
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Physics Faculty Publications Physics 

6-2011 

Dynamics of Fingering Convection I: Small-Scale Fluxes and Dynamics of Fingering Convection I: Small-Scale Fluxes and 

Large-Scale Instabilities Large-Scale Instabilities 

Adrienne L. Traxler 
Wright State University - Main Campus, adrienne.traxler@wright.edu 

Stephan Stellmach 

Pascale Garaud 

T. Radko 

N. Brummell 

Follow this and additional works at: https://corescholar.libraries.wright.edu/physics 

 Part of the Physics Commons 

Repository Citation Repository Citation 

Traxler, A. L., Stellmach, S., Garaud, P., Radko, T., & Brummell, N. (2011). Dynamics of Fingering Convection 

I: Small-Scale Fluxes and Large-Scale Instabilities. Journal of Fluid Mechanics, 677, 530-553. 

https://corescholar.libraries.wright.edu/physics/976 

This Article is brought to you for free and open access by the Physics at CORE Scholar. It has been accepted for 
inclusion in Physics Faculty Publications by an authorized administrator of CORE Scholar. For more information, 
please contact library-corescholar@wright.edu. 

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/physics
https://corescholar.libraries.wright.edu/physics_comm
https://corescholar.libraries.wright.edu/physics?utm_source=corescholar.libraries.wright.edu%2Fphysics%2F976&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=corescholar.libraries.wright.edu%2Fphysics%2F976&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu


ar
X

iv
:1

00
8.

18
07

v1
  [

ph
ys

ic
s.

fl
u-

dy
n]

  1
0 

A
ug

 2
01

0

Under consideration for publication in J. Fluid Mech. 1

Dynamics of fingering convection I:
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Double-diffusive instabilities are often invoked to explain enhanced transport in stably-
stratified fluids. The most-studied natural manifestation of this process, fingering con-
vection, commonly occurs in the ocean’s thermocline and typically increases diapycnal
mixing by two orders of magnitude over molecular diffusion. Fingering convection is also
often associated with structures on much larger scales, such as thermohaline intrusions,
gravity waves and thermohaline staircases. In this paper, we present an exhaustive study
of the phenomenon from small to large scales. We perform the first three-dimensional
simulations of the process at realistic values of the heat and salt diffusivities and provide
accurate estimates of the induced turbulent transport. Our results are consistent with
oceanic field measurements of diapycnal mixing in fingering regions. We then develop a
generalized mean-field theory to study the stability of fingering systems to large-scale
perturbations, using our calculated turbulent fluxes to parameterize small-scale trans-
port. The theory recovers the intrusive instability, the collective instability, and the γ-
instability as limiting cases. We find that the fastest-growing large-scale mode depends
sensitively on the ratio of the background gradients of temperature and salinity (the
density ratio). While only intrusive modes exist at high density ratios, the collective and
γ-instabilities dominate the system at the low density ratios where staircases are typically
observed. We conclude by discussing our findings in the context of staircase formation
theory.

Key Words: Double Diffusive Convection, Geophysical Flows

1. Introduction

When the density of a fluid depends on (at least) two components, nominally stably-
stratified systems can, under certain circumstances, undergo double-diffusive instabilities
leading to significant vertical buoyancy transport. Here, we focus on the case of the
“fingering” instability, which often occurs in fluids which are thermally stably stratified,
but have an inhomogeneous composition. A well-known example is found in upper layers
of the Earth’s oceans where evaporation exceeds precipitation, leading to warm salty
water overlaying colder fresh water (Stern 1960; Schmitt et al. 2005). Since heat diffuses

http://arxiv.org/abs/1008.1807v1


2 A. Traxler, S. Stellmach, P. Garaud, T. Radko and N. Brummell

faster than salt, parcels of fluid displaced downward rapidly lose their heat excess while
maintaining a larger salt concentration. They become denser than the environment and
continue to sink, forming structures called “salt-fingers”. Similar fingering instabilities
can occur in any other thermally stably stratified solution, provided the concentration
of the slower-diffusing solute increases with height (Stern 1960; Schmitt 1983).
The saturated state of this instability, fingering convection, takes the form of tightly-

