, i.e.,
ℎ(degv, rv) = �rvdegv. While this formulation might makes
sense intuitively, it does not generate graphs similar to what
we see in practice. In particular, the exponential discount-
ing factor does not let the degrees of the nodes to grow to a
heavy-tailed distribution.
3We have also done simulations with a few other reasonable
choices of ℎ, and did not observe fundamentally different
results.

∑
u

ℎ(degu, ru) = �(k − 1) +

k∑
j=1

� j < �(2k − 2) +
�

(1− � .

Now, we consider the ith node added to the thread, and
study the growth of the degree of this node at time t, as t
grows. We denote the degree of this node at time t by di(t).
Note that di(t) is a random variable, and di(t+ 1)− di(t) is
either one (if the (t+ 1)’st node connects to i) or zero (if it
doesn’t). The probability that di(t+ 1)− di(t) = 1 is

ℎ(degv, rv)∑
u ℎ(degu, ru) + �

=
�di(t) + � t+1−i∑
u ℎ(degu, ru) + �

>
�di(t)

�t+ �/(1− �)
.

Therefore, we have

E[di(i+ 1)] ≥ 1 (1)

and

E[di(t+ 1)]− E[di(t)] >
�E[di(t)]

�t+ �/(1− �)
. (2)

We couple the sequence of random variables di(i+ 1), di(i+
2), . . . with another sequence which instead of the inequal-
ities (1) and (2), satisfies the corresponding equalities. We
call these random variables d′i(t). By coupling, di(t) stochas-
tically dominates d′i(t). Therefore, it is enough to prove the
desired lower bounds on d′i(t) instead of di(t). To do this, we
first calculate the expected value of d′i(t), which we denote
by EDi(t). This can be calculated from the recurrence rela-
tions given by (1) and (2). The solution of these recurrences
is

EDi(t) =
�t+ �/(1− �)

�(i+ 1) + �/(1− �)
.

The above equation can be proved easily by induction on t
using recurrences given by (1) and (2). This means that for
every i, the expected degree of the ith node of the thread
grows at least linearly with time. Furthermore, the sequence
of random variables d′i(t) defines a martingale, and therefore
by standard martingale concentration inequalities [29], if t−i
is large enough, the value of d′i(t) is concentrated around
its expectation. Putting these together, we obtain that for
t = n large enough and i < n−O(1), with a large probability,
we have

di(n) >
�t

2(�i+ �/(1− �))
.

This means that the number of nodes that have degree at
least d is bounded from below by the number of i’s satisfying
�i+ �/(1− �) < 0.5�n/d, which is Θ(n/d). Thus, the frac-
tion of nodes having degree at least d is at least Θ(d−1)

6.3 Modeling author identity: TI-Model

Upon understanding the process from which the thread
structures are generated, we may also want to understand
who is responsible for generating the reply message.

In this section we propose a model (called TI-Model) for
author identity. The motivation for TI-Model comes from
the observation that authors tend to respond to responses
to their own earlier messages. Thus, when a new message v
arrives as a child of message u in a thread t, the author a(v)
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Dataset � � �
Usenet 0.1 0.94 0.4

Y!Groups 0.7 0.95 0.8
Twitter 0.1 0.90 0.8

Table 3: Parameters of T-Model.

is likely to be chosen from the set {a(w)} for some w along
the path from u to root(t). (There is a slight caveat that w
is unlikely to be u since a(v) is most likely not the same as
a(u).)

The above observations, combined with the empirical ev-
idence of Heap’s law (Figure 4), suggests a modified Polya
urn process in order to reproduce author identity patterns.
When a new message v arrives with u = parent(v), then
a(v) is chosen according to the following process. Let
A′(v) = path(parent(v)).

a(v) =

⎧⎨⎩ a(w), w ∈U A′(v) wp. 
u wp. �

a ∈U A wp. 1−  − �

Note that this model can also be viewed as a variant of
the copying model [18]: with probability  > 0, we copy
one of the authors from path(parent(u)); with probability
�≪ min(, 1− ), we copy u itself; and with the remaining
probability, we choose a random author from A. By this pro-
cess, the probability that an author is chosen is proportional
to the number of times he/she already authored a message
in the path to the root.

