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Dynamics of Electron-Monopole System 1 

Yoichi Kazama 

Randall Laboratory of Physics, The University of Michigan, 
Ann Arbor, Michigan 48109 

1. INTRODUCTION 

In this paper I would like to discuss the dynamics of the electron- 
monopole system 2 (Kazama et al., 1977; Kazama and Yang, 1977) in U(1) 
gauge theory, namely, the scattering and the bound-state properties of this 
system, within the context of un-second-quantized relativistic quantum 
mechanics. 

To begin the discussion, I must describe the two types of essential 
difficulties associated with this fascinating yet somewhat peculiar system, 
difficulties that have plagued physicists for a long time. We must resolve these 
difficulties in order to have a consistent theory of  an electron-monopole 
system. 

The first and the best-known difficulty is the so-called Dirac string 
(Dirac, 1931, 1948), i.e., the string of  singularities of the potential A,(x) 
describing the field of a fixed monopole. Although the space around the 
monopole is spherically symmetric and without singularities, one can easily 
show that no singularity-free potential exists for this field. Take a sphere 
around a monopole and compute the total outward flux through it by the 
sum of the two line integrals of Au going around the equator in the opposite 
directions. I f  A, is nonsingular, Stokes' theorem guarantees that this is a 
valid way of computing the flux. But one immediately runs into contradiction 
since sum of  such integrals is clearly zero, not 4,rg as it should be (g is the 
strength of the monopole). Thus the assumption fails and there must be a 

1 Work supported by the Department of Energy. 
2 In this talk I shall use the word "electron" to mean a charged spin-�89 Dirac particle for 

simplicity. To describe a physical etectron-monopole system, one would need a 
quantum electrodynamics with monopoles, which at the present time has not been 
constructed satisfactorily. 
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Difficulty: string singularity 

Difficulty appears in: electron's angular 
wave function 

Resolution" idea of section 

Lipkin-Weisberger-Peshkin difficulty 

electron's radial wave function at the 
origin 

introduction of infinitesimal extra 
magnetic moment of electron 

Fig. 1. Difficulties associated with the electron-monopole system and their resolution 

singularity on that sphere. This happens for every sphere, so we have at least 
a string of singularities. I f  you have a charged particle in this field, this shows 
up in the angular part of  its wave function. 

The second type of difficulty occurs when you allow an electron to pass 
through the monopole. As is well known, this system possesses an extra piece 
- e g f  for the angular momentum, which may be interpreted as the field 
angular momentum (f here is the unit vector pointing to the electron from 
the monopole). Thus as the charge passes through the pole, this quantity 
suddenly changes sign, or to put it another way, this piece is undefined when 
they are on top of  one another. 

The above is a classical discussion. Quantum mechanically it was noted, 
in the study of  the nonrelativistic Schr6dinger equation, by Lipkin et al. (1969) 
as the failure of  the Jacobi identity at the origin among the components of  the 
momentum operator p - eA ,  viz., 

~, =- p ,  - eA~ [~'1, [~r2, ~ra]] + cyclic = -4rreg3a(r) (1.1) 

This means that we will have trouble if the radial wave function of the 
electron does not vanish at the origin. Fortunately, for the nonrelativistic case 
this did not happen. But as we shall see later in the relativistic treatment of the 
system the situation actually prevails. 

To sum up, there are two types of  difficulties, namely, the string singu- 
larities and the Lipkin-Weisberger-Peshkin difficulty, which show up, 
respectively, in the angular and the radial wave functions of the charged 
particle. 

These difficulties will be naturally resolved in the discussion to follow. 
The string singularities will be disposed of by the concept of the wave function 
as a section borrowed from the mathematics of fiber bundles, whereas the 
Lipkin-Weisberger-Peshkin difficulty will be resolved by the introduction of 
an infinitesimal extra magnetic moment of  the electron (see Figure 1). 

