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Abstract

We study a strongly coupled system consisting of a parabolic equation and a singular Hamilton-Jacobi equation in one

space dimension. This system describes the dynamics of dislocation densities in a material submitted to an exterior

applied stress. Our system is a natural extension of that studied in [15] where the applied stress was set to be zero.

The equations are written on a bounded interval with Dirichlet boundary conditions and require special attention to

the boundary. We prove a result of global existence of a solution. The method of the proof consists in considering first a

parabolic regularization of the full system, and then passing to the limit. For this regularized system, a result of global

existence and uniqueness of a solution has been given in [16]. We show some uniform bounds on this solution which

uses in particular an entropy estimate for the densities.
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1 Introduction

1.1 Physical motivation and setting of the problem

In [12], Groma, Czikor and Zaiser have proposed a model describing the dynamics of dislocation densities.
Dislocations are defects in crystals that move when a stress field is applied on the material. These defects are
one of the main explanations of the elastoviscoplasticity behavior of metals (see [8] and [9] for various models
relating dislocations and elastoviscoplastic properties of metals). This model has been introduced in order to
describe the possible accumulation of dislocations on the boundary layer of a bounded channel. Because of
the motion of dislocations inside the bounded crystal, they can reach its boundary. Therefore the model has
to describe carefully the behavior of these dislocations close to the boundary. Dislocations are distinguished
by the sign of their Burgers vector ±~b (see [13] for a description of the Burgers vector). More precisely, let us
call θ+ and θ−, the densities of the positive and negative dislocations respectively. In particular, the repulsive
interactions between dislocations of the same Burgers vector is a microscopic explanation of the formation of
the boundary layers at the surface of the crystal. This repulsive force is described at the mesoscopic level by
a diffusion term introduced in the equations satisfied by the dislocation densities. For

x ∈ I := (−1, 1),
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and t ∈ (0, T ), for some time T > 0, the non-negative quantities θ+(x, t) and θ−(x, t) are governed by the
following system (see [12]):



















θ+t =

[(

θ+x − θ−x
θ+ + θ−

− τ

)

θ+
]

x

in I × (0, T ),

θ−t =

[

−
(

θ+x − θ−x
θ+ + θ−

− τ

)

θ−
]

x

in I × (0, T ),

(1.1)

where τ is the applied shear stress which is assumed to be constant. Here the term τb =
θ+x−θ−x
θ++θ− is called the

back stress and can be interpreted as the contribution to the stress of the short-range interactions between
dislocations. This back stress can be seen as a diffusion term in the above equations. If τ = 0 and θ− = 0 (resp.
θ+ = 0) then θ+ (resp. θ−) satisfies the usual heat equation. More generally, the back stress is proportional to
the gradient of the effective dislocation density θ+ − θ−, with a diffusion coefficient which is 1

θ++θ− . In fact,
system (1.1) is a model for a 2D channel with coordinates (x, y) that is invariant in the y-direction (see Figure
1). The channel is bounded by walls that are impenetrable by dislocations (i.e., the plastic deformation in the

x−1 1

y

ττ

Figure 1: Geometry of the crystal.

walls is zero). In this case the boundary conditions are represented by the zero flux condition, i.e.

θ+x − θ−x
θ+ + θ−

− τ = 0, at x = ±1. (1.2)

For related literature, let us mention the work of Groma-Balogh [11], where the back stress was neglected. For
the model described in [11], we refer the reader to [5, 6] for a one-dimensional mathematical and numerical
study, and to [4] for a two-dimensional existence result. The special case τ = 0 for system (1.1) has been
studied in [15], where a result of existence and uniqueness has been proved. In the present paper we study the
case for general constant τ ∈ R.

1.2 Setting of the problem

We consider an integrated form of (1.1) and we let

ρ±x = θ±, ρ = ρ+ − ρ− and κ = ρ+ + ρ−,

to obtain, for special values of the constants of integration, the following system in terms of ρ and κ:

{

κtκx = ρtρx on I × (0, T )

ρt = ρxx − τκx on I × (0, T ),
(1.3)

with the initial conditions:
κ(x, 0) = κ0(x) and ρ(x, 0) = ρ0(x). (1.4)
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To formulate heuristically the boundary conditions at the walls located at x = ±1, we first suppose that κx 6= 0
at x = ±1. We recall that the dislocation fluxes at the walls must be zero, which require (1.2). Rewriting

system (1.3) in terms of ρ, κ and Φ =
θ+x−θ−x
θ++θ− − τ , we get

{

κt = ρxΦ,

ρt = κxΦ.
(1.5)

From (1.2) and (1.5), we deduce that

ρt(x, .) = κt(x, .) = 0 for x = ±1. (1.6)

In this case, we consider the following boundary conditions:

{

κ(x, .) = x for x = ±1

ρ(x, .) = 0 for x = ±1,
(1.7)

where we have taken the zero normalization for ρ on the boundary of the interval.

The non-negativity of θ± ≥ 0 reduces in terms of ρ and κ to the following condition:

κx ≥ |ρx|, (1.8)

and hence a natural assumption to be considered concerning the initial conditions ρ0 and κ0 is to satisfy

κ0
x ≥ |ρ0

x| on I. (1.9)

As indicated above, problem (1.3), (1.4) and (1.7), in the case τ = 0, has been studied in [15], where a result
of existence and uniqueness is given using the viscosity/entropy solution framework. Let us just mention that
in this situation, system (1.3) becomes decoupled and easier to be handled.

1.3 Statement of the main result

Remark that the first equation of system (1.3) can be formally rewritten κt = ρtρx/κx which shows the
singularity as κx goes to zero. Nevertheless, for this system we have the following result.

Theorem 1.1 (Global existence of a solution). Let ρ0, κ0 ∈ C∞(Ī) satisfying (1.9),

κ0(±1) = ±1, ρ0(±1) = 0, (1.10)

and the additional conditions:

ρ0
x(x) = ρ0

xx(x) = κ0
x(x) = κ0

xx(x) = 0 for x = ±1. (1.11)

Then there exists (ρ, κ) such that for every T > 0:

(ρ, κ) ∈ (C(Ī × [0, T ]))2 and ρ ∈ C1(I × (0, T )),

is a solution of (1.3), (1.4) and (1.7). Moreover, this solution satisfies (1.8) in the distributional sense, i.e.

κx ≥ |ρx| in D′(I × (0, T )). (1.12)

However, the solution has to be interpreted in the following sense:

1. κ is a viscosity solution of κtκx = ρtρx in IT := I × (0, T ),

2. ρ is a distributional solution of ρt = ρxx − τκx in IT ,
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3. the initial and boundary conditions are satisfied pointwisely.

Remark 1.2 The C∞ regularity of ρ0 and κ0, together with (1.11) seems to be essentially technical and are
related to an existence result for a regularized system (see Section 3, Theorem 3.1), that we use to prove
Theorem 1.1.

Theorem 1.1 states the global existence of a solution. Remark that the uniqueness of the solution (even for a
short time analysis) remains an open question, which seems difficult to handle in the general case. Moreover,
we do not know any counter-example to the uniqueness of the solution of system (1.3), (1.4) and (1.7). Indeed,
even in the special case τ = 0, the uniqueness remains an open question except for some particular initial data
(see [15]). Let us stress on the fact that the vanishing of the quantity κx is one of the main difficulties for
dealing with the uniqueness of the solution.

