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We analyze the time-resolved energy transport and the entropy production in ac-driven quantum coherent

electron systems coupled to multiple reservoirs at finite temperature. At slow driving, we formulate the first

and second laws of thermodynamics valid at each instant of time. We identify heat fluxes flowing through the

different pieces of the device and emphasize the importance of the energy stored in the contact and central regions

for the second law of thermodynamics to be instantaneously satisfied. In addition, we discuss conservative and

dissipative contributions to the heat flux and to the entropy production as a function of time. We illustrate these

ideas with a simple model corresponding to a driven level coupled to two reservoirs with different chemical

potentials.

DOI: 10.1103/PhysRevB.94.035436

I. INTRODUCTION

The understanding of the energy transfer in nonequilibrium

open quantum systems is a fundamental problem in physics.

The separation of energy in heat and useful work and

dissipation is the key for a thermodynamical description. In

quantum systems under ac driving, the identification of these

different components of energy is a nontrivial task which is

paramount to cold atoms [1], nanomechanical [2,3], nanoscale

optoelectronical [4], and mesoscopic electron physics [5–16].

Typically, the central piece of these systems contains a small

number of particles and are driven out of equilibrium, which

renders a usual thermodynamical description unreliable. How-

ever, they are in contact to one or more macroscopic reservoirs

with well defined thermodynamical intensive parameters.

In the recent years, the name “quantum thermodynamics”

has been coined to identify the area of Physics devoted to

the study of this type of systems, which is an intersection

of solid state and statistical physics. The foundations of

this area were in part developed after the proposal of the

Jarzynski’s equality [17] and Crook’s theorem [18] and a

subsequent number of fluctuations relations [19–30]. Recently,

linear response proposals in close relation to thermodynamics

have been formulated for open quantum systems and quasi-

classical systems under periodic driving [13,31–33]. The

proper definition of the heat exchange between a quantum

driven system and its macroscopic environment has been

recently addressed in the context of few-level or spin systems

in contact to phononic baths [34–36] and in systems of coupled

quantum harmonic oscillators [37–39].

The first law of thermodynamics, being basically the

conservation of the energy, is equally valid for nonequilibrium

and equilibrium phenomena. We have recently considered

a model containing the minimal ingredients to address the

problem of time-resolved heat transport [40]. It consists

of a localized level under ac driving coupled to a single

electron reservoir. We have focused on slow driving and zero

temperature. By slow we mean a regime where the typical

dwell time for the electrons inside the driven structure is

much smaller than the driving period. Even in such a simple

setup, a nontrivial effect manifests itself when the heat flow is

analyzed as a function of time. Namely, the coupling region

between the different parts of the system behaves like an

energy reactance. In this way, the coupling not only provides

a necessary mechanism for particle and energy exchange but

also contributes to the energy balance. This contribution is

of ac nature. It allows for a temporary energy storage which

vanishes when averaged over time.

Our goal now is to analyze the time-resolved energy

redistribution and entropy production in ac-driven quantum

coherent electron systems coupled to multiple reservoirs and

finite temperature. We show that the definition of the heat

current flowing into the reservoirs presented in Ref. [40] is

also suitable for multi-terminal devices. More interestingly,

we study the behavior of the different components of the heat.

We identify conservative and dissipative contributions to a heat

flux and to the entropy production as a function of time. We

illustrate these ideas with a simple system that consists of a

slowly driven resonant level coupled to two electron reservoirs

at a finite temperature and with an applied bias voltage,

see Fig. 1.

The paper is organized as follows. We present the model

in Sec. II. A thermodynamic approach to the case of slight

kBT
L

kBT
R
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0+V(t)
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FIG. 1. A single electronic level is coupled to two reservoirs

(fermionic baths) kept at the same temperature T . The chemical

potentials of the left and right reservoirs are μL = μ and μR =

μ − δμ, respectively. The electronic level slowly evolves in time

with a periodic parameter V (t), and hence after a completed period

the central part of the systems returns to its initial state.
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departures from equilibrium is presented in Sec. III. Section IV

contains the definition of the time-dependent energy fluxes,

conservation laws and the different contributions to the entropy

production. In Sec. V, we focus our analysis on the slow driving

regime. These ideas are then illustrated in Sec. VI, where

the example of a single driven level coupled to reservoirs is

analyzed in detail. Section VII is devoted to the summary and

conclusions.

II. MODEL

We consider a finite quantum system, as for example a

single quantum dot or an array of quantum dots, which is

driven out of equilibrium by time-periodic adiabatic power

sources and in contact to several fermionic baths. Then, the

Hamiltonian of the full system can be separated into three

contributions:

H(t) = Hres + HS(t) + Hcont. (1)

The Hamiltonian representing the reservoirs (fermionic baths)

is Hres =
∑

α Hα with Hα =
∑

kα
εkα

c
†
kα

ckα
, where εkα

is the

energy dispersion relation and c
†
kα

(ckα
) creates (destroys) an

electron with continuous index (wave number) kα . Each of

these reservoirs is at local equilibrium with a well defined

temperature T and chemical potential μα . The Hamiltonian

HS(V(t)) describes the central piece of the setup, where

electrons are confined and the driving is applied. For generality,

the form of HS(V(t)) remains unspecified. The time depen-

dence is introduced via a set of parameters V(t) = V(t + τ ) =

(V1(t), . . . ,VM (t)) which characterize the sources of the ac

driving, with τ being the driving period. Finally, the term

Hcont =
∑

α Hcα with

Hcα =
∑

kα,lα

(

wkα,lαc
†
kα

dlα + H.c.
)

, (2)

describes the tunneling hybridization between the electrons

at the reservoirs and the central system. This tunneling takes

place in a contact region that separates the reservoirs and the

central piece. In Eq. (2), the fermionic operators dlα and d
†
lα

are associated to the degrees of freedom of the central system.

In what follows, we present a general reasoning, which is

valid for any HS(V(t)), even when the central piece contains

many-body interactions.

III. THERMODYNAMIC APPROACH

The aim of this section is to present a treatment similar

to the one presented in Ref. [41] in order to identify heat

and work and express the first and the second laws of

thermodynamics in a process involving small deviations from

equilibrium due to slow variations of the time-dependent

parameters δV entering H.

A. Entropy and the first law

1. Reservoirs with equal chemical potentials

Let us begin discussing the case μα = μ and Tα = T .

