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ABSTRACT A simple encoder model, which is a reasonable idealization from

known electrophysiological properties, yields a population in which the variation

of the firing rate with time is a perfect replica of the shape of the input stimulus.

A population of noise-free encoders which depart even slightly from the simple

model yield a very much degraded copy of the input stimulus. The presence of

noise improves the performance of such a population. The firing rate of a pop-

ulation of neurons is related to the firing rate of a single member in a subtle

way.

1. INTRODUCTION

In a nervous system it is usual for extremely precise over-all results to arise

from the functioning of a collection of components which have very modest

precision in their individual construction and behavior. In the human ear,

for example, such prodigies as "perfect pitch" are accomplished by a popu-

lation of neurons which are somewhat haphazard in morphology, and which

individually show ragged firing patterns. Apparently it is the collaboration

of a large number of units which is responsible for the precision of the over-

all result.

In the discussion below, we will examine several models of the process by

which a stimulus is encoded to evoke a train of impulses in a single neuron.

The behavior of a large population of such neurons will then be explored.

The effects that result from variations among members of the population and

from irregular behavior of individuals also will be investigated. The most im-

portant results will be deduced in section 2, almost without recourse to for-

mal mathematics; the mathematically most difficult results will be presented

last. A following paper will compare theoretical results developed here with

experiment (Knight, 1972).

This investigation of encoding was undertaken in order to predict quantita-

tively the inhibitory postsynaptic potential in the visual cell (eccentric cell) of

Limulus. Here the postsynaptic potential level arises from the pooled effect of

nerve impulses arriving from numerous presynaptic neurons. In this well-
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studied bit of nervous system the dynamics of the various neurological com-

ponents are known (Knight et al., 1970) well enough to enable us, in prin-

ciple, to predict the dynamics of the entire eye from stimulus to response.

Each small illuminated region of the eye may be conceived as a subpopula-

tion of identical neurons experiencing identical input. In order to determine

the effect of this subpopulation upon a particular postsynaptic potential, we

must have theoretical tools which enable us to obtain the population response

from dynamical laws given initially for individual neurons. The results of this

present study yield such tools, and predictions of considerable precision can

in fact be made.

The same general problem arises frequently in the consideration of other

neural systems. In the visual system of the primate, for example, continuous

sensory input apparently is first coded into trains of discrete impulses at the

level of the retinal ganglion cells. The next synapse along the major visual

pathway, at the lateral geniculate nucleus, apparently is not of the highly

convergent type but serves more nearly as a relay station. However, when the

geniculate neurons arrive at the visual cortex they give rise to electrophysio-

logical phenomena (Hubel and Wiesel, 1968) which suggest a convergence

scheme that bears some close analogies to that of the Limulus eccentric cell.

Several further layers of population convergence follow, giving rise to neural

responses at successive levels of abstraction. Similar statements can be made

concerning the secondary visual pathway which conducts impulse trains from

the retinal ganglion cells to the superior colliculus.

A similar situation arises in the auditory system. If we conceptually divide

the cochlear canal into short sections, we find over the lower half of the fre-

quency range that the mechanical motion of a given section is transcribed

into the level of impulse activity in the subpopulation of neurons which arise

within it (Brugge et al., 1969), although any given neuron in that subpopula-

tion contributes only a slight fraction of the total activity. The frequency

bandwidth for the entire subpopulation greatly exceeds the repetition rate of

a single component neuron.

Presumably within the vertebrate central nervous system the remote trans-

mission of information typically is not entrusted to a single neuron, and the

multiple channel considerations explored here again will be relevant.

At the motor end of the vertebrate nervous system such considerations

again arise. For example, in the spinal stretch reflex circuits of the cat each

stretch receptor appears to terminate on all motor neurons of a pool (Mendell

and Henneman, 1968).

Three conclusions form the main theme of this paper. The first conclusion

is that a particularly simple model for the encoding of a stimulus into nerve

impulses yields the result that the variations with time of the firing rate of

an entire population can be a perfect time replica of the stimulus. The popu-



736 THE JOURNAL OF GENERAL PHYSIOLOGY VOLUME 59 1972

lation firing rate thus has the remarkable property that it may duplicate the

stimulus with an indefinitely high degree of fidelity. The second conclusion is

that the simple model is essentially unique in this respect, and that more

realistic models of encoders are susceptible to spontaneous synchronization,

a pathology which makes the temporal variation of the population firing rate

a far less useful indicator of the shape of the stimulus. The third conclusion is

that this pathology may be thwarted by a population of encoders whose

impulse encoding is subject to chance fluctuations. Thus the fact that the

encoders are heterogeneous and noisy becomes positively a virtue, which

allows the temporal variation of the population firing rate to approach the

ideal: a perfect replica of the shape of the stimulus.

In section 2 we will present the "simple integrate-and-fire" model of a

neuron. There it will be observed that, in a large population of such neurons,

the temporal variation of firing rate of the entire population is a perfect copy

of the input stimulus. We will see that this result is still maintained when we

introduce individual variations among the members of the population. Finally,

we will generalize the model in a way which introduces random fluctuations

into the spike train of each individual neuron, and show that the firing rate

of the population will still remain a perfect copy of the input stimulus.

In section 3 we investigate the momentary firing rate of a single neuron in

the population. If the stimulus is constant, the individual firing rate is pro-

portional to population firing rate. However, if the stimulus is time varying,

the single-neuron rate is not in fixed proportion to the population rate, nor

is it a faithful replica of the input stimulus. It shows two distinct sorts of dis-

tortion. The first is nonlinearity in response to large stimulus fluctuations.

The second distortion is a phase shift and amplitude attenuation in response

to stimulus fluctuations at high frequency. These distortions can be very im-

portant when one gathers impulse data from a single nerve fiber, and there-

after tries to deduce the level of impulse activity in an entire population.

In section 4 a determining relationship is discovered between the individual

neuron impulse rate and that of a whole population of identical neurons. The

result is independent of the impulse encoding model, so long as that model is

deterministic (not probabilistic).

Section 5 introduces the "forgetful integrate-and-fire" model for neuron

firing. One model feature-infinitely long memory-of the simple integrate-

and-fire model, is removed. The introduction of slow decay in memory has

slight effect on the single neuron firing rate, but an important new feature

appears in the population firing rate: at certain stimulus frequencies, the

response of the population is disproportionately large so that the population

response is no longer a perfect copy of the stimulus time-course.

Section 6 investigates the response of the forgetful integrate-and-fire model

neuron to a periodic stimulus of finite amplitude; emphasis is placed on the
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phenomenon of "phase locking." Unlike the simple integrate-and-fire case,

a population of forgetful neurons will tend to "fall into step," and all fire

synchronously at a particular point in the stimulus cycle. The result of section

5, that certain infinitesimal periodic variations in the stimulus lead to dispro-

portionately large responses, was the first hint of this phenomenon.

Section 7 discusses a general theory of the behavior of deterministic encoders
in response to periodic stimuli. A ready-made mathematical machinery

(created for a different reason) already exists for this problem. A general con-

clusion emerges: there are two distinct classes of impulse encoders, those which

show the tendency to phase lock and those which do not. The class which do

not are a slight generalization of the simple integrate-and-fire model, and
share the feature of indefinitely extended memory. A population of encoders

which do phase lock give the worst possible departure from a perfect copy

of the stimulus: their response is in the form of synchronized bursts of im-
pulses, which neither delimit the form of the input stimulus, nor yield more
information than does the response of a single encoder. Such encoders also

may be brought to the synchronized condition by stimuli which are not

periodic.