1.4 Organization of the paper

This paper is organized as follows: in Section 2, we present the strategy of the proof. In Section 3, we present
the tools needed throughout this work. This includes some miscellaneous results for parabolic equations, a
brief recall to the definition and the stability result of viscosity solutions, and a brief recall to Orlicz spaces.
In Section 4, we show how to choose the regularized solution. An entropy inequality used to determine some
uniform bounds on the regularized solution is presented in Section 5. Further uniform bounds and convergence
arguments are done in Section 6. Section 7 is devoted to the proof of our main result: Theorem 1.1. In Section
8, some numerical simulations related to our physical model are presented. Finally, Section 9 is an appendix
where we show the proofs of some technical results.

2 Strategy of the proof

The main difficulty we have to face is to work with the equation

κtκx = ρtρx. (2.1)

Since ρ solves itself a parabolic equation (see the second equation of (1.3)), we expect enough regularity on ρ
(indeed ρ is C1), and then we need a framework where the equation involving κ is stable under approximation.
This property is naturally satisfied in the framework of viscosity solutions (see for instance [2] and the references
therein). Then, assuming κx ≥ 0, we interpret κ as the viscosity solution of (2.1). Assuming (1.9), we will
indeed show that

M := κx − |ρx| ≥ 0.

This is formally true because M satisfies:
Mt = bMx + cM,

with

b = τ sgn(ρx) −
ρxρxx
κ2
x

, c =
ρ2
xx

κ2
x

− ρxxx sgn(ρx)

κx
,

where for suitable boundary conditions, we can (again formally) see that M ≥ 0. In order to justify the
computations on M , we modify the system and we consider the following parabolic regularization for ε > 0
small enough:







κεt = εκεxx +
ρεxρ

ε
xx

κεx
− τρεx in I × (0,∞)

ρεt = (1 + ε)ρεxx − τκεx in I × (0,∞),

(2.2)

with the initial conditions:
κε(x, 0) = κ0,ε(x), ρε(x, 0) = ρ0,ε(x), (2.3)
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where κ0,ε and ρ0,ε are some regularizations of κ0 and ρ0 respectively, and the same boundary conditions:
{

κε(x, .) = x for x = ±1

ρε(x, .) = 0 for x = ±1.
(2.4)

The system (2.2) formally reduces to (1.3) for ε = 0. Notice that system (2.2) can be viewed as the following
natural parabolic regularization of system (1.3) (written in terms of θ±,ε with a similar change of unknown

functions θ±,ε =
κεx±ρ

ε
x

2 ):

θ±,εt = εθ±,εxx ±
((

θ+,εx − θ−,εx

θ+,ε + θ−,ε
− τ

)

θ±,ε
)

x

.

This particular choice of regularization will guarantee later good a priori estimates (like the entropy estimate),
and will also be good enough to make survive a comparison principle for the quantity κx− |ρx| > 0 (see (3.5)).
This comparison principle is a key property to allow the global existence of solutions of the regularized system
(2.2). Let us mention that among several regularizations that we have tried, the regularization (2.2) is the only
one that was good enough to make the proof of Theorem 1.1.

System (2.2), (2.3) and (2.4) has (under some conditions on the initial and boundary data) a unique smooth
global solution (see [16, Theorem 1.1]) for α ∈ (0, 1):

(ρε, κε) ∈ C3+α, 3+α
2 (Ī × [0,∞)) ∩ C∞(Ī × (0,∞)).

This result will be recalled in the forthcoming section (see Section 3, Theorem 3.1). The next step is to find
some uniform bounds (independent of ε) on this solution; this is done in particular via:

(1) an entropy inequality shown to be valid for our regularized model (2.2);

(2) a bound on κεt − εκεxx uniformly in ε.

In fact, (1) guarantees the global uniform-in-time control of the modulus of continuity in space of our regularized
solution, while (2) guarantees the local uniform-in-space control of the modulus of continuity in time. The
entropy inequality can be easily understood. For instance, for ε = 0 and τ = 0, we can formally check that the
entropy of the dislocation densities

θ± =
κx ± ρx

2
,

defined by:

S(t) =

∫

I

∑

±

θ±(., t) log(θ±(., t)),

satisfies:
dS(t)

dt
= −

∫

I

(θ+x − θ−x )2

θ+ + θ−
≤ 0,

therefore we get S(t) ≤ S(0) which controls the entropy uniformly in time. Finally, we need to pass to the
limit ε → 0 after multiplying the first equation of (2.2) by κεx. Having enough control on the regularized
solutions, we can find a solution of the limit equation using in particular the stability of viscosity solutions of
Hamilton-Jacobi equations. However, the passage to the limit in the second equation of (2.2) is done in the
distributional sense.

3 Tools: miscellaneous results on parabolic equations, viscosity so-

lution, and Orlicz spaces

3.1 Miscellaneous results on parabolic equations

We first fix some notations. Denote

IT := I × (0, T ), IT := Ī × [0, T ], ∂pIT := I ∪ (∂I × [0, T ]), and ‖ · ‖Lp(Ω) = ‖ · ‖p,Ω.
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Define the parabolic Sobolev space W 2,1
p (IT ) , 1 < p <∞ by:

W 2,1
p (IT ) :=

{

u ∈ Lp(IT ); (ut, ux, uxx) ∈ (Lp(IT ))
3
}

.

We start with a result of global existence and uniqueness of smooth solutions of the regularized system (2.2),
with the initial and boundary conditions (2.3) and (2.4).

Theorem 3.1 (Global existence for the regularized system, [16, Theorem 1.1]). Let 0 < α < 1 and
0 < ε < 1. Let ρ0,ε, κ0,ε satisfying:

ρ0,ε, κ0,ε ∈ C∞(Ī), ρ0,ε(±1) = 0, and κ0,ε(±1) = ±1, (3.1)

{

(1 + ε)ρ0,ε
xx = τκ0,ε

x on ∂I

(1 + ε)κ0,ε
xx = τρ0,ε

x on ∂I,
(3.2)

and
κ0,ε
x > |ρ0,ε

x | on Ī . (3.3)

Then there exists a unique global solution

(ρε, κε) ∈ C3+α, 3+α
2 (Ī × [0,∞)) ∩ C∞(Ī × (0,∞)), (3.4)

of the system (2.2), (2.3) and (2.4). Moreover, this solution satisfies :

κεx > |ρεx| on Ī × [0,∞). (3.5)

Remark 3.2 Conditions (3.2) are natural here. Indeed, the regularity (3.4) of the solution of equation (2.2)
with boundary conditions (2.3) and (2.4) imply in particular condition (3.2).

Remark 3.3 (Uniform L∞ bound on ρε and κε). We remark, from the boundary conditions (2.4) and
from the inequality (3.5), that:

‖ρε‖L∞(Ī×[0,∞)) ≤ 1 and ‖κε‖L∞(Ī×[0,∞)) ≤ 1. (3.6)

We now present two technical lemmas that will be used in the proof of Theorem 1.1. The proofs of these
lemmas will be given in the Appendix.