From data, it is easy to statistically learn the parameters
 and � of TI-Model. It is possible to show that the above
modified Polya urn process generates a heavy tail for the
number of occurrences of an author on a path (proof omit-
ted). However, it seems much harder to analyze the number
of occurrences in a tree, since different paths share nodes.

6.4 Simulation of the models
In this section we estimate the parameters of TI-Model

from the data and simulate the model to see if the statistics
match the empirical findings. The parameters are estimated
through a simple grid search and maximum likelihood com-
putation. Table 3 shows the parameters of T-Model esti-
mated from the data.

We consider the size vs depth relationship and the degree
distribution conditioned at each level, to see if these resem-
ble the empirical observations. Figure 6 shows these plots
for Usenet, simulated using the parameters from Table 3.
These show that T-Model is able to reasonably capture the
empirical observations.
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Figure 6: (a) Size vs depth (b) Per-level degree dis-
tribution for T-Model simulation of Usenet.

Finally, we consider the number of unique authors as a
function of thread size, by using TI-Model. Figure 7 shows
the plot. We can see that this is reasonably consistent with
the observation we made in Figure 4.
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Figure 7: Unique authors vs thread size in TI-
Model.

7. MIXTURE MODELS AND AN EM AL-
GORITHM

Communities such as Twitter, Yahoo! Groups, and
Usenet are quite diverse, and as a result, sometimes we
observe threads with very different characteristics on these
communities. In particular, one can observe that on twit-
ter, threads of conversation are primarily of two different
types: conversations that are mainly between two individu-
als, and conversations that are among a group of individuals.
For the former type of conversation, the thread is “skinny”,
growing more or less as a path (sometimes with few addi-
tional leaves), whereas for the second type, the thread is
often “bushy.” To more accurately model the threads in
such settings where there is heterogeneity in the types of
threads, we consider models that are mixtures of the mod-
els proposed in previous sections. In particular, a simple
model is to consider mixtures of BP-Model, with differ-
ent parameters: each thread is of one of the types 1, . . . , k,
where the probability of each type is given. Given the type
� , the thread is generated according to a branching process
with probability distribution p(�) for the number of children
of each node.

A useful application of a mixture model is that by fitting
the data to such a model (i.e., estimating the maximum
likelihood parameters of the model) we obtain a classifica-
tion of the threads in the dataset. For example, we have
applied the method on Twitter with k = 2, and the result-
ing clustering of the thread matches the intuitive clustering
between the long threads of pairwise conversations and the
wider group conversation threads. Figure 8 shows the values
of the parameters BP-Model (i.e., the degree distribution)

for Twitter for k = 2. Clearly, p(1) corresponds to the
bushy threads and p(2) corresponds to the skinny threads.

To fit the data to a mixture model, we use an adapta-
tion of the well-known expectation-maximization (EM) algo-
rithm. The EM algorithm starts with a random partition-
ing of the threads into k classes. In each iteration, for each
class, the algorithm estimates the maximum likelihood set
of parameters (in the case of branching processes, this is
simply counting the number of nodes with a certain num-
ber of children). Then, fixing these sets of parameters, the
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Figure 8: Values of p(1), p(2) for Twitter and BP-
Model.

algorithm reclassifies each thread to the model that is most
likely to have generated it. This algorithm continues until
it converges, or a certain maximum number of iterations is
reached.

We state a few observations about the EM algorithm ap-
plied to our datasets (in particular the twitter dataset, which
appears to be the most heterogeneous among the three):
first, the algorithm converges quite fast. The median num-
ber of rounds it takes for the algorithm to converge is 11.
This is significant given the size of the dataset.

In fact, it is not hard to prove that the EM algorithm
as described above always converges in a finite number of
rounds. This is based on the fact that the likelihood of
the current calculated solution in this algorithm always in-
creases. However, the convergence is to a local maximum of
the likelihood function, and not necessarily a global maxi-
mum. In our experiments, the difference between the log-
likelihoods of the solution in 10 different runs of the al-
gorithm is less than 0.01%. Furthermore, the parameters
calculated for the classification in different runs are almost
equal.