Section 8 investigates a population of probabilistic (or "stochastic") en-

coders. A population of such encoders overcomes the phase-locking problem,

and in spite of the limitation of finite memory duration, the condition may

be approached of a population response rate that gives a perfect representa-
tion of the stimulus.

While the following discussion deals with two specific models, these two
models do follow from reasonable idealization of the Hodgkin-Huxley equa-

tions. In particular, the small-signal frequency response of the impulse encoder

in the Limulus eccentric cell may be described accurately in terms of a simple

integrate-and-fire model (Knight et al., 1970). A slight tendency of this en-

coder to phase lock to very large signals (see Fig. 5 b) suggests that a slightly

forgetful integrate-and-fire encoder model would furnish an even more ac-

curate description.

The simple and the forgetful integrate-and-fire models differ in the degree

to which a population of such encoders will "fill in" the detailed time profile

of a periodic stimulus. (Phase locking is a complete breakdown in this "filling

in.") The whole gamut of possibilities in fact arises for different neurons.

While at present it is not feasible to record individually from a uniform popu-

lation of neurons, it is possible to do something equivalent: to record from a

single member over repeated stimuli. This has been done, for example, for the
retinal ganglion cell (Hughes and Maffei, 1966), in the auditory system

(Kiang et al., 1965; Brugge et al., 1969, 1970; Goldberg and Brown, 1969;

Rose et al., 1967, 1969; Aitkin et al., 1970), for the innervation of fingertip skin

(Mountcastle et al., 1968; Talbot et al., 1967), and for the mammalian muscle
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spindle (Brown et al., 1967; Matthews and Stein, 1969; Poppele and Bowman,

1970.) (The preceding references are not exhaustive.) The sections that follow

should be helpful in the interpretation of these and similar investigations.'

2. INTEGRATE-AND-FIRE MODEL

One of the simplest possible impulse encoder models is the following: we

imagine a noise-free neuron which contains an internal variable (which we

call u) whose value increases at a rate given by the present value of the stim-

ulus [called s(t)] which is being encoded. Thus,

du
= s(t). (s(t) > 0). (2.1)

When u achieves a criterion level (C), a nerve impulse is fired, u is reset to

zero, and the process starts again. In general, larger stimuli will encourage

higher firing rates. The Hodgkin-Huxley equations may be made to yield

this model in a limiting case.2

It is easy to see how a large population of such identical and noiseless en-

coders will respond to a stimulus. Let us define the "density" p(u) by the

property that in the population there are a number p(ul)du of encoders for

which the value of u falls between u and u + du. In Fig. 1 the solid curve

indicates how p(u) might look at a particular moment. A short time later,

those encoders which have not fired will have advanced to larger values of u,

and the dashed curve will be obtained. The whole curve marches rigidly to

the right. According to equation 2.1, its speed of advance is given by s(t).

The rate at which firings occur in the entire population will be the rate at

which encoders reach the firing point u = C. This will depend jointly on the

height of the curve p(u) at the point u = C, and on the rate of the curve's

advance. Thus, the population firing rate r is given by

r = s(t)p(C). (2.2)

It is an evident property of this model that, if initially the population are not

uniformly distributed over u, this condition will persist forever, and even a

constant stimulus s will lead to a periodic fluctuation in the population firing

1 Among neurophysiologists the term "phase locking" is frequently used in an unfortunate colloquial

way that blurs the distinction between neurons that phase lock and those that do not. Thus, for ex-

ample, Rose et al. (1967) state very explicitly (footnote 3 of that paper) that they are observing

"phase-preference," although the colloquial usage of "locking" appears in their title. Here through-

out we use "phase locking" in the strict sense of seeking a fixed phase with respect to the stimulus.

In this sense the simple integrate-and-fire model shows phase preference but does not phase lock.
2 This model was advanced by Partridge (1966). Partridge's comment that "even in a multi-chan-

nelled system, considerable distortion could result from the process of pulse rate translation of a

dynamic signal" specifically does not apply to this model.
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rate. The passage of time will not smooth a firing rate which was not smooth

initially.

The converse is also true, that if initially the population are uniformly dis-

tributed (straight line at po in Fig. 1), then they will always remain so. In
this case equation 2.2 becomes

r = pos(t). (2.3)

Thus, if the population are uniformly distributed in u, then the population

firing rate will be a perfect copy of the stimulus. A more formal derivation of

this result will be given near the end of section 4.

The simple preceding discussion deals only with what may be expected of
an extremely large population of encoders. By choosing a large enough pop-

ulation we may make the fluctuations away from expected behavior arbitrar-

p(u)

p(u)
Po -

Po

u:C I U

FIGURE 1 FIGURE 2

FIGURE . Time-course of the population density function p (u).
FIGURE 2. Steady-state population density function, for a stochastic threshold distrib-

uted according to the probability function P(u).

ily small. For a finite population questions concerning fluctuations about

expected values demand a far more elaborate methodology than we will

develop here. Therefore such questions will not be pursued.

So far the discussion has involved a population of neurons which are identi-
cal, in the sense that they all have the same firing threshold level C. The

generalization to a heterogeneous population, with a distribution of threshold

levels, is immediate. Simply divide the population into subpopulations, ac-

cording to their values of C. The perfect replica argument holds for each sub-

population, and hence for the total.

A word of caution should be added concerning this heterogeneous popula-

tion model: to achieve the perfect-replica result, each individual subpopula-
tion must be started with a uniform distribution over the internal variable u.
This model does not smooth itself.

The simple integrate-and-fire model may be slightly generalized, to include
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the feature that neurons fire somewhat unpredictably. The generalization

might be described as "the integrate-and-fire model with stochastic thresh-

old." Together with equation 2.1, we assume that there is a probability P(ul)

that a particular neuron will fire before its internal variable u reaches the

value u. The probability P(u) eventually rises to unity, for large enough u.

The population density p(u) is shown in Fig. 2. The stochastic threshold

condition we have postulated may be expressed as

p(u) = po(l - P(u)), (2.4)

which is the content of Fig. 2. According to equation 2.1, individual encoders

still advance in u at a speed s(t). In particular, that is their speed of advance

at u = 0, whence their total rate of appearance at u = 0 must be ps(t).

This must be equal to the population firing rate. Thus equation 2.3 is still

satisfied, and the population firing rate is again a perfect time replica of the

stimulus.

This stochastic model carries one new feature: it tends to randomize the

firing times of individual encoders, with respect to one another. Thus, even

though the whole population were started synchronously, they would still

tend to the time-independent distribution of Fig. 2, and toward the perfect-

stimulus-replication behavior'

In sections 5, 6, and 7 we will see that modification of the "simple integrate"

law of equation 2.1-even slight modification-will lead to a population of

encoders which tend to synchronize among themselves. It is reasonable to

suspect that the stochastic feature might offset this tendency. This suggestion

will be explored in section 8.

3. INSTANTANEOUS RATE OF A SINGLE UNIT

For a large and homogeneous population of neurons, the "instantaneous rate

of a typical single unit" is a well-defined variable at all times, determined by

the present state and past history of the entire population. We simply inspect

the population for a neuron which currently is firing. The time since its last

firing is its instantaneous period, the reciprocal of which is its instantaneous

rate.

The single unit rate and the population rate are related in a subtle way.

