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This paper examines how diseases on random networks spread in time. The disease is described by a
probability distribution function for the number of infected and recovered individuals, and the probability
distribution is described by a generating function. The time development of the disease is obtained by iterating
the generating function. In cases where the disease can expand to an epidemic, the probability distribution
function is the sum of two parts; one that is static at long times, and another whose mean grows exponentially.
The time development of the mean number of infected individuals is obtained analytically. When epidemics
occur, the probability distributions are very broad, and the uncertainty in the number of infected individuals at
any given time is typically larger than the mean number of infected individuals.
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I. INTRODUCTION

A series of papers by Watts and Strogatz �1�, Pastor-
Satorras and Vespignani �2,3�, Meyers et al. �4–6�, Newman
and co-workers �7–11�, Stanley and co-workers �12�, Albert
and Barabási �13�, Cohen et al. �14�, Moreno and Vazquez
�15,16�, and Voltz �17� applies methods from graph theory
and percolation theory �18,19� to the spread of disease on
random networks. These papers mainly study the final state
of a population once the disease has run its course, with all
individuals susceptible but uninfected, or recovered. This pa-
per shows how to apply the same analytical techniques to the
dynamics of the epidemic and find how the number of in-
fected individuals varies in time.

A starting point for this study was to clear up a curious
point arising when an epidemic is possible, but not certain.
Newman et al. �9� find a probability distribution function Pl
that l individuals have been infected, and they show that u
��lPl�1. They determine u from a self-consistent equa-
tion, and interpret Pl as describing the probability of a finite
outbreak that does not grow to system size. The remaining
probability, 1−u, is contained in an outbreak that fills the
whole system. This interpretation is puzzling. Since l can
have any size, why does Pl describe only finite outbreaks?
How do the self-consistent equations determining u figure
out how to find only these finite outbreaks, and discard the
larger ones? The authors assert that the system-size out-
breaks would contain loops that invalidate the formalism
they are employing, but how does the formalism know this?
These questions are resolved when one examines the prob-
ability distribution after n time steps, Pl

�n�. One finds that the
probability distribution is the sum of two pieces. The first
piece Ql

�n� converges to a time-independent function Ql in the
long-time limit, with �lQl�1. The second piece Rl

�n� never
stops evolving. Its mean and width grow exponentially. So
long as the mean of Rl

�n� is much smaller than the total sys-
tem size, it can be described by standard generating function

techniques, and this description is not invalidated by the
presence of loops. Thus, the generating function formalism
has been finding Ql and the reason this function emerges is
that Pl

�n� converges to Ql pointwise, although at any given
time step n a finite fraction of Pl

�n� is contained in a very
broad tail of the distribution that has formed out in front of
Ql. Techniques essentially identical to those used previously
to describe Ql can be used to analyze Rl

�n�. In particular, one
can find closed-form expressions for the mean number of
people infected at time n. When an epidemic is possible,
both the mean and width of Rl

�n� grow exponentially in time.
In general, ones uncertainty about precisely how many
people will be infected in the future grows as fast as or faster
than the number of diseased individuals.

II. DYNAMICAL EQUATIONS

Consider a random network in which the probability dis-
tribution of nodes with k edges is pk. Following Newman et
al. �9�, the generating function for the distribution of nodes is

G0�x� � �
k=0

�

pkx
k. �1�

Consider choosing a random edge in the system. The prob-
ability that the node reached by this edge will have l new
edges in addition to the one chosen to start with is generated
by the coefficient of xl in

G1�x� �
G0��x�
G0��1�

. �2�

Consider conventional susceptible-infected-recovered dy-
namics on this network �9�. At each time step, uninfected
nodes connected by an edge to infected nodes become in-
fected in turn with unit probability. Let Pl

�n� give the prob-
ability that a grand total of l individuals has been infected
after n time steps, and let the generating function for Pl

�n� be*Electronic address: marder@mail.utexas.edu
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H�n��x� � �
k=0

