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Abstract

High-resolution numerical studies of decaying two-dimensional magnetohydrody-
namic turbulence using up to 7682 modes in general periodic systems reveal the
following properties: i) the evolution proceeds in a quasi-selfsimilar way with
constant kinetic to magnetic energy ratio and constant micro- and macro-scale
Reynolds numbers; ii) the energy dissipation rate is independent of the values of
the dissipation coefficients n, u; iii) the inertial-range energy spectra follow a Kol-
mogorov law, Ex = Ce?/3k~5/3 with C = 3.7 + 0.3. Small-scale fluctuations are
concentrated in the region of weak large-scale magnetic fields. The resulting strong
intermittency is analogous to the behavior recently observed in two-dimensional
hydrodynamic turbulence (see, for instance, J. Fluid Mech. (1988) 194, 333),
with the magnetic field intensity taking the role vorticity plays in hydrodynamic

systems.

Die nachstehende Arbeit wurde im Rahmen des Vertrages zwischen dem
Maz-Planck-Institut fir Plasmaphysik und der Europdischen Atomgemeinschaft tber
die Zusammenarbeit auf dem Gebiete der Plasmaphystk durchgefiihrt.



I Introduction

Turbulence developing in high-Reynolds-number fluids is a fascinating physical phe-
nomenon which has been attracting the interest of experimentalists as well Va.s theoreticians
for many decades, but which still defies satisfactory elucidation in spite of the consider-
able progress made. Most investigations deal with turbulence in simple incompressible
fluids, described by the Navier-Stokes equations. Many methods and tools in turbulence
theory have been invented for or adopted from other branches of theoretical physics to
Navier-Stokes turbulence. One of these tools is direct numerical solution of the primitivé
fluid equations. Here the major problem is that of adequate spatial resolution, since the
very nature of turbulence at high Reynolds numbers involves simultaneous excitation of
different scales over a wide range. Therefore two-dimensional systems, which obviously
allow higher spatial resolution, have drawn considerable attention in spite of their artifi-
cial nature. Recently, high-resolution numerical studies of two-dimensional Navier-Stokes
turbulence!)2)%)4) yielded interesting new results. Depending on the initial or driving con-
ditions, one finds either truly turbulent states with an inertial-range spectrum Ej o k—2
or strongly intermittent states of weakly interacting coherent soliton-like structures with
steeper energy spectra. In both cases, however, the two-dimensional case is basically dif-
ferent from the three-dimensional one with a Kolmogorov spectrum Ej o k~5/3 and only
weak intermittency effects. The origin of this difference is the simultaneous inviscid con-
servation of both energy and mean square vorticity in two dimensions, resulting in an
inverse energy cascade and energy dissipation rates inversely proportional to the Reynolds

number.

In electrically conducting fluids the dynamics is strongly influenced by magnetic fields,
which in general will be present even in the absence of external fields owing to selfexcita-
tion, i.e. dynamo action. The appropriate primitive equations are those of magnetohydro-
dynamics (MHD). It has been argued®®) that 2D MHD turbulence should be more closely
connected with the three-dimensional case than are two- and three-dimensional Navier-
Stokes turbulence. In fact, in MHD both 2D and 3D exhibit a normal energy cascade to

small scales and an inverse cascade of a quantity related to the magnetic potential, leading
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to the buildup of large-scale quasi-static magnetic fields. In contrast to Navier-Stokes tur-
bulence, for which various kinds of relatively simple laboratory or other kinds of terrestrial
experiments can be performed, such experiments are difficult in the MHD case owing to
the lack of suitable conducting fluids. A tank 1 m in diameter filled with mercury moving
at an average velocity of 1 m/s has a magnetic Reynolds number of only about 10. (Only in
liquid-metal-cooled breeder reactors are higher Reynolds numbers reached.) MHD turbu-
lence in plasmas occurs in devices developed in controlled nuclear fusion research as well as
in astrophysical systems, notably the solar wind, but while in the latter the conditions for
turbulence generation are not controlled, in the former diagnostics is difficult. Numerical
simulations are therefore particularly important to understand the dynamic properties of

high-Reynolds-number conducting fluids.

In this paper we describe the results of a series of high-resolution computations of decay-
ing 2D MHD turbulence. Choosing different kinds of initial states as well as varying the
dissipation coefficients, we try to obtain a fairly general picture of the turbulent dynamics.
The paper is organized as follows. In section II we briefly outline some basic properties of
MHD turbulence. The numerical procedure and the choice of initial states are described
in section IIL. If the initial ratio of kinetic to magnetic energy is of the order of unity or
larger, it is found that the configuration decays in a statistically selfsimilar fashion, the
macroscopic properties of which are described in section IV. Section V treats the gener-
ation of small-scale turbulent fluctuations, giving rise to Kolmogorov-type inertial-range
spectra and energy dissipation rates independent of the value of the resistivity. For small
initial values of the kinetic to magnetic energy ratio the system first exhibits a turbulent
phase which then leads to a quasi-coherent phase characterized by pairwise coalescence of

magnetic flux tubes, as described in section VI. Section VII gives the conclusions.