Because it is the single unit rate which usually is observed in the laboratory,

and because the single unit rate often is more easily deduced from a theoretical

3 The time of the last firing of a long enough sequence of firings of a given encoder will become un-

correlated with the first firing time. Thus the distribution p (u) must become time independent in

the limit of long times. It is unreasonable that there should be a second time-independent distribu-

tion besides that of equation 2.4. The evolution of the distribution may be reduced to a well-known

problem by observing that we are dealing with a so-called "renewal process" in the variable u.
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model, we will explore this relationship in this section and the next. The in-

tegrate-and-fire model furnishes a start.

Equation 2.1 may be integrated at once, and with the threshold condition,

leads immediately to

C = dt s(t) (3.1)

where t and t,+ are the times of the nth and (n + l)th impulses, respectively.

If the stimulus is constant (s = so) then

C = (ta+I - t)so (3.2)

or

fo = so/C (3.3)

where fo is the instantaneous rate of the single unit. Thus the single unit rate

is in fixed linear proportion to the stimulus. This also must be true approxi-

mately if s changes by only a very small fraction of its value between two

impulses. To find the degree of error we express s(t) as a Taylor series

s(t) = s(tn) + S(tn)(t - t) + ... (3.4)

and equation 3.1 becomes

C = s+ 1 + (3.5)

where f is the single unit rate and the time t is implied. Multiplying equation

3.5 by f/C gives

f ,, 3+...

(C + 2Cf (3.6)

1 1l

C 2s

where the last line assumes s >> s/f . Now according to equation 3.6, f is no

longer a perfect copy of s. It is not even a linear copy, in the sense that, for

example, doubling the stimulus does not double the rate f. Unlike the pop-

ulation rate, the single unit instantaneous rate is not a perfect copy of the
stimulus.

Next we investigate the frequency response of the single integrate-and-fire

unit's instantaneous rate. Qualitatively, our question is: If the stimulus s(t)
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fluctuates at a given frequency (the driving frequency), how well does the

instantaneous ratef (t) follow? According to equation 3.6 we may at once

respond: almost perfectly at very low frequencies; but for driving frequencies

which are not very low compared to the instantaneous rate, no general answer

is known, nor is there known any practical general method for seeking the

answer. However, if we confine ourselves to a periodic s(t) which consists of

a small fluctuation about a steady mean level then there is a general method

and an answer in simple terms.

The general method-"linear perturbation theory"-comes in two parts.

First, express both the input and output variables as a constant plus a small

departure. When these variables are substituted into the mathematical rela-

tions which connect them, the strategy will be to ignore all expressions which

are small compared to these small departures. An easy example (useful below)

will illustrate: instantaneous frequency and instantaneous period [called T(t)]
are connected by the relation

f = 1/T. (3.7)

Now let

T(t) = To + T(t), f(t) = fo + fl(t). (3.8)

Note that

1/(To + T) = /To - T/To2 + T2/Toa
- ... (3.9)

If we substitute equation 3.8 into equation 3.7, all that survives is

fl = - T/To2, (3.10)

since we knew that fo = 1/ To already, and since T 2/l To3 and all higher terms

are small compared to those in equation 3.10. Note that in equation 3.10 fl
and T are linearly related. This is a general and important result of the

linear perturbation method.

The relation which connects stimulus to period is equation 3.1. In that

equation t4+l is the time of the present spike discharge, t is the time of the

last, and T = t,+l - t is the period.

As in equation 3.8, let s = so + s and T = To + T. Now an integral

may be interpreted as an area. The relation imposed by equation 3.1 is that

the stimulus perturbation s causes a change T. in the period just such that

the area remains at the unchanged value C. Fig. 3 illustrates this. Equation

3.1 demands exactly that the two shaded areas must be equal. This is almost
properly expressed by the relation

f+A dt' s(t') = -so T1. (3.11)f .11 )
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The error is that the integral in equation 3.11 includes the little rectangle

with edges sl T in Fig. 3. But this area is small compared to those in equation

3.11, and its neglect amounts to the linear perturbation approximation.

The time t,,+ in equation 3.11 is a perfectly general time, and might as

well be called t. When equation 3.1 1 is solved for T1 and the result is put into

equation 3.10, we obtain

fO(t) = 1 f dt' s1(t') (3.12)
TO -tTo so

which says that fi depends linearly on the recent past history of si, and in

fact is proportional to the running average of the stimulus perturbation over

the last To time units.

The second part of the general method for finding the frequency response

S

s,t , 

soI / T tni t

FIGURE 3. Shift T in period due to shift Sl in stimulus. The two shaded areas must be

equal.

to a small fluctuation is to assume an explicit periodic function for sl(t). We

might assume s1(t) = s(0) cos cot, for example, where w is 27r times the driving

frequency. Since equation 3.12 is a linear relationship between s1 and f,, we

are justified in choosing instead

si(t) = sl(O)e"' (3.13)

which simplifies formal manipulations (and, in practiced hands, gives a for-

mat closer to one's physical intuition). Substituting equation 3.13 in equation

3.12 leads to a very easy integral, and the result is

f =s(O(t) )eW I - e (3.14)

Since equation 3.13 reappears in equation 3.14, a bit of rearrangement gives

fi _ fo 1 - B-'"" - (3151 B(wofo). (3.15)
s So ico/fo So
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This expression is the frequency response (or so-called "transfer function")

for the transduction from s to fi. We note first that it is a constant, inde-

pendent of time, and second that it is independent of the amplitude of s l.
Thirdly, it is a complex number, with an amplitude and a phase. Its ampli-

tude is the ratio of the amplitude of the sinusoidal response fl to that of the

0)
'aO

. 0.1
E
':

a)

0

0
n

w/27r f

FIGURE 4. The function B, amplitude and phase.

sinusoidal stimulus sI. Its phase is the phase shift of the crest of the response

from the crest of the stimulus. (These facts may be confirmed a bit more

laboriously by substituting the cosine form into equation 3.12.) These are

all general results of the linear perturbation method. The amplitude and

phase of B, over a range of frequencies, are shown in Fig. 4. This sort of fre-

quency response was first recognized in its biological context by Borsellino
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et al. (1965)4 and by Partridge (1966). It is also the transfer function of a run-

ning averager. Three prominent features deserve comment: (a) it shows the

perfect time-replica feature at very low frequencies, (b) a high-frequency cut-

off sets in as the driving frequency oJ/21r approaches the unperturbed in-

stantaneous rate fo, and (c) it gives a null at any frequency where the sinus-

oidal input has a running average of zero, as equation 3.12 would predict.

4. THE RELATION BETWEEN UNIT RATE AND

POPULATION RATE

Suppose we have a large population of N neurons, all of which are alike,

which do not interact, and which encode their impulse trains, from a com-

mon stimulus, according to some law that is deterministic rather than prob-

abilistic. We do not assume that the deterministic law is the simple integrate-

and-fire model. If the encoding law makes any practical sense, then the time

at which a neuron fires for the (n + I)th time will be a monotonic (steadily

rising) function of the time it fires for the nth time. Since the neurons are

identical, this implies that no neuron can straddle two firings of another

neuron with two consecutive firings of its own. That is enough to assure that

every neuron in the population fires exactly once between the nth and

(n + 1)th firings of a given neuron. In symbols,

N = f' dt'r(t') (4.1)
N --T(t)

where T(t) is the instantaneous period of a single unit, as defined in the first

paragraph of section 3, N is the total number of neurons in the population,

and r(t) is the population rate as in section 2. Equations 4.1 relates the popu-

lation rate r(t) to a specified single unit period T(t), without making any

assumption (except monotonicity) about the encoding law.