Lemma 3.4 (Control of the modulus of continuity in time uniformly in ε). Let p > 3, and uε ∈
W 2,1
p (IT ). Suppose furthermore that the sequences

(uε)ε and (fε)ε = (uεt − εuεxx)ε,

are locally bounded in IT uniformly for ε ∈ (0, 1). Then for every V ⊂⊂ IT , there exist two constants c > 0,
ε0 > 0 depending on V , and 0 < β < 1 such that for all 0 < ε < ε0:

|uε(x, t+ h) − uε(x, t)|
hβ

≤ c, ∀(x, t), (x, t + h) ∈ V.

Lemma 3.5 (An interior estimate for the heat equation). Let a ∈ C∞(IT ) ∩ L1(IT ) satisfying:

at = axx on IT ,

then for any V ⊂⊂ IT , an open set, we have:

‖a‖p,V ≤ c‖a‖1,IT , ∀ 1 < p <∞,

where c = c(p, V ) > 0 is a positive constant.
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3.2 Viscosity solution: definition and stability result

Let Ω ⊂ R
n be an open domain, and consider the following Hamilton-Jacobi equation:

H(x, u(x), Du(x), D2u(x)) = 0, ∀x ∈ Ω, (3.7)

where H : Ω × R × R
n ×Mn×n

sym → R is a continuous mapping.

Definition 3.6 (Viscosity solution of Hamilton-Jacobi equations). A continuous function u : Ω 7→ R

is a viscosity sub-solution of (3.7) if for any φ ∈ C2(Ω; R) and any local maximum x0 ∈ Ω of u− φ, one has

H(x0, u(x0), Dφ(x0), D
2φ(x0)) ≤ 0.

Similarly, u is a viscosity super-solution of (3.7), if at any local minimum point x0 ∈ Ω of u− φ, one has

H(x0, u(x0), Dφ(x0), D
2φ(x0)) ≥ 0.

Finally, if u is both a viscosity sub-solution and a viscosity super-solution, then u is called a viscosity solution.

To get a "non-empty" and useful definition, it is usually assumed that H is elliptic (see [2]). This notion of
ellipticity will be indirectly used in Section 7. In fact, this definition is used for interpreting solutions of the
first equation of (1.3) in the viscosity sense. This will be shown in Section 5. To be more precise, in the case
where Ω = IT , we say that u is a viscosity solution of the Dirichlet problem (3.7) with u = ζ ∈ C(∂pIT ) if:

(1) u ∈ C(IT ),

(2) u is a viscosity solution of (3.7) in IT ,

(3) u = ζ on ∂pIT .

For a better understanding of the viscosity interpretation of boundary conditions of Hamilton-Jacobi equations,
we refer the reader to [2, Section 4.2]. We now state a stability result for viscosity solutions of Hamilton-Jacobi
equations.

Theorem 3.7 (Stability of viscosity solutions, [2, Lemma 2.3]). Suppose that, for ε > 0, uε ∈ C(Ω)
is a viscosity sub-solution (resp. super-solution) of the equation

Hε(x, uε, Duε, D2uε) = 0 in Ω,

where (Hε)ε is a sequence of continuous functions. If uε → u locally uniformly in Ω and if Hε → H locally
uniformly in Ω × R × R

n ×Mn×n
sym , then u is a viscosity sub-solution (resp. super-solution) of the equation:

H(x, u,Du,D2u) = 0 in Ω.

3.3 Orlicz spaces: definition and properties

We recall the definition of an Orlicz space and some of its properties (for details see [1]). A real valued function
Ψ : [0,∞) → R is called a Young function if

Ψ(t) =

∫ t

0

ψ(s)ds,

where ψ : [0,∞) → [0,∞) satisfying:

• ψ(0) = 0, ψ > 0 on (0,∞), ψ(t) → ∞ as t→ ∞;

• ψ is non-decreasing and right continuous at any point s ≥ 0.
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Let Ψ be a Young function. The Orlicz class KΨ(I) is the set of equivalence classes of real-valued measurable
functions u on I satisfying

∫

I

Ψ(|u(x)|)dx < +∞.

Definition 3.8 (Orlicz spaces). The Orlicz space LΨ(I) is the linear span of KΨ(I) supplemented with the
Luxemburg norm

‖u‖LΨ(I) = inf

{

k > 0;

∫

I

Ψ

( |u(x)|
k

)

≤ 1

}

, (3.8)

and with this norm, the Orlicz space is a Banach space.

The function

Φ(t) =

∫ t

0

φ(s)ds, φ(s) = sup
ψ(t)≤s

t,

is called the complementary Young function of Ψ. An example of such pair of complementary Young functions
is the following:

Ψ(s) = (1 + s) log(1 + s) − s and Φ(s) = es − s− 1. (3.9)

We now state a lemma giving two useful properties of Orlicz spaces that will be used in the proof of Lemma
5.4.

Lemma 3.9 (Norm control and Hölder inequality, [17]). If u ∈ LΨ(I) for some Young function Ψ,
then we have:

‖u‖LΨ(I) ≤ 1 +

∫

I

Ψ(|u(x)|)dx. (3.10)

Moreover, if v ∈ LΦ(I), Φ being the complementary Young function of Ψ, then we have the following Hölder
inequality:

∣

∣

∣

∣

∫

I

uvdx

∣

∣

∣

∣

≤ 2‖u‖LΨ(I)‖v‖LΦ(I). (3.11)

4 The regularized problem

As we have already mentioned, we will use a parabolic regularization of (1.3), and a result of global existence
of this regularized system from [16] (see Theorem 3.1). In order to use this result, we need to give a special
attention to the conditions on the initial data of the approximated system ρ0,ε and κ0,ε (see (3.1), (3.2) and
(3.3)). This section aims to show how to choose the suitable initial data ρ0,ε and κ0,ε in order to benefit
Theorem 3.1. Let ρ0 and κ0 be the functions given in Theorem 1.1. Set

ρ0,ε(x) =
ρ0(x) + ετφ(x)

(1 + ε)2
and κ0,ε(x) =

κ0(x) + εx

1 + ε
, (4.1)

with the function φ defined by:

φ(x) =

{

1
4τ2 [1 − cos τ(x2 − 1)] if τ 6= 0
0 if τ = 0.

(4.2)

The function φ enjoys some properties that are shown in the following lemma.

Lemma 4.1 (Properties of φ)
The function φ given by (4.2) satisfies the following properties:

(P1) φ, φ
′ |∂I = 0;

(P2) φ
′′
∣

∣

∂I
= 1;

(P3) |φ′

(x)| < 1/|τ | for x ∈ Ī.
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Proof. Straightforward computations. 2

Form the above lemma, and from the construction of ρ0,ε and κ0,ε (see (4.1)) together with the properties
enjoyed by ρ0 and κ0 (see (1.10) and (1.11)), we write down some properties of ρ0,ε and κ0,ε.