II Basic properties of MHD turbulence

Two-dimensional incompressible MHD has two independent dynamic variables, conve-
niently chosen as the magnetic flux function 1, B = 2x V1 and the velocity stream

function ¢ , ¥ = 2 X V¢ (z being the ignorable coordinate), obeying the equations

)
b Vi =nV?2 1
57 TV Ve =nViy, (1)
%—f+ﬁ-vw=§-vg'+pv2w, (2)

n , ¢ being the dissipative coefficients, i.e. the magnetic diffusivity and the kinematic
viscosity. The density p is assumed to be uniform. With the normalization p = 1, B
assumes the dimension of a velocity. In contrast to 2D hydrodynamics, i.e. eq. (2) with
B = 0, the vorticity is not merely convected but may also be enhanced by magnetic tension,
B-Vjin eq. (2). It follows from (1) , (2) that there are three global quantities quadratic

in ¥ and ¢ , which are conserved in the limit n,u — 0,

E:%/(v2+32)d2:c , (3)
H:/ﬁ‘-ﬁd% , (4)
k= vz, (5)

the total energy, the cross helicity, and the mean square magnetic potential, respectively.
Equilibrium statistical mode distributions suggest that in the presence of finite dissipation
the spectral densities of the first two quantities Fx and Hjy exhibit a normal cascade to
large wave numbers, while K shows an inverse cascade leading to increasingly large-scale
magnetic structures. Let us compare the relation of two- and three-dimensional geometry

for Navier-Stokes and MHD turbulence.

The two-dimensional Navier-Stokes equation has two inviscid quadratic invariants, the
energy F = %f v2d?z and the mean square vorticity or enstrophy W = [ (V x 6’)2 d’z =

f w?d?z , with Wy exhibiting a normal cascade and Ej an inverse cascade, i.e. mode energy
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propagates to longer wavelengths away from the dissipative scales. In fact, in a decaying
9D turbulence field the energy dissipation rate e = —dE/dt = uW decreases in time €(t) <
€(0) = O(p) , a consequence of inviscid enstrophy conservation and monotonic viscous
decay dW /dt = —p [ (V’w)2 d?z . In three-dimensional Navier-Stokes turbulence only the
energy is inviscidly conserved with the spectral energy density cascading to large k£ , and
the energy dissipation rate is independent of x , as the vorticity may assume arbitrarily
large values. By contrast the formal difference between two- and three-dimensional MHD is
significantly smaller. As in 2D, the three-dimensional system has three inviscid invariants,
viz. energy and cross helicity as in 2D and the magnetic helicity f A - Bd®z instead of
the mean square magnetic potential. It has been argued® that 2D MHD flows behave
like hydrodynamic turbulence in a dimension intermediate between two and three. In
this paper we shall see that 2D MHD flows develop turbulent structures in regions of
finite extent with characteristic features usually attributed only to fully three-dimensional

turbulent flows.

A feature that distinguishes MHD flows from nonmagnetic hydromagnetic flows is the
presence of a large-scale magnetic field. In contrast to a large-scale flow which can be locally
eliminated by a Galilean transformation, the magnetic field has a profound effect on the tur-
bulent dynamics. Two extreme cases may be distinguished : a) The magnetic field is weak
in relation to the turbulent velocities. This situation is primarily connected with the dy-
namo problem of magnetic field amplification and, because of the anti-dynamo theorem”),
usually requires a three-dimensional velocity field and hence a fully three-dimensional
treatment. b) The mean field is large compared with turbulent flow velocities. In this
case the flow is highly anisotropic. While the perpendicular motions may develop small
dissipative scales, i.e. give rise to turbulent dissipation, spatial variations along the mean
field generally remain smooth, their dynamics being determined by the weak interaction
of Alfvén waves. It is therefore argued that local two-dimensional dynamics perpendicular
to a strong mean field describe an essential part of the fully three-dimensional problem,

whereas two-dimensional modelling including a mean field within the plane considered,

though interesting in itself, is less representative of a three-dimensional system because it
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ignores the major turbulent dissipation process. We therefore assume in the present two-
dimensional studies that there is no mean field component in the computational plane,

thus modelling systems with a strong perpendicular mean field.

In two-dimensional systems dissipation takes place primarily in the regions of weak
magnetic field, i.e. neutral points, where large current densities may be generated. Since,
however, localized dissipation of magnetic energy necessarily implies mass transport from
outside regions, where the frozen-in condition is satisfied, into the dissipative region, only
X-type neutral points allow rapid dissipation, the inflowing mass being ejected sideways
along the magnetic field. In O-type neutral points mass accumulation prevents enhanced

dissipation, which can only proceed on the overall slow resistive time scale.

A characteristic feature of a turbulent fluid is its inertial-range energy spectrum, where
the inertial range is loosely defined as the region of k-space located between the small
energy-carrying wave numbers, where excitation and geometry effects are important, and
the large wave numbers, where dissipation dominates. (For the inertia range to be clearly
discernible the Reynolds number has to be sufficiently high.) If a local transfer process
in k-space (corresponding to the picture of a cascade with sufficiently small steps) is as-
sumed, energy spectra follow from simple scaling considerations®). In the case of a normal
energy cascade this predicts the Ex o« k~%/3 spectrum, while for a normal enstrophy cas-
cade one obtains Ex o« k~3. Here E} is defined in such a way that f Erdk is the total
turbulent energy per volume. Note that the result is independent of the spatial dimension
and the manner of turbulence excitation and dissipation. It, however, assumes statistical
homogeneity and isotropy. In the case of MHD turbulence a modification of Kolmogorov’s
argument has been suggested®)1?), leading to a slightly flatter inertial-range spectrum
Er « k~3/2, The basic mechanism is that in the presence of large-scale magnetic struc-
tures B; (not necessarily a static mean field) small-scale fluctuations behave essentially as
Alfvén waves which has the consequence that v7 = B for modes in the inertial range. The
argument can be made more quantitative by introducing the Elsdsser variables Ei = g+B
instead of v, B in the MHD equations. Since only mixed nonlinear terms F | E_ appear,

