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Abstract

Acknowledging many effects on humans, which are ignored in deterministic models

for COVID-19, in this paper, we consider stochastic mathematical model for COVID-19.

Firstly, the formulation of a stochastic susceptible–infected–recovered model is

presented. Secondly, we devote with full strength our concentrated attention to

sufficient conditions for extinction and persistence. Thirdly, we examine the threshold

of the proposed stochastic COVID-19 model, when noise is small or large. Finally, we

show the numerical simulations graphically using MATLAB.

Keywords: Stochastic COVID-19 model; Itô’s formula; Extinction; Persistence;

Numerical analysis

1 Introduction

There are many people who are currently alert of the outburst of COVID-19, which was

recognized in China in December of 2019. As of this conformation, each continent has

been influenced by this profoundly infectious disease, with about million cases analyzed

in more than 200 nations around the world. The reason for this episode is another infec-

tion, known as the extremely intense respiratory disorder coronavirus 2 (SARS-CoV-2).

On February 12, 2020, WHO named this disease coronavirus. The rapid spread of coron-

avirus COVID-19 is of great interest and has the attention of governments, medical doc-

tors and public/private health organizations because of its high rate of spreading and the

significant number of deaths that occurred specially inChina, Italy, Iran, USA,UK, Turkey,

Pakistan, and India. In the meantime, many doctors, mathematicians, pharmacists, biol-

ogists and chemists are trying to study the behavior of COVID-19, which is a pandemic

initiated from China [1]. Actually, this virus was initiated from Wuhan, China. This is a

vector transmission because its required source is in the formof human-to-human spread.

It means the vector for this disease is people; so far all the governments restricted the

people to keep distance from each other but the public is careless in this situation. On the

mathematical side, the authors appliedmodified SIR (susceptible, infected and recovered),

SEIR (susceptible, exposed, infected and recovered) and SIRS (susceptible, infected and

recovered, susceptible) models to determine the actual number of infected by COVID-19,

and specific burdens on isolation wards and intensive care units, similarly, using different

scenarios for how to control the quick spread of this viral disease. Nesteruk [2], studied the
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SIR model for control of this pandemic. But there is no one until now who could control

this virus. If we make the contact rates very small it will show the best effect on the fur-

ther spreading of COVID-19, so for this purpose all governments take action for in terms

of the household effect. For the estimation of the final size of the coronavirus epidemic,

Batista [3] presented the logistic growth regression model. Many researchers discussed

this COVID-19 in different models in integer and in fractional order, see [1–17], because

of many applications of fractional calculus, stochastic modeling and bifurcation analysis

[18–26]. For the more realistic models, several authors studied the stochastic models by

introducing white noise [27–31]. The effects of the environment in the AIDS model were

studied by Dalal et al. [27] using the method of parameter perturbation. Stochastic mod-

els will likely produce results different from deterministic models every time the model is

run for the same parameters. Stochastic models possess some inherent randomness. The

same set of parameter values and initial conditions for deterministic models will lead to

an ensemble of different outputs. Tornatore et al. [28–30] studied the stochastic epidemic

models with vaccination. In this work, they proved the existence, uniqueness, and positiv-

ity of the solution. A stochastic SIS epidemic model containing vaccination is discussed

by Zhu et al. [31]. They obtained the condition of the disease extinction and persistence

according to noise and threshold of the deterministic system. Similarly, several authors

discussed the same conditions for stochastic models; see [32–39].

To study the effects of the environment on spreading of COVID-19 and make the re-

search more realistic, first we formulate a stochastic mathematical COVID-19 model.

Then sufficient conditions for extinction and persistence are examined. Furthermore, the

threshold of the proposed stochastic COVID-19 model is determined. It plays an impor-

tant role inmathematical models as a backbone, when there is small or large noise. Finally,

we show the numerical simulations graphically with the aid of MATLAB.