For an equilibrium system, a description based on the grand

canonical ensemble such that ρ = e−β(H−μN )/Z, with Z =

Tr[e−β(H−μN )] the partition function, N the particle number

and β = 1/(kBT ) with kB being the Boltzmann’s constant, has

an associated von Neumann entropy

S = −kBTr(ρ ln ρ). (3)

We now consider entropy variations that arise from small

but explicit changes in the Hamiltonian δH = (∂H/∂V)δV due

to the variation in time of the parameters V. Such variations

take place within a short time interval δt and assume that the

net change δV = V(t + δt) − V(t) is small compared to the

typical energies (e.g., typical level spacing) of the system. The

consequent change in the probability distribution is quantified

by δρ = ρ(t + δt) − ρ(t), while the change in the entropy is

δS =
1

T
Tr[δρ(H − μN )] −

1

T
F · δV, (4)

where we have defined the force

F = −Tr

(

ρ
∂H

∂V

)

, (5)

and also used that Tr[δρ] = 0, which is a consequence of the

normalization of the probability distribution. Here, the trace is

evaluated with respect to the eigenvalues |m(t)〉 ofH at the time

t with eigenenergies Em. As in Ref. [41] we have introduced

the ‘adiabatic” approximation, in which |〈m′|∂H/∂t |m〉| ≪

(Em − Em′)2/� and δEm = 〈m|δH|m〉.

In Eq. (4), we can identify the term

δU = Tr[δρH] =
∑

α

[δUα + δUcα] + δUS, (6)

with the variation of the internal energy stored in the full

system, including the variation in the central system δUS , plus

the reservoirs δUα and the contact regions δUcα .

The different contributions to the variation of the internal

energy are

δUν = Tr[δρHν], ν = α,cα,S. (7)

Similarly, the variations of the number of particles stored in

the different parts of the setup are

δNν = Tr[δρNν], ν = α,S (8)

and the total change reads

δN =
∑

α

δNα + δNS . (9)

Crucially, the contact regions described by Eq. (2) have an

associated energy term that will contribute to the energy flux.

In contrast, the reservoir and the system have both energy

and particle terms. Hence the study of energy dynamics is

fundamentally distinct from its particle counterpart because

one must consider the intermediate regions that partition the

central system from the reservoirs.

The second term of Eq. (4) is the work done by the ac forces

δWac = F · δV. (10)

Hence

T δS = δU − μδN − δWac = δQtot (11)
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leads us to identify the total heat as

δQtot =
∑

α

[δUα + δUcα − μδNα] + δUS − δWac − μδNS .

(12)

Equation (11) is a statement of the first law of thermodynamics.

Now, in our full system, the total internal energy remains

constant in a process where the central system changes due

to a change of the parameters δV. In such a process, there is

an exchange of internal energy between the different pieces of

the system but the total internal energy is conserved. The same

remark applies to the total number of particles. Hence

δU =
∑

α

[δUα + δUc,α] + δUS = 0, (13a)

δN =
∑

α

δNα + δNS = 0. (13b)

Therefore we have

δQtot = −δWac (14)

indicating that all the work developed by the external ac

sources is transformed into heat that is absorbed by the full

system containing reservoirs, central part and contacts. Notice,

however, that the assumption of a constant temperature for the

reservoirs implicitly assumes that they are indeed in contact to

an extra bath, where the heat is finally released.

2. Reservoirs with different chemical potentials

We turn to consider the situation where the temperature

is kept constant but there is now a small bias in the chemical

potentials of the reservoirs so that μα = μ + δμα . In this more

general situation, we can proceed as in the previous section to

derive the contribution to the total heat generation due to the

ac forces Eq. (12). However, in the present case, we must also

consider an additional change in the entropy δSel due to the

electrical work

δWel =
∑

α

δμαδNα, (15)

which is done by external batteries to maintain the bias in

the electrochemical potential δμα at the reservoirs. As before,

we assume that this change is small enough to imply a slight

departure from equilibrium. In the absence of ac forces, we

have T δS = T δSel = −δWel. Therefore when we consider the

effect of the ac voltage along with the effect of a small change

in the electrochemical potentials at the reservoirs, we have to

add the term T δSel to Eq. (12). This leads to the definition of

the total heat as

δQtot =
∑

α

[δUα + δUcα − μαδNα] + δUS − μδNS − δWac.

(16)

Assuming that the bias generates a redistribution of the

particles within the setup preserving the total number of

particles of the full system, Eq. 13(a) hold. Then, we have

δQtot = −δWac − δWel. (17)

B. Reversible and irreversible processes. The second law

Quite generally, all the forces developing some work can

be classified as conservative and dissipative. This applies

to those generating the ac driving, identified with δWac, as

well as those corresponding to the electromotive forces by

dc batteries, identified with δWel. Hence the heat contains a

reversible component associated to the work developed by

the conservative forces, as well as a dissipative component

associated to the nonconservative forces,

δQtot = δQrev
tot + δQdiss

tot . (18)

In a purely reversible process, which consists of a sequence

of equilibrium states defined with a density ρf given by H(t),

and V̇ → 0, we have

δSrev = −
δW cons

T
=

δQrev
tot

T
. (19)

Under a cycle, which begins and ends at the same equilibrium

state, δSrev = 0, while for a general change, the quantity

can take any sign. There is, however, no contradiction with

the second law, since any of such processes is akin to the

isothermal expansion or compression of a gas in contact to

reservoirs. In fact, in the present case, we are assuming that the

reservoirs remain at the same temperature under the change.

As in the case of the gas, there is still some external agent

other than the reservoirs defined in the system which invests

an extra work in order to maintain the temperature of the

reservoirs. When taking this action also into account, the total

entropy always increases or remains constant. Similarly, the

change of the entropy associated to the dissipative component

is

δSdiss = −
δW diss

T
=

δQdiss
tot

T
. (20)

This component accounts for irreversible processes and has a

nonvanishing mean value when averaged over a cycle.

IV. KINETIC APPROACH

Our aim now is to define fluxes that determine the rate of

change of the energy and of the number of particles for different

parts of the system. We then identify the component of the

energy flux corresponding to heat and the one corresponding to

work. In addition, we will discuss the possibility of identifying

fluxes of heat and work corresponding to the dynamics of

the energy flow through different parts of the device. All the

equations presented in this section are exact and valid for any

amplitude and frequencies of the driving potentials, degree of

coupling between the system and the reservoirs, and model

Hamiltonian. In the case of reservoirs at zero temperature, the

symbol 〈.〉 denotes the expectation value with respect to the

exact quantum mechanical state of the full system at time t .