packed, vertically-elongated plumes of sinking dense fluid and rising light fluid (Stern
1960; Kunze 2003), and significantly enhances the vertical transport of both heat and
chemical composition. In the ocean, fingering convection increases diapycnal mixing
within extended regions (Schmitt 1994; Kluikov & Karlin 1995; You 2002) of the thermo-
cline by at least two orders of magnitude over molecular diffusion. It has been argued that
the nutrient supply of the upper ocean (Dietze et al. 2004), the surface temperature and
the surface fluxes of CO2 and O2 are all affected by this process (Glessmer et al. 2008).
Conditions favorable for fingering convection also exist in many other natural systems
(Schmitt 1983). In the astrophysical context for example, a variety of situations lead to
the development of unstable mean molecular weight gradients in otherwise stably strat-
ified “radiative” regions within stars and giant planets (Vauclair 2004; Stancliffe et al.

2007; Charbonnel & Zahn 2007). Since the long-term thermal evolution and chemical
stratification of these objects is regulated by the transport bottleneck caused by radia-
tive regions, the presence or absence of mixing by fingering convection can influence their
observable properties dramatically.
While fingering convection is by nature a small-scale phenomenon, it also has an in-

triguing propensity to generate dynamical structures on very large scales, such as internal
gravity waves, thermohaline intrusions and thermohaline staircases. As first argued by
Stern (1969) and Holyer (1981), a homogeneous field of fingers can become unstable to
the so-called “collective instability” leading to the spontaneous generation of internal
gravity waves in regions of active salt fingering. This instability was later confirmed in
laboratory experiments by Stern & Turner (1969) and in direct numerical simulations by
Stern et al. (2001).
Thermohaline intrusions are different kinds of large-scale structures which are never-

theless also often associated with fingering convection. They take the form of laterally
interleaving layers with distinct temperature and salinity signatures, and can sponta-
neously form in fluids which are stratified both vertically and horizontally. They are
commonly observed in the ocean (Ruddick & Richards 2003), and have been repro-
duced in lab experiments (Ruddick & Turner 1979; Ruddick et al. 1999) and numeri-
cally (Simeonov & Stern 2007). See Ruddick & Kerr (2003) for a detailed discussion of
intrusion theory.
Finally, one of the most dramatic signatures of active fingering convection in the ocean

is the formation of mixed layers separated by salt finger interfaces, known as thermo-
haline staircases. Persistent staircases have been documented in the Tyrrhenian Sea,
below the Mediterranean outflow, and in the western tropical North Atlantic (Schmitt
1994). Layer formation is also observed in laboratory experiments (Stern & Turner 1969;
Krishnamurti 2003). Layering enhances vertical mixing by up to an order of magnitude
(Schmitt et al. 2005; Veronis 2007) relative to globally similarly stratified regions charac-
terised by a smoother stratification. Forty years after the discovery of this phenomenon
in oceanographic field measurements (Tait & Howe 1968, 1971), a generally accepted
explanation is still lacking. Radko (2003) argued through theoretical and numerical anal-
yses that the observed layering is likely to be caused by the so-called γ-instability—an
instability driven by variations in the ratio of the turbulent heat and salt fluxes.
The conventional approach to analysing the spontaneous generation of structures from
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fingering convection uses the assumed separation of scale between the finger scale and the
emerging structure scale to construct a mean-field theory, in which the effect of the small-
scale fingering is modeled through turbulent fluxes. The resulting mean-field equations
describe the evolution of the large-scale fields only and can straightforwardly be analysed
for linear stability. Globally speaking, the modulation of the background stratification by
large-scale temperature and salinity perturbations induces a modulation of the turbulent
fluxes. When the divergence or convergence of these modified fluxes act to enhance the
original perturbation, large-scale modes of instability are excited. Different variants of
mean-field models have been individually successful in representing the gross properties
of each of the aforementioned large-scale phenomena (intrusions, collective instability,
γ-instability).
In this paper, we show that these various modes of instability can actually be de-

