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Abstract: Using an ab initio, time-dependent calculational method, we study the non-linear dynamics
of a two-electron quantum dot in the presence of ultrashort Thz laser pulses. The analysis of the
contribution of the various partial waves to two-electron joint radial and energy distribution patterns
revealed strongly correlated electron ejection channels. In the double-ionization process, regardless of
the photon energy, the two-electron wave packets are born and remain concentrated until the pulse’s
peak; at later times, and depending on the photon energy of the field, distinctly different patterns
emerge. Our calculations also showed the gradual transition of the radial and energy patterns
from a single-peak to a doubly peaked structure, associated with the direct and the sequential
double-ionization mechanisms, respectively.

Keywords: ab initio; double-ionization; energy distributions; radial distributions; configuration
interaction; quantum dots

1. Introduction

The study of the optical properties of semiconductor quantum dots (QDs) is of
paramount importance in the research domains of fundamental theory and applications
for quantum information processing, solar energy harvesters, optoelectronics, etc. [1].
Due to the high degree of flexibility of QD design, it is possible to artificially control the
transport and optical properties, in contrast to quantum structures of a similar size such as
atoms, molecules, and bulk materials [2–6]. The non-linear properties of QDs (e.g., GaAs,
CdSe, etc.) are a relatively unexplored scientific area with their study complicated by the
highly correlated nature of their electronic structure. On the experimental side, it has been
demonstrated that the use of laser pulses in the infrared and terahertz regimes allows
direct measurement of their electronic and geometrical properties [7–14]. In particular, the
dependence of the optical properties of colloidal PbS QDs was demonstrated in [7], while
in a pioneering experiment in [13], photoelectron spectroscopy measurements of CdSe QDs
in the gas phase were reported.

The vast majority of the corresponding theoretical studies of QDs’ optical proper-
ties have assumed a weak external electromagnetic field [15] and very often rely on the
electronic structure of a considerably simplified system, often ignoring interelectronic
correlations, as, for example, in Fominykh et al., who studied the QD’s one-photon double-
emission process in a harmonic potential well [16,17]. These studies are rendered invalid
for intense and ultrashort Thz laser fields since excitation/ionization with the QDs may
proceed non-linearly with the applied field; for the same reason, the electronic structure of
the QD, both the bound and continuum part, plays a decisive role in the system’s dynamics,
which does not allow oversimplification of the QD/laser system theoretical description.

In an effort to study the fundamental optical properties of simple quantum dots,
we developed an ab initio theoretical formulation for the description of excitation and
ionization mechanisms in two-electron quantum dots. The theoretical description of the
QD electronic structure is based on a single-band effective mass model with a spherical
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Gaussian potential well, adapted for semiconductor nanocrystals [18–20]. Within this
effective mass model, we extended the theory to include interelectronic interactions to
represent the electronic structure more accurately from existing theoretical results [21–25];
this allowed us to calculate the ionization cross-sections and yields, as well as radial,
angular, and kinetic energy electron distributions [26–28]. As is shown in these works,
interelectronic interactions may radically affect the observed radial, kinetic energy, and
angular patterns of the ejected electrons (collectively, ionization patterns). In particular, the
study of the ionization process may provide the means to clarify the often competitive
role of an external time-dependent electric field and the static Coulombic field due to
interelectronic interactions. Generally, while the external laser field is certainly the primary
agent to trigger ionization, it is not the exclusive factor that affects the final states of the QD;
the interelectronic interactions may also play an important and decisive role under certain
circumstances. The absorption of two photons may lead directly to a doubly ionized system,
QD+2, and two outgoing electrons; this is known as direct two-photon double-ionization
(direct TPDI) (see Figure 1). However, an essential change may occur when the photon
energy of the pulse becomes higher than the ionization threshold of the singly ionized QD+.
In this case, TPDI may proceed initially by the absorption of one photon from the neutral
QD, leading to QD+, followed by the absorption of one further photon by QD+, leading to
QD2+ and two free electrons; this is the sequential TPDI mechanism. Therefore, for both
direct or sequential TPDI, the final products are the same, but the underlying ionization
mechanism proceeds with maximized electron–electron interaction for the direct TPDI, but
minimized for sequential TPDI [27,28].