The rest of the paper is organized as follows: Sect. 2 is concerned with the COVID-19

model with random perturbation formulation. Section 3 is related to the unique positive

solution of proposed model. Furthermore, we investigate the exponential stability of the

proposed model in Sect. 4. The persistent conditions are shown in Sect. 5. Finally, we

conclude with the results and outcomes of the paper in Sect. 6.

2 Model formulation

In this section, a COVID-19mathematical model with random perturbation is formulated

as follows:

dS(t)

dt
= Λ – βS(t)I(t) –μS(t) + δR(t) – ρS(t)I(t)dB(t),

dI(t)

dt
= βS(t)I(t) – (γ +μ)I + ρS(t)I(t)dB(t),

dR(t)

dt
= γ I(t) –μR(t) – δR(t),

(1)

where the description of parameters and variables are given in Table 1.

In deterministic form the model (1) is given by

dS(t)

dt
= Λ – βS(t)I(t) –μS(t) + δR(t),
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Table 1 Parameters and description

Notations Description

S(t) Represents susceptible population

I(t) Represents infectious people class

R(t) Denotes recovered population

Λ The joining rate of people to susceptible class through birth or migration

β Rate at which the susceptible tends to infected class

μ Represents natural and due to coronavirus death

γ Represents the recovered rate

B(t) The standard Brownian motions, with ρ2 > 0 and with intensity of white noise

δ The rate of deteriorate in health

dI(t)

dt
= βS(t)I(t) – (γ +μ)S, (2)

dR(t)

dt
= γ I(t) –μR(t) – δR(t),

and

dN

dt
= Λ –μN , (3)

whereN(t) = S(t) + I(t) +R(t) shows the total constant population for Λ ≈ μN andN(0) =

S(0) + I(0) + R(0). Equation (3) has the exact solution

N(t) = e–μt

[

N(0) +
Λ

μ
eμt

]

. (4)

Also, we have

S(0)≥ 0, I(0) ≥ 0, R(0)≥ 0 �⇒ S(t)≥ 0, I(t) ≥ 0, R(t)≥ 0.

So, the solution has a positivity property. For stability analysis of model (2), we have the

reproductive number, which is

R0 =
β

γ +μ
N . (5)

If R0 < 1, then system (2) will be locally stable and unstable if R0 ≥ 1. Similarly for � = 0,

the system (2) will be globally asymptotically stable.

3 Existence and uniqueness of the positive solution

Here, we first make the following assumptions:

• Set Rd
+ = {χi ∈ Rd,χi > 0, 1 ≤ d}.

• Suppose a complete probability space (Ω ,F, {F}t≥0,P) with filtration {F}t≥0, which

satisfies the usual conditions.

Generally, consider a stochastic differential equation of n-dimensions as

dx(t) = F
(

y(t), t
)

dt +G
(

y(t), t
)

dB(t), for t ≥ t0, (6)
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with initial value y(t0) = y0 ∈ Rd . By defining the differential operator L with Eq. (6)

L =
∂

∂t
+

d
∑

i=1

Fi(y, t)
∂

∂yi
+
1

2

d
∑

i,j=1

[

GT (y, t)G(y, t)
]

ij

∂2

∂yi ∂yj
. (7)

If the operator L acts on a function V = (Rd × R̃+; R̃+), then

LV (y, t) = Vt(y, t) +Vy(y, t)F(y, t) +
1

2
trace

[

GT (y, t)Vyy(y, t)G(y, t)
]

. (8)

Theorem3.1 There is a unique positive solution (S(t), I(t),R(t)) of system (1) for t ≥ 0with

(S(0), I(0),R(0)) ∈ R3
+, and solution will be left in R3

+, with probability 1.