Considering the definition of instantaneous period, it is equally true that

equation 3.1 may be written

C j dt's(t'). ( 4.2)
t-T(t)

Now equations 4.1 and 4.2 are identical in form, as N plays the role of C,
and r the role of s. The roles of input and output variables have been inter-

changed, but that is a matter of emphasis, rather than one of mathematics.

All the arguments of section 3 apply to equation 4.1. In particular, in the

4 In fact the equipment superimposed such a frequency response upon the biological data. See

Poppele and Bowman (1970) for further discussion.
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linear perturbation approximation, the frequency response of the population

rate to the single unit rate will be

rl _ ro iwo/fo
(4.3)fi f 1 - e- 'lf 

substantially the inverse of equation 3.15 because input and output have

interchanged roles.

The most striking feature of the frequency response equation 4.3 is that it

becomes infinite at certain frequencies. The denominator vanishes whenever

w/fo = 2rn (where n is any nonzero integer). A "resonance" sets in, leading
to a huge amplification whenever the driving frequency gets close enough to

a multiple of the single-unit unperturbed rate.'

For a population of simple integrate-and-fire neurons, what is the frequency

response of the population rate to a small periodic fluctuation in the stimulus?

We may combine equations 4.3 and 3.15. Thus

-r [ _{rl}fi ro (4.4)

This is simply a weakened statement of the perfect time-copy property of a

population of simple integrate-and-fire encoders. It could have been derived

immediately by applying linear perturbation theory to equation 2.3.

The remarkable feature of equation 4.4 is the perfect cancellation of poles

and zeros between the two braced terms. The frequency dependence drops

out entirely. This will be in striking contrast to the next section, where a

different sort of encoder will be investigated.

If the neurons of equation 4.1 should be simple integrate-and-fire encoders,

which satisfy equation 4.2, then a solution of equation 4.1 for r(t) is easily

found. Let

r(t) = s(t). (4.5)

Substitution into equation 4.1 at once yields equation 4.2, which is true by

hypothesis. Since poC = N (Fig. 1), equation 4.5 is the same as equation 2.3.

Suppose an electronic simple integrate-and-fire circuit is connected to the

beam brightener of an oscilloscope. Suppose further that the voltage stimulus,

5 In technical terms, the poles of a frequency response indicate how a system may respond to a

vanishingly small stimulus. The poles indicate the "free-running" or undriven behavior of the

system. In particular, poles at real w indicate undamped periodic free responses of the system. In
this case the indicated free-running periodic responses are of the sort already mentioned just follow-
ing equation 2.2. Such periodic free-running responses also may be found in equation 4.1: if T is
constant there, r is undetermined to within an additive function which integrates to zero over
period T.
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a constant voltage plus a sinusoid, also drives the oscilloscope's vertical de-

flection, and that the horizontal sweep is synchronized to that signal. The

experiment should be done at a sweep rate too fast for the eye to follow, and

with several cycles of the sinusoid displayed on the scope. If the spike rate is

almost identical to the sine frequency, then on the scope face we will see a

procession of bright spots voyaging along the sine curve, one to a cycle. The

interspot separation will be practically the same when the spots are in the

troughs as it is when they are at the crests. But the spots will spend almost all

of their time at the crests, and particularly will shun the troughs. The be-

havior of the single encoder over many cycles shows us what would be the

behavior of a population of many encoders over a single cycle.

5. FORGETFUL INTEGRATE-AND-FIRE MODEL

Equation 2.1 is the simplest example of the more general relationship

du

which might describe the internal dynamics of an encoding neuron. If we

interpret u in equation 5. 1 as a set of internal variables, and F as a set of

functional relationships, the Hodgkin-Huxley equations take this form, with

s(t) the input current; the four components of u are the voltage and the three

conductance-determining parameters. In designing a neuron encoding model,

we should, according to common sense, pick F(u, s(t)) in equation 5.1 in such

a way that the present value of u depends more strongly on the immediate

past history of s(t) than on its more distant past. The Hodgkin-Huxley equa-

tions have this property. The simplest example in the form of equation 5.1

with this property is the one-component equation

t -'yu + s(t) (5.2)

which may be got from the Hodgkin-Huxley equations in a limiting case less

drastic than that which yielded equation 2.1. Equation 5.2 carries the feature

that the effect of s at time t' upon u at time t will have decremented by a

factor of exp[ -y(t - t')].
We complete our encoder model by imposing a firing threshold at the

criterion level u = C, as before. Equation 5.2 is easily integrated for u, where-

upon the threshold condition yields

C = i dt'e-("+'-l)s(t') ( 5.3 )
to~~
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which should be compared to equation 3.1. Following section 3, if the stim-

ulus is constant (s = so) integration gives

C = +-y-{ 1 - exp [-(t.+l - t)]}so (5.4)

which may be solved for fo, giving

fo = -/lg [ - (yC/so)]. (5.5)

We notice that, as we decrease the stimulus so, the firing rate fo falls to zero

at the finite stimulus level so = yC. This could be found at once by putting

u = const into equation 5.2, to find the asymptotic value to which u will rise

if no threshold is crossed. We see that u rises asymptotically toward the value

so/y, which will be below firing threshold if so < yC. To compare equation

5.5 to equation 3.3, we expand equation 5.5 about large so:

Jo = so/C - /2 + ' yO(C/lso). (5.6)

If so = 2yC, the first two terms in equation 5.6 differ from the exact result

in equation 5.5 by only about 14%. Thus, except very near threshold, the

only effect of forgetfulness on the response to a steady stimulus is that the

single unit firing rate is offset by a constant amount -y/2.

In order to find the single-unit frequency response, it is convenient to

express equation 5.3 as

C = I dt'e-(t-t's(tI). (5.7)

The graphical argument of section 3 corresponded to assuming linear pertur-

bations s = so + si(t), T = To + T(t) in this expression. Substitution into

equation 5.7 yields (with yT1 << I)

0 = T(t)e-rso + f dt1e-'( t )sl(t') (5.8)

in analogy to equation 3. 1; the equation analogous to equation 3.12, which

follows, is

efi(t) = e| dte-("-') sl(t')
-- dt'e -'. (5.9)

t-ro So

Notice that fi is proportional to a weighted average over past values of s ,
with weights biased in favor of the most recent past.

The second part of the frequency response calculation proceeds much as

in section 3, and yields the transfer function

o e lo -
( i + r )

oS so (if (5.10)
Sl So (io + Y)/fo
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which corresponds to equation 3.15. Equation 5.10 shows two new features.

First, if y is comparable in size to fo , then even when w is near zero the perfect

copy feature has been lost: filsl departs from fo/so by a factor (/fo)- (exp

('/fo) - 1). This reflects the fact that near firing threshold the fo vs. so

relation in equation 5.5 is nonlinear. Well away from threshold (/fo << 1)

the frequency response in equation 5.10 looks extremely similar to equation

3.15. However, a second slight discrepancy exists, which will prove important:

the frequency response does not quite null at the resonance points co = 2rnfo,
and there equation 5. 10 becomes

i fo -z z (5.11)
sI So 2rn '

By hypothesis this is small, but it is not zero.