While the study of these ionization patterns does provide useful information and is
accessible by direct experimental observation, a deeper insight can also be obtained by the
study of their dynamics. Therefore, we may examine how these final states are actually
reached as a result of the laser field and the interelectronic interactions, in other words: How
do they evolve in time? From our past studies of the two-photon double-ionization of QDs,
we clearly identified the conditions leading to the two different ionization mechanisms.

In the present work, we studied the two-photon double-ionization mechanisms of
two-electron QDs from the viewpoint of a time-dependent two-electron spatial wave
packet. We clarified the TPDI mechanisms and the individual roles of the laser field and
the interelectronic interactions based on the calculated radial and energy distribution
patterns, analyzed in terms of partial waves in combination with the time elapsed between
the two photon absorptions, in a time-resolved manner. We left out the time evolution
of angular correlations as it is not required for the essential conclusions of the present
study; nevertheless, the interested reader may read [29,30] or [31–33], in the context of
two-electron atomic systems.

We should also mention here that the discussion applies regardless of the QD’s semi-
conductor material provided the proper scale of the pulse’s photon energy is also considered
to match the QD’s electronic structure. For our study, we took a QD model by choosing the
values of the electronic effective mass, m∗e , and dielectric constant, ε, corresponding to a
CdSe semiconductor type, and then, we chose its size by choosing the depth and the radius
of the Gaussian potential [13,24]; accordingly, the properties of a GaAs QD type may be
studied by choosing m∗e = 0.067 and ε = 12.4, as in [25].

The current Section 1 serves to introduce the context of our work and to provide
a preliminary physical insight into the problem in hand. In Section 2, we present the
theoretical formulation for the calculation of the two-electron radial and energy spectra;
since the formulation has been presented in detail elsewhere [26–28], we present only the
formulas suited to the present study. In Section 3, we discuss the time evolution of the
ionization patterns in the TPDI process, as well as their variation as the photon energy
crosses the direct and sequential double-ionization photon energy threshold (SDI/DDI
threshold). Finally, in Section 4, we conclude by summarizing our main findings and
perspectives.
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r

E0 = −365.2 meVQD(1s2)

V0 = −542.2 meV

DDI : ω > 0.5|E0|

SDI + DDI : ω > |E1|

ε1 = E0 + ω − E1

ε2 = E1 + ω − E2ε1 + ε2 = E0 + 2ω

E1 = −232.9 meVQD+(1s) + e−

E2 = 0 meVQD2+ + 2e−

Figure 1. Sketch depicting the two TPDI mechanisms, sequential (blue) and direct (red). The energies
correspond to a Gaussian-modeled QD with parameters given in the text.

2. Theoretical Formulation

In the following, the formulation for the ab initio calculation of the two-electron
joint radial and energy probability distribution is developed. Briefly, we calculated the
two-electron wave function at the end of the laser pulse and then extracted the desired
information for the evaluation of observables via the various coefficients of the system.
The method is based on a non-perturbative solution of the time-dependent Schrödinger
equation (TDSE) for the QD interacting with a linearly polarized pulse. The computational
code was developed in house and has been thoroughly tested and used over the years,
albeit in the context of atomic physics by studying the response of atomic systems in the
presence of laser fields [26–28]. As in these works, the method was presented in detail (and
the references therein), here, we discuss only briefly the main theoretical formulation and
emphasize more the formulas that are necessary for our purposes.

2.1. Quantum Dot Model Potential

We start with the model that describes a spherical two-electron quantum dot built
from a narrow band gap semiconductor crystal of approximate radius rq. Our starting
point is to model the two-electron QD as

ĤQ = − h̄2

2m∗e
∇2

i + VQD(ri) +
e2

4πε

1
|r1 − r2|

, (1)

where m∗e and ε represent the electronic effective mass and the dielectric constant, which
are uniform in space. The next step is to re-scale the physical parameters and convert
the Hamiltonian to a convenient form. We introduced the relative mass and dielectric
parameter, µ and κ, and scaled as m∗ = µme and ε = κε0, where me and ε0 are the electronic
mass and the vacuum’s dielectric constant. Following this approach, the equations that
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follow are presented in a scaled atomic unit system (see Table 1), to suit the order of
magnitude of the system’s constants, m∗e , ε [26].