Proof Since the coefficient of the differential equations of system (1) are locally Lipschitz

continuous for (S(0), I(0),R(0)) ∈ R3
+, there is a unique local solution (S(t), I(t),R(t)) on

t ∈ [0, τe), where τe is the time for noise caused by an explosion (see [6]). For demonstrating

the solution to be global, it is sufficient that τe = ∞ a.s. Suppose that k0 ≥ 0 is sufficiently

large so that (S(0), I(0),R(0)) ∈ [ 1
k0
,k0]. For each integer k ≥ k0, define the stopping time

τe = inf

[

t ∈ [0, τe) : min
(

S(t), I(t),R(t)
)

≤
1

k0
or max

(

S(t), I(t), r(t)
)

≥ k

]

,

where we set infφ(empty set) = ∞ throughout the paper. For k → ∞, τk is clearly increas-

ing. Set τ∞ = limk→∞ τk whither τ∞ ≤ τe. If we can show that τ∞ = ∞ a.s, then τe = ∞. If

false, then there are a pair of constants T > 0 and ǫ ∈ (0, 1) such that

P{τ∞ ≤ T} > ǫ.

So there is an integer k1 ≥ k0, which satisfies

P{τk ≤ T} ≥ ǫ for all k ≥ k1.

Define a C2-function V :R3
+ → R̃+ by

V (S, I,R) =

(

S – c – c ln
S

c

)

+ (I – 1 – ln I) + (R – 1 – lnR). (9)

By applying the Itô formula, we obtain

dV (S, I,R) =

(

1 –
c

S

)

dS +
1

2S2
(dS)2 +

(

1 –
1

I

)

dI +
1

2I2
(dI)2 +

(

1 –
1

R

)

dR (10)

= LV dt + ρ(I – S)dB(t), (11)

where LV :R3
+ → R̃+ is defined by

LV =

(

1 –
c

S(t)

)

(

Λ – βS(t)I(t) –μS(t) + δR(t)
)

+
1

2
ρ2I2

+

(

1 –
1

I

)

(

βS(t)I(t) – (γ +μ)I
)

+
1

2
ρ2S2 +

(

1 –
1

R

)

(

γ I(t) –μR(t) – δR(t)
)
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= Λ – βS(t)I(t) –μS(t) + δR(t) –
cΛ

S(t)
+ cβI(t) + cμ – cδ

R(t)

S(t)
+
1

2
ρ2I2

+ βS(t)I(t) – (γ +μ)I(t) – βS(t) + (γ +μ) +
1

2
ρ2S2 + γ I(t) –μR(t) – δR(t)

– γ
I(t)

R(t)
+μ + δ

≤ Λ – (γ +μ)I + cβI(t) + cμ + γ +μ +μ + δ +
1

2
ρ2I2 +

1

2
ρ2S2.

By choosing c = γ+μ

β
, it follows that

LV ≤ Λ + cμ + γ +μ +μ + δ +
1

2
ρ2I2 +

1

2
ρ2S2 � B. (12)

Further proof follows from Ji et al. [31]. �

4 Extinction

In this section, we investigate the condition for extinction of the spread of the coronavirus.

Here, we define

〈

y(t)
〉

=
1

t

∫ t

0

y(s)ds (13)

and

ℜ̃ = β

(

Λ

μ

)

1

(γ +μ) + 1
2
ρ2(Λ

μ
)2
. (14)

A useful lemma concerned with this work is as follows.

Lemma 4.1 ([31]) Let M = {Mt}t≥0 have a real value, and be continuous, local martingale

and vanishing at t = 0. Then

lim
t→∞

〈M,M〉t = ∞

a.s. implies that

lim
t→∞

Mt

〈M,M〉t
= 0

and also

lim
t→∞

sup
〈M,M〉t

t
< ∞ �⇒ lim

t→∞

Mt

t
= 0.