scribed by a single unifying mean-field formalism, and are all recovered as limiting cases
of our theory—each one corresponding to a different feedback mechanism between the
large-scale perturbation and the induced turbulent fluxes. In §2 we present our unified
mean-field model, and its relationship with previous work. In §3, we then perform a
series of 3D simulations for parameter values typical of salty water in the ocean, de-
signed to measure the turbulent transport of heat and salt as parametric functions of the
background stratification.
Using the small-scale flux laws derived, we then calculate and discuss in §4 the expected

growth rates of the various large-scale modes of instability as functions of the overall
stratification of the region. Our results indicate that the relative importance of these
various modes is highly sensitive to the density ratio (the ratio of the vertical temperature
and salinity gradients normalised by their expansion/contraction coefficients). For low
density ratio the dynamics of the system are primarily controlled by the collective and
γ-instabilities. For intermediate density ratios, the γ-instability is suppressed and the
dynamics are dominated by gravity waves, with intrusive modes gaining importance. For
larger values of the density ratio, only intrusive modes are unstable.
Finally, we discuss our findings in §5, focussing on the implication of the measured

turbulent fluxes for oceanic mixing in §5.1, and on the role of the large-scale instabilities
studied in the formation of thermohaline staircases in §5.2.

2. Generalised mean-field theory of fingering convection

2.1. The governing equations for homogeneous fingering convection

Fingering convection, when observed in natural systems, typically occurs far from physi-
cal boundaries. For this reason, we adopt an approach which minimises boundary effects
by considering triply-periodic temperature, salinity and velocity perturbations driven by
a steady and uniform fingering-unstable background stratification. This setup has been
advocated by others before for studying fingering convection (Stern et al. 2001; Radko
2003), and is ideally suited to numerical simulations using spectral methods (see §3 and
Paper II). It is important to note that it does not suffer from the well-known pathology
of thermal convection in a triply-periodic system – the so-called homogeneous Rayleigh-
Bénard problem (Borue & Orszag 1996; Calzavarini et al. 2006), where the fastest grow-
ing modes span the entire domain and depend sensitively on the aspect ratio of the box.
Instead, the typical length scale of convective motions in the fingering regime is set by
the diffusive length scales and is independent of the box size, provided the box is large
enough (see Appendix).
We consider a Cartesian coordinate system (x, y, z) with z increasing upward in the
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vertical direction. In all that follows, we use the Boussinesq approximation. We assume
that the background temperature and salinity profiles T0(x, z) and S0(x, z) are bilinear
functions of x and z, T0(x, z) = T0xx + T0zz and S0(x, z) = S0xx + S0zz. Without loss
of generality, the background fields are assumed to be two-dimensional (2D) by aligning
the horizontal gradients with the x-axis. We assume (as in Walsh & Ruddick 1995) that
the overall horizontal density gradient is zero, in which case αT0x = βS0x where α and β
are the coefficients of thermal expansion and compositional contraction respectively. The
slope of the background temperature gradient in this coordinate system is φ = T0x/T0z.
We perform a standard non-dimensionalisation procedure for studying local finger-

ing convection. We use the expected finger scale (see Stern 1960) as the length scale,
[l] = d = (κT ν/gαT0z)

1/4, where g is gravity, ν is viscosity and κT is thermal dif-
fusivity. We then define the corresponding thermal diffusion time scale, [t] = d2/κT ,
the velocity scale [u] = κT /d, and the temperature and salinity scales, [T ] = T0zd
and [S] = (α/β)T0zd. Nondimensional parameters of interest are the Prandtl number,
Pr = ν/κT , the background density ratio, R0 = αT0z/βS0z and the diffusivity ratio,
τ = κS/κT .
The non-dimensional equations for the evolution of the velocity field u = (u, v, w) and

the temperature and salinity perturbations T (x, y, z, t) and S(x, y, z, t) are then:

1

Pr

(

∂u

∂t
+ u · ∇u

)

= −∇p+ (T − S)k̂+∇2u, (2.1a)

∇ · u = 0, (2.1b)

∂T

∂t
+ φu + w + u · ∇T = ∇2T , (2.1c)

∂S

∂t
+ φu +

1

R0

w + u · ∇S = τ∇2S, (2.1d)

where p is the non-dimensional pressure perturbation from hydrostatic equilibrium and
k̂ is the unit vector in the z-direction.