Table 1. The s.a.u. for µ = 0.1 and κ = 0.5 corresponding to a CdSe QD semiconductor type.

1 s.a.u. Conventional Units

length 2.645 nm

time 6.047 fs

energy 108.84 meV

Intensity 4.119 × 107 W/cm2

Next, we chose a potential model for the QD; it is worth noting here that the electronic
structure of a QD compared to an atomic system differs in the central potential, V(r).
Essentially, we changed V(r) = −Znuc/r to a suitable potential for the QD under study
(Znuc is the atomic number). Here, the QD was modeled by a Gaussian potential with a
width parameter of rq = 3.2 nm (1.21 s.a.u) and a depth of V0 = −542.2 meV (−5 s.a.u):

VQD(r) = −V0e
− ln 2( r

rq )
2
. (2)

The full details of the model we chose to calculate the QD structure are discussed
in [26].

These parameters give for the ground state energy of the neutral quantum dot, QD,
E0 = −365.2 meV, and for the single-electron quantum dot, QD+, E1 = −232.9 meV. These
values are relative to the double-ionization threshold, which was set as the zero of the
energy axis (E2 = 0). In Table 2, we give a few of the calculated energies of the neutral and
singly ionized QD.

Table 2. The QD physical parameters used are V0 = −542.2 meV and rq = 3.2 nm. The entry values
are the energies of the states in meV.

State QD QD+

Ground −365.2 −232.9

1st (Excited) −230.01 −69.7

2nd (Excited) −229.95 −3.3

3rd (Excited) −229.84

The value of the QD+ ionization potential (I1 = E2 − E1 = 232.9 meV) determines the
photon energy regimes for the two distinct TPDI mechanisms to occur (SDI/DDI threshold).
Therefore, in the following, the QD has a fixed size, but we varied the photon energy of the
laser pulse in order to investigate both TPDI mechanisms.

Having chosen the QD model potential, we proceed with the formulation of our approach.

2.2. Theoretical Formulation of the Quantum Dot Structure

We initially constructed the two-electron singlet antisymmetric uncorrelated basis,
with sharp angular momentum values, L, as the solutions of the eigenvalue problem of
the zero-order Hamiltonian, ĤQ

0 = ĥQ
1 + ĥQ

2 , where the one-electron QD+ Hamiltonian is
given by:

ĥQ
i (ri) = −

1
2
∇2

i + VQD(ri), (3)
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where i indexes the two electrons and VQD(ri) is the chosen QD potential model (2).
Following a standard angular momentum coupling algebra, these solutions in a spherical
coordinate system, with its origin placed at the quantum dot core, may be expressed as:

φL
n1l1n2l2(r1, r2) = A12

Pn1l1(r1)

r1

Pn2l2(r2)

r2
Y L0

l1l2(Ω1, Ω2),

where Y LML=0
l1l2

(Ω1, Ω2) are the bipolar spherical harmonics, containing the angular momen-
tum coupling coefficients (Clebsch–Gordon coefficients) and A12 is the antisymmetrization
operator, which acts to exchange the coordinates of the two electrons. The radial orbitals
Pni li (ri), i = 1, 2 were found from the solutions of the radial eigenvalue problem of the
QD+ Hamiltonian, namely[

−1
2

d2

dr2 +
l(l + 1)

2r2 −V0e
− ln 2( r

rq )
2
]

Pnl = εnl Pnl(r). (4)

The purely radial functions, Pnl(r), were obtained numerically by expanding on a
piecewise polynomial basis (B-splines); the choice of this particular basis is dictated by
its numerical ability for representing continuum states, a property that is of importance
in the particular case where ionized states are involved [29–31]. The QD+ system was
assumed to be confined in a sphere of radius R, much larger than the quantum dot size
(R� 1 s.a.u). Within our particular approach, we implemented the so-called fixed-boundary
conditions, which require the wavefunctions to strictly vanish at the origin and the bound-
aries, Pnl(R) = 0. As a result of this requirement, the QD+ eigenstates of Equation (3) are
discretized, allowing the bound and continuum spectrum to be represented by negative
and positive energy orbitals, respectively, subject to unity normalization. In this case, the
index n of Pnl(r) takes integer values, n = 1, 2, .. and the sign of εnl determines whether we
have an exponentially decaying (negative) or an oscillatory (positive) radial orbital.