�

Pl
�n�xl. �3�

Imagine starting with a single infected individual. At step 0,
one has H�0��x�=x. At the next time step, the generating func-
tion for the total number of individuals infected is

H�1��x� = xG0�x� , �4�

since G0�x� gives the probability that a given node has 0, 1,
2,… edges, and one multiplies by x because one began with
one infected individual. Each of the edges departing the first
one reaches some other node. The probability that it will
have l additional edges leaving it is given by G1�x�. Using
the powers property in Sec. II A of Ref. �9�, one has

H�2��x� = xG0„xG1�x�… . �5�

Continuing in this fashion, one has

H�n��x� = H�n−1�
„xG1�x�… . �6�

This expression is inconvenient for numerical work, so we
define instead

F�0��x� = 1, �7a�

F�n��x� = G1„xF�n−1��x�… , �7b�

H�n��x� = xG0„xF�n−1��x�… . �7c�

To extract the probability distribution function from a gener-
ating function H�z�, note that from Cauchy’s theorem

Pl =
1

2�i
� dz

zl+1H�z� = �
0

1

d� e−2�il�H�e2�i�� . �8�

Suppose now that H has been evaluated around the unit
circle at M points, with �m=m /M, m� �0,M −1�, and let

Hm = H�e2�i�m� . �9�

Then one has

Pl =
1

M
�
m=0

M−1

e−2�ilm/MHm =
1

M
FDFT�H,− 1��l� , �10�

where the last expression means that one takes the lth ele-
ment of the inverse discrete fast Fourier transform. Using
Eqs. �7� and employing Eq. �10� to obtain probabilities Pl,
one easily obtains hundreds of iterates of the map, for hun-
dreds of thousands of values of l.

III. STATIC AND GROWING DISTRIBUTIONS

Some results of solving Eqs. �7� appear in Fig. 1. Figure
1�a� shows distributions resulting from the polynomial
G0�x�=0.7x+0.2x2+0.05x3+0.04x4+0.01x5. The threshold
for an epidemic is determined by z2�z1 �2,9,20,21�, where
z1=G0��1� is the average number of neighbors of each node,
and z2=G1��1�z1 is the average number of second neighbors.
In the present case, z1=1.46 and z2=1.38, so the infection is

contained, and the probability distribution converges to a
definite limit enclosing unit probability. The upper curve
shows the cumulative sum Sl=�k=1

l Pk
�100�. The mean number

of people infected after 100 iterations is 27, but the distribu-
tion is broad; for example, there is a 1% chance that more
than 480 people will be infected. Figure 1�b� shows results
from the polynomial G0�x�=0.7x+0.1x2+0.05x3+0.01x4

+0.14x5, which gives z1=1.79, z2=3.42. Since z2�z1, an
epidemic is possible. One can compute the probability of an
epidemic spiraling out of control following �9�; also see Eq.
�12�. There is a root of G1�u�−u at u=0.492 and G0�u�
=0.3790. This computation predicts a 37.9% chance that the
disease will run its course without becoming an epidemic.
The upper curve in Figure 1�b� shows the cumulative sum
Sl=�k=1

l Pk
�12�, and there is a broad plateau where this sum has

reached 0.38. The mean number of infected individuals after
11 iterations is 4650 but there is a 1% chance that more than
26 000 people will be infected. Figure 1�c� uses the probabil-
ity distribution p0=0, pk�k−�e−k/� with �=2 and �=20.
Now z1=1.8, z2=5.3, and the epidemic grows even more
rapidly. There is a 41% chance that the epidemic will be
contained. The mean number of infected individuals after
seven steps is 5500, but there is a 1% chance that more than
50 000 will be infected.
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FIG. 1. �a� Dynamical evolution of Eq. �7c� in a case where the
average number of second neighbors z2 is less than the average
number of neighbors z1, and there is no epidemic. The map is iter-
ated 100 times. �b� Dynamical evolution of Eq. �7c� in the case
where z2�z1, so one expects the existence of a giant component.
The map is iterated 12 times. �c� Similar to �b�, but now using a
broader probability distribution. The epidemic grows quickly and
only eight iterations are displayed.
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Inspection of Figs. 1�b� and 1�c� confirms that, when there
is the possibility of an epidemic, the probability distribution
does indeed split into two components. The first component
Ql is static in the long-time limit and describes the probabil-
ity that spread of disease terminates with a number of in-
fected individuals much smaller than the total population.
The second component Rl