For reservoirs at finite temperature, they correspond to the

statistical averages with suitable exact mixed states at time

t . A usual procedure to evaluate those averages is to start

with the system uncoupled from the reservoirs at t = −∞ and

to adiabatically connect the reservoirs and the central piece

of the setup. The exact evolution of the mean values of the

observables of interest can be done, for instance, by recourse

to Keldysh nonequilibrium Green’s functions [42]. We will
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focus on the state for which the evolution does not depend on

the details of the switching-on protocol for the contacts. Notice

that, due to the time-dependent periodic driving, this state is

also periodic in time. In this section, we will not address the

particular procedure followed to carry out the evaluation of

the different mean values but rather focus on the derivation of

exact equations relating the different rates and fluxes.

A. Conservation laws

For any driven system described by the Hamiltonian given

by Eq. (1), we can write down two fundamental laws: (i)

instantaneous conservation of charge and (ii) instantaneous

conservation of energy.

(i) The total charge of the system is related to the number

of particles N within the whole system and the corresponding

change can be expressed in terms of the variations of charge in

the reservoirs and the system IC
ν (t) = e ˙〈Nν〉 = ie

�
〈[H,Nν]〉,

with ν = α,S,

e ˙〈N 〉 = IC
S (t) +

∑

α

IC
α (t). (21)

IC
α are effectively charge currents that flow into or out of the

reservoirs while IC
S (t) can be interpreted as a displacement

current, which is finite only in time-dependent situations, like

the stationary time-periodic regime we are addressing.

Charge conservation implies that ˙〈N 〉 = 0 and then we

obtain an instantaneous balance for the electric currents
∑

α

IC
α (t) + IC

S (t) = 0. (22)

(ii) To analyze the equation for the dynamics of the energy

exchange between the different parts of the system we define

the following energy fluxes:

JE
ν (t) =

i

�
〈[H,Hν]〉, (23)

with ν ≡ α,cα,S, which are understood as energy variations

corresponding to the reservoir, the contact and the central

piece, respectively. We also define the generalized force

F = −

〈

∂H

∂V

〉

. (24)

Now, we can derive the following exact equations

˙〈Hα〉 = JE
α (t), (25)

˙〈Hcα〉 = JE
cα(t) = −JE

α (t) +
i

�
〈[HS,Hcα]〉

+
i

�

∑

β

〈[Hcβ,Hcα]〉, (26)

˙〈HS〉 = JE
S (t) − F · V̇. (27)

Equation (26) implies
∑

α

[

JE
α (t) + JE

cα(t)
]

+ JE
S (t) = 0. (28)

We note that Eq. (28) is the counterpart of the first conservation

equation Eq. 13(a), while Eq. (22) corresponds to the second

conservation equation, Eq. 13(b).

To evaluate the change in time for the total energy associ-

ated to the full Hamiltonian H, we must add the contributions

of Eqs. (25)–(27). This leads to

˙〈H〉 =
∑

α

[

JE
α (t) + JE

cα(t)
]

+ JE
S (t) − F · V̇. (29)

Notice that, in contrast to the charge, the energy due to

a change in H is not conserved. This is because such a

change corresponds to a change in internal energy of the

electrons as well as the work done by the ac forces. Hence the

corresponding rate of change is equal to the power developed

by the ac sources. In fact, substituting Eq. (28) into Eq. (29),

we find

Pac(t) = − ˙〈H〉 = F · V̇. (30)

Interestingly, when we consider time-averaged quantities de-

fined as O = limτ→∞ (
∫ τ

0
Odt)/τ , we obtain ˙〈NS〉 = ˙〈HS〉 =

˙〈Hcα〉 = 0. Mathematically, this follows from the fact that the

quantities 〈NS〉, 〈HS〉, and 〈Hcα〉 are bounded while τ → ∞.

Physically, this follows from the fact that charge and energy

can be stored or sunk at a net rate only at the reservoirs.

Then, the conservation laws for the averaged quantities read
∑

α

JE
α = −JE

S = −Pac,
∑

α

IC
α = 0, (31)

since

JE
cα = IC

S = 0, (32)

which means that there are components of the fluxes that

contribute purely dynamically but do not lead to any dc

contribution in the stationary state, thereby the term reactance.

B. Defining total heat and work fluxes

In the case of bias voltages applied to the reser-

voirs δμα through μα = μ + δμα , the power developed

by the electromotive forces in the presence of a charge flux

IC
α (t) is

Pα(t) =
IC
α (t)

e
δμα. (33)

We now turn to explore the proper definition of heat. To

this end, we consider the case where the reservoirs are at

the same temperature T , but they have different chemical

potentials. We can perform the following operation: calculate

Eq. (29)−(μ/e)Eq. (22), use Eq. (30) and collect terms

conveniently to write

∑

α

[

JE
α (t) − μα

IC
α (t)

e
+ JE

cα(t)

]

+ JE
S (t)

−μ
IC
S (t)

e
+ Pel(t) = 0, (34)

where

Pel(t) =
∑

α

Pα(t) (35)

is the total power developed by the electromotive forces

represented by δμα . By comparing with Eq. (16), we observe
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that we can define the total heat variation as

Q̇tot(t) =
∑

α

[

JE
α (t) − μα

IC
α (t)

e
+ JE

cα(t)

]

+ JE
S (t)

−Pac(t) − μ
IC
S (t)

e
. (36)

Then, using Eq. (34) as well as the conservation laws (22) and

(28), we find

Q̇tot(t) = −Pac(t) − Pel(t). (37)

This equation is the counterpart of Eq. (17), which has

been derived within the thermodynamical approach for small

changes in the equilibrium system. In the present case, it states

that at every time, the power developed by the external sources,

including the ac forces as well as the dc batteries that impose

the chemical potential bias, is dissipated in the form of heat.

On the other hand, it is interesting to notice that for any

Hamiltonian HS(t) entering Eq. (1) we can write the variation

in time of the energy stored in the central part as

ĖS(t) ≡ ˙〈HS〉 = JE
S (t) − Pac(t), (38)

which does not have a net contribution since ĖS(t) = 0. Then,

Eq. (34) can also be expressed as

∑

α

[

JE
α (t) − μα

IC
α (t)

e
+ JE

cα(t)

]

+ ĖS(t) − μ
IC
S (t)

e

+Pac(t) + Pel(t) = 0. (39)

At this point, it is important to stress that we have not made

any assumption on the nature of the central system and on the

characteristics of the driving. All the equations derived in this

section rely on conservation laws only.