2. BRIEF DESCRIPTION OF THE IDEA OF A SECTION 

First let me briefly discuss the resolution due to Wu and Yang (1975, 
1976) of the first and the main difficulty. What Wu and Yang observed is the 
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R8 ~ Rab 

Rb 

Fig. 2. Angular regions R~, Rb, and R~b for the space around a monopole of strength g. 

fact that the string singularity is just like a coordinate singularity which you 
encounter, for example, in trying to coordinatize a sphere by a single coordi- 
nate system. It arises from the global topology of a sphere. This situation, 
however, is quite familiar to mathematicians and the resolution is simply to 
cover the sphere or any given manifold by a sufficient number of coordinate 
patches with smooth coordinate transformations in the overlaps. All the 
global topological properties are now reflected in the nature of these trans- 
formations, i.e., how the coordinate patches are glued together. 

This whole scheme fits into our situation very well. Consider dividing 
the space around the monopole into two overlapping regions R~ and Rb 
(see Figure 2). In R~ we define 

1 - cos 0 
(A~)~ = g r sin 0 ~ (2.1) 

This potential gives the correct magnetic field 

f 
H = g ~ (2.2) 

and is completely regular in R~. Its only singularity is along the negative z 
axis. In Rb we define a different potential, 

(1 + cos 0) 
(A,)b = --g rs in 0 ~0 (2.3) 

which also gives the same magnetic field (2.2). This is completely regular in 
Ro with its only singularity along the positive z axis. In the overlap, called 
R~b, the difference is curl-less, hence a gradient, i.e., a gauge transformation. 
It is easily checked that 

i 
(Au)~ = (A~,)b + 2gOu~o = (A~,)b + e S~bO~'S~I (2.4) 

where 
Sa~ = e 2te~ (2.5) 

Now if you have a charged particle in this field, its wave function ~b must 
also undergo a gauge transformation to preserve local gauge invariance, i.e., 

~ba = Sao~bb = e2'eg~bb (2.6) 
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Therefore the wave function must also be defined separately in regions R~ and 
Rb. Notice that in (2.6) the single-valuedness of ~b implies the single-valuedness 
of  S, which in turn implies the famous Dirac quantization condition 

2eg = integer (2.7) 

Summarizing, (a) potential A. = ((Au)~, (A.)b) as a pair is completely free of  
singularities and (b) the wave function ~b of  the charged particle must also be 
defined in R~ and Rb separately so that in R~b, ~b~ = S~b~b b. Such a function is 
called a section in the mathematics of  fiber bundles. We have thus successfully 
resolved the first difficulty with the aid of the concept of  the wave function 
as a section. 

3. EIGENSECTIONS OF THE ANGULAR M O M E N T U M  
O P E R A T O R - - T H E  M O N O P O L E  HARMONICS 

In analyzing the wave equation of  a charged particle in the presence of a 
monopole, one naturally needs eigenfunetions or rather eigensections of the 
angular momentum operator, which we shall call monopole harmonics 
Yq,l,m(O, ~o) (Wu and Yang, 1976). They are generalizations of the ordinary 
spherical harmonics and carry an extra half-integer index q = eg that 
specifies how the wave functions defined in the two regions R~ and Rb are 
glued together. A nonvanishing q, therefore, characterizes a nontrivial 
topology. 

A. Spinless Case. If  the charged particle is spinless, the angular 
momentum operator is of  the form 

L = r  x ( p -  e A ) - q P  (3.1) 

Notice that L is defined in Ra and Rb separately due to the presence of  A. We 
define the monopole harmonics by 

L2Ya,t,m = l(l  + 1)Yq,~,m'~i n 
L~Yq,z,m mYq,z,m J both R~ and Rb (3.2) 

The explicit form in R~ is given by 

2~[21 + 1 (l - m)! (_/+__ rn)!] 1'2 
(Yo,~,m)~ = [" "4--~- ( l + q ) !  (l__-~.vJ 

x (1 - x)"/z(1 + x)'/zP~'a(x)e t<m+~>o (3.3) 

where ~ = - q - m ,  f l = q - m ,  n = I +  rn, x =  cos 0, and Pff." is the 
Jacobi polynomial given by 

d ~ P~'a(x) = (-1)~(1 - x)-"(1 + x ) - '  ~-~ [(1 - x)"+~(1 + x) '+~] (3.4) 
2nn[ 
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l here takes the values I q 1, I q I + 1 . . . .  , etc., due to the presence of the field 
angular momentum. In Rb, 