�n� continues to evolve forever.
From a formal point of view, the definition of Ql is

Ql = lim
n→�

� d� e−2�il�H�n��e2�i�� . �11�

For any fixed l, this limit converges. Then Rl
�n� can be defined

as Rl
�n�= Pl

�n�−Ql. One can similarly decompose the probabil-
ity distribution resulting from F�n� into static and evolving
components. To see now how the probability of not partici-
pating in the epidemic emerges from self-consistent equa-
tions, define F��x�� limn→� F�n��x�. This limit exists for any
x�1, since large powers of x�1 in the power series for F�n�

suppress the parts of F�n� that are continuing to evolve.
Return to Eq. �7b� and write

lim
x→1

lim
n→�

F�n��x� − G1�xF�n−1�� = 0 �12�

⇒ lim
x→1

F��x� − G1�xF�� = 0

⇒u = G1�u� with u � lim
x→1

F��x� .

Finally G0�u�=limx→1 limn→� H�n��x� gives the probability
that the disease does not spiral into an epidemic. The under-
lying probability distribution assumes that all individuals in
the network are equally likely to introduce the disease, and
the disease results from a single first instance. Percolation
theory teaches that the giant component of the network is
connected. Therefore, G0�u� also gives the percentage of the
population that does not belong to the giant component and
hence remains uninfected in the event of an epidemic. This
conclusion is only as robust as the two assumptions going
into it.

Figure 2 shows an explicit decomposition of the data in
Fig. 1�b� into components Q and R. The task is carried out by
taking the final curve in Fig. 1�b� and noticing that it has
converged to a static value up to around l=32 �the precise
cut point does not matter much� and is continuing to evolve
for larger l. For l�32, Ql is estimated by a power-law fit.
The area under Ql found this way is 0.3791 which compares
well with the value predicted by Eq. �12� of 0.3790.

IV. SIZE OF INFECTED CLUSTER

One can work out analytically the average size of the
infected and recovered cluster as a function of time. Note
that F�n��1�=1 and let

Mn =
d

dx
F�n�	�x�	x=1.

Then

Mn = G1��1��F�n−1��1� + Mn−1� =
z2

z1
�1 + Mn−1� . �13�

Using M0=0, one can solve this iterated map exactly as a
power series, which has the compact final expression

Mn =
z2

z1
�
l=0

n−1 
 z2

z1
�l

=
z2

z1

1 − �z2/z1�n

1 − z2/z1
� . �14�

Then the average number of individuals in the cluster is

�ln =
d

dx
H�n�	�x�	x=1 = 1 + z1�1 +

z2

z1

1 − �z2/z1�n−1

1 − z2/z1
�� .

�15�

If z2�z1, one obtains the expected result �8,20,21� for large
n that

�l = 1 + z1
1 +
z2

z1 − z2
� = 1 +

z1
2

z1 − z2
. �16�

In the opposite case, z2�z1, Eq. �14� becomes Mn
��z2 /z1�n+1 / �1−z2 /z1� and for large n the average size of the
infected population is

�ln �
z1�z2/z1�n

z2/z1 − 1
. �17�

The width of the distribution is proportional to the mean. The
dominant contribution to �l2n at large n is

��l2n − �ln
2 �

�z2/z1�n

z2/z1 − 1
�z2 − z1

2 +
z2G1��1�

�z2/z1 − 1�
. �18�
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FIG. 2. Decomposition of the data in Fig. 1�b� into static and
growing components Ql and Rl