C. Instantaneous heat fluxes through the different

parts of the setup

In Sec. IV B, we have presented the definitions of the total

heat and work fluxes consistent with the thermodynamical

approach of Sec. III. As stressed before, these equations are

exact and general. They do not rely on any particular method

to evaluate the different fluxes or on the model describing the

full setup. Equation (39) expresses the total heat produced at

time t in the full setup composed by the central structure, the

reservoirs, and the contacts. The behavior of the time-average

of the different fluxes in Eq. (31) implies that

Q̇tot =
∑

α

Q̇α = −Pac − Pel, (40)

with

Q̇α = JE
α − μα

IC
α

e
, (41)

which is the usual definition of the dc-heat flux in the reservoir

α [43]. Equation (40) reflects the fact that the net heat

production takes place at the reservoirs.

In this section, we would like to discuss the role of the

other terms entering Eq. (39), which do not contribute to the

time-average but to the instantaneous total heat production.

A possible interpretation of these terms is to identify them

as components of the instantaneous heat fluxes flowing

through the different pieces of the device. Because of the

coupling between the central system and the reservoirs this

interpretation is quite nontrivial, see, e.g., Refs. [15,16,44,45].

Here we follow the approach introduced in Ref. [40], where

we considered the simple problem of a single driven level

coupled to one reservoir and we argued that the appropriate

definition of the time-dependent heat current flowing into the

reservoir α is

Q̇α(t) = JE
α (t) +

JE
cα(t)

2
− μα

IC
α (t)

e
. (42)

Notice that, in addition to the terms contributing to the

time-average given by Eq. (41), we are adding half of the

instantaneous rate of change of the energy stored at the contact

[cf. the second term in the right-hand side of Eq. (42)].

The arguments supporting this definition were presented in

Ref. [40] and are the following: (i) it is consistent with the

first law of thermodynamics, (ii) it matches the definition

obtained in continuum models solved by scattering matrix

formalism, and (iii) for the problem of an adiabatically driven

level coupled to a single reservoir at zero temperature it leads

to an instantaneous Joule-heating law, implying consistency

with the second law of thermodynamics. The latter argument

is worth of being highlighted. In fact, for a single driven system

within the adiabatic regime in contact to a reservoir at T = 0

we can just expect the heat flux to enter the reservoir at every

time. The exact calculation presented in Ref. [40] shows that

this is indeed the case when the definition given by Eq. (42) is

considered, whereas if the second term is not included in the

definition of the instantaneous heat flux, we get the nonphysical

result of a heat flux exiting a reservoir at zero temperature

for some instants. Without the consideration of this term, no

agreement can be obtained between the expressions of the

scattering matrix formalism for continuum models and the

ones derived with Green’s function formalisms with discrete

tunneling contact regions. Finally, Ref. [46] shows that Eq. (42)

leads to frequency-dependent heat current expressions that

exhibit a proper parity property when the ac frequency is

reversed.

In the case of a multiple-terminal setup, this definition of

instantaneous heat flux through the reservoir α [Eq. (42)] is

also in agreement with the scattering matrix one, as we show

in detail in Appendix A. Furthermore, Eq. (39) suggests the

following definition for the heat flux in the central piece of the

system:

Q̇S(t) = ĖS(t) − μ
IC
S (t)

e
+

∑

α

JE
cα(t)

2
. (43)

We stress that μ is the chemical potential of the grounded

reservoir. In this way,

Q̇tot(t) =
∑

α

Q̇α(t) + Q̇S(t). (44)

In Sec. VI, we analyze in more detail this splitting of the total

rate of heat production for a concrete example. We will see

that the interpretation of Q̇α(t) as the heat flux flowing into the

reservoir and Q̇S(t) as the one through the central system is,

in fact, meaningful within the adiabatic regime for the driving

and within linear response for the bias voltage.
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D. Instantaneous entropy production

As discussed in Sec. III B, the power developed by the

dissipative forces is related to the heat and entropy production,

while the power developed by the conservative forces leads

to reversible heat with strictly zero average. We define the

conservative component of the force as

Fcons(t) = −Tr

(

ρf ∂H

∂V

)

, (45)

where ρf is the frozen density operator, i.e., the equilibrium

density operator considering the Hamiltonian H frozen at

time t . Hence the instantaneous rate of entropy production

reads

Ṡrev(t) =
1

T
Q̇rev

tot (t) = −
1

T
P cons

tot (t),

(46)

Ṡdiss(t) =
1

T
Q̇diss

tot (t) = −
1

T
P diss

tot (t),

with Ptot(t) = Pel(t) + Pac(t) = P diss
tot (t) + P cons

tot (t). Here we

stress that the power developed by the batteries Pel(t) is only

dissipative, while the power developed by the ac forces has

dissipative and conservative components. From the definition

of the heat flux through the central system, Eq. (43), and the

definition of the energy stored in this piece of the setup,

Eq. (38), we can write the dissipative component of this

flux simply by subtracting the conservative component of the

power. The result is

Q̇diss
S (t) = Q̇S(t) + P cons

tot (t). (47)

On the other hand, it is natural to conjecture that the heat

production at the reservoirs is purely dissipative. Then, we

express the irreversible entropy production as

Ṡdiss(t) =
1

T

[

∑

α

Q̇α(t) + Q̇diss
S (t)

]

= −
1

T
P diss

tot (t). (48)

As stressed in Sec. III B, the reversible component of the

heat flux, related to the conservative forces contribute only

dynamically. In fact, when averaging over one cycle, the net

contribution vanishes

P cons
tot = Q̇rev

tot = Ṡrev = 0. (49)

Instead, the dissipative entropy production Ṡdiss(t) has a

nonvanishing average. This does not mean that all the terms

of Eq. (48) have a nonvanishing average. In fact, from the

conservation laws Eqs. (31) and (32), we can see that

Q̇diss
S = Q̇S = 0 (50)

and also the terms JE
cα(t) entering Q̇α(t) have a zero average,

as discussed in Ref. [40]. In the next section, we will further

analyze the role of these terms. We anticipate that they are

crucial to guarantee the second law instantaneously, in the

sense that at each time

Ṡdiss(t) � 0. (51)