The frequency response of the population rate to a small periodic fluctua-

tion in stimulus may be found as in equation 4.5:

{r1}{J1} = r, iW eY/o - eIfo(
1I_ i -einto (5.12)

sI Tf11 so iW + - Y i - e- ' / l°

For small y this simplifies to

sr, o{ + /If, -e f° (5.13)

The additional term, which is not in equation 4.5, is small under most cir-

cumstances, but goes to infinity whenever w/2ir approaches a resonant fre-

quency. If X is near 2rnfo we find

rl = ro } (5.14)

Thus the population frequency response of the forgetful integrate-and-fire

encoder model, well above threshold, is of the flat perfect time-copy type

except near the resonant frequencies where it is enormously amplified. The

approach of equation 5.14 to equation 4.5, as y -* 0, is nonuniform: the peak

gets narrower but no less tall. The feature of response climbing to infinity,

as the frequency approaches resonance, survives no matter how small a finite

value of y we choose.

We close this section with a comment about the general equation 5.1 with

which we started. The degree of forgetfulness it exhibits may be built in by

rewriting it as

du
-= F(yu, s(t)) (5.15)

dt
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where y is the "forgetfulness parameter" in the sense that if = 0 then

equation 5.15 reduces to the simple integrate-and-fire model with input stim-

ulus F(O, s(t)). If we assume that y is small and also that s(t) = so + si(t)
where s is small, then we may expand F in both small quantities and obtain

du
T = a + bsl(t) + cyu + .. (5.16)

where all the further terms are second or higher order in smallness. This

approximate equation closely resembles equation 5.2, and may be put through

the same logical procedures to yield essentially the population frequency re-

sponse equation 5.13. Thus we see that the feature of resonant amplification

is not peculiar to the forgetful integrate-and-fire model of equation 5.2, but

rather is a common feature intimately associated with the general property

of forgetfulness in a deterministic encoder.

6. PHASE LOCKING IN THE FORGETFUL MODEL

For a simple integrate-and-fire encoder, there is no fixed relationship between

the phase of a periodic input and the moment at which the encoder fires an

impulse. This is so even if the frequency of the periodic stimulus is identical

to the firing rate of the encoder.

In equation 3.1 we may add to the stimulus s(t) any other stimulus s'(t)
which integrates to zero between the firing times, and the equation will still

be satisfied with the firing times unchanged. If all the t, of equation 3.1 are

evenly spaced, and s(t) is periodic over that spacing, then we may let

s'(t) = s(t + r) - s(t) (6.1)

where is arbitrary. The effect of adding equation 6.1 to s(t) is to shift the

stimulus pattern by an arbitrary time r, without shifting the firing times.

For the forgetful integrate-and-fire encoder the situation is altogether dif-

ferent. We may ask under what conditions spike firings will keep in step

with a periodic stimulus. Suppose we apply a stimulus which is a constant

so plus a sinusoid of fractional amplitude m:

s(t) = so{l + m Re ei(wt+). (6.2)

Since an undetermined phase 4 has been included in the stimulus, we may

start the integral in equation 5.3 at t, = 0 without loosing generality.

C = If dt'e7-(r-)so{ I + m Re e"t'+}. (6.3)

In this equation we intend to see if we can pick the phase 4f of the driving
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signal in such a way that the firing period T will be the reciprocal of the

driving frequency w/21r. The reason for writing cos(wt + 4)) in that peculiar

form in equation 6.2 is that later operations are facilitated and the integral

becomes easy:

C emuso{et - 1 + mRe e+ )T - 1)} (6.4)

It will be convenient also to write

-1/ ~ift (6.5)
+ iw \vi±W2

where d is the known angle

,/ = -arctan (wly). (6.6)

Now we will impose the condition that s(t) is periodic over the firing period T:

eiT = 1. (6.7)

Under this assumption, can a fixed firing phase 't be found such that equation

6.3 or 6.4 is satisfied? Equation 6.4 reduces to

- e-IT m ( I eIT #6.8)
C SO + Y (1 - e-) Re e*+}(6.8)

{ ly /y' + (w2

The only unknown in this expression is the phase 4, and that appears only

in one place. We rearrange equation 6.8 to isolate the unknown, and find

A{l T }m2 =cos ( + /) (6.9)
erT -- -

Since the cosine is an even function, the extremes of which lie at 41I, there

will be no solution to equation 6.9 for the phase (A if the left-hand side is

greater than unity in absolute value, but if it is less there will be two solutions.

An easy illustrative example is the case in which the term in braces in equa-

tion 6.9 vanishes. According to equation 5.4, that is the case where T is the

free-running firing period in the absence of modulation. In this case equation

6.9 is evidently solved by

4: = -d + r/2. (6.10)

Since the left-hand side of equation 6.9 need only lie between 4- 1, a period

somewhat off from the free-running period also will permit a solution of

equation 6.9, but a period that is off badly will only solve if the modulation

m is made large enough.
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If there is only slight memory loss over the firing period (yT << 1), equa-

tion 6.9 becomes

{CsO- L = cos( (. + 6.11

The braced term now vanishes if T is the free-running period of the simple

integrate-and-fire encoder. We must stick close to that period if equation 6.11

is to have solutions. And, so to speak, twice as close if the encoder becomes

only half as forgetful-or we must double the modulation.

In deriving equation 6.11, we have used the implication of equation 6.7

that

wo 2rn/T (6.12)

for some integer n. Since o is a property of the cause, and T a property of

the effect, it is of course o which determines T through equation 6.12, pro-

vided equation 6.9 has a solution. The fact that equation 6.9 can be solved

for a range of T about the free-running period shows that the firing rate can

be "pulled" away from its free-running value by a driving frequency that

lies close to a multiple of the free-running firing rate.

What happens if equation 6.9 has no solution? If the modulated part of the

stimulus undergoes, for example, two periods of oscillation in a time closely

similar to three periods of the free-running encoder, then "frequency pulling"

may still occur if the modulation depth is sufficient. More generally, if the

sum of k free-running periods falls close to n periods of the driving frequency,

a repeating time pattern of k impulses over every n driving cycles may be

established. This behavior was noticed and has been treated in detail by

Rescigno et al. (1970). The general "n/k" case is very much more difficult

in details than is the "n/l" case which led to equation 6.9 above, although

very similar conclusions are reached.

If equation 6.9 has any solutions at all, typically it will have two solutions.

Both give points in the stimulus cycle at which firings of the encoder will

continue in step with the stimulus. These are called "fixed points" because

firings continue to occur at them, cycle after cycle. It is not difficult to follow

what happens if the encoder is initially fired at a point in the cycle slightly

off a solution of equation 6.9 (see Rescigno et al. 1970). The conclusion is

that one solution of equation 6.9 yields a stable fixed point, and the other an

unstable one. The fixed point on the rising part of the stimulus is stable and

6
Rescigno et al. (1970) is the definitive study of the forgetful model stimulated by a finite sinusoid.

The final bit of section 5 in that work must be approached with caution, however. It is unclear

whether the final inequality implies necessity or sufficiency, and a result seems to emerge which is

in discord with Denjoy's general result (which we meet in section 7 of this paper) concerning

"continuity of the turning angle" which claims that "n/k" may take on irrational values.
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the one on the falling part is not. An encoder which initially is fired at an

arbitrary point in the stimulus cycle will, over a sequence of subsequent

firings, choose a sequence of points in the cycle which converge to the stable

phase solution of equation 6.9. 7 Thus the stimulus tends to "lock" the firing

of the encoder to a fixed phase of the stimulus's own rhythm.

The consequence for a population of forgetful integrate-and-fire encoders

is evident and dramatic. The entire population will fall into step with the

stimulus, at the stable phase-lock point given by equation 6.9. We saw in the

last section that an infinitesimal periodic modulation of the stimulus leads,

at the resonant frequencies, to an indefinitely large population response. For

a finite stimulus modulation the same sort of thing happens not only at the

resonant frequencies, but in the whole neighborhoods around those frequen-

cies-the frequency-pulling range--over which equation 6.9 has a solution.