Lemma 4.2 (Properties of ρ0,ε and κ0,ε)
The functions ρ0,ε and κ0,ε given by (4.1) , satisfy the following properties:

(P4) ρ0,ε(±1) = ±1, and κ0,ε(±1) = 0;

(P5) (1 + ε)κ0,ε
xx

∣

∣

∂I
= τρ0,ε

x

∣

∣

∂I
and (1 + ε)ρ0,ε

xx

∣

∣

∂I
= τκ0,ε

x

∣

∣

∂I
;

(P6) κ0,ε
x ≥ |ρ0,ε

x | + ε(1 − |τ ||φ′ |)
1 + ε

> |ρ0,ε
x |.

Proof. Straightforward computations. 2

Remark 4.3 (The regularized solution (ρε, κε)). Properties (P4)-(P5)-(P6) of Lemma 4.2 implies condi-
tion (3.1)-(3.2)-(3.3) of Theorem 3.1. In this case, call

(ρε, κε), (4.3)

the solution of (2.2), (2.3) and (2.4), given in Theorem 3.1, with the initial conditions

ρ(x, 0) = ρ0,ε and κ(x, 0) = κ0,ε,

that are given by (4.1).

5 Entropy inequality

Proposition 5.1 (Entropy inequality). Let (ρε, κε) be the regular solution given by (4.3). Define θ±,ε by:

θ±,ε =
κεx ± ρεx

2
, (5.1)

then the quantity S(t) given by:

S(t) =

∫

I

∑

±

θ±,ε(x, t) log θ±,ε(x, t)dx, (5.2)

satisfies for every t ≥ 0:

S(t) ≤ S(0) +
τ2t

2
. (5.3)

Proof. From (3.5), we know that κεx > |ρεx|, hence θ±,ε > 0, and the term log(θ±,ε) is well defined. Also from
the regularity (3.4) of the solution (ρε, κε), we know that θ±,ε(., t) ∈ C(Ī) for all t ≥ 0, hence the term S(t) is
well defined. We differentiate system (2.2) with respect to x, and we write it in terms of θ±,ε, we get:



















θ+,εt =

[(

(θ+,ε − θ−,ε)x
θ+,ε + θ−,ε

− τ

)

θ+,ε + εθ+,εx

]

x

θ−,εt =

[

−
(

(θ+,ε − θ−,ε)x
θ+,ε + θ−,ε

− τ

)

θ−,ε + εθ−,εx

]

x

.

(5.4)

We first remark that:

±
(

(θ+,ε − θ−,ε)x
θ+,ε + θ−,ε

− τ

)

θ±,ε + εθ±,εx =
κεt ± ρεt

2
.
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Since κεt and ρεt are zeros on ∂I × [0,∞), then

(

(θ+,ε − θ−,ε)x
θ+,ε + θ−,ε

− τ

)

θ+,ε + εθ+,εx = −
(

(θ+,ε − θ−,ε)x
θ+,ε + θ−,ε

− τ

)

θ−,ε + εθ−,εx = 0 on ∂I × [0,∞). (5.5)

Using (5.5), we compute for t ≥ 0:

S
′

(t) =
∑

±

∫

I

θ±,εt log(θ±,ε) + θ±,εt ,

=
∑

±

∫

I

∓
(

(θ+,ε − θ−,ε)x
θ+,ε + θ−,ε

− τ

)

θ±,εx − ε

(

θ±,εx

)2

θ±,ε
,

=

∫

I

−
(

θ+,εx − θ−,εx

)2

θ+,ε + θ−,ε
+ τ(θ+,εx − θ−,εx ) − ε

(

(

θ+,εx

)2

θ+,ε
+

(

θ−,εx

)2

θ−,ε

)

,

where we have integrated by parts in the second line. By Young’s Inequality, we have:

∣

∣θ+,εx − θ−,εx

∣

∣ ≤ 1

|τ |

(

θ+,εx − θ−,εx

)2

θ+,ε + θ−,ε
+

|τ |
4

(θ+,ε + θ−,ε),

and hence

S
′

(t) ≤ τ2

4

∫

I

(θ+,ε + θ−,ε).

Moreover, we have from (2.4), that

∫

I

(θ+,ε(., t) + θ−,ε(., t)) =

∫

I

κεx(., t) = κε(1, t) − κε(−1, t) = 2,

and therefore

S
′

(t) ≤ τ2

2
.

Integrating the previous inequality from 0 to t, we get (5.3). 2

An immediate corollary of Proposition 5.1 is the following:

Corollary 5.2 (Special control of κεx)
For all t ≥ 0, we have:

∫

I

κεx(x, t) log(κεx(x, t))dx ≤ S(0) +
τ2t

2
+ 2, (5.6)

where S is given by (5.2).

The proof of Corollary 5.2 comes from the following inequality.

Lemma 5.3 For every x, y > 0, we have:

(x+ y) log(x+ y) ≤ x log(x) + y log(y) + x log(2) + y. (5.7)

Proof. Direct computations. 2

Proof of Corollary 5.2. From (5.1), it follows that

κεx = θ+,ε + θ−,ε > 0.

10



Then we have for t ≥ 0:
∫

I

κεx log κεx =

∫

I

(θ+,ε + θ−,ε) log(θ+,ε + θ−,ε)

≤
∫

I

θ+,ε log(θ+,ε) + θ−,ε log(θ−,ε) + θ+,ε log 2 + θ−,ε

≤
(∫

I

θ+,ε log(θ+,ε) + θ−,ε log(θ−,ε)

)

+ log 2 + 1

≤ S(t) + 2.

Here we have used Lemma 5.3 with x = θ+,ε and y = θ−,ε for the second line, and we have used for the third
line, the fact that

∫

I

θ±,ε =
1

2

∫

I

κεx ± ρεx =
1

2
[κε(1, .) − κε(−1, .)] = 1.

Using (5.3), the result follows. 2

Lemma 5.4 (Control of the modulus of continuity in space)
Let u ∈ C1(I), ux > 0, satisfying

∫

I

ux log(ux) ≤ c1,

for some positive constant c1, then we have for any x, x+ h ∈ I with h > 0:

|u(x+ h) − u(x)| ≤ 2(c1 + 1 + log 2)

| log h| . (5.8)

Proof. Let x, x + h ∈ I.

Step 1. (ux ∈ LΨ(x, x+ h) with Ψ given in (3.9))

We compute

∫ x+h

x

Ψ(ux) ≤
∫

I

(1 + ux) log(1 + ux) − ux

≤
∫

I

ux log(ux) + log 2 ≤ c1 + log 2,

where we have used (5.7) in the second line inequality. Hence from (3.10), we get

‖ux‖LΨ(x,x+h) ≤ c1 + 1 + log 2.

Step 2. (Estimating the modulus of continuity)

It is easy to check that the function 1 lies in LΦ(x, x+h) for Φ given by (3.9), and that ‖1‖LΦ(x,x+h) ≤ − 1
log h .