corresponding to Alfvén waves propagating in opposite directions — the absence of terms
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ELE, or E_E_ implies that Alfvén waves do not steepen —, the interaction time of two
wave packets of mean wave number k is short, 7 ~ [B;l‘c)_1 . The energy transfer rate
in the inertial range, which for stationary turbulence equals the energy dissipation rate
€ , is proportional to the mode interaction time, the proportionality factor being a func-
tion of the energy spectrum Ej and k only, on the assumption of a local cascade. From

dimensional analysis one obtains

1
= A— EXk* 6
e=Ap Lk (6)
and hence
E} o« k%% (7)

(In hydrodynamic turbulence the interaction time is much longer 7 o (vek)™' =
(Ekkg’)wllz , which inserted into eq. (6) instead of (B;!{:)—1 gives the Kolmogorov spec-
trum.) We shall see, however, that this Alfvén wave argument does not seem to hold, at

least not in the case of 2D MHD turbulence.

There has been considerable discussion about self-organization in MHD, either by se-
lective decay!1)!?) or by dynamic alignment'®)!4) . Selective decay is primarily connected

with the different decay rates of the inviscid invariants,

% = —n/jzdzm— ufwzdzx , (8)
dH .

- = +u)/1wd2x ) (9)
dK

= [ewres (10)

Evidently, since the r.h.s. of egs. (8), (9) contain derivatives of higher order than that of
eq. (10), E and H decay more rapidly than K. (Another manifestation of this effect is
that Ey, Hx show a normal cascade, while K follows an inverse cascade.) However, while
the r.h.s. of (8) is negative definite, the r.h.s. of (9) may have either sign, and hence H
may effectively decay more slowly than E. This could lead to a more and more aligned
state, 7 || B . Such aligned states have been observed as a predominant feature in the solar

wind!%) . The interpretation of these observations, however, is still under discussion since
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the solar wind is an open system and the alignment may just be due to spatial separation
of E.,. and E_ waves and not to a generic property of a closed decaying turbulent system.
In the present studies we are more interested in the turbulent decay process itself, and
certain selfsimilar properties that arise during the decay, than in the final states. For the
cases considered, which avoid strongly aligned initial configurations, dynamic alignment is
not found to be a conspicuous effect, and the discussion giv.en by Ting et al.’?) does not

apply.




III Numerical procedures and initial states

Equations (1) and (2) are solved in a rectangular box of size L, = Ly = 27 with periodic
boundary conditions. We use a fully dealiased pseudo-spectral method with M 2 modes,
where dealiasing is achieved in the simple and efficient way by setting mode amplitudes
fk.k, With |kz| or |ky| > M/3 equal to zero. This means that only (2/3)2M?* modes
are actually computed and stored. Complete M 2 arrays are only needed to compute the
convolutions using fast Fourier transforms. As a result systems with M up to 768 can be
computed on a CRAY-XMP 2/4 with incore storage. Since the pseudo-spectral method
has previously been discussed in many papers and books (see, for instance, Ref. 15 ), we

do not describe it in any more detail.

We use somewhat more general dissipative terms than given in egs. (1) and (2) :
nVi — n,_1(-1)V IV, (11)

uViw — #,,_1(—1)”—1\7'2"1:; : (12)

where v = 1 corresponds to normal diffusion and v = 2 is sometimes called hyperdiffusion.
v > 1 is often used in numerical studies to obtain a clearer separation of the dissipative
scales from the inertial range (v-values as high as 8 are found in the literature, e.g. Ref. 4).

In the present studies we restrict ourselves to v =1 and 2 .

The numerical accuracy can in principle be controlled by the deviations from the inte-
gral conservation relations egs. (8) - (10) . However, since E, H, K are so-called rugged
invariants!®, i.e. are (inviscidly) conserved not only in integral form but also in a truncated
finite Fourier approximation, only the time discretization error (oc Atz) can be detected.
Spatial resolution is checked more empirically. It turns out that good resolution requires
the energy spectrum to decay monotonically at the high k£ edge. (By the way, numer-
ical instability occurring for At exceeding the stability threshold first shows up in the
k-spectrum.) Also inspection of the j or w contour plots gives rather reliable informa-
tion on the quality of the spatial resolution. There has been some discussion about the

necessity and usefulness of dealiasing in pseudo-spectral computations; see, for instance,
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Ref. 15. Though the aliasing errors are formally of the same order as the error introduced
by truncation of the Fourier series, we find in our computations that the global error is
actually a factor of 10 — 100 larger in the non-dealiased system. The error appears most
distinctly at the high-k modes, strongly enhancing the tendency of the system to become
numerically unstable. Only for v > 2 have long-time non-dealiased computations been

possible.