( Y~,,,m)b = e-2'q~( Yq,t,r,),, (3.5) 

The most important properties of Y~,~,m are: 

(i) Yq,~,,~ as a section is everywhere analytic; 
(ii) Yq,z,m for any fixed q form a complete orthonormal system, i.e., one 

can expand any continuous section belonging to class q in terms of Ya,~,m- 

B. Spin-~ Case. Generalization to the case for a particle with a spin-�89 
is straightforward. The total angular momentum is now given by 

J = L + �89 (3.6) 

For each valuej of the total angular momentum, one has two two-component 
natural eigensections ~0 (1) and c; ~2), except for the lowest angular momentum 
case, for which there is only one. Explicitly, for l = j - �89 

~1) = F [J + m~ 1/2 

,.. i t - V -  / I [ j-  m~1'2 J = I qt + �89 I ql + I , . . .  (3.7a) 
L\ 2j ] r.,j-l/~,m+l/~ 

f o r : = j + � 8 9  

~o~2 , ( j -  m +  1) 1/2 - 
s~ = - 2j + 2 Yq,s+~12,m-l/2 

J =  I q l -  �89 Iql + �89 . . . .  (3.7b) 
( j +  m +  1) 1/2 

2j + 2 Yq,t+112,m+112 

Since the state with the lowest possible angular momentum (j  = I ql - �89 
stands out, we give it a name 

~<2> (3.8) 7/m ~ '#'lql- 112,m 

Again one can prove that (c; ~1), 9~2)} and ~Tm form an everywhere analytic 
complete orthonormal system of two-component eigensections. 

4. SOLUTIONS OF THE DIRAC EQUATION IN THE 
PRESENCE OF A MONOPOLE 

Having successfully resolved the first difficulty and with angular eigen- 
sections at hand, let us discuss the scattering of an electron off a fixed magnetic 
monopole. (In classical mechanics it Was first discussed by Poincar6 (1896). 
In the context of nonrelativistic quantum mechanics, it was first discussed by 
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Banderet (1946). See also Harish-Chandra (1948), A. S. Goldhaber (1965), 
Schwinger et al. (1976), and Boulware et al. (1976).) In the course of the 
discussion we shall encounter the second difficulty. 

The wave equation for stationary states is of a familiar form: 

[ - E + m  , ~ . ~ - e A )  b = 0 ]  (4.1) 
o . ( p - -  eA) - E - m  

We shall, as usual, decompose ~ into partial waves and then solve the radial 
equations. This may be done very simply by noting that the operators o. P and 
o .  (p - eA) are still rotation invariant even in the presence of a monopole. 
This means that these operators cannot change the values o f j  and m and hence 
can at most mix two basis eigensections 9(~) and 9(2) for given j and m, i.e., 
they have 2 x 2 matrix representations in this basis. It turns out that it is 
extremely convenient to define a new basis (1) and (2) by a spinor rotation, 
viz., 

with sin c~ = q/(j + �89 
In this basis 

~Jm,  ~ j m ]  ~ k ~ J m ,  (4.2) 

(a-f)(sr sr = (~:~,  se~.~)(- cry) (4 .3)  

i.e., a. P is precisely -crx, just like the familiar hydrogen atom case. Rewriting 
this as 

o ' f (~ :(1) -T- s r = _ (s r -T- s r (4.4) 

one finds that the simple combinations (1) _y_ (2) are the eigenstates of a. P, 
which is the helicity operator for large r for the outgoing wave, with eigen- 
values + 1. For the state ~Tm with the lowest angular momentum, it is even 
simpler since there is no other state to mix into and one finds 

a'P~m = T~ 7/m (4.5) 

Analysis is entirely similar for the operator a. (p - cA) with the result 

a.(p-eA)f(r),<y~= i(8~ + 1 - t~) f ( r ) ~ : ~ r  

~.(p - eA)g(r)~ = i~8r + 1 +/~] f (r )~  (4.6) 
\ r ] 

o. (p - eA)h(r)~m = "i "~[ 

where ~ = [(j + �89 _ q211/2. 
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With (4.4), (4.5), and (4.6) one can immediately write down the radial 
equations and solve them exactly. There are three types of solutions, which 
may be summarized as follows: 