Theorem 4.1 Let (S(t), I(t),R(t)) be the solution of system (1) with initial value (S(0), I(0),

R(0)) ∈∈ R3
+. If

1. ρ2 > max( β2

2(γ+δ+μ+α)
, βμ

Λ
), or

2. R̃ < 1 and ρ2 ≤
βμ

Λ
.
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Then

lim
t→∞

sup
log I(t)

t
≤ –(γ +μ) +

β

2ρ2
< 0 a.s. if (1) holds, (15)

lim
t→∞

sup
log I(t)

t
≤ β

Λ

μ

(

1 –
1

ℜ̃

)

< 0 a.s. if (2) holds. (16)

In addition

lim
t→∞

S(t) =
Λ

μ
= S0, lim

t→∞
I(t) = 0 and lim

t→∞
R(t) = 0, a.s.

Proof Performing the integration of system (1)

S(t) – S(0)

t
= Λ – β

〈

S(t)I(t)
〉

–μ
〈

S(t)
〉

+ δ
〈

R(t)
〉

– ρS(t)I(t)dB(t),

I(t) – I(0)

t
= β

〈

S(t)I(t)
〉

– (γ +μ)
〈

I(t)
〉

+ ρS(t)I(t)dB(t),

R(t) – R(0)

t
= γ

〈

I(t)
〉

– (μ + δ)
〈

R(t)
〉

.

Then we have

S(t) – S(0)

t
+
I(t) – I(0)

t
+

δ

μ + δ

R(t) – R(0)

t

= Λ – β
〈

S(t)I(t)
〉

–μ
〈

S(t)
〉

+ δ
〈

R(t)
〉

– ρS(t)I(t)dB(t)

+ β
〈

S(t)I(t)
〉

– (γ +μ)
〈

I(t)
〉

+ ρS(t)I(t)dB(t)

+ γ
〈

I(t)
〉

– (μ + δ)
〈

R(t)
〉

= Λ –μ
〈

S(t)
〉

–

(

(γ +μ) –
δγ

μ + δ

)

〈

I(t)
〉

= Λ –μ
〈

S(t)
〉

–

(

(γ +μ)(μ + δ) – γ δ

μ + δ

)

〈

I(t)
〉

〈

S(t)
〉

= –
1

μ

[

S(t) – S(0)

t
+
I(t) – I(0)

t
+

δ

μ + δ

R(t) – R(0)

t

]

+
Λ

μ
–

1

μ

(

(γ +μ)(μ + δ) – γ δ

μ + δ

)

〈

I(t)
〉

.

By applying limt→0

〈

S(t)
〉

=
Λ

μ
–

1

μ

(

(γ +μ)(μ + δ) – γ δ

μ + δ

)

〈

I(t)
〉

, (17)

d log I(t) =

(

βS – (γ +μ) –
1

2
ρ2S2

)

dt + ρS dB(t), (18)

log I(t) – log I(0)

t
= β

〈

S(t)
〉

– (γ +μ) –
1

2
ρ2

〈

S(t)2
〉

+
ρ

t

∫ t

0

S(r)dB(r) (19)

≤ β
〈

S(t)
〉

– (γ +μ) –
1

2
ρ2

〈

S(t)
〉2
+

ρ

t

∫ t

0

S(r)dB(r). (20)
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By putting in the value of 〈S(t)〉 from Eq. (17)

log I(t) – log I(0)

t
≤ β

[

Λ

μ
–

1

μ

(

(γ +μ)(μ + δ) – γ δ

μ + δ

)

〈

I(t)
〉

]

– (γ +μ)

–
1

2
ρ2

[

Λ

μ
–

1

μ

(

(γ +μ)(μ + δ) – γ δ

μ + δ

)

〈

I(t)
〉

]2

+
ρ

t

∫ t

0

S(r)dB(r)

= β

[

Λ

μ
–

(

γ +μ

μ + δ

)

〈

I(t)
〉

]

– (γ +μ)

–
1

2
ρ2

[(

Λ

μ

)2

–

(

γ +μ

μ + δ

)2
〈

I(t)
〉2
]

+ 2
Λ

μ

(

γ +μ

μ + δ

)