Having completed the numerical calculation of the partial-wave radial orbitals of
QD+, the neutral QD Hamiltonian is modeled by

ĤQ = ĤQ
0 +

1
|r1 − r2|

, (5)

with the second term on the right-hand-side representing the inter-electronic interaction
potential. The eigenvalue problem to be solved is the time-independent Schrödinger
equation:

ĤQΦEL(r1, r2) = ELΦEL(r1, r2), (6)

where ΦEL(r1, r2) are the two-electron eigenstates of ĤQ. Following the interaction of
helium with a linearly polarized laser, only the ML = 0, singlet symmetry states (S, MS) =
(0, 0) are excited, since the total magnetic quantum number and the initial spin state do not
change, so we considered these states only.

For the solution of Equation (6), a configuration interaction (CI) method was em-
ployed where the QD eigenstates, ΦEL, were expanded on the zero-order two-electron basis
φL

n1l1n2l2
(r1, r2) as

ΦNL(r1, r2) = ∑
n1l1n2l2

vNL
n1l1n2l2 φL

n1l1n2l2(r1, r2). (7)

Since the expansion is on discretized orbitals, the resulting two-electron CI states are
also discretized along with their associated energy, E; for this reason, it is more consistent
to use a discretized notation for the states and the energy, thus using EL → ENL and
ΦEL → ΦNL, with N = 1, 2, . . . .

Substituting Equation (7) into Equation (6), followed by projection over φL
n1l1n2l2

(r1, r2),
converts it to a matrix equation, which, upon diagonalization, retrieves the eigenenergies
ENL and the CI amplitude coefficients vNL

n1l1n2l2
. For a two-electron system, there are three
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characteristic energies, namely the energies of the ground state, the single-ionization
threshold, and the double-ionization threshold, denoted here by E0, E1, and E2, respectively.
Conventionally, the latter energy was set to E2 ≡ 0 (double-ionization threshold energy).
Within the approximations introduced in the numerical computation of these discretized
energies, it turns out that a two-electron eigenstate with ENL < E1 is of a bound character
and, thus, represents bound quantum dot states, while states with energies E1 < ENL < 0
represent singly ionized quantum dots; finally, the numerical states with ENL > 0 may
represent both singly and doubly ionized quantum dots with one electron ejected or two
electrons ejected, respectively [32].

2.3. TDSE of Quantum Dot in the Laser Field

Once the electronic structure of the quantum dot has been solved for, its electronic
dynamics under the influence of an intense and ultra-short linearly polarized laser pulse
can be solved for. This amounts to solving the time-dependent Schrödinger equation
(TDSE) for the combined quantum dot laser system. In this case, the semiclassical TDSE
that describes the quantum dot in the presence of a laser field is given by:

ı
∂

∂t
Ψ(r1, r2, t) =

[
ĤQ + D̂(t)

]
Ψ(r1, r2, t), (8)

where Ψ(r1, r2, t) is the time-dependent wavefunction and D(t) describes the external laser
interaction dipole potential in the Coulomb gauge:

D(t) =
1
c

A(t)ẑ · (p̂1 + p̂2), (9)

where ẑ is the unit vector along the z-axis and p1 and p2 are the electron momenta. A(t) is
the amplitude of the electromagnetic potential field related to the electric field of the pulse
by E(t) = −Ȧ(t)/c. Note that the long-wavelength approximation was taken into account
in the expressions above. In this work, we chose the amplitude envelope to be

A(t) = A0sin2
(

πt
τp

)
sin ωt, 0 ≤ t ≤ τp. (10)

where ω is the carrier frequency. The use of a squared sinusoidal envelope satisfies the
requirements that the envelope varies slowly with respect to the carrier period and rises
and falls to zero; τp is the laser pulse duration, related to the field period (T0 = 2π/ω) by
τp = ncT0, where nc is the number of field cycles in the pulse.