2.2. Generalised mean-field theory

As discussed in §1, fingering convection is often associated with the emergence of dy-
namical structures on scales much larger than individual fingers. We begin by deriving
a generalised set of mean-field equations, and then study their linear stability to various
large-scale modes.

2.2.1. Mean-field equations

As in Radko (2003), we are interested in the large-scale behaviour of the system of
equations (2.1a-2.1d) when averaged over spatial/temporal scales of many fingers. We
introduce the notation · · ·, where the overbar denotes an averaging process which we
assume may commute with spatial and temporal derivatives. Let u = ū+u′ and similarly
for T and S, in which case u′ = T ′ = S′ = 0. The averaged governing equations now
become

1

Pr

(

∂u

∂t
+ u · ∇u

)

= −∇p+ (T − S)k̂+∇2u−
1

Pr
∇ ·R, (2.2a)

∂T

∂t
+ φu+ w + u · ∇T = ∇2T −∇ ·FT , (2.2b)

∂S

∂t
+ φu+

1

R0

w + u · ∇S = τ∇2S −∇ · FS , (2.2c)
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where Rij = u′

iu
′

j , and the turbulent fluxes are FT = u′T ′, FS = u′S′.
In what follows we now drop the overbar and only refer to the evolution of the large-

scale fields u, T , S. As in previous analyses, we assume that the Reynolds stress term
is small enough to neglect (a fact that is easily verified a posteriori), and additionally
assume that only the vertical component of the heat and salt fluxes are large enough to
be significant (so that FT ≈ FT k̂, FS ≈ FS k̂). However, we retain the diffusion terms in
all three equations. In nondimensional terms, the turbulent fluxes are characterised by
the Nusselt number Nu and the turbulent flux ratio γ, defined as:

Nu =
FT − (1 + ∂T/∂z)

−(1 + ∂T/∂z)
, (2.3)

γ =
FT

FS
. (2.4)

Note that these definitions of Nu and γ differ somewhat from those of Radko (2003), who
includes the molecular diffusive terms in his definition of FT and FS . Our formalism has
greater generality, since it allows for horizontal diffusive fluxes. The difference becomes
important at low Nusselt number.
We now make the key assumption that at any given time both Nu and γ depend only

on the local value of the density ratio Rρ, which in nondimensional terms is

Rρ =
αT0z(1 + ∂T/∂z)

βS0z[1 + (αT0z

βS0z

)∂S/∂z]
,

= R0

1 + ∂T/∂z

1 +R0∂S/∂z
. (2.5)

The functions Nu(Rρ) and γ(Rρ) can be determined experimentally, using numerical
simulations (see §3).
The system of equations describing the evolution of the large-scale quantities u, T , S

is now

1

Pr

(

∂u

∂t
+ u · ∇u

)

= −∇p+ (T − S)k̂+∇2u, (2.6a)

∂T

∂t
+ φu + w + u · ∇T = ∇2T −

∂FT

∂z
, (2.6b)

∂S

∂t
+ φu +

1

R0

w + u · ∇S = τ∇2S −
∂FS

∂z
, (2.6c)

where the flux derivative terms on the right hand side use (2.3) and (2.4) to express FT

and FS in terms of Nu and γ.

2.2.2. Linearised mean-field theory

The mean-field equations derived above exhibit steady solutions describing a state of
homogeneous fingering convection, with zero mean velocity, zero deviation from the back-
ground temperature and salinity fields and constant (non-dimensional) heat and salinity
fluxes FT0 = (1−Nu0(R0)) and FS0 = γ(R0)/FT0. The stability of this homogenous tur-
bulent state can be investigated by adding a small perturbation to the mean quantities,
and linearising the mean-field equations. Large-scale temperature and salinity perturba-
tions induce large-scale variations in the density ratio, so that Rρ = R0 + R′