V. TIME-DEPENDENT ADIABATIC APPROACH

In this section, we focus on slow driving. Our analysis

will be based on the approach presented in Ref. [13], which

consists of a linear response picture akin to Kubo theory in

δμα combined to an adiabatic expansion in V̇. For the sake of

clarity, we consider a two-terminal setup with left and right

reservoirs, α = L,R, and μL = μ and μR = μ − δμ. In this

approach, the forces and the currents, as well as the mean value

of any observable, is regarded as an expansion in powers of

δμ,V̇ . In what follows, we focus on the forces and the charge

current entering the right reservoir, and keep up to linear order

in these parameters:

Fj (t) = F cons
j +

∑

l


FV
jl V̇l + 


Fμ

j δμ,

(52)
IC
R (t) =

∑

l


CV
l V̇l + 
Cμδμ,

where F cons
j was defined in Eq. (45) and the linear response

coefficients are related to susceptibilities evaluated with the

frozen density operator ρf . Their dependence on time is

calculated from the frozen Hamiltonian evaluated at t [13].

Hence the power developed by the ac forces and by the dc

batteries read, respectively,

Pac(t) = P cons
ac (t) +

∑

j l


FV
jl V̇l(t)V̇j (t) +

∑

j



Fμ

j δμV̇j (t),

Pel(t) = −
∑

l


CV
l V̇lδμ − 
Cμδμ2, (53)

with

P cons
ac (t) = P cons

tot (t) =
∑

j

F cons
j V̇j (t). (54)

In Eq. (53), the negative sign of Pel follows the definition given

by Eq. (33). As shown in Ref. [13] for systems with time-

reversal symmetry, the coefficients 
 obey microreversibility

and satisfy Onsager relations


FV
jl = 
FV

lj , 
CV
l = 


Fμ

l . (55)

Therefore the instantaneous dissipated power defining the rate

of entropy production is

P diss
tot (t) =

∑

j l


FV
jl V̇l(t)V̇j (t) − 
Cμδμ2. (56)

This term must be positive in order to satisfy the instantaneous

second law, Eq. (51).

VI. EXAMPLE: A SINGLE DRIVEN LEVEL

COUPLED TO TWO RESERVOIRS

In order to analyze the theoretical concepts introduced

above, we consider a simple central system of the form (see

sketch of Fig. 1)

HS = εd (t)d†d, (57)

which consists of a driven single resonant energy level εd (t) =

ε0 + V (t) (e.g., a quantum dot) coupled to two fermionic baths

(left and right), with μL = μ and μR = μ − δμ, respectively.

Both of them are kept at the same temperature, T . In Ref. [40],

we considered the single reservoir case with T = 0, and now
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we extend the configuration to multiple reservoirs and to finite

temperature.

A. Green’s function approach

The different currents and energy fluxes, as well as the

power developed by the ac forces, can be computed in

terms of the retarded Green function GR(t,t ′) = −iθ (t − t ′)

〈{d(t),d†(t ′)}〉 and the lesser Green function G<(t,t ′) =

i〈d†(t ′)d(t)〉 of the central structure, which can be obtained

by solving a Dyson equation [47–49]. To compute the time-

dependent heat current entering the reservoir α given by

Eq. (42), we need to have an expression for the charge current

IC
α , the energy currents JE

α and JE
cα . Generalizing Ref. [40] to

the case of many reservoirs, we start by performing the Fourier

transform of the Green function

GR,<(t,t ′) =

∫ ∞

−∞

dε

2π
e−i ε

�
(t−t ′)GR,<(t,ε), (58)

G<(t,t ′) =
∑

α

∫ ∞

−∞

dε

2π
e−i ε

�
(t−t ′)GR(t,ε)<

α (ε)[GR(t ′,ε)]∗,

(59)

where <
α (ε) = ifα(ε)Ŵα . We have introduced the hybridiza-

tion with the reservoir α, Ŵα =
∑

kα
2π |wkα

|2δ(ε − εkα
) and

fα(ε) = [e(ε−μα )/(kBT ) + 1]−1 is the Fermi-Dirac distribution

of the reservoir labeled with α. In the case of reservoirs with

a wide band, in which Ŵα is a constant function, the charge

current flowing into lead α reads

IC
α (t) = −

e

h

∫

dε Ŵα 2Re{iGR(t,ε)fα(ε) + G<(t,ε)�(ε)},

(60)

where �(ε) =
∫

dε′

2π
1

ε−ε′−i0+ , and the energy current entering

reservoir α is

JE
α (t) = −

∫

dε

h
Ŵα 2Re{iGR(t,ε)fα(ε)ε + G<(t,ε)θ (ε)},

(61)

with θ (ε) =
∫

dε′

2π
ε′

ε−ε′−i0+ .

On the other hand, the variation of the energy stored in the

contact region between the central system and the reservoir α

can be written as

JE
cα(t) =

∫

dε

2π
Ŵα fα(ε)2 Re{∂tG

R(t,ε)}, (62)

and the power performed by the ac potentials is

Pac(t) = V̇ (t)

∫

dε

2π
Im{G<(t,ε)}. (63)

Now, taking into account that the ac external potential is

periodic in time, it is convenient to introduce the Floquet-

Fourier representation for the Green function [47,48]

GR(t,ε) =

∞
∑

n=−∞

e−inωtG(n,ε), (64)

where ω = 2π/τ is the oscillation frequency of the ac

parameter V (t). Using this representation, the charge current

entering reservoir α reads

IC
α (t) =

e

h

∑

l

∫

dεe−ilωtŴα{iG∗(−l,ε)[fα(ε) − fα(εl)]

−
∑

n,β

[fα(ε) − fβ(εn)]ŴβG(l + n,εn)G∗(n,εn)},

(65)

with β = L,R and εn = ε − n�ω. On the other hand, the

energy current flowing into α is

JE
α (t) =

∑

l

∫

dε

h
e−ilωtŴα{iG∗(−l,ε)[εfα(ε) − εlfα(εl)]

−
∑

n,β

[εfα(ε) − ε− l
2
fβ(εn)]ŴβG(l + n,εn)G∗(n,εn)},

(66)

and the variation of the energy corresponding to the contact

region can be written as

JE
cα(t) =

∫

dε

h
fα(ε)Ŵα

∑

l

l�ω 2Im[G(l,ε)e−ilωt ]. (67)

Then, the time-dependent heat flux Q̇α(t) of Eq. (42) reads

Q̇α(t) =
∑

l

∫

dε

h
e−ilωtŴα{iG∗(−l,ε)(ε l

2
− μα)

× [fα(ε) − fα(εl)] −
∑

n,β

(ε− l
2
− μα)

× [fα(ε) − fβ(εn)]ŴβG(l + n,εn)G∗(n,εn)}, (68)

In Ref. [40], we have demonstrated the equivalence between

this expression and the one derived within scattering matrix

formalism for the case of a singe reservoir. In Appendix A, we

show that the definition given by Eq. (42), expressed in terms

of Green’s functions in Eq. (68) for the more general case of

multiple reservoirs, is also in agreement with the expression

for the heat current calculated derived within scattering matrix

theory.