(i) j 1> Iql + �89 

Type (1) , t , m  = wJr~ [ . g ( r ) ~ J  

1 k 
f ( r )  = j , - l ( k r )  g(r)  = 7 E +--------m j , ( k r )  (4.7) 

Type (2) ,/,(.2) = - v ] m  

f ( r )  = 

(ii) j =  I q[ + � 8 9  

Type (3) a,(m ' F t m  = 

f ( r )  = 

1 
g(r)~:~] 

k 
ju(kr) g(r) = i ~ Ju- l(kr)  (4.8) 

1 
g(r)7/mJ 

sin (kr + 8) 1 k cos (kr + 8) (4.9) 
kr g(r) i E + m kr 

Here j , (kr)  is the spherical Bessel function of order tx [defined in equation 
(4.6)] and 8 is a phase to be discussed. 

It is at this stage that one encounters the Lipkin-Weisberger-Peshkin 
difficulty. While type (1) and (2) radial functions vanish at the origin, type (3) 
radial functions do not, and in fact at least one of them blows up. This means 
that the electron in this state goes through the monopole. Thus we find that 
our naive Hamiltonian is ill defined. To avoid the difficulty, we must modify 
our Hamiltonian so that the radial functions all vanish at the origin. For- 
tunately there is a natural solution to this problem2 By endowing an 
infinitesimal extra magnetic moment Ke/2m to the electron, one can make 
wave functions vanish at the origin regardless of the sign of K. Our new 
Hamiltonian is now 

Kq ~ .e  (4.10) H=,w = Ho ld -  ~fl r2 

where fi and 21 are the usual Dirac matrices. Notice that (a) the added term 
falls off like 1/r 2 and the large r behavior of the radial functions are unmodi- 
fied, and (b) f o r j  > I ql + �89 although the/3 matrix mixes the type (1) and (2) 

a It was shown by A. S. Goldhaber that the following is the unique way of resolving the 
problem if one insists on the natural transformation properties of the system under 
C, P, and T operations. [See Goldhaber (1977) for detaiL] 
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G T LIMITING ELLIPSE 

. . . . .  ~ o _ ' r = O  . . . .  F 

. K=O+ 
Fig. 3. The limiting ellipse and the behavior of F and G are explained in the text. 

solutions, the radial wave functions will remain at zero at the origin, and as 
-+ 0 the mixing is removed. That  is, there is no influence upon type (1) and 

(2) solutions as K -+ 0. 
Now let us look closely at the troublesome case of  the state with the 

lowest angular momentum. Defining the F and G functions by 

Kq 1 1 1 G (4.11) 
f = -~l r E  g = i r 

the radial equations take the form 

dF [ K I~q[ 1] dG [_(E_m)~C l~ql 1]F 
-~  = (E + m)I~l 2m 7 = 2m r ~ (4.12) 

By looking at the small r behavior, which is of our interest, we easily find that 
F and G strongly go to zero as r ~ 0 with their ratio approaching = 1. Namely, 

[-IKqll~ -->of 
- G  ~ Foc exp \ 2m r/ ~as r---~0 (4.13) 

G/F-+ 1) 

In more geometrical terms the situation is as follows (see Figure 3). In the 
F-G plane, the solution starts from the origin at r = 0 and for large r describes 
an ellipse since the large-r behavior has not changed. As ~ becomes smaller 
and smaller, the limiting ellipse is approached earlier and earlier, and finally 
in the limit ~ --~ 0, the situation looks like that of Figure 3. 

In any case, the second difficulty is now removed and the correct 
boundary condition that fixes the phase 8 completely is given by (4.13). The 
determined phase is of the form 

K (4.14) 
~ =  8a--- ~ T ~ E +  m 

Notice that it depends on the energy and the sign of  x. 