〈

I(t)
〉

+
ρ

t

∫ t

0

S(r)dB(r)

=
βΛ

μ
– (γ +μ) –

1

2
ρ2

(

Λ

μ

)2

–

(

β(γ +μ)

μ + δ

)

〈

I(t)
〉

+ 2
Λ

μ

(

γ +μ

μ + δ

)

〈

I(t)
〉

–
1

2
ρ2

[

–

(

γ +μ

μ + δ

)2
〈

I(t)
〉2
]

+
ρ

t

∫ t

0

S(r)dB(r)

=
βΛ

μ
–

[

(γ +μ) +
1

2
ρ2

(

Λ

μ

)2]

–

(

β(γ +μ)

μ + δ

)

〈

I(t)
〉

+ 2
Λ

μ

(

γ +μ

μ + δ

)

〈

I(t)
〉

–
1

2
ρ2

[

–

(

γ +μ

μ + δ

)2
〈

I(t)
〉2
]

+
ρ

t

∫ t

0

S(r)dB(r)

=
βΛ

μ

[

1 –
μ((γ +μ) + 1

2
ρ2(Λ

μ
)2)

βΛ

]

–

(

β(γ +μ)

μ + δ

)

〈

I(t)
〉

+ 2
Λ

μ

(

γ +μ

μ + δ

)

〈

I(t)
〉

–
1

2
ρ2

[

–

(

γ +μ

μ + δ

)2
〈

I(t)
〉2
]

+
ρ

t

∫ t

0

S(r)dB(r)

=
βΛ

μ

[

1 –
1

R̃

]

–

(

β(γ +μ)

μ + δ

)

〈

I(t)
〉

+ 2
Λ

μ

(

γ +μ

μ + δ

)

〈

I(t)
〉

–
1

2
ρ2

(

–

(

γ +μ

μ + δ

)2
〈

I(t)
〉2
)

+
ρ

t

∫ t

0

S(r)dB(r).

If condition (2) is satisfied, then

lim
t→∞

sup
log I(t)

t
≤ β

Λ

μ

(

1 –
1

ℜ̃

)

< 0, (21)
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and conclusion (16) is proved. Next, according to inequality (19)

log I(t) – log I(0)

t
≤ β

〈

S(t)
〉

– (γ +μ) –
1

2
ρ2

〈

S(t)
〉2
+

ρ

t

∫ t

0

S(r)dB(r)

= –
1

2
ρ2

(

〈

S(t)
〉

–
β

ρ2

)

+
β

2ρ2
– (γ +μ) +

ρ

t

∫ t

0

S(r)dB(r).

If condition (1) is satisfied, then

log I(t)

t
≤

β

2ρ2
– (γ +μ) +

ρ

t

∫ t

0

S(r)dB(r) +
log I(0)

t
, (22)

and conclusion (15) is proved. We have

lim
t→∞

log I(t)

t
≤ –(γ +μ) +

β

2ρ2
< 0 is a.s.

According to (15) and (16)

lim
t→∞

I(t) = 0. (23)

Now, from third equation of system (1), it follows that

R(t) = e–(μ+δ)t

[

R(0) +

∫ t

0

δI(r)e(μ+δ)r dr

]

. (24)

By applying the L’Hospital’s rule to the previous result, we have

lim
t→∞

R(t) = 0. (25)

From Eq. (4), it follows that

N(t) = e–μt

[

N(0) +
Λ

μ
eμt

]

,

S(t) + I(t) + R(t) =
[S(0) + I(0) + R(0) + Λ

μ
eμt]

eμt
,

lim
t→∞

S(t) = lim
t→∞

[

{S(0) + I(0) + R(0) + Λ
μ
eμt}

eμt
– I(t) – R(t)

]

,

lim
t→∞

S(t) =
Λ

μ
.

Hence, we have completed the proof. �

5 Persistence

This section concerns the persistence of system (1).