Similarly, the power performed by the ac potentials is

Pac(t) =
∑

α

∑

l,m,n

∫

dε

h
n�ωfα(ε)Ŵα

× Im[V (n)G(m + l,ε)G∗(l,ε)e−iωt(m−n)], (69)

where V (n) are the Fourier components of V (t) =
∑

n V (n)einωt .

B. Heat flow in the adiabatic regime

In the adiabatic regime, we rely on the expansion in powers

of V̇ and δμ presented in Sec. V. In order to evaluate the

coefficients 
 for this specific problem, we start from the

expressions of the power and the currents given in Sec. VI A

and perform an expansion up to second and linear order,

respectively in ω and δμ (notice that V̇ ∝ ω in the present

problem). From these expansions (see Appendix B), we can

directly identify the coefficients 
. The explicit expressions

are shown in Appendix C. These coefficients depend on the

035436-7
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FIG. 2. Heat fluxes at the left (solid lines) and right (dashed lines)

reservoirs as well as the flux Q̇diss
S (t) (circles) for a driven level

connected to reservoirs at finite temperature kBT = 0.05 and with

a small applied bias δμ = 0.004. The energy of the level evolves

in time as V (t) = 7 cos(ωt) with �ω = 10−3. Parameters: μ = 2,

ε0 = 0, and the hybridization are ŴL = 1 and ŴR = 0.6. Energies are

expressed in units of ŴL. Sketches illustrating the physical processes

as function of time are also provided. In each case, the horizontal

central line indicates the position of the level at a given time referred

to the position of the chemical potentials of the reservoirs, while the

red arrows indicate the direction of the heat flux associated to the

reservoirs.

frozen density of states (or spectral function) ρf , with the time

t treated as a parameter.

In particular, starting from Eq. (68) to compute Q̇α(t) up

to second order in ω,δμ we find Q̇α(t) = Q̇α(t)(1) + Q̇α(t)(2)

with

Q̇α(t)(1) = 
V̇
α V̇ + 
δμ

α δμ, (70)

Q̇α(t)(2) = 
V̇ 2

α V̇ 2 + 
V̈
α V̈ + 
V̇ δμ

α V̇ δμ + 
δμ2

α δμ2.

(71)

On the other hand, if we take into account the relation for

the entropy production of Eq. (48), and the expressions within

the low frequency approximation, Eqs. (70), (56), and (C1),

we can also compute Q̇diss
S (t) up to second order in ω,δμ as

Q̇diss
S (t) = Q̇diss

S (t)(1) + Q̇diss
S (t)(2), where the first and second

orders are

Q̇diss
S (t)(1) = 
V̇

S V̇ ,
(72)

Q̇diss
S (t)(2) = 
V̇ 2

S V̇ 2 + 
V̈
S V̈ + 


V̇ δμ

S V̇ δμ.

The behavior of the heat flux at the two reservoirs, along

with Q̇diss
S (t) within a period, is shown in Fig. 2 for reservoirs

at finite temperature T and a small applied bias voltage

μL − μR = eV . For t = 0, the energy of the level is above

the highest chemical potential μL. As t evolves, the energy of

level approaches μL from above and when ε(t) − μL ∼ kBT ,

a heat flux leaves the left reservoir, traveling through the

central level towards the right reservoir. When the energy of the

level becomes approximately aligned with the mean chemical

0
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FIG. 3. The different components of the total heat production

Q̇diss
tot (t) = −P diss

tot (t) as a function of time for a single level coupled to

two reservoirs within the adiabatic regime. Dashed lines corresponds

to reservoirs at T = 0, while solid lines are for kBT = 0.05. Other

parameters are the same as in Fig. 2. Energies are expressed in units

of ŴL. The upper panel shows that the heat flux at the reservoirs

is positive and equal to −P diss
tot at T = 0 and may attain negative

values at finite temperature. The dissipative heat flux at the driven

dot Q̇diss
S (t), in the second panel, vanishes when T = 0. The bottom

panel shows the total dissipative power P diss
tot .

potential of the reservoirs, the heat flow goes from the central

piece into the two reservoirs. Later, the level lies well below

the lowest chemical potential μR and the heat flux becomes

vanishingly small. When the level oscillation completes half

a period (t = τ/2), the motion reverses and approaches μR

from below. For μR − ε(t) ∼ kBT , a heat flux is established

from the reservoirs to the central piece until the level aligns

with the mean chemical potential. Then, the heat flows from

the central system into the reservoirs.

It is interesting to analyze the total entropy production of the

above processes as a function of time. Let us start by noticing

that ρ
f
α � 0 and ∂εf � 0. Then, from Eqs. (56) and (C1) for

the dissipated power in the adiabatic regime, it follows that

P diss
tot (t) � 0 and therefore

Ṡdiss(t) � 0. (73)

As discussed in Sec. IV D, the instantaneous rate of entropy

production contains terms associated to the heat production in

the reservoirs as well as terms associated to the heat production

at the central piece, as explicitly defined in Eq. (48). While in

Fig. 2 each of these contributions is separately analyzed, in

Fig. 3, we show the combined effect.
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FIG. 4. Sketches illustrating the heat exchange between the

reservoirs and the central piece. The upper panel corresponds to

T = 0, in which case the heat generated by the driving can only

be injected into the reservoir. The lower panel corresponds to finite

temperature and indicates that depending on the position of the level

relative to the chemical potential of the reservoir, heat flow can be

inwards or outwards.