5. WAVE FUNCTIONS DESCRIBING SCATTERING 

Having resolved the second difficulty successfully, we may now easily 
construct the scattering solution. 
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Let us send an incident plane wave of positive or negative helicity 

[E + m~/2e_,k z (h = +1) 
\ 2e / 

(5.1) 

[E + m~l/2e-'~Z[E o m ] \ 2E ] - k  ( h = - l )  

along the negative z direction. These are essentially two-component wave 
functions. Recalling that {~(1), ~(2)} and r/m form a complete orthonormal 
system, we can expand the incident wave in terms of them. The incoming part 
Of the incident wave may be expanded as 

- tkz = _ 2~.1/2 
eine o r  2ikr 

+1/2 ' J "  ~ ~ m j  '-- ~ j , , ~J  m= = , ~ 1 / 2 ,  ( 5 . 2 )  

where the upper (lower) sign refers to h = +1(-1).  Notice that ~(1) + (z) and 
~Tr~ appear as they should, since we are expanding a helicity eigenstate. 
Matching this to the incoming part of the most general solution, i.e., the 
superposition of type (1), (2), and (3) solutions, one obtains the exact scat- 
teringwave function, whose outgoing part is given by 

= e i~cr 

• ' +([ql ~ Cl)ll2e2~~ q k 
Iql E + m 

b J m )  "~ E - - - - " ' ~  m= --q~ (112) 
J=la[+l/2 

(5.3) 
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where the superscripts + on ~bout refer to the initial helicities. No te  tha t  again 
only ~:<~) -T- ~<z) and  ~m appear  and the above  expression is a l ready essentially 
helicity decomposed.  Defining the helicity flip (HF)  and the helicity nonflip 
( H N F )  ampli tudes  by 

+~b = C+- '+X+ + C + - ' - x  - -~b = C - - ' §  + + C - - -  x -  (5.4) 

where x ~ are the normal ized  helicity eigenstates, one can read off the H F  and 
H N F  ampli tudes  immediate ly:  

f 0 for  q > 0 
H F :  C + - ' -  = ei~r [ | (5.5) 

~-) e -  ~ + 2 ~  [2-~-~r 2q ts in  for  q < 0 

l~:r / ~ \  2 Iql - I 
ikr 2q e 3 for  q > 0 C - -" § = sm 2 (5.6) 

f o r q  < 0 

eikr 
H N F :  C + ~ + = C -  -~ - = - ~ Tq(O) 

1 ~ /ze- ~ '  
T~(~9) = (2*r) 1/2 sin (0/2)  j = I~1 + 1/2 

I1 • - o ,  

, ] ( j  + 1)it 2 Yq.j+c1tz),_q(Ir - O, ~0) (5.7) 

where O is the scattering angle. 
The  salient features of  this result may  be stated as follows. 

(a) The  helicity flip ampl i tude  consists entirely o f  the part ial  wave with 
the lowest  angular  m o m e n t u m  as you may  see f rom the appearance  of  the 
phase  83. The  ampl i tude depends on the initial helicity htn and vanishes if  
hlnq > 0. Not ice  tha t  for  large q the ampl i tude is highly backward  peaked.  
These are the simple consequences o f  the ang u l a r -momen tum conservation.  
Fur ther ,  ]C + - (q)[  is equal to [ C -  +(=q)[. This may  be unders tood  f rom the 
invariance p roper ty  o f  the system under  C, P, T operations.  4 

( b )  The  helicity nonflip amplitude,  on the other  hand,  consists entirely 
o f  higher part ial  waves. I t  involves a complicated infinite series o f  monopo le  
harmonics  with a cumbersome  phase factor.  Fo r  large O, the series must  be 
summed  numerically.  Fo r  small O, Tq(O) is fo rward  divergent, just  like the 

4 For more detailed discussion, see Goldhaber (1977). 
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Rutherford cross section, and one can isolate and sum the forward divergent 
terms exactly. This gives 

1 
Tq(O) = - q e -  '~q sins (0/2) 

cos(~9/2) [ 1 +  ( 1 +  ~ ) s i n O ]  
x L 1 + sin (0/2) 

1 (  ~r~_~_q2) 1 - [sin (0/2)] ~'q ~ }  
+ ~ 1 + irrq -co--~(O--~ sin2 

+ forward finite terms 

1 
~ - q e - ~ q  sin 2 (0/2) for small 0 (5.8) 

To illustrate, I will show the behavior obtained by numerical analysis 
(Figure 4). Plotted here are the ratios of the electron-monopole scattering 
cross section (unpolarized electron beam) for two values ofq to the Rutherford 
cross section, except for the velocity-dependent constant factor (solid lines). 
For comparison we have also plotted the same ratios for the case of spinless 
nonrelativistic charged particle (dotted lines) obtained by Banderet (1946). 
In the forward direction, there is not much difference from the Rutherford 
cross section. The enhancement in the backward direction is due to the HF 
amplitude given by the lowest partial wave. 