Since we are considering decaying turbulence, the choice of the initial state is of primary
importance. To be typical in the sense of having finite probability in real flows, the
initial state should not be too symmetric or have other unusual properties such as high
velocity-magnetic field correlations. We therefore refrained from applying high symmetry
conditions to obtain a formally large ratio kmaz/kmin, as has recently been done for 2-
and 3-dimensional hydrodynamic simulations!)1?), because these might also influence the
small-scale dynamics. We consider essentially two different types of initial states. Systems

A, and A, represent large-scale configurations.

b4, (z,y) =cos( z+1.4) +cos(y +0.5) ,

(13)
¢A1 (SB, y) = 603(255 + 23) + COS(y + 4.1) .
¢A2 = ¢A1_ ’
14
b, = %%1 (14)

The phases are just arbitrary numbers with no particular significance. The configuration
A is characterized by a ratio of kinetic to magnetic energy EY /EM = 0.4 and a velocity-
magnetic field correlation H/E = 0.28 . It constitutes a generalization of the Orszag-Tang

vortex®)
dor(z,y) = cosz +cosy
) (15)
Yor(z,y) = 5C0828 + cosy
with EV/EM =1 and H/E = 0.5 , which is used in the recent literature as a reference

system and which we, too, shall briefly consider for comparison. System A, differs from A;

only in the magnitude of the magnetic potential, having EY /EM = 3.6 and H/E = 0.256.
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System B contains a broad spectrum of modes
bpr =0 exp{—k2/2k§ +iag}

Ypp = aezp {—kz/Zkg + iﬁE} ,

where k? = k2 + k2 , kz,ky = £1,£2,... , and the normalizing factor a is chosen such

(16)

that E = 1 . Obviously, one has EY/EM =1 in this case; we choose ko = 5 , and ag, Bx
are random phases. The value of the velocity-magnetic field correlation H/E depends
on the particular phase realization. We only consider = g, i.e. unit magnetic Prandtl
number. Different values of the resistivity are chosen, 7o = 2.5 x 1073,1.25 x 1073,6.25 x
10~4,3.125 x 10~% for v = 1 and 7; = 6.8 x 1078,107® for » = 2 . In all cases spatial
resolution characterized by the number of modes M is adequate, with kg < kmaz = M/3

where kg = (e/ng) A4 for v =1 and (e/n?)l/lo for v = 2, € is the energy dissipation rate.

The relative size of the dissipative effects is characterized by various types of Reynolds
numbers. We distinguish between magnetic and kinetic (using superscripts V' and M ) as

well as macro- and micro-scale Reynolds numbers (subscripts A and A) ,

> klok|?
RX = k T . (17)
(e
> k?|dk?
R} = —* : (18)

W=

(o)
and analogous expressions for the magnetic Reynolds numbers Rﬂ’,& obtained by replacing
é by ¢ and p by n. The physical meaning of macro-scale A and micro-scale A are the
width of the velocity or magnetic field correlation functions and the curvature radii of
these correlation functions at the origin, respectively. (One can prove that A < A under
quite general conditions.) These Reynolds numbers are inherent dynamic quantities; we

avoid the simple definition R oc L , where L is the computational box size.

Various types of one-dimensional spectra may be introduced, corresponding to either

longitudinal or lateral velocity correlation functions :

Efy, =D lvakl® =) _kylowl® (19)
'k!i'

ky

1 |



B, =Y lvgkl? =) _E2lgel® (20)
ks k.

EYy, =) logkl> =) _kZlgel® (21)
k

ky y
EVi, =) lvakl® =) kjleel® (22)
k= k.

and analogous expressions for the magnetic field correlation functions Eﬁ",{z etc. are ob-
tained by replacing ¢y by ¥ . For isotropic turbulence (19), (21) are identical to (20),
(22), respectively. If the main part of the energy resides in the largest possible modes, as
in cases corresponding to A, 2 initial conditions, overall isotropy cannot be expected, but
only local isotropy, i.e. spectra (19) and (20) should be identical only in the inertial and
dissipative spectral ranges, not for the energy-containing mode numbers. In the case of

(local) isotropy we conveniently consider the radial spectra

1
v__ = 12 .12
E{ = > kg, (23)
E'—L<k<k'+1
1
M __ = 2 2
Ey = > E k'™ || . (24)

k' —Li<k<k'+1

At this point we want to emphasize that the spectra taken at a particular instant in time
or averaged over a certain time interval do not give information (or only very indirectly)
on how turbulent the system is, in the usual intuitive sense. An MHD system containing
only isolated current sheets, which would usually not be called turbulent, gives rise to a
k=% energy spectrum, which is only somewhat steeper than the Kolmogorov spectrum.
On the same lines, mode number spectra give no indication of spatial intermittency, which
seems to be a typical feature of 2D turbulence; see Ref. 1 for the hydrodynamic case and
sections V and VI of this paper for the MHD case. So the emphasis here will be more on

direct investigation of spatial structures.
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IV Selfsimilar turbulent evolution

Starting from type Az (eq. 14) or B (eq. 16) initial states, for which EY [EM > 1,
the system is found to relax quickly to a turbulent state, with the subsequent evolution
proceeding in a statistically selfsimilar way. This evolution is characterized by constant
Reynolds numbers Ry, Ry and a constant ratio EV /|EM, while the total energy E decays

to a small fraction of its initial value. Figure 1 refers to system A, with n = 6.25x107* and
1