Therefore, by Hölder inequality (3.11), we obtain:

|u(x+ h) − u(x)| =

∣

∣

∣

∣

∣

∫ x+h

x

ux.1

∣

∣

∣

∣

∣

≤ 2‖ux‖Lψ(x,x+h)‖1‖LΦ(x,x+h) ≤
2(c1 + 1 + log 2)

| log h| ,

and the result follows. 2

Remark 5.5 As mentioned to us by Jérôme Droniou, it is possible to estimate directly the quantity |u(x +

h) − u(x)| ≤ A
| log h| by splitting the integral

∫ x+h

x
ux on the set where ux is bigger and lower than λ, and then

optimizing on the parameter λ.
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6 An interior estimate

In this section, we give an interior estimate for the term

Aε = ρεx − τκε. (6.1)

that will be used in the passage to the limit as ε goes to zero in the regularized system. We start by deriving
an equation satisfied by Aε:

Aεt = (1 + ε)Aεxx −
τρεx
κεx

Aεx. (6.2)

We now show an interior Lp estimate concerning the term Aε. This estimate gives a control on the local Lp

norm of Aε by its global L1 norm over IT , and it will be used in the following section. More precisely, we have
the following lemma.

Lemma 6.1 (Interior Lp estimate). Let 0 < ε < 1 and 1 < p < ∞. Then the quantity Aε given by (6.1)
satisfies:

‖Aε‖p,V ≤ c (‖Aε‖1,IT + 1) , (6.3)

where V is an open subset of IT such that V ⊂⊂ IT , and c = c(p, V ) > 0 is a constant independent of ε.

Proof. Throughout the proof, the term c = c(p, V ) > 0 is a positive constant independent of ε, and it may
vary from line to line. A simple computation gives:

−τ ρ
ε
x

κεx
Aεx = −τ ρ

ε
x

κεx
(ρεxx − τκεx)

= −τ ρ
ε
xρ
ε
xx

κεx
+ τ2ρεx

= −τ(κεt − εκεxx). (6.4)

Define κ̄ε as the unique solution of

{

κ̄εt = (1 + ε)κ̄εxx + κε on IT ,

κ̄ε = 0 on ∂pIT ,
(6.5)

where the existence and uniqueness of this equation is a direct consequence of the Lp theory for parabolic
equations (see for instance [18, Theorem 9.1]) using in particular the fact that κε ∈ C1(IT ). Moreover, from
the regularity (3.4) of κε, we can deduce that κ̄ε ∈ C∞(IT ). Let

Āε = −τ(κ̄εt − εκ̄εxx), with aε = Aε − Āε.

We calculate:

Āεt = −τ [κ̄εtt − εκ̄εxxt]

= −τ [(1 + ε)κ̄εxxt + κεt − ε((1 + ε)κ̄εxxxx + κεxx)]

= −τ(1 + ε)(κ̄εxxt − εκ̄εxxxx) − τ(κεt − εκεxx)

= (1 + ε)Āxx −
τρεx
κεx

Aεx,

where for the first two line, we have used (6.5), and for the last line, we have used (6.4). In this case, we obtain:

aεt = Aεt − Āεt

= (1 + ε)Aεxx −
τρεx
κεx

Aεx − (1 + ε)Āxx +
τρεx
κεx

Aεx

= (1 + ε)(Aεxx − Āεxx) = (1 + ε)aεxx,

12



where for the first line, we have used the equation (6.2). We apply Lemma 3.5 to the function aε, after doing

parabolic rescaling of the form ãε(x, t) = aε
(

x, t
1+ε

)

, we get:

‖aε‖p,V ≤ c(1 + ε)1−
1
p ‖aε‖1,IT ,

and since 0 < ε < 1, we finally obtain
‖aε‖p,V ≤ c‖aε‖1,IT .

From the definition of aε, and the last inequality, we finally deduce that:

‖Aε‖p,V ≤ c(‖Aε‖1,IT + ‖Āε‖p,IT ). (6.6)

In order to complete the proof, we need to control the term ‖Āε‖p,IT in (6.6). We use the equation (6.5)
satisfied by κ̄ε to obtain:

‖Āε‖p,IT = τ‖κ̄εt − εκ̄εxx‖p,IT
= τ‖κ̄εxx + κε‖p,IT
≤ c(‖κ̄εxx‖p,IT + ‖κε‖p,IT ). (6.7)

The Lp estimates for parabolic equations (see [16, Lemma 2.7]) applied to (6.5) gives:

‖κ̄εxx‖p,IT ≤ c

1 + ε
‖κε‖p,IT ,

then (6.7), together with the fact that 0 ≤ κε ≤ 1 (see Remark 3.3), implies that:

‖Āε‖p,IT ≤ c‖κε‖p,IT ≤ cT 1/p,

hence the result follows. 2

7 Proof of the main theorem

At this stage, we are ready to present the proof of our main result (Theorem 1.1). This depends essentially on
the passage to the limit in the family of solutions (ρε, κε) of system (2.2). Since κεx 6= 0, we multiply the first
equation of (2.2) by κεx and we rewrite system (2.2) in terms of Aε, we obtain:

{

κεtκ
ε
x = εκεxκ

ε
xx + ρεxA

ε
x on IT

ρεt = ερεxx +Aεx on IT .
(7.1)

We will pass to the limit in the framework of viscosity solutions for the first equation of (7.1), and in the
distributional sense for the second equation. We start with the following proposition.

Proposition 7.1 (Local uniform convergence)
The sequences (ρε)ε, (ρεx)ε, (κε)ε, (Aε)ε and (Aεx)ε converge (up to extraction of a subsequence) locally uniformly
in IT as ε goes to zero.

Proof. Let V be an open compactly contained subset of IT . The constants that will appear in the proof are
all independent of ε. However, they may depend on other fixed parameters including V . The idea is to give an
ε-uniform control of the modulus of continuity in space and in time of the quantities mentioned in Proposition
(7.1), which gives the local uniform convergence. The ε-uniform control on the space modulus of continuity
will be derived from the Corollary 5.2 and Lemma 5.4, while the ε-uniform control on the time modulus of
continuity will be derived from Lemma 3.4. The proof is divided into five steps.

Step 1. (Convergence of Aε and Aεx)

13



From (3.5), we know that
∥

∥

∥

ρεx
κεx

∥

∥

∥

∞
≤ 1. We apply the interior Lp, p > 1, estimates for parabolic equations (see

for instance [19, Theorem 7.13, page 172]) to the term Aε satisfying (6.2), we obtain:

‖Aε‖W 2,1
p (V ) ≤ c2‖Aε‖p,V ′ , (7.2)

where V ′ is any open subset of IT satisfying V ⊂⊂ V ′ ⊂⊂ IT . The constant c2 = c2(p, τ, V, V
′) can be

chosen independent of ε first by applying a parabolic rescaling of (6.2), and then using the fact that the factor
multiplied by Aεxx in (6.2) satisfying 1 ≤ 1 + ε ≤ 2. At this point, we apply Lemma 6.1 for Aε on V ′, we get:

‖Aε‖p,V ′ ≤ c3(‖Aε‖1,IT + 1), (7.3)

and hence the above two equations (7.2) and (7.3) give:

‖Aε‖W 2,1
p (V ) ≤ c4(‖Aε‖1,IT + 1). (7.4)

We estimate the right hand side of (7.4) in the following way:

‖Aε‖1,IT =

∫

IT

|ρεx − τκε|

≤
∫

IT

κεx + τ |κε|

≤ (2 + τ)T,

where we have used the fact that |ρεx| < κεx (see (3.5) of Theorem 3.1) in the second line, and the fact that
0 ≤ |κε| ≤ 1 (see Remark 3.3) in the last line. Therefore, inequality (7.4) implies:

‖Aε‖W 2,1
p (V ) ≤ c5, 1 < p <∞. (7.5)

We use the above inequality for p > 3. In this case, the Sobolev embedding in Hölder spaces (see [16, Lemma
2.8]) gives:

W 2,1
p (V ) →֒ C1+α, 1+α

2 (V ), α = 1 − 3/p

and hence (7.5) implies:
‖Aε‖

C1+α,
1+α

2 (V )
≤ c6, (7.6)

which guarantees the equicontinuity and the equiboundedness of (Aε)ε and (Aεx)ε. By the Arzela-Ascoli The-
orem (see for instance [3]), we finally obtain

Aε −→ A and Aεx −→ Ax, (7.7)

up to a subsequence, uniformly on V as ε→ 0.