If we view the population of encoders as a transducer the output of which

is the population firing rate, this is a very serious matter. The output gives

information only on the frequency of the input, plus the fact that the modu-

lation was strong enough for phase locking to occur at that frequency. One

or a few encoders could deliver as much information. 8

7. GENERAL THEORY OF ENCODER PHASE LOCKING'

The forgetful integrate-and-fire and the simple integrate-and-fire models show

a striking contrast in one feature: in the one model the population of encoders

tend to fall into step and fire simultaneously; in the other model they do not.

These contrasting behaviors are not specific to the two models we have chosen

to analyze in detail. Indeed these two models may be regarded as prototypes

of two distinct classes of encoders. This section will show that in fact no further

classes exist, so long as we confine ourselves to encoders which are determinis-

tic and depend only on input since the last impulse. Thus the results of the

previous sections should be applicable, except for quantitative details, to a

wide variety of neural encoders.

Topological methods of a very general nature, discussed in the present sec-

tion, lead to two conclusions: (a') the most general deterministic impulse en-

coder which does not phase lock to any periodic signal is equivalent to an

7 In the near neighborhood of either the stable fixed point or the adjacent unstable fixed point,

the successor to a given impulse steps toward the phase of the stable point and away from the phase

of the unstable point. The same must be true over the entire span of phase in between these neigh-

borhoods: the phase of the successor is a continuous function of the phase of the given impulse;

the signature of the phase difference can only reverse by passing through zero, which would define

another fixed point between the adjacent fixed points. This topological argument illustrates the

power of the methods which will be discussed in the next section.

8 In particular applications phase locking should be advantageous; for example, in the sound direc-

tion sense at low frequencies, which depends on the accurate measurement of phase differences

between the two ears.
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arbitrary continuous transducer followed by a simple integrate-and-fire en-

coder; and (b') an encoder which does phase lock to some specific periodic

stimulus will also phase lock to distinct periodic stimuli which are sufficiently

similar, and in particular it will phase lock over a finite span of frequencies.

At present the general theory is not in a definitive final form. Two more

conclusions strongly suggested but as yet unproven in general are: (c') no

forgetful encoder (in the sense of section 5, paragraph 1) can mimic an en-

coding scheme the last stage of which is an infinite-memory encoder, hence,

by conclusion (a') any forgetful encoder must show phase-locking behavior;

and (d') any pulse-encoding scheme which shows phase locking in response

to some periodic stimulus will also show population synchronization in re-

sponse to a wide class of reasonable aperiodic stimuli. The tentative conclu-

sions (c') and (d') stand up in explicit cases examined to date. If they hold

universally, then they imply that a homogeneous population of deterministic

encoders designed on any forgetful encoding scheme must eventually fall into

a synchronized condition. The remainder of this section outlines the path of

reasoning that leads to conclusions (a') and (b').

The general theory of deterministic encoder response to periodic stimuli

corresponds to the topological theory of the continuous one-to-one mappings

of the circumference of the circle onto itself. In particular the classification

of encoders is closely related to the classification of such mappings. Suppose a

periodic stimulus s(t) (not necessarily sinusoidal) has a period T = 2r/co.

The variable

x = t/T (7.1)

ranges from zero to unity over one cycle of the stimulus. We can imagine the

ascending values of x as points arrayed around the circumference of a circle.

Equation 3.1 or 5.3 is an implicit relation which determines x,n+ once x. has

been specified. Both are examples of the general form

Xn+l = 0(Xn) (7.2)

where x,+l is some new value which we may place between zero and unity

by adopting the obvious cyclic convention. Equation 7.2 expresses a "map-

ping" in that any point x. on the circle is mapped uniquely onto a new point

x.+l. The position on the circle of the kth successor to x will be given by

Xn+k = (A( .(Xn)...)) 3 ;k(Xn) (7.3)

An evident extension of this notation is, for example,

X = 01(X-+l), (7.4)
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and if two mappings are q4, 4,, we will sometimes write

x' = x(x) = (4(x)) as X = 4*. (7.5)

The successive application of two one-to-one mappings is a one-to-one map-

ping; each mapping has an inverse, and there is an identity mapping (do

nothing). Technically the mappings form a "group" and their natural classi-

fication is in terms of "equivalence classes" in the group theoretic sense.

There is a second way (besides that of equation 7.2) of looking upon the

functional relation

x' = (x) (7.6)

on the circle. It may be looked upon as a reexpression of the same point x in

terms of a new coordinate. For example, x might be distance as measured

around a circle of unit circumference by an accurate tape measure, and x'
that distance as measured by an inaccurate tape measure which is stretched

and shrunk over different parts of its range between zero and unity. Then the

transformation -1 is the correction table to be used with the inaccurate

measure.

If x gets changed, as in equation 7.2, by a mapping O(x), how does x' get

changed? How does the point-to-point mapping, q4, look in the primed co-

ordinate system? What is, say, the corresponding 4'(x')? Answer: first change

x' to x with the coordinate change -l, then move x to 4q(x) with , then

change the new x back to the new x' with the coordinate change 41, whence

4 = *4,*V - ~- (7.7)

Any two mappings related as ¢ and 4' above are said to belong to the same

equivalence class. They are, so to speak, the same mapping expressed in

terms of alternative coordinates.

To illustrate we look at a particular important class: the "equivalence class

of rigid rotations." In equation 7.7 above let be, in particular,

xx (x) = x + X (7.8)

so that each point x is advanced around the circle rigidly by a constant incre-

ment X. Equation 7.7 becomes

XX = '(x') = P(O(Vr-'(x'))) = (p-r(x') + X) = (x + X) (7.9)

which is the generic form of the equivalence class of rigid rotations through

the angle X.

There is a remarkable implicit restatement of equation 7.9. Equation 7.8

is trivially rearranged to

= I dx. (7.10)
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In equation 7.6 let i = a- ,. Then we have dx/dx' = (x') where the dot on

a stands for differentiation. In terms of the x' coordinate equation 7.10

becomes

x= d 'a(x'), (7.11)

the implicit restatement of equation 7.9. But if - is regarded as a stimulus

this is exactly the equation that determines the phase of the successor impulse

X'x of a simple integrate-and-fire encoder which last fired at x'. The mappings

obtained by simple integrate-and-fire encoders, with all possible periodic in-

puts (a) and threshold levels (X), are the same as the equivalence classes of

the rigid rotations through the various rotation angles X.

There are also equivalence classes distinct from those of the rigid rotations.

Equation 5.3, for example, led to equation 6.9, which was solved for the

"fixed points" of the mapping; that is, those phase points in the stimulus

cycle such that successive impulses appeared at unchanged phase, or in the

present language, those points left unmoved by the mapping of equation 7.2.

The existence of a fixed point is a co-called "topological property"-it is in-

dependent of changes in coordinate system such as equation 7.7. Hence the

whole equivalence class will have two fixed points, as surely as any equivalence

class of rigid rotations has no fixed points at all (except if X is an integer).

In passing we note that topological considerations demand that if there is

a stable fixed point then there must also be an unstable fixed point. If there

is a fixed point which the transformation makes other points step toward from

both sides, somewhere on the circle there must be a fixed point with the op-

posite property.

Classes also exist which are distinct from rotations and have no fixed points.