1......q. = 1/z (spin '/2) 
2.-.. q = 1 (spin l/z) 1 

2.0 3. . .q,  = 1/2 (non-re l )  

4 . . . q  = 1 (non-rel) ~ - - - 4  . . . .  _ 

1.5 UNPO~RIZED ,EAMFOR,ANt~Z/z~f" _ .......... 

i ~ ........... -~ ...... 

i.oi 

I dO" dO" 

% ~0 4o d0 8'0 ,00 ~0 1;0 1~0 ,80 
| 

Fig~ 4. Ratio of monopole to Rutherford cross sections, da/d~ is the cross section for 
scattering of a Dirac particle of charge e by a fixed monopole g. (da/d~)B is the cross 
section for scattering of a nonrelativistic spinless particle of charge e by a fixed monopole 
g. (d,~/df])R is the Rutherford cross section for scattering of a particle of charge e by a 
fixed target of charge e: q = eg, 0 is the scattering angle in degrees. 
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6. EXISTENCE OF BOUND STATES 

Having understood the scattering properties, let us go on to the question 
of  bound states. 

First it is instructive to ask whether one can have bound states without 
the extra magnetic moment, i.e., in the limit K ~ 0. Since in this case we have 
the exact solutions [equations (4.7), (4.8), and (4.9)], we just replace the 
momentum k by ik and see if we get normalizable solutions. F o r j / >  [q[ + �89 
the solutions, if you recall, are spherical Bessel functions of  argument kr. 
Inserting an i gives modified Bessel functions, which, if you choose the ones 
with exponential tails, are not normalizable around the origin. For  j = 
[q[ - �89 the trigonometric functions become real exponential functions and 
one can make a bound state. So for K -+ 0, there exist no bound states except 
for the j = I q ] -  �89 state. But we have learned that the extra magnetic 
moment strongly damps the wave functions at the origin. Does this cure the 
bad behavior at the origin and give us more bound states ? The answer turns 
out to be yes and we find at least two classes of infinitely many bound states. 

Let us quickly see what types of equations we must analyze. The equation 
for the stationary state is of  the form 

•g ~ ' r  a . ( p - -  eA) ] 
- E +  M 2M r 2 

a .  ( p  - e A )  - E - M + 2---M r --f i -  

= 0 (6.1) 

Now there are two types of  solutions: 

(i) Type A, j /> Iql + �89 

~-~ [ha(r)~.~ + h,(r)~:~.~] 

(ii) Type B , j  = Iql - �89 

xq 
1 [T-~ F(r)~l., 

For ease of  analysis, introduce dimensionless variables 

2M Kq A = K[q] Bo = Kq E 
p - - - ~  r A o -  2 2 2 M 

(6.2) 

(6.3) 

B ~ ~lq[ E 
2 M (6.4) 
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Then the radial equations take the form 

- 1 
0 o - ~- 0 p--~ 

P 

0 0 o + /~ Ao + Bo 
Type A: P 

1 
0--5 Ao - Bo Oo _/zp 

1 
Ao - Bo p~ 0 

Ao + Bo 

1 
/o 2 

0 

Oo + ' ~ _  

-h,1 

h21 

h3 I 
= 0 (6.5) 

T y p e B :  = A - B - ~  

with the boundary conditions that h~ (i -- 1, 2, 3, 4), G, and F all vanish at 
p = 0 and oo. Neither of these equations is, in general, exactly soluble. 

The first set of infinite number of bound states consists of those with 
E = 0 for each value of angular momentum for any value of K. I f  we put 
E = 0 (i.e., B = 0) in (6.5) and (6.6) the equations decouple nicely and one 
can solve them exactly with the following results: 

(2) 1/2 [ IKq['~ K IMr~ Type A: hi = - h a  = exp ~-2-'M-"r] .-1/2~ j 
(6.7) 

l~ql K 

1 ( IKq[  Mr)~--&-~21---~exp(-Mr) (6.8) Type B: F = - G = ~ exp 2Mr 

K, is the modified K-Bessel function of order p. Notice that, as we expected, 
the nonvanishing K strongly suppresses the divergent behavior of the K-Bessel 
function at the origin and that for the type B case the K ~ 0 limit still gives a 
bound state. 