2

M = 512. The eddy turnover time computed for the initial state is 7o = (Z k4|¢vk|2) =
1 (=~ 1/(k){v)). Figure la gives the total energy E and the energy ratio Ff‘V/EM. During
the initial relaxation phase for ¢ < 3 the energy is roughly constant because turbulent
dissipative small scales are gradually excited (details of this process are discussed in section
V). Subsequently, the energy decays while the ratio EV /EM remains about constant,
EV/EM ~ 0.5. It is also quite independent of the value of no. In Fig. 1b,c the time
evolution of the Reynolds numbers RX’M, RK'M is plotted. Obviously, the initial values
have little relation to the quasi-constant values in the turbulent state. It is interesting
to see how these quantities depend on the resistivity. Figure 2 shows RM, RM for three
values 7o = 3.125 x 10™%, 6.25 x 1074, 1.25 x 1072 in the selfsimilar phase ¢ 2 5. While
the macro-scale Reynolds number is proportional to 7y ! the micro-scale Reynolds number
increases less strongly RM o n~%, with a ~ 2/3. The latter behavior can be understood

qualitatively from the definition of RM, eq. (20). With n Y k*|¢|? ~ ¢, we find R} ~
k

(ne/Ez)_% ~ n~% since ¢/E? is found to be roughly ~ n'/? (and constant in time; see
discussion in section V). Figure 3 refers to system B, for o = 1.25 X 102, M = 512,
and H/E = 0.258 for this choice of random phases ag, 8%, giving diagnostics as in Fig. 1.
The eddy turnover time is smaller than for A2, 70 = 0.1, mainly owing to the smaller
dominant scales, with the maximum of Ej at k ~ 10. Hence the initial relaxation time
is much shorter and the total time ¢ = 6 is effectively longer than ¢ = 16 for system Az,
with the energy decaying to a smaller fraction. Figure 4 gives the temporal behavior of
the Reynolds number for no = 6.25 x 1074, 1.25 x 1073, 2.5 x 10~2 analogously to Fig. 2.
The constancy of EV /EM and the Reynolds numbers is remarkable since the configuration

strongly changes during this time, with spatial scales increasing by a factor of 3 and field

13



amplitudes decreasing by roughly the same factor.

In a recent article!® somewhat related properties of 2D MHD turbulence were investi-
gated, where the presence and persistence of oscillations in the ratio EY /EM was particu-
larly emphasized. It seems to us, however, that starting with an arbitrary dynamic MHD
state, magnetic oscillations are a natural consequence. The amplitude of the oscillations
in the ratio EV /EM depends on the degree of coherence of the large-scale velocities and
fields. While for system A dominated by k ~ 1 modes the amplitude is rather significant,
~20% (see Fig. 1a), it is smaller for system B with dominant modes at k£ > 1 (Fig. 3a).
The persistence of the EV/ EM oscillation is not surprising either. Since the damping is
caused by the same turbulent dissipation process as the decay of the total energy, the two
decay rates should be similar in that the relative amplitudes are constant. It is, however,
rather unexpected that the behavior in the relaxed selfsimilar phase is independent of the
initial value of EV /EM, at least for EV/EM21. (For EV(0)/E™(0) < 0.5 the behavior
is somewhat different, as will be discussed in section VI.) The quasi-stationary value of
EV /|EM depends somewhat on the initial velocity-magnetic field correlation H/E. Figure
5 gives this ratio for two B-type realizations, the upper curve for H/E = 0.258 as in
Fig. 3a, the lower one for H/E = 0.023, i.e. almost vanishing correlation. The difference
in the average values is rather small, smaller than suggested by Fig. 4 in Ref. 18. We do

not consider more highly correlated states with H/E 2 0.5.

Concerning the phenomenon of selective decay, it is interesting to compare the evolution
of E, H, K for different values of . Figure 6 gives these quantities for type-A5 initial state
and the three values of n used in Fig. 2. There is a clear tendency with small n for E and

H to decay at about the same finite rate, while K decays on a much longer time scale.
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V Small scale turbulence and dissipation

In 2D hydrodynamic turbulence energy dissipation is small, e = O(u), e(t) < €(0), which
is a consequence of inviscid enstrophy conservation and the inverse cascade of the energy in
mode number space. Only enstrophy may be dissipated at a finite rate. By contrast in 2D
MHD flows energy dissipation rates were found to increase strongly, €(t) > €(0)®), though
¢ still appears to depend on 7. It is therefore interesting to study this point by means of
the present computations, which have higher resolution and thus allow higher Reynolds
numbers than those of Ref. 6. When comparing systems with identical initial states but
different values of 1, s, we should consider the relative dissipation rate é(t) = —(dE/dt)/E
instead of €(t), since during the first relaxation period where turbulence is generated,
dissipation in the lower n system is invariably smaller, leaving the system at a somewhat
higher value of E at the beginning of the turbulent phase than in a system with larger 7.
(To be specific € always refers to the change of the energy per unit volume, F = > Eg.)
Though the effect is rather small, normalization to the instantaneous value of £ ma,lfes the
comparison of cases with different n more convincing. Figure 7 gives é(t) for three cases
with A, initial conditions and 7o = 1.25 x 1072, 6.25 x 1074, 3.125 x 10™*, the same cases
shown in Figs. 2 and 6. For t < 2 the dynamics is independent of # and hence €~ €.
The maxima of ¢, reached at slightly later times for smaller 7, still differ systematically,
¢ o« n1/4, but in the subsequent turbulent phase & soon becomes essentially independent
of n apart from random variations due to the differences in small-scale dynamics. Similar
behavior is found for type-B initial conditions, plotted in Fig. 8 for H/E = 0.258 and
no = 2.5 x 1073, 1.25 x 1073, 6.25 x 10~%, the same cases as shown in Fig. 4.