Theorem 5.1 Suppose that μ > ρ2

2
. Let (S(t), I(t),R(t)) be any solution of model (1) with

initial conditions (S(0), I(0),R(0)) ∈ R3
+. If ℜ̃ > 1, then

lim
t→∞

〈

S(t)
〉

=
Λ

μ
–

1

μ

(

(γ +μ)(μ + δ) – γ δ

μ + δ

)

〈

I(t)
〉

(26)
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=
Λ

μ
–

βΛ

μ
[1 – 1

R̃
]

(β – 2Λ
μ
)
, (27)

lim
t→∞

〈

I(t)
〉

=

βΛ

μ
[1 – 1

R̃
]

( γ+μ

μ+δ
)(β – 2Λ

μ
)
, (28)

lim
t→∞

〈

R(t)
〉

=
γ

γ +μ

βΛ

μ
[1 – 1

R̃
]

(β – 2Λ
μ
)
. (29)

Proof We have

log I(t))

t
≤

βΛ

μ

[

1 –
1

R̃

]

–

(

γ +μ

μ + δ

)(

β –
2Λ

μ

)

〈

I(t)
〉

+
ρ

t

∫ t

0

S(r)dB(r) +
log I(0)

t
.

We apply the limit

lim
t→∞

〈

I(t)
〉

=

βΛ

μ
[1 – 1

R̃
]

( γ+μ

μ+δ
)(β – 2Λ

μ
)
.

Using Eq. (17) we have

lim
t→∞

〈

S(t)
〉

=
Λ

μ
–

1

μ

(

(γ +μ)(μ + δ) – γ δ

μ + δ

)

lim
t→∞

〈

I(t)
〉

=
Λ

μ
–

βΛ

μ
[1 – 1

R̃
]

(β – 2Λ
μ
)
.

Furthermore,

R(t) – R(0)

t
= γ

〈

I(t)
〉

– (μ + δ)
〈

R(t)
〉

.

By applying the limit t → ∞, we have

lim
t→∞

〈

R(t)
〉

=
γ

μ + δ
lim
t→∞

〈

I(t)
〉

=
γ

μ + δ

βΛ

μ
[1 – 1

R̃
]

( γ+μ

μ+δ
)(β – 2Λ

μ
)

=
γ

γ +μ

βΛ

μ
[1 – 1

R̃
]

(β – 2Λ
μ
)
.

Hence, the proof is complete. �

6 Numerical simulation

For the illustration of our obtained results, we use the values of the parameters and the

variables given in Table 2.
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Table 2 Values of variables and parameters for numerical solution

Variables and

parameters

Values of variables and

parameters

S(t) 59

I(t) 40

R(t) 30

Λ 0.008

β 0.002

μ 0.001

γ 0.02011

ρ 0.0045

δ 0.001

Figure 1 Graphs of (S) susceptible community using a deterministic method (green line) and from a

stochastic solution (blue line), (I) infected people by coronavirus using a deterministic method (green line)

and from a stochastic solution (blue line) and (R) recovered using a deterministic method (green line) and

from a stochastic solution (blue line). The stability of stochastic graphs shows a better expression than

deterministic graphs

Now for the numerical simulation, we use Milstein’s higher order method [40]. The re-

sults obtained through this method are shown graphically in Fig. 1 for both deterministic

and stochastic forms.

7 Conclusion

In this work, a formulation of a stochastic COVID-19 mathematical model is presented.

The sufficient conditions are determined for extinction and persistence. Furthermore, we

discussed the threshold of proposed stochastic model when there is small or large noise.

Finally, we showed numerical simulations graphically with the help of softwareMATLAB.

The conclusions obtained are that the spread of COVID-19 will be under control if R̃ < 1

and ρ2 ≤
βμ

Λ
means that white noise is not large and the value of R̃ > 1 will lead to the

prevailing of COVID-19.
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