Step 2. (Convergence of κε)

We control the modulus of continuity of κε in space and in time, locally uniformly in ε.

Step 2.1. (Control of the modulus of continuity in time)

The first equation of (7.1) gives:

κεt = εκεxx +
ρεx
κεx
Aεx,

and hence, using the fact that
∥

∥

∥

ρεx
κεx

∥

∥

∥

∞
≤ 1, together with (7.6), we get:

‖κεt − εκεxx‖∞,V ≤
∥

∥

∥

∥

ρεx
κεx

∥

∥

∥

∥

∞,V

‖Ax‖∞,V ≤ c6. (7.8)

14



Also, by (3.6), we have:
‖κε‖∞,V ≤ 1.

This uniform bound on κε together with (7.8) permit to use Lemma 3.4 to conclude that

|κε(x, t) − κε(x, t+ h)| ≤ c7h
β, (x, t), (x, t + h) ∈ V, 0 < β < 1, (7.9)

which controls the modulus of continuity of κε with respect to t uniformly in ε. We now move to control the
modulus of continuity in space.

Step 2.2 (An ε-uniform bound on S(0))

Recall the definition (5.2) of S(t):

S(t) =

∫

I

∑

±

θ±,ε(x, t) log θ±,ε(x, t)dx,

with

θ±,ε =
κεx ± ρεx

2
.

Hence

S(0) =

∫

I

κ0,ε
x + ρ0,ε

x

2
log

(

κ0,ε
x + ρ0,ε

x

2

)

+

∫

I

κ0,ε
x − ρ0,ε

x

2
log

(

κ0,ε
x − ρ0,ε

x

2

)

.

Using the elementary identities x log x ≤ x2 and (x± y)2 ≤ 2(x2 + y2), we compute:

S(0) ≤
∫

I

(

κ0,ε
x + ρ0,ε

x

2

)2

+

∫

I

(

κ0,ε
x − ρ0,ε

x

2

)2

≤ ‖ρ0,ε
x ‖2

2,I + ‖κ0,ε
x ‖2

2,I . (7.10)

From (4.1), we know that:

|ρ0,ε
x | =

∣

∣

∣

∣

∣

ρ0
x + ετφ

′

(1 + ε)2

∣

∣

∣

∣

∣

≤ |ρ0
x| + ε

(1 + ε)2
≤ |ρ0

x| + 1,

and

|κ0,ε
x | =

∣

∣

∣

∣

κ0
x + ε

1 + ε

∣

∣

∣

∣

≤ |κ0
x| + 1.

Using the above two inequalities into (7.10), we deduce that:

S(0) ≤ 2(‖ρ0
x‖2

2,I + ‖κ0
x‖2

2,I + 2).

Step 2.3. (Control of the modulus of continuity in space and conclusion)

We use the uniform bound obtained for S(0) in Step 2.1, together with the special control (5.6) of κεx given in
Corollary 5.2, we get for all 0 ≤ t ≤ T :

∫

I

κεx(x, t) log(κεx(x, t))dx ≤ 2(‖ρ0
x‖2

2,I + ‖κ0
x‖2

2,I + 2) +
τ2T

2
+ 2,

therefore
∫

I

κεx(x, t) log(κεx(x, t))dx ≤ c8, ∀ 0 ≤ t ≤ T. (7.11)

Inequality (7.11) permits to use Lemma 5.4, hence we obtain:

|κε(x + h, t) − κε(x, t)| ≤ c9
| log h| , (x, t), (x + h, t) ∈ IT , (7.12)
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Inequalities (7.9) and (7.12) give the equicontinuity of the sequence (κε)ε on V , and again by the Arzela-Ascoli
Theorem, we get:

κε → κ, (7.13)

up to a subsequence, uniformly on V as ε→ 0.

Step 3. (Convergence of ρε)

As in step 2, we control the modulus of continuity of ρε in space and in time, locally uniformly with respect to ε.

Step 3.1. (Control of the modulus of continuity in time)

The second equation of (7.1) gives:
ρεt − ερεxx = Aεx,

hence, from (7.6), we deduce that:
‖ρεt − ερεxx‖∞,V ≤ c6,

and from (3.6), we have:
‖ρε‖∞,V ≤ 1.

The above two inequalities permit to use Lemma 3.4, we finally get:

|ρε(x, t) − ρε(x, t+ h)| ≤ c7h
β, (x, t), (x, t + h) ∈ V, 0 < β < 1, (7.14)

which controls the modulus of continuity of ρε with respect to t uniformly in ε.

Step 3.2. (Control of the modulus of continuity in space and conclusion)

The control of the space modulus of continuity is based on the following observation. From (3.5), we know
that |ρεx| ≤ κεx on IT . Using this inequality, we get, for every (x, t), (x + h, t) ∈ IT :

|ρε(x+ h, t) − ρε(x, t)| ≤
∫ x+h

x

|ρεx(y, t)|dy ≤
∫ x+h

x

κεx(y, t)dy ≤ |κε(x+ h, t) − κε(x, t)|.

Inequality (7.12) gives immediately that:

|ρε(x + h, t) − ρε(x, t)| ≤ c9
| log h| , (x, t), (x + h, t) ∈ IT . (7.15)

From (7.14) and (7.15), we deduce that:
ρε → ρ, (7.16)

up to a subsequence, uniformly on V as ε→ 0.

Step 4. (Convergence of ρεx and conclusion)

In fact, this follows from Step 1, Step 2, and the fact that

ρεx = Aε + τκε → ρx, (7.17)

uniformly on V as ε→ 0. In this case, we also deduce that

A = ρx − τκ.

The proof of Proposition 7.1 is done. 2

We now move to the proof of the main result.

Proof of Theorem 1.1. We first remark that κε is a viscosity solution of the first equation of (7.1):

κεtκ
ε
x − εκεxκ

ε
xx − ρεxA

ε
x = 0 on IT . (7.18)
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Remark 7.2 The equation (7.18) can be viewed as the following Hamilton-Jacobi equation of second order:

Hε(X,Dκε, D2κε) = 0, X = (x, t) ∈ IT (7.19)

with

Dκε = (κεx, κ
ε
t ) and D2κε =

(

κεxx κεxt
κεtx κεtt

)

,

where Hε is the Hamiltonian function given by:

Hε : IT × R
2 ×M2×2

sym −→ R

(X, p,M) 7−→ Hε(X, p,M) = p1p2 − εp1M11 − ρεx(X)Aεx(X),
(7.20)

p = (p1, p2) and M = (Mij)i,j=1,2.