Consider for example the situation in which equation 5.3 permits phase lock-

ing but with two impulses per stimulus cycle. The transformation has no

fixed points, but 2 has four isolated fixed points, as either stable firing posi-

tion in the cycle will repeat after two firings (see Fig. 5). More generally, an

encoding situation which allows a stable time pattern of k spikes to first re-

peat after n stimulus cycles will yield a mapping whose kth iterate has 2k
isolated fixed points.

These simple facts will be used in conjunction with a set of deeper results,

mostly due to Denjoy (1932; see also Coddington and Levinson, 1955, chap-

ter 17; and Moser, 1968,9 pp. 41-77), which we cite without proof.

(a) Every mapping O(x) has associated with it a number (called the "turning

angle") defined by

a(>) = lim -qb(x) (7.12)
n-. n

9Moser, J. 1968. Notes On Dynamical Systems. Courant Institute, New York University

(unpublished).
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which is finite and independent of x. (For purposes of equation 7.12 we do

not impose the cyclic convention mentioned at equation 7.2, but alternatively

"unroll" the circle along the infinite line.) Given that the limit of equation

7.12 exists, it is easy to see that all members of an equivalence class have the

same value of a. It is also instructive to substitute equation 7.8 into equation

7.12 and to calculate directly that the turning angle of a rigid rotation is

indeed X.

(b) If the mapping b depends continuously on a parameter (in the encoder

case the circular driving frequency w of the stimulus will do) then the turning

angle a(+5) also depends continuously on that parameter.

Fuio 1 5F05

FIGURE 5 a FIGURE 5 b

FIGURE 5 a. Circle showing two stable fixed points (sl, s2) and two unstable fixed

points (u,, u2) of the mapping 2.

FIGURE 5 b. Phase locking in a sensory neuron (Limulus eccentric cell) in response to

intracellularly injected current. Top frame: 4) has one stable fixed point. Middle frame:

42 has two stable fixed points (as in Fig. 5 a). Bottom frame: a has three stable fixed

points.

(c) The turning angle a(+) is either an irrational or a rational number. If a

is irrational then k belongs to the equivalence class of rigid rotations with

turning angle a.

(d) If a(4) is rational, say n/k, there are two subcases: either every point x

of 4k (x) is a fixed point, in which case O(x) again belongs to an equivalence

class of rigid rotations, or

(e) O(x) has a discrete set of fixed points. In this case a small finite change of

a parameter (see [b] above) in at least one direction will leave a(4) un-

changed. 10

The deep and difficult statement of the lot is (c), which asserts that we did

not overlook any additional kinds of equivalence classes in our earlier

enumeration.

10 We bar one exceptional case which is unimportant in the application to encoders.
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An encoder which never exhibits contingency (e) always corresponds to a

mapping in the equivalence class of some rotation, and hence to a simple

integrate-and-fire encoder receiving some stimulus with the proper period.

This substantiates conclusion (a') at the beginning of the section.

The contingency (e) is the phase-locking situation, as in Fig. 5, for example.

A small enough parameter change simply shifts the positions of the fixed

points of q4, and may be regarded as a coordinate transformation. Hence

the equivalence class remains unchanged, and so does the turning angle.

The phase-lock condition will likewise persist." Thus any encoder which

will phase lock at all will do so over a finite range of frequency (or amplitude,

etc.--this is conclusion [b'] at the beginning of this section). If we choose a

frequency (and amplitude, etc.) at random, we stand a finite chance to draw

a phase-locked condition.

We close with a remark concerning tentative conclusions (c') and (d') made

at the beginning of this section: suppose two identical encoders, which share

the same input signal, fire initially at times that are only slightly separated.

Let us follow these encoders through a large number of firings. If the encoders

are forgetful in the sense we have used above, then their latest firing times

will be more strongly influenced by their very similar recent past histories

than by their different initial conditions. Hence we anticipate that their firing

times will draw together as their total number of firings increases. We expect

them to "fall into step." This heuristic argument explicitly demands the

property of forgetfulness, and nowhere asserts that the input signal is periodic.

8. STOCHASTIC ENCODERS

We have seen that one indication of the synchronization phenomenon in a

population of deterministic encoders is the resonant amplification of an in-

finitesimal periodic fluctuation in the stimulus, as shown in equation 5.14.

We suggested in sections and 2 that the inclusion of a random process in

each encoder should tend to break up this synchronization.' 2 In the present

section we will verify our suggestion to the extent of showing quantitatively

how fluctuations in the firing rate which are nondeterministic, or stochastic,

suppress the infinite resonant peaks in the population frequency response.

The frequency response of the population firing rate we will determine in

two steps. Following the development for the deterministic case in section 4,

first we will derive a relation between the population rate and a complete

specification of the firing periods of the individual encoders. The second step

11 We note that * (O) * -1 = ( , * t, -l)n where corresponds to the parameter change.

The transformation 4 * * - 1 has the same turning angle as does (of course 0' has fixed points

and hence turning angle zero). The fact that a may be found to represent the parameter change
is called Pliss's theorem and is discussed by Moser.9

12 This idea has been advanced by Stein (1970), and Stein and French (1969).
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will be to derive the firing period information from a stochastic model of an

individual encoder.

Let us generalize the monotonicity postulate, with which we started section

4, in the following way: we postulate a homogeneous population of stochastic

encoders which are such that we expect each to fire once between any two

consecutive firings of any specified member of the population. The expected

total number of firings between two firings of one member is N, the number

of encoders in the population. Let n(T, t) be the number of firings between

the times t - T and t, and let Q(T, t) be the probability density that an en-

coder which fires at t also had its last firing at t - T. Then our postulate

states that

N = f0 dTQ(T, t)n(T, t). (8.1 )

Since the number of firings in the span T is related to the population firing

rate r(t) by

n( T, t) = dt'r(t'), (8.2)

equation 8.1 becomes

N= dTQ(T,t) J dt'r(t') (8.3)

which is the relationship that determines the population firing rate r(t) from

the specified encoder period distribution Q( T, t). It is the stochastic analogue

of equation 4. 1. In the deterministic limit

Q(T, t) = (T - T(t)), T,(t) a specified function, (8.4)

equation 4.1 is recovered. Or if we assume r = r is constant, and Q = Qo(T),

equation 8.3 gives

N = roTo (8.5)

where

To = f dTQ(T)T (8.6)

is the mean firing period. Equation 8.5 gives the steady rate r in terms of

only the first moment To of Q 0(T).
We undertake a perturbation analysis of equation 8.3, and assume

r(t) ro + r(t), Q(T, t) = Qo(T) + Q1(T, t) (8.7)
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which gives

0 = f dTQo(T) j dt'r(t') + I dTQ( T, t) dr'to (8.8)

whence

f dTQo(T) dt'r(t') = -roT(t) (8.9)
t-T

where the perturbation in mean firing period T(t) has a definition analogous

to equation 8.6. Again, the perturbation in the population rate depends only

on the first moment of the perturbation in the period distribution.

To find the frequency response we assume

Ti(t) = T(O)ei ' , ri(t) = r(O)ei't (8.10)

and substitution into equation 8.9 gives, with one easy integration,

1-f* T (8.11)

ri dTQ(T) = rTili8.11

Since Qo(T) is a probability density, and integrates to unity, equation 8.11

in turn at once leads to

- ro (8.12)

where

Q f(iW) = [ dTQo( T)e-t@1 (8.13)

is the average value of exp(-iwT) over T, or in probability terminology, the

"characteristic function" of Qo.