A spectral expansion of the solution of Equation (8) in terms of the two-electron CI
eigenstates with a time-dependent amplitude as

Ψ(r1, r2, t) = ∑
NL

CNL(t)ΦNL(r1, r2). (11)

allows for the interpretation of |CNL(t)|2 to be the population of the state ΦNL, since it
represents the probability of observing the system in state ΦNL(r1, r2) at time t.

Formally, the substitution of this latter expansion into Equation (8) and multiplying
from the left by Φ∗N′L′(r1, r2), followed by spatial integration over the entire coordinate
space, transforms the TDSE into a set of coupled ordinary differential equations:

ıĊNL(t) = ENLCNL(t) + ∑
N′L′

DNL;N′L′CN′L′ , (12)

where DNL;N′L′ are the dipole matrix elements between the CI states ΦNL and ΦN′L′ .
Standard angular momentum algebra allows for the expression of the two-electron dipole
matrix elements in terms of the vNL

n1l1n2l2
CI coefficients and the one-electron dipole matrix

elements; the latter are calculated numerically given the Pnl(r) radial functions [26]. Thus,
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solving the TDSE amounts to calculating only the two-electron dipole matrix elements and
integrating Equation (12) to find the time-dependent coefficients, CNL(t).

2.4. Radial and Kinetic Energy Distributions

At this point, we are in the position to proceed with the main subject, which is
finding the electron’s radial and kinetic energy distributions, and in accordance with our
framework, these are expressed in terms of the calculated time-dependent coefficients,
CNL(t), along with the CI coefficients, vNL

n1l1n2l2
. Since these derivations are more specialized

and naturally of a technical character we delegated the relevant algebra in the associated
Supplemental Text for further consideration.

We can express the two-electron joint photoelectron spectrum (JPES) in terms of
configuration interaction coefficients and time-dependent coefficients by

Pl1l2(ε1, ε2; t) = ∑
L

∣∣∣∣∣∑N vNL
n1l1;n2l2 CNL(t)

∣∣∣∣∣
2

, (13)

where vNL
n1l1;n2l2

are the CI coefficients in Equation (7) and ε1, ε2 the kinetic energies associ-
ated with the Pn1l1(r) and Pn2l2(r) radial orbitals, respectively.

The joint photoelectron radial distribution (JPRD) can be found by evaluating the
square of the time-dependent wavefunction, followed by integration over the angular
coordinates:

Pr(r1, r2, t) = ∑
Ll1l2

|χ(L)
l1l2

(r1, r2, t)|2, (14)

where
χ
(L)
l1l2

(r1, r2, t) = ∑
Nn1n2

CNL(t)v
(NL)
n1l1;n2l2

ρn1l1;n2l2(r1, r2), (15)

and
ρn1l1;n2l2 ≡

1√
2

[
Pn1l1(r1)Pn2l2(r2) + Pn1l1(r2)Pn2l2(r1)

]
.

which represents the probability distribution of finding the two electrons with angular
momenta (l1, l2) at radial distances r1 and r2 from the core of the quantum dot. Note that,
under the given conditions, the radial distribution is symmetrical to the exchange r1 ↔ r2,
meaning that Pr(r1, r2, t) = Pr(r2, r1, t).

3. Results and Discussion

The quantum dot electronic structure was calculated using the two-electron wavefunc-
tion expansion in Equation (7) with electronic configurations (n1l1; n2l2) and L = 0− 3; if
the ground state is of singlet spin symmetry, the interaction with a linearly polarized pulse
can only excite singlet spin symmetry states; so the configuration channels included in
the calculations satisfy l1 + l2 + L = even. The box radius chosen for the calculation was
R = 60 s.a.u. (∼160 nm). We kept all configurations with both l1, l2 up to three, which are
adequate for the chosen laser parameters. We checked that our results did not change in any
significant way by incorporating additional partial waves (l1, l2) or by further increasing
the box radius.