From (7.7) and (7.17), we deduce that (Hε)ε converges locally uniformly in IT × R
2 ×M2×2

sym to the function
H given by:

H : IT × R
2 ×M2×2

sym −→ R

(X, p,M) 7−→ H(X, p,M) = p1p2 − ρx(X)Ax(X).
(7.21)

This, together with the local uniform convergence of κε to κ (see 7.13), and the fact that κε is a viscosity
solution of (7.18), permit to use the stability of viscosity solutions (see Theorem 3.7), which proves that κ is a
viscosity solution of

H(X,Dκ,D2κ) = κtκx − ρxAx = 0 in IT . (7.22)

We now pass to the limit ε→ 0 in the second equation of (7.1), we obtain

ρt = Ax ∈ C(IT ) in D′(IT ). (7.23)

From (7.22) and (7.23), we get:

1. κ is a viscosity solution of κtκx = ρtρx in IT ;

2. ρ is a distributional solution of ρt = ρxx − τκx in IT .

Inequality (1.12) can be easily obtained by testing against a nonnegative function φ ∈ C∞
0 (IT ). Finally, let us

show how to retrieve the initial and boundary conditions. Indeed, the local uniform convergence (ρε, κε) →
(ρ, κ), together with the uniform control of the modulus of continuity of these solutions:

• with respect to x near ∂I × [0, T ] by (7.12);

• with respect to t near I × {t = 0}, away from 0 and 1 by (7.9),

and the fact that κ0,ε → κ0, ρ0,ε → ρ0 uniformly in Ī, show that (ρ, κ) ∈ (C(IT ))2, so the initial and boundary
conditions are satisfied pointwisely, and the proof of the main result is done. 2

8 Application: simulations for the evolution of elastoviscoplastic ma-

terials

Motivated by the simulation of the elastoviscoplastic behavior that are formulated by the model of Groma,
Csikor and Zaiser [12], this section is devoted to write down the equations of the displacement vector u inside
the crystal when a constant exterior shear stress τ (supposed to be positive τ > 0 in this section) is applied
on the boundary walls (see Figure 1). Also, at the end of this section, we present some numerical simulations
revealing the evolution of an elastoviscoplastic crystal. We consider a 2-dimensional crystal (Figure 1) with
the displacement vector:

u = (u1, u2) : R
2 7−→ R

2.
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We use indifferently the following notations for the coordinates: x = x1 and y = x2. By letting (e1, e2) the
corresponding orthonormal basis, we define the total strain by:

εij(u) =
1

2
(∂jui + ∂iuj) with ∂jui =

∂ui
∂xj

, i, j = 1, 2.

This total strain could be decomposed into two parts as follows:

εij(u) = εeij(u) + εpij , (8.1)

where εe(u) is the elastic strain and εp is the plastic strain which is given by:

εpij = ρε0ij , (8.2)

with

ε0ij =
1

2
(1 − δij),

in the special case of a single slip system where dislocations move following the Burgers vector ~b = e1 (δij is
the usual Kronecker symbol). Here ρ is the resolved plastic strain. The stress field σ inside the crystal is given
by:

σij = 2µεeij(u) + λδij





∑

k=1,2

εekk(u)



 , (8.3)

with λ, µ > 0 are the constants of Lamé coefficients of the crystal that are assumed (for simplification) to be
isotropic. This stress field σ has to satisfy the equation of elasticity:

∑

j=1,2

∂σij
∂xj

= 0. (8.4)

Here, as we have already mentioned in the introduction, we suppose that the distribution of dislocations and
the displacement are both invariant by translation in the y-direction. As a conclusion, the functions ρ(x, t),
κ(x, t) and u(x, t) satisfy the following coupled system:































































∑

j=1,2

∂σij
∂xj

= 0 on I × (0,∞)

σij = 2µεeij(u) + λδij





∑

k=1,2

εekk(u)



 on I × (0,∞)

εeij =
1

2
(∂jui + ∂iuj) − ρε0ij on I × (0,∞)

κtκx = ρtρx on I × (0,∞)

ρt = ρxx − τκx on I × (0,∞),

(8.5)

with the boundary conditions (taking into account the discussion in Subsection 1.2):











κ(x, .) = x for x ∈ ∂I

ρ(x, .) = 0 for x ∈ ∂I

σ · n = ±τe2, n = ±e1 for x = ±1,

(8.6)

where τ is the constant shear stress field applied on the walls. Taking into account the fact that ∂2ρ = ∂2u = 0,
equation (8.4) can be reformulated as:

{

(λ+ 2µ)∂11u1 = 0

µ∂11u2 = µ∂1ρ,
(8.7)
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and equation (8.3) gives:

σ = µ(∂1u2 − ρ)

(

0 1
1 0

)

+ ∂1u1

(

λ+ 2µ 0
0 λ

)

. (8.8)

Calculation of u. In this paragraph we drop the time dependence. We first calculate the value of the
displacement u on the boundary walls. Taking into account the boundary condition (8.6), we get:

σ =

(

0 τ
τ a

)

on ∂I, (8.9)

where a is an unknown coefficient. Using (8.8) and (8.9), we find that a = 0, and we derive the following
conditions on the boundary:

{

∂1u1 = 0 on ∂I,

µ(∂1u2 − ρ) = τ on ∂I.
(8.10)

Equation (8.7) leads to the following two equations inside I:

{

∂1u1 = 0 on I

µ(∂1u2 − ρ) = τ on I.
(8.11)

Combining (8.11) with the following condition at x1 = 0:

u1(0) = u2(0) = 0,

finally lead to:






u1(x1) = 0, x1 ∈ I

u2(x1) =
τ

µ
x1 +

∫ x1

0

ρ(x)dx, x1 ∈ I.
(8.12)

Formal computation of the long time solution of system (1.3). All computations that will be done
here are formal. We seek to calculate long time solutions for system (1.3). For this reason, we first calculate
the long time solution (stationary solution, κεt = ρεt = 0) of the regularized ε-system (2.2), and then we pass
to the limit ε→ 0. Doing some computations, the long time (t → ∞) solution for the ε-system is given by:

ρε(x) = B

(

cosh

(

τx

1 + ε

)

− cosh

(

τ

1 + ε

))

and κε(x) = B sinh

(

τx

1 + ε

)

, (8.13)

with B = 1/ sinh
(

τ
1+ε

)

. Passing (again formally) to the limit as ε → 0 in (8.13), and using (8.12), we can

compute the long time displacement u2 inside the material. In fact, we have:

u2(x1) =

(

τ

µ
− cosh τ

sinh τ

)

x1 +
sinh(τx1)

τ sinh τ
for x1 ∈ I. (8.14)

Therefore, the displacement given in (8.14) seems to be a good candidate for the possible long time limit of the
displacement u2, solution of (8.5) and (8.6). This is a conjecture and remains an open problem. In the next
paragraph, we will do some numerical simulations of solutions to system (8.5) and (8.6) in order to compare
our numerical results with the above candidate (8.14).