Interestingly, Q̇diss
tot (t) = 0 for T = 0, which can be exactly

verified by noticing that the coefficients 
S entering (72)

contain integrands with (ε − μ)∂εf = −(ε − μ)δ(ε − μ) at

T = 0. The physical explanation to this property is the

fact that for T = 0 all the dissipation takes place at the

reservoirs. In fact, for reservoirs at zero temperature, heat can

only be injected from the central system into the reservoirs,

which means that Q̇diss
tot (t) =

∑

α Q̇α(t) � 0. However, at finite

temperature, the reservoirs can be temporarily cooled down as

shown in Fig. 4 and we could have
∑

α Q̇α(t) � 0. In that case,

the only possibility to have Q̇diss
tot (t) � 0 is to have a positive

nonvanishing Q̇diss
S (t) �= 0. This is illustrated in Fig. 3, where

the behavior of the total dissipated power is also shown.

C. Instantaneous Joule law in the adiabatic regime

In Ref. [40], we showed that the heat production by a

single driven dot connected to a single reservoir at T = 0

obeys an instantaneous Joule Law in the adiabatic regime. The

corresponding resistance is universal and equal to the charge

relaxation resistance Rq = h/2e2 introduced in Ref. [50] and

observed in Ref. [51]. We are interested now in analyzing a

possible relation in the case of a dot connected to two reservoirs

that may have a finite temperature and a bias voltage. We rely

again on linear response. The term 
F,V V̇ 2 describes the heat

dissipated due to the variation in time of the ac potential, and


C,μδμ2 captures the effect of the applied static bias δμ. The

first term, which is proportional to V̇ 2, can be expressed in

a different way by evaluating the charge current entering the

system IC
S up to first order in the velocity V̇ as

IC
S

(1)
(t) = −

∑

α

IC
α

(1)
(t) = e

∫

dε

2π
∂εfρf V̇ . (74)

For this, we used the relation given by Eq. (22) and the

expression for the currents entering the reservoirs, Eq. (65),

and follow the steps presented in Appendix B for the slow

driving case. Now, combining Eq. (74) with the first term of

Eq. (56), we get

−
F,V V̇ 2 = Rac(t)
[

IC
S

(1)
(t)

]2
, (75)

where we have defined the resistance

Rac(t) = −
h

2e2

∫

dε∂εf (ρf (t,ε))2

(
∫

dε∂εfρf (t,ε))2
, (76)

which is a manifestly positive quantity at all times. Therefore

we find that the heat dissipated due to pumping is given by a

Joule law with an instantaneous resistance Rac(t). This quantity

becomes nonuniversal at finite temperatures, which agrees

with the finite-temperature result of Ref. [50].

If the temperatures of the reservoirs are small compared

to their Fermi energy, it is possible to apply the Sommerfeld

expansion up to order T 2. Accordingly, we investigate the

behavior of Rac(t) at finite temperature,

Rac(t) ∼
h

2e2

(

1 +
π2T 2

3

(∂ερ
f )2

(ρf )2

)
∣

∣

∣

∣

ε=μ

. (77)

Remarkably, the resistance becomes universal at T = 0,

recovering the quantum of charge relaxation resistance

RT =0
ac = Rq = h/2e2 in the single-channel case (recall that

our model corresponds to spinless electrons). For low but finite

temperatures, the resistance increases as shown in Eq. (77) and

becomes RT
ac > Rq . This is illustrated in Fig. 5. The departures

from the ideal quantum limit of the resistance are ∝ T 2 and are

sizable for those times when the energy of the level differs from

the mean chemical potential of the reservoirs in an amount

∼kBT .

On the other hand, for the quadratic term in the bias drop


Cμδμ2 of Eq. (56), we also have an instantaneous Joule law

of the form


Cμδμ2 =

[

IC
R (t)

]2

G(t)
, (78)

with an electrical conductance G(t) = 
Cμ.

VII. CONCLUSIONS

We have analyzed the dynamics of the energy transport and

entropy production in an electron system coupled to multiple

reservoirs and slightly driven out of equilibrium by means of

ac local and dc bias voltages. We have formulated an exact

quantum dynamical approach, which allows to identify time-

resolved quantities, such as the total heat dissipated by the

system, the work done on a system, and the entropy production,

in a way which is fully consistent with the first and the second

laws of thermodynamics.

035436-9
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FIG. 5. Difference between the ac resistance Rac(t) and the

relaxation resistance quantum Rq as a function of time within the

adiabatic regime, and for different temperatures T . Other parameters

are the same as in Fig. 2. Our results show that the instantaneous ac

resistance becomes universal only at T = 0, attaining the value Rq .

For finite temperatures, we have Rac(t) > Rq , hence the difference

between the two is always a positive quantity.

In addition, we identified conservative and dissipative

contributions to the total heat flux and the corresponding

contributions to the entropy production. The time-resolved

heat fluxes flowing through the different pieces of the device

were investigated in detail. We have shown that the definition

of the time-resolved heat current flowing into the reservoirs

recently introduced in Ref. [40] for a single-terminal system

is also suitable for multiterminal devices. This definition takes

into account the energy temporarily stored in the contact region

connecting the driven central system and the reservoirs. Using

this definition, we showed that in the limit of a slow driving the

first and the second laws of thermodynamics can be formulated

consistently at each instant of time.

We illustrated our approach by considering a simple

example—a slowly driven resonant level coupled to two

electron reservoirs at a finite temperature and with an applied

bias voltage. We showed that at finite temperatures, when

one of the reservoirs can be temporarily cooled, the total

heat production at each time is positive, hence the entropy

production is positive, only if the energy stored in the contact

and central regions are taken into account. Since all the

equations of Secs. III–V have been derived under very general

assumptions regarding the nature of the specific model, we

expect that the qualitative features in the behavior of the

entropy production and instantaneous heat flow presented in

Sec. VI will remain valid even for different types of periodic

driving and also the case of a quantum dot with many-body

interactions. The latter type of interactions may, however,

affect other more quantitative features such as the behavior

of the instantaneous Joule law analyzed in Sec. VI C, since

an electron-electron interaction is shown to affect the charge

relaxation resistance Rq at finite temperatures [52], for large

cavities [53], and at finite magnetic fields [54]. Our results thus

represent a significant advance toward a full understanding of

dissipation and dynamics in quantum electron systems and

might have important implications for nanoelectronics and

quantum thermodynamics.
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APPENDIX A: RELATION TO SCATTERING MATRIX

Within the scattering matrix approach [55,56], the heat flux

in the lead α reads (see, e.g., Refs. [57–59])