ρ. This, in
turn, modulates the turbulent fluxes in a way which may in some circumstances further
enhance the initial perturbations or quench them. Various modes of instability are re-
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lated to different feedback mechanisms between the fields and turbulent fluxes, through
the parametric functions Nu(Rρ) and γ(Rρ).
Assuming that perturbations away from the linear background gradients are small, we

first have, expanding (2.5) to linear order:

Rρ = R0

(

1 +
∂T

∂z
−R0

∂S

∂z

)

= R0 +R′

ρ, (2.7)

which uniquely defines R′

ρ, and then

Nu(Rρ) ≈ Nu(R0) +
dNu

dRρ

∣

∣

∣

∣

R0

R′

ρ, (2.8)

and similarly for γ. Rearranging (2.3) and (2.4) yields FT = (1 − Nu)(1 + ∂T/∂z) and
FS = FT /γ. It then follows that

−
∂FT

∂z
= A2

(

∂2T

∂z2
−R0

∂2S

∂z2

)

+ (Nu0 − 1)
∂2T

∂z2
, (2.9)

−
∂FS

∂z
= A1

(

∂2T

∂z2
−R0

∂2S

∂z2

)

(Nu0 − 1)−
1

γ0

∂FT

∂z
, (2.10)

where we have abbreviated Nu(R0) = Nu0, γ(R0) = γ0, and defined

A1 = R0

∂γ−1

∂Rρ
, (2.11)

A2 = R0

∂Nu

∂Rρ
. (2.12)

Note that our A1, A2 are not strictly equal to those defined by Radko (2003) but reduce
to the same quantities in the limit where turbulent fluxes are much larger than diffusive
fluxes.
A standard linear stability analysis of (2.6), using normal modes of the form {u, T, S} =

{û, T̂ , Ŝ} exp (λt + ilx+ imy + ikz), yields a cubic equation for the growth rate, λ3 +
a2λ

2 + a1λ+ a0 = 0, with

a2 = |k|2(1 + Pr + τ) + k2
[

(1−A1R0)(Nu0 − 1) +A2

(

1−
R0

γ0

)]

, (2.13a)

a1 = |k|4(τPr + τ + Pr) + k2|k|2
[

(τ + Pr)(A2 +Nu0 − 1)−A2(1 + Pr)
R0

γ0

−A1R0(1 + Pr)(Nu0 − 1)

]

− k4A1R0(Nu0 − 1)2 + Pr
l2

|k|2
l2 +m2

l2

(

1−
1

R0

)

, (2.13b)

a0 = |k|6τPr + k2|k|4 Pr

[

(τ −A1R0)(Nu0 − 1) +A2

(

τ −
R0

γ0

)]

− k4|k|2PrR0A1(Nu0 − 1)2

+Pr
l

|k|2

{

|k|2
[

l
l2 +m2

l2

(

τ −
1

R0

)

− kφ(τ − 1)

]

+k2A1(1− R0)(Nu0 − 1)(l
l2 +m2

l2
− kφ) (2.13c)

−k2 [A2 (1−R0) + Nu0 − 1]

[

l
l2 +m2

l2

(

1

R0

−
1

γ0

)

− kφ

(

1−
1

γ0

)]}

,

where |k|2 = k2 + l2 +m2.
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2.2.3. Relationship with previous theories

Presented above is a unified formulation of several mean-field theories, including the
effects of all diffusion terms and the contribution of variable turbulent flux ratio γ as well
as allowing for the presence of lateral background gradients in temperature and salinity.
Several limiting cases have been discussed previously in the literature (unless otherwise
noted these are 2D theories, so m = 0).