It is also interesting to consider the temporal behavior of the energy decay. B-type
systems are particularly interesting since conditions significantly vary (for instance, the
macro-scale changes by a factor of more than 3) without restrictions due to finite box
size becoming important. As seen in Fig. 9, referring to the same cases as in Fig. 4, the

quantity e¢/E? is approximately constant in time,

-———~a , (25)



and hence
1

PO =S

(26)
We also see that in contrast to é = ¢/E (Fig. 8), ¢/E? depends on 7.

Let us now investigate the onset of turbulence in greater detail, using type-A; initial
conditions, which are found to illustrate the different micro-scale processes particularly
well. We consider contour plots of the current density j since j (and the vorticity w)
emphasize small scales over large scales. Figure 10 shows the transition to turbulence for
a case with high resolution M = 768 and large effective Reynolds number, viz. v = 2 and
n1 = 1078, At t = 1.6 thin current sheets are generated (Fig. 10a). Closer inspection
reveals the basic features of quasi-stationary (Sweet-Parker) current sheets including fine
structures at the sheet ends, which have previously been discussed in detail'®). Figure
10b shows how this state of isolated, finite-length current sheets is modified at t = 2.1.
Two different processes are clearly discernible : a) stretching and folding of the sheets,
leading to elongation of the sheet, which is similar to the process of vorticity gradient
sheet folding observed in 2D hydrodynamic turbulencel); b) tearing instability of the
current sheets. Both processes lead to a dense distribution of small-scale sheets covering
regions of finite extent, located in regions of weak magnetic field, mainly around X-points
as seen in Fig. 11, where j- and t-contours are plotted at ¢ = 3 for the same case as
in Fig. 10. While process a) is intensified in a gradual fashion with decreasing 7, the
tearing mode exhibits a threshold behavior, as can be seen in Fig. 12, showing two states
differing from Fig. 10b only in a somewhat stronger dissipation, both with v = 1, and
no = 3.125x 10~ % in Fig. 12a, o = 6.25 x 104 in Fig. 12b. Continuation of the latter case
shows that the tearing instability does not appear at any time. As previously discussed!®),
Sweet-Parker sheets are significantly more stable with respect to tearing modes than static
current sheets, primarily owing to the inhomogeneous flow along the sheet, with a threshold
A ~ 100 as compared with A ~ 10 in the static case, A being the ratio of sheet length
to width. Since the sheets become thinner with decreasing 7, instability will set in at
sufficiently low 5. On the other hand, the appearance of the tearing mode does not lead

to a sudden increase of the dissipation rate, but its effect is becoming gradually stronger
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with decreasing n. Figure 11 gives the dissipation rates for five cases, the upper four
(cases 1-4) with v = 1, ng = 2.5 X 1073, 1.25 X 10~3, 6.25 x 10™%, 3.125 x 10~* and the
lowest one (case 5) with ¥ = 2 and n; = 10~8. With decreasing dissipation coefficients,
two-stage saturation behavior becomes more and more pronounced. At ¢ =~ 1.5 current
sheets are formed. Comparing the values of € at this time for the four different v = 1
cases, we find — not unexpectedly — that e « nz. The further increase of € is due to
excitation of small scales by the processes described above until € becomes independent of
n. Comparison of cases 3 (tearing stable) and 4 (tearing unstable) shows that the tearing
mode does not abruptly increase dissipation. This two-stage process is analogous to the
behavior observed in two-dimensional hydrodynamic turbulence!). There first isolated
vorticity gradient sheets are generated, which are subsequently folded in a turbulent way.
Turbulence is intermittent with coherent structures surviving where vorticity is strong, and
turbulent vorticity gradient sheets being concentrated in regions of small vorticity. In the
MHD case the magnetic field takes the role vorticity plays in 2D hydrodynamics. (Owing
to the possibility of the tearing mode the generation of turbulent fluctuations is, however,
more effective in MHD.) Intermittency is the more pronounced the larger the magnetic
energy, i.e. the smaller the initial value of EV /|EM. Figure 14 illustrates a case with A
initial conditions with EYV /EM = 3.6, which should be compared with Fig. 11, a case
with A; initial conditions, i.e. Ev/En = 0.4. While in the latter case large nonpolluted
coherent magnetic flux tubes exist, with small scale turbulence well confined to relatively
small regions around the X-points, in the former case turbulent regions are broader and

less clearly distinguishable from coherent magnetic structures.

We also studied the evolution of the Orszag-Tang vortex (eq. (15)) which has been
considered in several previous articles (see, for instance, Refs. 18, 20). Compared with
our A, cases, the tendency to generate turbulent small-scale structures is significantly
weaker. Even for n = 3.125 x 10~* (which corresponds to eight times the initial value of
the Reynolds number considered by Orszag and Tange)) the state at ¢ = 3 still consists
mainly of isolated current sheets. This behavior could be a consequence of the higher

velocity-magnetic field correlation H/E = 0.5 as compared with the value H/E < 0.25
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considered in this paper. This point deserves further investigation. It should also be noted
that the dynamic states following from the OT vortex have an additional symmetry apart
from periodicity : ¥ (27 — z,27 — y) = ¥(z,y), ¢(27 — z,27 — y) = ¢(z,y). Hence only
half of the Fourier modes are actually independent. Even if one believes that restriction of
the degrees of freedom by symmetry properties does not affect the transfer processes from
large to small scales, which is debatable, the system is effectively only half the size, thus

giving poorer statistics.