Q̇S−M
α (t) =

∞
∑

l=−∞

e−ilωt

∫

dε

h
(ε− l

2
− μα)

∞
∑

n=−∞

∑

β=L,R

×{fβ(εn) − fα(ε)}S∗
αβ(ε, εn) Sαβ(ε−l, εn),

(A1)

where S(εm,εn) is the Floquet scattering matrix which is related

to the Green function via the generalized Fisher-Lee relation

[49,60]

Sα,β(ε−m,ε−n) = δα,βδm,n − i
√

ŴαŴβG(m − n,ε−n). (A2)

From this relation, we find that

S∗
αβ(ε, εn) Sαβ (ε−l, εn)

= i δαβδl,−n

√

ŴαŴβG
∗(n,εn)

+ δαβδn,0 × [δl,−n − i
√

ŴαŴβG(l + n,εn)]

+ŴαŴβG
∗(n,εn)G(l + n,εn), (A3)

and therefore Eq. (A1) reads

Q̇S−M
α (t) =

∑

l,n

∫

dε

h
e−ilωt (ε− l

2
− μα)

×
∑

β

[fβ(εn) − fα(ε)]G∗(n,εn)

× [i δαβδl,−n

√

ŴαŴβ + ŴαŴβG(l + n,εn)]. (A4)

Here, the term in Eq. (A3) which is accompanied by δαβδn,0

does not contribute due to the difference between the Fermi

functions. Then, after some algebra and by comparing with

Eq. (68), we find

Q̇S−M
α (t) = Q̇α(t), (A5)

where Q̇α(t) is given in Eq. (42) and includes in the definition

the contributions JE
cα(t) due to the contacts.

APPENDIX B: SLOW DRIVING AND SMALL

BIAS VOLTAGE

To calculate up to ω2 and δμ2 the currents (65), (68), and

the power (69), we need to perform an expansion of the Fermi

035436-10
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function entering the integrands as

fα(ε + n�ω) ∼ fα(ε) + ∂εfα�nω + ∂2
ε fα

(�nω)2

2
(B1)

and

fα(ε) ∼ f (ε) − ∂εf δμα + ∂2
ε f

δμ2
α

2
, (B2)

where f (ε) = [e(ε−μ)/(kBT ) + 1]−1 is the Fermi-Dirac distri-

bution if we take the chemical potential μ and the base

temperature T as a reference.

In the slow driving regime, for which the typical frequency

of the ac potential ω → 0, it is possible to do an exact analysis

by expanding the Green function

GR(t,ε) =

∞
∑

n=−∞

e−inωtG(n,ε), (B3)

or equivalently the scattering matrix, in powers of ω

[40,61,62]. By keeping terms up to first order in ω, we get

G(n,ε) ∼ G(0)(n,ε) + �ωG(1)(n,ε). (B4)

In the case of the driven single level, the above expression

reduces to

GR(t,ε) = Gf (t,ε) +
i�

2
∂t∂εG

f (t,ε) + · · · , (B5)

where Gf = [ε − εd (t) + iŴ/2]−1 is the frozen Green func-

tion. Equation (B5) is in fact quite general if the driving does

not break the symmetry of scattering with respect to a spatial

direction reversal [56].

Then, combining Eqs. (B3) and (B5), we find

G(0)(n,ε) =

∫ τ

0

dt

τ
Gf (t,ε)einωt ,

(B6)

ωG(1)(n,ε) =

∫ τ

0

dt

τ

i

2
∂t∂εG

f (t,ε)einωt .

APPENDIX C: COEFFICIENTS � OF

THE ADIABATIC EXPANSION

By using the low-frequency expansion detailed in Ap-

pendix B in the expressions of the charge current and the

power developed by the ac forces, we can calculate


Cμ = −
1

2

∫

dε

h
∂εf

∑

α=L,R

Ŵαρ
f
ᾱ ,

(C1)


FV =
�

2

∫

dε

2π
∂εf ρf 2

,

where f (ε) = fL(ε), since we take the left reservoir as a

reference. We have used the notation L̄ = R and R̄ = L, as

well as the property ρ
f
α = |Gf (t,ε)|2Ŵα with α = L,R. The

local frozen density of states can be expressed as

ρf (t,ε) = −2Im[Gf (t,ε)] = |Gf (t,ε)|2Ŵ, (C2)

with Gf (t,ε) = [ε − εd (t) + iŴ/2]−1 being the frozen Green

function describing the regime in which the electrons instanta-

neously adjust its potential to the ac field, and Ŵ =
∑

α=L,R Ŵα

is the total hybridization with the reservoirs.

Following a similar procedure in Eq. (68), we can compute

Q̇α(t) up to second order in ω,δμ. The result is collected in

the coefficients 
α , which can be expressed as


V̇
α = −

∫

dε

2π
∂εf (ε − μ)ρf

α ,

(C3)



δμ

L = −

δμ

R =

∫

dε

h
∂εf (ε − μ)ŴRρ

f

L ,

for the first order, and


V̇ 2

α = −
�

2

∫

dε

2π
∂εf ∂ε

[

(ε − μ)ρf ρf
α

]

,


V̈
α =

�

2

∫

dε

2π
∂εf (ε − μ)ρf ρf

α ,



V̇ δμ

L =
1

2

∫

dε

2π
∂εf ŴR∂ε

[

(ε − μ)ρf ρ
f

L

]

, (C4)



V̇ δμ

R =

∫

dε

2π
∂εf (ε − μ)∂ερ

f

R − 

V̇ δμ

L ,



δμ2

L = −
1

2

∫

dε

h
∂εf ŴR∂ε

[

(ε − μ)ρ
f

L

]

,



δμ2

R = −

δμ2

L + 
C,μ,

for the second order.

Similarly, the coefficients entering the expansion of Q̇S(t)

read


V̇
S = −

(


V̇
L + 
V̇

R

)

=

∫

dε

2π
∂εf (ε − μ)ρf ,


V̇ 2

S = −
(


V̇ 2

L + 
V̇ 2

R + 
F,V
)

=
�

2

∫

dε

2π
∂εf (ε − μ)∂ερ

f 2
,


V̈
S = −

(


V̈
L + 
V̈

R

)

= −
�

2

∫

dε

2π
∂εf (ε − μ)ρf 2

,



V̇ δμ

S = −
(



V̇ δμ

L + 

V̇ δμ

R

)

= −

∫

dε

2π
∂εf (ε − μ)∂ερ

f

R .

(C5)
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