Equation 8.12, the frequency response of r, to T 1 , is the main result of this

final theoretical section. As the resonant poles of the deterministic models

first arose from the denominator of equation 4.3, we compare the denominator

of equation 8.12 to that expression. We notice that a term of the form

exp(-iwT) has been replaced by its average over a collection of periods T
determined by chance. The difference is very important: although exp( -io T)
has unit length on the complex plane and touches the unit circle, the average

of exp( -iwT) over different values of T, its "center of gravity" Qo(iw), must

fall within the unit circle. Hence the denominator of equation 8.12 cannot

vanish. The stochastic feature has taken care of the infinite resonance problem.

Finally, we analyze a specific model which combines the forgetfulness fea-

ture of section 5 with the stochastic threshold feature with which we concluded
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section 2. We assume an internal variable u related to the input stimulus by

equation 5.2, and a distribution of firing thresholds C characterized by a prob-

ability density P'(C) where P' is the derivative of the probability P that was

shown in Fig. 2. As in equation 5.7, the firing threshold C and the period T
are related by

C = f dt' e-('-)S(t') ( 8.14 )

and the probability density Q(T) of the random variable T may be found

from P'(C) and from equation 8.14 by

Q(T) = P'(C(T)) dC(T) (8.15)
dT

according to ordinary probability theory. In equation 8.15 we regard as fixed

parameters the time t and the whole past stimulus history s(t') up to that time.

To specify our model fully, we may specify either P'(C) or Q(T), as they are

related by equation 8.15. For finding the frequency response it is convenient

to let s = so in equation 8.14 and specify the unperturbed period distribution

Qo( To). The reason is that the random variable T1 is given most conveniently
as a function of the random variable To. Using To = If/o, T = - T2f

(equation 3.10), and equation 5.10, we see that

y'0To e-iToS

T, = .- e s. ( 8.16)

The mean value T1 is thus

T1 = dTo Qo(To)T(To) Qo(-y) - Qo(iw() S1 (8.17)
i + 0Y so

where Q0o(--y) follows the definition of equation 8.13. Using both equations

8.12 and 8.17, we find that the frequency response of the population rate to

the stimulus is

r, ro ( ic ) Qo(-iY) - o(iW)
(8.18)

s5 So ic + 1 - Qo(iwc) '

which should be compared to the deterministic result of equation 5.12.

A small stochastic effect corresponds to a period distribution Qo(To) which

is peaked sharply around the mean period To. We may write

eiWT = = e- i (T-To)

-e-iF{l - iw(To - To) -2! (To - To) + (8.19)
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and substitution into equation 8.13 yields

Ot(iw) ~ e- 'T (I - 5 T2) ( 8.20)

where

= 41 dTo(To - T) 2Qo(To) (8.21)

measures the distribution's half-width. There is an analogous result for

/Qo( -y).
What is the effect of small stochastic fluctuations upon the frequency re-

sponse near resonance in a population of slightly forgetful encoders? If we

assume both y and r are small in equation 8.18, we find

_l ro i-
rxr1- -- to (2fo)} (8.22)

= so (co - 27rnfo) - i ° (27rnfoT)

by the same approximation that led to equation 5.14. (We have set f =

I/To.) As we anticipated, the response at resonance is finite, and equation

8.22 converges uniformly to the early perfect time-copy result of equation 4.4

as y approaches zero. This uniformity is in contrast to the nonuniform con-

vergence found at equation 5.14. The size of the response at resonance is

r, = ro(l + 2 Y/fo (8.23

s1 so (27rn)2 (7rfo)2( 8.23)

and represents a contest between deterministic forgetfulness and irregular

firing. We note that the square of the small number Tfo appears in the denom-

inator of equation 8.25, so that in this limit a relatively substantial stochastic

spread in firing periods is necessary to control a relatively much smaller

degree of forgetfulness, if the perfect time-copy property is to be approxi-

mated at resonance. As a rough example consider the case where the internal

memory variable u relaxes 10% between typical spikes (y/fo = 0.1) and the

spike periods have a root mean square scatter of 10% about their mean

(Irf0 = 0.1). At the fundamental resonance (n = 1), even though the coeffi-

cient 2/(21r)2 ~ 0.05 is small, the resonant response is about 1.5 times the

response well away from resonance.

We remark that even though equation 8.22 was derived from a specific

model, that result is model independent to within a multiplicative scale factor

on y; the effect of a forgetfulness parameter should first appear through y to
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the first power, and the denominator in equation 8.22 followed from equation

8.12 which was model independent.

The half-width r (equation 8.21) at most may be made equal to the mean

To, and this happens when Qo(To) is the Poisson distribution

Qo(To) = foe -
°

OT (8.24)

which has the property that successive firing times are completely uncorre-

lated. In this case it is easy to evaluate the frequency response of equation

8.18 exactly, and the result is

r1 rO 1 ( 8.25)
sl so 1 - fo

which is independent of frequency. In this case the perfect time-copy property

is actually achieved for the variation in any stimulus which departs only

slightly from its mean.

The frequency response of equation 8.18 also may be calculated exactly for

the general "gamma" distribution

((n l)f) n+ l ((n+1)f0)0
Q(T ) ((n - To)f) ' e-((n+l)o)To (8.26)

for which the Poisson and deterministic cases are opposite limits n = 0 and

n X. We find n + 1 = (fo0r)-2, and the characteristic function is

2 -ll(fo)2

Qo(iw) = + i(foT) ) (8.27)

Fig. 6 gives examples of equation 8.18 which fall between the limiting cases.13

We see for a very forgetful encoder that an rms stochastic scatter comparable

to the forgetfulness coefficient suppresses the resonances very effectively. In

the case of y/fo = Tfo = 0. 1, the exact expression of equation 8.27 yields a

response ratio of 1.51 between the first resonant peak and zero frequency, as

compared to 1.5 calculated from the approximate equation 8.22.

9. CONCLUDING REMARKS

In this investigation we have paid particular attention to the population firing

rate of a collection of neurons. Our motivation has been that this rate is es-

sentially what is seen by a postsynaptic neuron. We have confined our con-

sideration to "very large" neuron populations. In a practical sense "very

3 The theoretical results of Fig. 6 may be compared with the hardware analogue results of Stein

(1970), and Stein and French (1969).
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FIGURE 6. Amplitude and phase of population rate frequency response, showing

contending effects of forgetfulness and stochastic scatter. Phase is given in radians.

large" means that the population firing rate must exceed the intracellular

voltage resolution time of the postsynaptic neuron. The spike encoding

schemes we have considered all involve only the stimulus history since the

previous spike; this assumption is reasonable for a neuron whose intracellular
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voltage resolution time is limited by its electrical characteristic time rather

than by the decay time of a chemical mediator.

We have reached the following conclusions.

(a) A simple encoder model, which is a reasonable idealization of known elec-

trophysiology, yields a population firing rate which is a perfect replica of the

input stimulus.

(b) A population of noise-free encoders which depart even slightly from the

simple encoder model show a tendency to fall into step, and eventually yield

a bursting type of population firing which yields a very much degraded copy

of the input stimulus.

(c) The presence of noise in the encoders counteracts the tendency to syn-

chronize. A slight noise level will retrieve a faithful population response for

encoders which depart slightly from the simple model. Large stochastic fluc-

tuations will do the same for a population which departs substantially from

the simple model.

In developing these conclusions we have noted that there is a subtle quanti-

tative relation between the firing rate of a single unit and the firing rate of

the population from which it is drawn. This relation must be taken into ac-

count when the behavior of a population is deduced from observations made

on a single cell.
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