The behavior of the energy spectra reflects the dynamic picture described above, in
particular the transition from isolated current sheets to densely packed, turbulent small-
scale structures. Isolated coherent current sheets and the associated vortex sheets give rise
to energy spectra Ef‘ ,E‘,‘c’r o« k72, The most interesting spectral properties arise in the
turbulent regime. We consider different spectra for the state given in Fig. 11. Comparison
of Eﬁ‘gz and Eﬁ‘fy, defined in egs. (19), (20), an example being given in Fig. 15, indicates
that apart from the smallest mode numbers the spectra are largely isotropic. Figure 16
gives the radial spectra Eiu’v. An inertial range can be clearly seen, with a —5/3 rather
than a —3/2 spectral exponent. Since the fluctuations with wave numbers in the inertial
range 5 < k < 50 are located primarily in regions of weak magnetic field, as can be clearly
seen in Figs. 11, 14, Kraichnan’s argument® for a k=3/2 law in fact does not hold. Though
EK o~ Efcw , E;c/ is consistently slightly smaller than Eﬂl . Hence the result EV/EM < 1

observed for the energy-containing modes seems to be valid for the entire spectrum.

It is interesting to investigate a possible similarity law of the evolution of the energy

spectrum. Considering the normalized spectrum E (k/kq)

~ k Ek € Y4
1 ) =—F ez | — =
E (kd) o (Ef]g)l/4 2 kd - (7]3) fon &= d

[k E e W10
2 A —_— —k = I —
E (kd) =iz k= (’73) for v=2 |,

where Ex = EY + EM. Figure 17 gives the ' E(k/k4)-spectrum of a B-type case with no =
6.25 x 10~* taken at t = 3, 4, 5, 6. Obviously there exists a universal spectrum. In Fig. 18
the normalized energy spectrum 2E(k/kg) of the A;-type case with v = 2, 7; = 1078,
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illustrated in Figs. 10, 11, taken at t = 2.5, 2.6, 2.7, 2.8. Naturally the dissipative bend-over
for v = 2 occurs much more localized at k/kq ~ 0.5 than for v = 1, Fig. 17, with the k—5/3
inertial range behavior more clearly visible. For both » = 1 and v = 2 the Kolmogorov
constant C characterizing the level of the inertial range spectrum, Ex = Ce*/3k~%3, is the
same within the given accuracy, C = 3.6 + 0.3, as expected, since the type of dissipation
should not affect the behavior in the inertial range. This value of C has to be contrasted
with C ~ 1.7 for 3D hydrodynamic turbulence. It is somewhat surprising that in our

2D MHD case the value of C is quite universal, independent on the different degree of

intermittency in the A;, As, and B type cases.
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VI Coherent magnetic dynamics : coalescence

When ¢ and ¢ contour plots evolving in time, are compared, only 1 exhibits clear,
coherent structures, mainly magnetic monopoles, called flux tubes, which are convected
according to eq. (1) without significant distortion (see Fig. 19). Their mutual interaction is
different from that of vorticity macro-eddies in 2D hydrodynamics, discussed in Refs. 2-4.
While the latter, if sufficiently sparse in space (at positions z;), move along equipotentials
¢ = const,

Vi=> ob(z— ) ,
i
v=2xV¢ ,
thus avoiding collisions, there is a radial magnetic force o« V1 between flux tubes as
obtained by integrating eq. (2)
dv

EE=_JV¢ 3

leading to an attraction of flux tubes with currents of equal sign. If the average velocity
is sufficiently large, a flux tube exerts a quasi-random motion, interacting only weakly
with its neighbors. Occasionally, magnetic attraction is strong enough to lead to complete
coalescence of two flux tubes. Since resistive effects are stronger for smaller scales, small

flux tubes coalesce more readily, which is the physical mechanism of the inverse -cascade.

The tendency to coalesce is increased if the initial state has low kinetic energy,
EV(0)/EM(0) < 0.5. In such a system EY/EM further decays in time in contrast to
the selfsimilarly evolving systems with EV (t)/EM(t) ~ 0.5 discussed in section IV. Tur-
bulent states with Reynolds-number-independent energy dissipation rates exist only for a
transient period, leading to a phase dominated by magnetic forces, with pairwise coales-
cence being the main dynamic process and dissipation occurring mainly in quasi-stationary
current sheets in between. Figure 20 gives £(t) for three cases with A; initial states, v =1
type diffusion and 7o = 2.5 x 1073, 1.25 x 10~3, 6.25 x 10~%. The initial phase of gen-
eration of turbulent small scales, t < 2, has already been discussed in section V, Fig. 11,
where two higher Reynolds number cases were also included. In the subsequent turbulent
phase, 2 < t < 4, dissipation rates are independent of no. At this time the kinetic en-

ergy has become small, EV /EM < 0.2. The small-scale turbulence in the X-point regions
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decays and one is left with current sheets between coalescing flux tubes. At later times
T > 5, ¢ significantly varies with 7, scaling roughly as € nz. The current sheets may
become unstable, sporadically ejecting plasmoids, but this does not significantly enhance

the dissipation rate.
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VII Conclusions