�n�. This is basically done by finding
Ql and subtracting it from successive Pl’s. Specifically, compute
Pl

�12�, set Ql= Pl
�12� for l	32, fit Ql to a power law for l�32, and

subtract Ql obtained in this way from distributions Pl
�1� , . . . , Pl

�11�.
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V. WHEN INFECTION IS NOT CERTAIN ACROSS AN
EDGE

Newman �8� describes the case where infection is not cer-
tain across an edge connecting two nodes, but occurs with
probability T. In this case, the probability of infecting neigh-
bors starting with a randomly chosen node is generated by

G0„1 + T�x − 1�… , �19�

the probability of infecting neighbors starting with a ran-
domly chosen edge, excluding the incoming edge is gener-
ated by

G1„1 + T�x − 1�… , �20�

and by employing these two generating functions, the evolu-
tion equation �7� is unchanged, while Eq. �15� for the aver-
age size of the outbreak generalizes to

�ln+1 =
d

dx
H�n+1�	�x�	x=1 = 1 +

z1
2T − z2T�z2T/z1�n

z1 − z2T
. �21�

Essentially z2 is replaced by Tz2
.

VI. INDIVIDUALS INFECTED AT EACH TIME STEP

Another interesting quantity to track is the probability of
infecting l new individuals at each time step. This can be
done by adding a subscript to the variable x that tracks the
time step at which an individual has entered the cluster.
Doing so, one has

H�0��x0� = x0, H�1��x0,x1� = x0G0�x1� , �22�

H�2��x0,x1,x2� = x0G0„x1G1�x2�… . �23�

Continuing in this fashion, one has

H�n��x�� = H�n−1�
„x0,x1, . . . ,xn−2,xn−1G1�xn�… . �24�

One recovers the results in Eq. �7c� by removing all the
indices from the variables x. To focus upon the individuals
infected at step n, just set all variables xl to 1 except the last.
Denote by sl

�n� the probability that l individuals have been
infected at time step n, and let J�x� be the generating func-
tion for this probability. Then

J�1��x� = G0�x�, J�n��x� = J�n−1�
„G1�x�… . �25�

One can now calculate the mean number of individuals
infected at each time step, 
ln,


ln � � sl
�n�l, 
l1 = z1, �26�


l2 =
z2

z1
z1 ¯ 
ln = 
 z2

z1
�n−1

z1. �27�

VII. SCALING FORM FOR EPIDEMIC

It would seem natural for the growing part of the prob-
ability distribution Rl to adopt a scaling form at long times.
To capture the growing part of the distribution, one computes

Rl
�n� �

1

�ln
R̃��� where � = l/�ln. �28�

As shown in Fig. 3, this scaling form does appear to describe
R after sufficiently many iterations, On a logarithmic scale

the tail of R̃ for small �= l / �ln converges pointwise, but on a
linear scale convergence is uniform.

VIII. SATURATION

The approach taken in this paper does not naturally lend
itself to studying the saturation effects that occur when the
total number of infected individuals becomes comparable to
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FIG. 3. Plot of �lP��l, using the generating functions from Fig.
1�b� iterated ten times, appears to be converging on a scaling form.
Convergence for small values of �= l / �ln is pointwise on a loga-
rithmic scale �a� and uniform on a linear scale �b�.
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FIG. 4. Time evolution of mean number of infected individuals
in the presence of saturation. The simulation is identical to Fig.
1�b�, but the size of the giant component is taken to be 6554, and all
weight in the distribution function greater than 6554 is attributed to
that number of infected individuals, with the result that the mean
number of infected individuals reaches a plateau at around 4000.
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the total population size. A simple estimate can be obtained
by allowing the probability distribution to evolve, but choos-
ing some number N for the population of the giant compo-
nent and treating all weight in the probability distribution
above N as describing an infection of the N individuals in the
giant component. The results of such a computation appear
in Fig. 4. It would be interesting to compare this admittedly
crude technique with mean field methods such as that of Volz
�17�.
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