For the calculations, we used linearly polarized laser pulses with central carrier
frequencies between ω = 195 and 308 meV, at a peak intensity I0 = 6.4× 105 W/cm2. As
the number of cycles was kept constant (nc = 12), the pulse durations ranged between 0.16
and 0.25 ps.

3.1. Time Evolution of the Radial Wave Packets

As a result of the importance of the electron–electron correlations between the sequen-
tial and direct DI regimes, we wanted to examine what quantitative differences showed up
in the radial probability patterns during the double-ionization process. For this, we exam-
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ined the time evolution of the corresponding radial distributions as given by Equation (14)
with the summations restricted to N, n1, n2 such that E > 0, ε1, ε2 > 0.

For ω < 232.9 meV, ionization proceeds via the direct channel, namely the absorption
of two photons by the neutral quantum dot, leading to excitation states where the two
electrons leave the core region simultaneously. A representative set of snapshots of the
radial distribution of the dominant (p, p) wave packets for an ω =195 meV pulse is
shown in the left column of Figure 2. The snapshots correspond to times where the field
vanishes and the interpretation of the time-dependent coefficients as field-free probability
amplitudes for the quantum dot eigenstates is well justified, as for these times, the system’s
Hamiltonian coincides with the field-free quantum dot Hamiltonian.

Figure 2. The side by side comparisons of the time evolution of radial distributions for a 195 meV
pulse (left column, NSDI) and a 308 meV pulse (right column, SDI), for the dominant (p,p)
partial wave.
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Initially, the generated two-electron wave packets remain in the proximity of the core
at distances no more than 11 nm (4.16 s.a.u.), until up to the pulse’s peak; the shape of the
distribution remains concentrated about the r1 = r2 diagonal. It is expected that the e–e
correlation interactions have a maximal contribution to the experimental observables due
to the proximity of the two electrons (since the correlation interaction potential vanishes
with the inverse of the interelectronic distance).

Turning now to the sequential regime, for ω > 232.9 meV, the main contribution to
the double-ionization process comes from electrons generated at times that are so distinctly
different that the second electron is essential ejected from QD+ in its ground state; in the
present case, the time taken for the residual quantum dot (following one-photon absorption)
to relax to the QD+ ground state is about 0.01 ps), which means about 0.01/0.013∼4.5 cycles
for a 308 meV pulse (the pulse period is 0.013 ps). In the corresponding radial distributions,
shown in the right column of Figure 2, the formation of the asymmetric radial distribution
is due to the enhancement of double-ejection channels originating from a further photon
absorption some time later than the instant of the first photon absorption.

From these figures, we can infer the different excitation mechanisms of the double-
ejection events in the sequential and the direct DI regimes. In the sequential regime
(308 meV pulse), first, a small portion of the wave packet becomes excited, consisting
of channels with both electrons in the continuum, traveling along the r1 = r2 diagonal;
the largest ionization portion corresponds to channels with only one electron ejected (not
shown in the plots). However, soon after (past the pulse’s peak), the presence of this larger
portion overwhelms the double-ionization distribution, since it contributes an additional
channel by further absorption of the second photon by the QD+. On the other hand, in the
direct DI regime (195 meV pulse), the sequential ionization mechanism is absent at later
times; thus, the electronic wave packet remains concentrated along the r1 = r2 diagonal,
throughout the field’s lifetime. In both ionization mechanisms, sequential or direct, the
wave packets appear to depart from the core region well past the peak of the pulse and
experience the natural broadening of free-moving wave packets; however, in the direct
mechanism, the e–e interactions may cause further distortion of the wave packets via
population redistribution among the various partial waves χl1,l2(r1, r2).