We have presented results of high-resolution simulations of two-dimensional MHD tur-
bulence. The most interesting features are, on the one hand, the n-independent energy
dissipation rates and the inertial-range spectra consistent with the Kolmogorov k—5/3 law
(which is also measured in the solar wind, in contrast to Kraichnan’s k~3/2 prediction).
On the other hand, there is a strong analogy to the behavior of two-dimensional hydro-
dynamic turbulence, regarding a) the transition from isolated vorticity gradient sheets
with a k=% energy spectrum to a turbulent state with E o< k~2, which corresponds to
the transition from isolated current sheets with Ef’v x k2 to a small-scale turbulent
state with Ef’f'v o k~5/3 in the MHD case; b) the coexistence of turbulent and coherent
structures, i.e. strong spatial intermittency, which is controlled by the magnitude of the
vorticity in hydrrodynamics and of the magnetic field in MHD. In addition, we find that
the decay of a turbulent MHD flow proceeds in a statistically selfsimilar fashion if the
initial kinetic energy is large enough EV (0)/E™(0) 2 1. This behavior is characterized by
a constant ratio EV (t)/EM(t) = ¢, where ¢ depends slightly on the velocity-magnetic field
correlation and constant Reynolds numbers R} ,(t), R}, (t). For lower initial kinetic en-
ergy EV(0)/E™(0) < 0.5, the turbulent phase is only transient, with EV /EM decreasing

until the configuration becomes dominated by rather coherent coalescence processes.

Let us emphasize that the transition from single current sheet dissipation to dissipation
via turbulent small-scale fluctuations, as illustrated in Figs. 10 and 11 in particular, is a
smooth one, both processes coexisting in systems with different magnetic scales, depending
on the local Reynolds number. While two flux tubes of small size may interact by a
simple current sheet, the direct interaction between flux tubes of larger scale may lead to
excitation of more uniformly distributed small-scale turbulence in their X-point regions.
The coexistence of magnetic structures of largely different size is clearly seen in Fig. 18,
that of different types of dissipative structures in Fig. 14a. Nor does the excitation of
the tearing instability above a threshold Reynolds number lead to a sudden increase in
the dissipation. This behavior corresponds to that of 3D turbulent systems, where with

increasing Reynolds number increasingly smaller scales are excited so that the dissipation
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rate is independent of the value of the dissipation coefficient. In fact, the difference between
2D and 3D MHD appears to be only a quantitative one, the main difference being that
the “weak field” condition k - B ~ 0 can be satisfied virtually everywhere by small k,

components, for a strong B, field component.

A final remark is made on the importance of these results to the theory of magnetic
reconnection. While previous studies (see, for instance, Ref. 19), using relatively sym-
metric quasi-stationary conditions, reveal either steady-state current sheet reconnection
or nonsteady but rather regular plasmoid formation (corresponding essentially to the coa-
lescence phase discussed in section VI ), the present investigations show that under more
general conditions a turbulent, Reynolds-number-independent effective resistivity may be

generated even in the framework of 2D incompressible MHD theory.
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Figure Captions

Fig. 1 Time evolution of a system with initial conditions A,

Fig.
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

10

11

12

13

14

eq. (15), no = 6.25 x 10~%, M = 512.

a) Total energy E and energy ratio EY |EM,

b), ¢) Reynolds numbers Riw’v ,Rf'v.

n-scaling of magnetic Reynolds numbers for A initial conditions :

RM, for 7o = 3.125 x 10~* —, 2 R}, for o = 6.25 x 107* — — —, 4 R}, for
no=125x10"2% —.—.

Time evolution of a system with initial conditions B, eq. (16), with H/E = 0.258,
no = 1.25 x 1073, M = 512. Diagnostics as in Fig. 1a,b,c.

n-scaling of magnetic Reynolds numbers for B initial conditions :

Rﬁ’{A for no = 6.25 x 107% —, 2 fo for o = 1.25 x 1073 — — — 4 th for
no=25x10"2% —.—,

EV |EM for two B-type realizations.

Evolution of E, H, K for A, initial conditions :

a) no = 1.25 x 1073, b) no = 6.25 X 1074, ¢) no = 3.125 X 1074,

Energy dissipation rate ¢ = —dIn E/dt for the three A2 cases as in Fig. 6.
Energy dissipation rate & for the three B-type cases given in Fig. 4.

¢/E? for the same cases as in Fig. 8.

Generation of turbulent small-scale fluctuations.

j-contours for v =2, n; = 10~8, M = 768.

a)t=16,b)t=2.1.

a) j-contours, b) ¥-contours at ¢ = 3, same case as Fig. 10, illustrating the local-
ization of small-scale turbulence in X-point regions of large-scale magnetic field.
Tearing mode threshold. j-contours for two v = 1, M = 768 cases at ¢ = 2.1,
differing only in 7o, a) 7o = 3.125 x 107, b) 7o = 6.25 x 1074,

Energy dissipation rate € for five cases, v = 1: 7o = 2.5 X 1073, 1.25 x 1073,
6.25 x 104, 3.125 x 10~* (upper 4 curves), v = 2, n; = 107® (lower dashed
curve), illustrating the two-stage saturation process.

a) j-contours, b) i¥-contours for an Aj-type case with v = 1, no = 3.125 X T,

t = 8.
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One-dimensional spectra Elll\ix’ Eﬁzy for the state illustrated in Fig. 11.

Radial energy spectra E:, E,}:W for the state shown in Fig. 11.

Normalized energy spectrum for a B-type v = 1 case taken at t = 3, 4, 5, 6.
Normalized energy spectrum for a A;-type v = 2 case taken at t = 2.5, 2.6, 2.7, 2.8.
The straight line indicates the k~%/3 dependence.

1h-contours for the B-type case, 1o = 6.25 x 104, given in Figs. 4 and 8, at t = 6.
€(t) for three A; cases, the upper three cases of Fig. 13.
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