The analysis for the E r 0 case is more complicated. Especially for 
type A states, equation (6.5) has so far been intractable. For  type B states, 
although we may not solve the equation in a closed form, we can nevertheless 
analyze it satisfactorily. Let me quickly describe the outline of it and convince 
you that under certain conditions there exist another set of  infinite number of 
bound states for this particular value of the angular momentum. 

First let us make two simple observations. (a) The bound state spectrum, 
if it exists, is symmetric about E = 0. (b) I f  IA[ < IB], i.e., if M < [E[, the 
large-p behavior is oscillatory and there are no bound states. Thus we shall 
restrict ourselves to the case where [AI > B > 0 holds. 
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- -  BOUND STATE 

. . . .  UNBOUND STATE 

F 

Fig. 5. Typical bound and unbound states in G-Fplane. 

The method of  analysis is to study the behavior of  the integral in the 
F-G plane just like for the familiar Sturm-Liouville problem. An integral 
corresponding to a bound state starts off at the origin at r = 0 and comes 
back to the origin as r--~ oo (see Figure 5). The number of  times it winds 
around will be the number of  nodes and so forth. In contrast, an integral 
corresponding to an unbound state does not come back to the origin as 
r ~ oo. Thus we shall concentrate on how the integral winds about the origin. 
For  this purpose it is convenient to use a polar representation 

This choice of  the angle is convenient since the boundary condition at the 
origin turns out to be simply ~o(p = 0) = 0. Eliminating R by taking the 
ratio of  F and G, one obtains a nonlinear first-order differential equation for 
the angle ~o, viz., 

d - - ~ = - 2 B + 2 (  A d P  - ~ ) s i n ~ o =  T(A,B,p)  (6.10) 

We shall hereafter concentrate on the case where A > B > 0 (i.e., ~ > 0), 
since for ,c < 0 it can be proved, by the similar arguments we will go through, 
that there are no bound states. 

We first study the sign of  the derivative d~o/dp to see how ~o increases or 
decreases. So we plot the sign of  T(A, B, p) in the ~0-p plane (Figure 6). There 
are, of  course, two types of  regions: the - region where ~o is decreasing and 

0 i ~ 1. o 
::,,,, (A>B>O) 

11 
-'IT- . \ ", 

reglon o~ \ " ~  

-2~T ', 
~ | ', 

', 1Tz 

Fig. 6. Sign of derivative d~o/dp [i.e., T(A, B, p) in equation (6.10)] in the ~-O plane for 
A > B > 0 .  
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the + region where ~0 is increasing. Along the boundaries of these two 
regions, ~0' vanishes so the integral must cross these boundaries horizontally. 
One remark is in order before we proceed. The solution with zero energy that 
we found before corresponds to the q~ = 0 line in this picture. Since the 
integrals cannot cross each other, they must lie completely above or below 
this line. By looking at the small-p behavior, one finds that ~0 is always nega- 
tive. Further, the region ~ turns out to be irrelevant to the analysis. 

Now an interesting thing to observe is that the regions 1, 2 , . . .  are 
"trapping" regions in the following sense. Because of their shapes, once an 
integral crosses this border, it can never get out. It keeps increasing in this 
region and can never cross the border again horizontally. So ~o will either get 
trapped and keep increasing or not get trapped and keep decreasing. In either 
case, ~0(p) is monotonic for large p and hence the limp_. | ~0(O) exists (including 
~-~). The key idea now is that we can classify the integrals by the values of 
~(~). 

There are essentially two classes (see Figure 7). To class In belong all the 
integrals which get trapped in the region n. For this class one can show that 
F and G exponentially diverge as p -+  ~ .  So this class is not a class for bound 
states. Another type of class is called class II, ,  to which belong integrals that 
barely touch the lower lip of the nth trapping region and approach to a 
certain characteristic value of ~0(~) from above. For this, one can prove that F 
and G are both exponentially decreasing at large p. This is the class for the 
bound states. 