3.2. Time Evolution of the Energy Distributions

Similar conclusions may be reached by the observation of the corresponding joint
energy distribution patterns, shown in Figures 3 and 4 for the 308 meV and 195 meV pulses.
In these figures, we plot the results of the calculations with only the DI channels included in
Equation (13), with E, ε1, ε2 > 0. Initially, the excitation is rather evenly distributed among
the partial waves of the DI wave packets. For example, the inspection of the time-ordered
plots of Figure 3 for the 308 meV pulse is consistent with the observation that the sequential
DI is overwhelmed by channels where one of the electrons is ejected from the quantum
dot, with energy ε1 = E0 + ω− E1 ∼ 176 meV (1.62 s.a.u.), and the other from QD+, with
energy ε2 = E1 + ω − E2 ∼ 75 meV (0.69 s.a.u.); however, it is only at the later stages of
the interaction with the field that this asymmetrical energy distribution shows up as the
dominant feature.

For the 195 meV pulse corresponding to the direct DI regime, a persistent, evenly
distributed pattern is observed throughout the pulse’s duration. We should note here that,
for the (p, p) channel in the direct DI regime, the two electrons may become ejected with
comparable energies, but with their momenta pointing in the same or opposite directions
(back-to-back ejection); in the latter case, the two electrons evolve practically independently
with each other, and their interelectronic interactions are minimized.
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Figure 3. The time evolution of the joint PES for the 308 meV pulse with parameters as in Figure 2,
right plot.

Figure 4. The time evolution of the joint PES for the 195 meV pulse with parameters as in Figure 2,
left plot.

3.3. Transition from Direct to Sequential Regime

In the final plots (cycle 12) of Figures 2–4, we can identify the characteristic features of
the direct and sequential DI radial patterns, represented by the 195 meV and 308 meV pulses:
a single-peak versus two-peak radial pattern for the 195 meV and 308 meV, respectively.
In the latter case, as mentioned, the two peaks correspond to the ejection of the electrons
from the neutral (∼176 meV) and the singly ionized QD+ (∼75 meV). These two photon
energies are well distant from the DI threshold (232.9 meV) and, as such, may be considered
as “representative” cases of the sequential and the direct DI mechanisms.
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Taking into account that both mechanisms do not occur independently of each other,
alongside the existence of the bandwidth of the pulse, the question is raised about what form
these patterns will take for pulses with photon energies in between these two characteristic
energies and closer to the DI threshold. To answer this question, we calculated the radial
distribution for photon energies 205 meV, 214 meV, 223 meV, 233 meV, 242 meV, 252 meV,
270 meV, and 289 meV and plotted the results in Figure 5 along with those of the 195 meV
and 308 meV pulses (top left and bottom right plots of the same figure).

Figure 5. Clearly visible in the radial distribution patterns is the transition from the direct to the
sequential double-ionization regime as the photon energy varies from 195 meV to 308 meV for a
12-cycle pulse.

From these plots, it is clear that the final distributions do not distinctly belong to each
of these two regimes; we observed the gradual deformation of a single-peak pattern along
the diagonal line to a double-peak asymmetric pattern as the photon energy crosses the
232.9 meV DDI/SDI threshold, finally leading to the two-peak structure for the higher
photon 308 meV. It is also worth noting that the double-peak structures are aligned with
the r1 and r2 axes, which suggests that the double-ejection occurs with both of the electrons
moving outwards, but with different speeds. For pulses with photon energies closer
to the 232.9 meV threshold, the second electron is excited from broadband pulses, and
contributions from both the sequential and direct DI mechanism are present; for example,
the 12-cycle, 233 meV pulse has a bandwidth of 30 meV.

A more compact view of the effects of the two ionization mechanisms can be obtained
via the single-electron radial distribution, obtained by the integration of the two-electron
radial distribution along one of the radial coordinates:

Pr(r1) =
∫ ∞

0
dr2 Pr(r1, r2, τp). (16)
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Due to the symmetry of the two-electron radial distribution, integration over the other
radial coordinate would result in identical values, so that Pr(r1) = Pr(r2). The results of the
calculations are shown in Figure 6. From this plot, it is again evident that the single peak in
the radial distance corresponds to electrons originating from the direct DI mechanism with
similar energies, while the doubly peaked structure represents bursts of electrons ejected
sequentially and with different kinetic energies in accordance with Equation (17).
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Figure 6. Two-dimensional radial distributions integrated over one radial coordinate demonstrates
clearly the presence of peaks in the radial distributions (ω = 195 meV–308 meV).