Numerical simulations. The displacement u is numerically computed by discretizing system (1.3) using an
upwind scheme. The space and time steps in this scheme are well chosen in order to satisfy a CFL condition
(for the details, see [14, Appendix]). We choose the values µ = 1.6, τ = 0.4 and the initial conditions κ0(x) = x
and ρ0(x) = 0. In Figure 2, we show successively the initial state of the crystal at time t = 0 without any
applied stress, then the instantaneous (elastic) deformation of the crystal when we apply the shear stress τ > 0
at time t = 0+. The deformation of the crystal evolves in time and finally converges numerically to some
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a) t = 0− b) t = 0+ c) t = +∞

Figure 2: Deformation of a slab for model (1.3).

particular deformation which is shown on the last picture after a very long time. This kind of behavior is
called elastoviscoplasticity in mechanics. Moreover, on the last picture of Figure 2, we observe the presence of

boundary layer deformations. This effect is directly related to the introduction of the back stress τb =
θ+x−θ−x
θ++θ−

in the model (1.1).

In the last image of Figure 2, the long time displacement u2 inside the material is coherent with our formal
computation for the term u2 (see equation (8.14)). See also Figure 3 below where we have shown both the
analytical solution (given by (8.14)) and the numerical solution (given by (8.12) for the discrete solution (ρ, κ)
associated to system (1.3)).
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−0.05

0
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The analytical solution
The numerical solution

Figure 3: Analytical and numerical solutions (long time behavior).

9 Appendix

A1. Proof of Lemma 3.4 (control of the modulus of continuity in time)

Let V be a compactly contained subset of IT . Throughout the proof, the constant c may take several values
but only depending on V . Since V ⊂⊂ IT , then there is a rectangular cube of the form

Q = (x1, x2) × (t1, t2),

such that V ⊂⊂ Q ⊂⊂ IT . In this case, there exists a constant ε0, also depending on V such that for any

0 < ε < ε0,
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and any (x, t) ∈ V , we have:
(x− 2

√
ε, x+ 2

√
ε) × {t} ⊂ Q.

Moreover, for any (x, t), (x, t + h) ∈ V , we can always find two intervals I and J such that

(t, t+ h) ⊂ I ⊂⊂ J , with {x} × I ⊂ Q and {x} × J ⊂ Q.

Let us indicate that these intervals might have different lengths depending on h and V but we always have

|J |, |I| ≤ |t2 − t1|.

Consider the following rescaling of the function uε defined by:

ũε(x, t) = uε(
√
εx, t). (9.1)

This function satisfies
ũεt = ũεxx + f̃ε, (x, t) ∈ (0, 1/

√
ε) × (0, T ),

where f̃ε(x, t) = fε(
√
εx, t). Take (x0, t0), (x0, t0 + h) in V , and let

Q1 = (x0 −
√
ε, x0 +

√
ε) × I and Q2 = (x0 − 2

√
ε, x0 + 2

√
ε) × J .

These two cylinders are transformed by the above rescaling into

Q̃1 =

(

x0√
ε
− 1,

x0√
ε

+ 1

)

× I and Q̃2 =

(

x0√
ε
− 2,

x0√
ε

+ 2

)

× J .

We apply the interior Lp, p > 3, estimates for parabolic equations (see for instance [19, Theorem 7.13, page
172]) to the function ũε over the domains Q̃1 ⊂⊂ Q̃2, we get

‖ũε‖W 2,1
p (Q̃1) ≤ c(‖ũε‖p,Q̃2

+ ‖f̃ε‖p,Q̃2
). (9.2)

Using the local ε-uniform boundedness of (uε)ε, and (fε)ε, we get:

‖ũε‖p
Lp(Q̃2)

≤ c and ‖f̃ε‖p
Lp(Q̃2)

≤ c.

hence, inequality (9.2) implies:
‖ũε‖W 2,1

p (Q̃1) ≤ c. (9.3)

We use the Sobolev embedding in Hölder spaces (see for instance [16, Lemma 2.8]):

W 2,1
p (Q̃1) →֒ C1+α 1+α

2 (Q̃1), p > 3, α = 1 − 3/p,

to obtain, from (9.3), that:
‖ũε‖

C1+α
1+α

2 (Q̃1)
≤ c,

and hence
|ũε(x0/

√
ε, t0 + h) − ũε(x0/

√
ε, t0)|

h
1+α

2

≤ c,

then from (9.1),
|uε(x0, t0 + h) − uε(x0, t0)|

h
1+α

2

≤ c.

Choosing β = 1+α
2 we get the desired result. 2

A2. Proof of Lemma 3.5 (An interior estimate for the heat equation)
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Recall that a is a solution of the heat equation on IT ,

at = axx.

The proof of lemma 3.5 is a direct computation using a mean value formula for solutions of the heat equations.
Usually, basic mean value formulae of the solution of the heat equation are expressed through unbounded
kernels (see for example [7, Theorem 1]), where a can be expressed as:

a(x0, t0) = (4πr2)−1/2

∫

Ωr(x0,t0)

a(x, t)
(x0 − x)2

4(t0 − t)2
dxdt. (9.4)

Here, (x0, t0) ∈ IT , (x, t) ∈ Ωr(X0), and r > 0 small enough in order to ensure that the parabolic ball of radius
r:

Ωr(x0, t0) =

{

(x, t); t0 − r2 < t < t0, (x− x0)
2 < 2(t0 − t) log

(

r2

t0 − t

)}

⊂ IT . (9.5)

In our case, we need a mean value formula similar to (9.4) but with a bounded kernel on Ωr(x0, t0). In [10],
the authors have given such a representation formula for the solution of the heat equation. The following is a
direct corollary of [10, Theorem 3.1]):

Corollary 9.1 (Mean value formula with bounded kernels, [10, Theorem 3.1])
Let u ∈ C2(D) be a solution of the heat equation:

ut = uxx on D,

where D is an open subset of R
2 containing the modified unit parabolic ball Ω′

r(x0, t0), r > 0, with

Ω′
r(x0, t0) =

{

(x, t); t0 − r2 < t < t0, |x− x0|2 < 8(t0 − t) log

(

r2

t0 − t

)}

.

Then we have:

u(x0, t0) =
c̄

|Ω′
r(x0, t0)|

∫

Ω′

r(x0,t0)

u(x, t)E

(

x− x0

r
,
t− t0
r2

)

dxdt, (9.6)

where c̄ > 0, |Ω′
r(x0, t0)| = c̄r3, and the kernel E satisfies:

‖E(x, t)‖∞,Ω′

1
(0,0) ≤ c, (9.7)

and c > 0 is a fixed positive constant.

Remark 9.2 In the above corollary, which is an application of [10, Theorem 3.1] in the case m = 3, an explicit
expression of E can be given by:

E(x, t) =
ω3

16π2

(

−x2 + 8t log(−t)
)3/2

[

x2

4t2
+

3(−x2 + 8t log(−t))
20t2

]

,

where ω3 is the volume of the unit ball in R
3. For a more general expression of E, we send the reader to [10,

Equality (3.6) of Theorem 3.1].
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