Now the question is, is class II ,  realized at some energy, i.e., at some B? 
Thus we must study the B dependence of ~o(~). The key theorem, which is 
easy to prove, is 

~(P) 
< 0 (6.11) ~B 

at any fixed p. Taking the limit of this statement, we get 

~t8~o,~...__..__~, ~< 0 (6.12) 
OB 

~ ~  ~(oo)=-~'-(2n-1)lT 
In <=> unbound state 

/ f  
E ~  <=> bound stale 

,, ~ 
q~ (oo) = ~--Zn~ 

Fig. 7. Two classes of the behavior of ~(p). 
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. . . . . . . .  ;~ L SCATTERING STATES 

, , A'= K l q l / 2  

. . . . . . . .  -~  _ _ ~ _ _ .  
SCATTERIN6 STATES 

Fig. 8. Bound - s t a t e  energy  level s p e c t r u m  as a func t ion  o f A  = klq]/2. Levels labeled 
by  n = 4.5 . . . .  a re  n o t  shown .  

i.e., ~0(oo) is a nonincreasing function of  B. Thus as B increases, two things 
happen: ~0 goes down at every finite p, and the trapping regions recede to the 
right to give more room, so to speak, for ~o to decrease. Therefore as B 
increases one may expect the integral to descend f rom region 1 to region 2, 
to region 3, etc. I f  this is the case, class I I ,  for every n will be realized at some 
values of  B. To  see whether this really happens we study the limit B ~ A. 
Equation (6.6) for the limiting case can be solved exactly and we find the 
following results: I f~lq l  ~< �88 the integral is trapped in region 1 for all values 
of  B and there exist no bound states. 

Let me now summarize our findings. 
(i) For  each j = Iql - �89 [q] + �89 . . . . .  there exists a bound state with 

E = 0 for any x # 0. For  j = lql - �89 the K---> 0 limit still yields a bound 
state. 

(ii) For  j = I q [ -  �89 there exist countably infinite number  of  bound 
states with E # 0 if ~lql > �88 The energy spectrum is symmetric about  
E = 0. I f  ~lql ~< �88 there is no bound state with E # 0. 

The spectrum is sketched in Figure 8. For  very loosely bound states, 
i.e., for large n, one can compute the leading term for the expression of  the 
bound-state energy. I t  is of  the form 

1 E~ - 4~rn 
rn ~ exp (4~lql - 1) 1/2 as n --~ oo with ~[ql fixed (6.13) 

Finally, let me make the following remarks. 5 
(a) Firstly, the existence of  the bound states with E = 0 implies electron- 

positron plasma structure around the monopole. Suppose you create an e+e - 
pair f rom the vacuum, costing energy of 2M. Binding them to the monopole 

5 Lack ing  a cons i s ten t  t heo ry  o f  q u a n t u m  e lec t rodynamics  o f  e lec t rons  and  m o n o p o l e s ,  
it is difficult to predict  h o w  these  r e m a r k s  will be subject  to q u a n t u m  field theoret ical  
correct ions .  One  may ,  however ,  expect  the  qual i ta t ive  proper t ies  o f  t ight ly b o u n d  states  
to survive  such  correct ions .  
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in the above states you gain energy of  2M plus a little extra due to the 
Coulombic interaction between them. Therefore it is energetically more 
favorable to create e§ - pairs out of  the vacuum and bind them to the 
monopole. One can do this for each value of angular momentum so one 
would have a plasma of  electrons and positrons around the monopole. 

(b) Secondly, I remark on the permanent electric dipole moment  of  
the bound system. I t  is well known that this system violates both T and P 
invariance because the monopole field has "wrong" transformation properties 
under T and P. As a result it is possible that the bound states of  the system 
may possess a permanent electric dipole moment  usually forbidden due to 
T or P invariance. This conjecture is indeed correct (Kazama, 1977) and, for 
example, a loosely bound state with the lowest angular momentum possesses 
a large electric dipole moment  which depends exponentially on the principal 
quantum number n, viz., 

m e m 
Idd : [ql + �89  exp ( a l g a l -  1) 1'2 (6.14) 
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