In Figure 7, we provide the joint kinetic energy distributions with the same range of
photon energies. In agreement with the conclusions drawn from the two-electron radial
distributions, we again observed the gradual deformation from a symmetric single-peak
pattern to a doubly peaked asymmetric one. Clearly, the peaks in the sequential spectra
eventually tend to satisfy:

ε1 ' E0 + ω− E1, ε2 ' E1 + ω− E2, (17)

where one of the electrons is likely to obtain more energy than the other as a consequence of
the sequential nature of the ionization process. Based on our observations thus far, the latter
may be envisaged when the two-photon absorptions occur at times that differ by an amount
that is larger than the relaxation time of QD+ (of the order of τr ∼ 2π/I1 ∼ 0.01 ps). At
this time, the primary two-electron wave packet, generated by the first-photon absorption,
has evolved to a state resembling a QD+ bound orbital and an outgoing wave packet
ψ+

t ∼ φnl(t)φε1(t), peaked at ε1 = E0 + ω1 − E1. The subsequent time evolution of this
two-electron wave packet depends on whether the absorption of the second photon (with
energy ω2) suffices to promote the bound electron to a continuum state. For example, if
ω2 < 232.9 meV, further absorption cannot lead to a transition QD+(1s) → QD+(εp),
but it may proceed via above-threshold ionization (ATI) by further exciting the contin-
uum wave packet φε1(t), leading to ψ+

t ∼ φ1s(t)φε1+ω2(t), eventually corresponding to
a singly ionized quantum dot, QD+. On the other hand, if ω2 > 232.9 meV, it is much
more probable for the transition φnl(1s)→ (ε2 p) to occur, leading to a wave packet of the
type ψ2+

t ∼ φε2 p(t)φε1 p(t) with ε2 ∼ E1 + ω2 − E2. In the above, ω1 and ω2 may differ, but
are restricted to lie within the bandwidth of any given pulse. From this discussion, for
pulses with photon energies ω > 232.9 meV and a duration longer than the relaxation
time of the residual QD+ to its ground state (∼0.01 ps), the sequential DI mechanism
leads to a kinetic energy spectrum peaked at ε1 and ε2, which, for moderate intensities,
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have a width mainly determined by the pulse’s bandwidth. Both electrons have l = 1
angular momentum and, therefore, are (p, p) channels, characterized by the radial prob-
ability distribution |χ11;L|2, L = 0, 2. It is important to point out that for ω > 232.9 meV,
direct DI, corresponding to the “simultaneous” absorption of photons, is of course still
energetically possible and, thus, as observed, is a contribution to the two-electron wave
packet originating from this mechanism, albeit not representing the dominant contribution.

Figure 7. The joint photoelectron distribution patterns from the direct to the sequential DI regime as
the average photon energy increases from 195 meV to 308 meV. The patterns transition from a mostly
shared energy distribution to a doubly peaked distribution.

4. Conclusions

By directly solving the time-dependent, full-dimensional, two-electron Schrödinger
equation for a spherical two-electron quantum dot in the field of a laser pulse, we inves-
tigated the time evolution of the generated radial wave packets during the two-photon
double-ionization process. We carried out a systematic analysis of the joint radial and
energy distributions of the two ejected electrons to elucidate some aspects of the role of elec-
tron correlations in the two-photon double-ionization process. The investigation included
pulses with photon energies that favor either a direct or a sequential TPDI mechanism.

More specifically, we provided the time evolution of the radial and kinetic energy
ejection patterns during the interaction of the QD with the external laser field. Moreover, we
investigated the gradual deformation of these distributions from the single-peak structure
associated with the direct TPDI mechanism to the two-peak structure deep in the regime of
sequential TPDI.

The present space–time description provides an enhanced view of the two-photon
double-ionization processes, complimentary to the corresponding studies focusing exclu-
sively on the final-state distributions. In view of the potential applications of quantum dot
systems in optical and photonic applications [34–36], it is our intention to work further in
this direction by studying more complex quantum dot systems of experimental interest.
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