8. ANECDOTAL EXAMPLES
We next examine some of the groups in particular for those

with the highest values for � (high degree of preferential
attachment), � (high recency effect), and low/high values of
 (high/low copying effect).

8.1 Usenet

Preferential behavior. The Usenet groups with the
highest degree of preferential attachment are shown below.
Nearly all of the top ones were politically-related. There
were a few additional high-activity non-political groups with
somewhat higher values (e.g. rec.games.pinball had a
value of 0.7), but this is significantly less than those shown.

Group �
it.discussioni.leggende.metropolitane 10
it.politica.polo 10
rec.games.chess.politics 3
bln.politik.rassismus 2
sk.politics 1.5

This would lead us to believe that political groups tend
to have “bushier” threads, and less “back and forth” paths
between a few people.

Recency. On the other hand, there are some groups that
had a higher recency effect — some of the lower traffic poli-
tics groups (those with fewer users overall) tended to follow
this pattern. The top groups are shown below.

Group �
fa.linux.kernel 0.98
uk.politics.electoral 0.98
rec.arts.drwho 0.97
uk.politics.crime 0.97
chile.soc.politica 0.96

Identity “copying”. Finally, we examined which groups
had the highest and lowest rates of identity copying; that is,
which groups showed the highest incidence of choosing au-
thors from upwards in the thread (as opposed to more uni-
formly distributed). High values of  indicate a low copying
rate — new authors tended to join in often. Low values of 
indicate a low copying rate. Here are some of the higher and
lower  values among Usenet— there were 13 total groups
with the highest ; we show a selection.

Group
or.politics high 
alt.fan.cecil-adams

alt.marketplace.online.ebay

pl.misc.kolej

rec.arts.sf.written

linux.debian.bugs.dist low 
microsoft.public.excel.misc

microsoft.public.excel.programming

nctu.talk

tw.bbs.campus.nctu

Interestingly, nearly all of the rec.music groups followed
a pattern of low copying, with more uniform behavior. The
highest copying groups were IT-help related groups, which
is not surprising given the back-and-forth question/answer
format that such groups foster.

8.2 Y!Groups

We repeated the experiments of determining � and �
for the Y!Groups data. While the characterization of the
groups was less obvious, we show a few groups with unusu-
ally high values of each parameter (� = 10 and � = 0.99.)

Group
indianmedical � = 10
IllinoisSpeakers

DetectiveRichardHead

Bodybuildersvsaverageguys

villageDesign

NorthCarolinaSpeakers � = 0.99
stbaseliosorthodoxchurch

LostnFoundEvents

PatriceVinci

molecular-biology-notebook

8.3 Twitter

Finally, we repeated the experiments for Twitter. To
find out the topic of a thread, we chose the most popular
hashtag (#tag) among the messages in a thread and assume
it to denote the topic of the thread.

The topics with the highest � and the topics with the
highest � are shown next.
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Tag
#mustsee � = 10
#twitterinreallife

#readingrainbow

#whathappenswhen

#vogueevolution

#yankees � = 0.99
#warriors

#tiff09

#mustsee

#iranelection

#followfriday

The first set corresponds to topics with “bushy” threads and
the second set corresponds to topics with a stronger sense
of time (sports, movies, etc.) and hence the threads tend to
be “skinny.”

9. CONCLUSIONS AND FUTURE WORK
In this paper we studied the problem of how online con-

versations build. We proposed simple mathematical models
that can capture the patterns in human exchanges. Our
models encapsulate both time of the message and identity
of the author of the message. Using three different publicly
available datasets, we study the structure of conversations
and explore the model for these datasets.

There are several potential future applications of this
work. We identify two such applications

(1) Our method can be used to identify group conversa-
tions in systems like e-mail, and offering tools to facilitate
such conversations.

(2) Our method can be used to identifying friendship re-
lationships between users: declaring someone a friend or
following someone on social applications like Facebook or
Twitter is not a good indication of an actual friendship re-
lationship between the individuals. So, to identify who’s
friends with whom, we need to look at the interaction be-
tween individuals. Our classification identifies one-on-one
interactions, which are more informative than interactions
in the context of a group.
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