The fingering instability. Although technically not a mean-field instability, it is re-
assuring to note that the fingering instability itself (e.g. Baines & Gill 1969) is recovered
when turbulent fluxes and lateral gradients are ignored (A1 = A2 = Nu0 − 1 = φ = 0).
In that case the cubic defined by (2.13) becomes the well-known cubic equation for the
growth rates of the fingering modes with

a2 = |k|2(1 + Pr + τ), (2.14a)

a1 = |k|4(τPr + τ + Pr) + Pr
l2

|k|2

(

1−
1

R0

)

, (2.14b)

a0 = |k|6τPr + Pr l2
(

τ −
1

R0

)

. (2.14c)

The collective instability, as derived by Stern et al. (2001), is recovered from (2.13)
by omitting lateral gradients (φ = 0), neglecting possible variation in γ (so A1 = 0) and
discarding the diffusion terms for temperature and salinity—but not velocity—in (2.2).

a2 = Pr|k|2 + k2
[

A2

(

1−
R0

γ0

)

+Nu0 − 1

]

, (2.15a)

a1 = Prk2|k|2
[

A2

(

1−
R0

γ0

)

+Nu0 − 1

]

+ Pr
l2

|k|2

(

1−
1

R0

)

, (2.15b)

a0 = Pr
k2l2

|k|2
[A2(1 −R0) + Nu0 − 1]

(

1

γ0
−

1

R0

)

. (2.15c)

Stern (1969) argued that modes are excited when the Stern number, written in our
notation as

A =
(Nu0 − 1)

(

1

γ0

− 1
)

Pr
(

1− 1

R0

) , (2.16)

exceeds a value of order one. The unstable modes essentially represent overstable gravity
waves.
An elegant physical interpretation (Stern et al. 2001) of the collective instability is

obtained by analogy with the laminar, linear double-diffusive instability in the “diffusive
regime”, where the slowly diffusing field is stably stratified while the rapidly diffusing
field is unstably stratified. In this case, growing oscillatory modes akin to internal gravity
waves are excited instead of fingers. Since fingering convection induces a mean salt flux
larger than the heat flux the roles of the two fields are reversed, and the faster diffusing
field is now the salinity field. From a turbulent point of view, the “diffusive regime” is
recovered.

The theory of intrusions of Walsh & Ruddick (1995) is recovered by discarding the
diffusion terms in (2.2) and setting γ constant (A1 = 0), as well as neglecting Reynolds
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stresses in their formulation:

a2 = k2
[

A2

(

1−
R0

γ0

)

+ (Nu0 − 1)(1−A1R0)

]

, (2.17a)

a1 = −k4R0(Nu0 − 1)2A1 + Pr
l2

|k|2

(

1−
1

R0

)

, (2.17b)

a0 = Pr
lk2

|k|2

{

[A2(1−R0) + Nu0 − 1]

[

kφ

(

1−
1

γ0

)

+ l

(

1

γ0
−

1

R0

)]

(2.17c)

+A1(1−R0)(Nu0 − 1)(l − kφ)} .

The mechanism underlying intrusive instabilities can be illustrated by imagining an al-
ternating horizontal shear flow superimposed on the background stratification (see e.g.
Ruddick & Kerr 2003). The lack of horizontal density variation in the background (where
lateral gradients of temperature and salinity compensate) implies that the background
isohalines are steeper than the isothermals, and are therefore more strongly affected by
horizontal advection. Alternating vertical variations in Rρ result, which in turn strength-
ens or weakens the fingering action, and the resulting flux convergences and divergences
reinforce the intrusive motion. Depending on the orientation of the perturbation, both
direct and oscillatory modes are possible (Walsh & Ruddick 1995).

The γ-instability, as derived in Radko (2003), is recovered by considering horizon-
tally invariant perturbations (l = m = 0, |k|2 = k2) with zero velocity field. From the
remaining temperature and salinity equations we obtain a quadratic† expression for the
growth rate:

a2 = 1, (2.18a)

a1 = k2
[

1 + τ + (1−A1R0)(Nu0 − 1) +A2

(

1−
R0

γ0

)]

, (2.18b)

a0 = k4
[

(τ −A1R0)(Nu0 − 1)−A1R0(Nu0 − 1)2 +A2

(

τ −
R0

γ0

)]

. (2.18c)

Differences between these coefficients and those given in Radko (2003) arise from our
alternate definition of γ, but can be shown to be reduce to each other in the limit of
large Nusselt number. Note however that for γ-modes, which do not have any horizontal
variation, the use of the total fluxes F tot

T = FT − (1+ ∂T/∂z) and F tot

S = FS − τ(1/R0 +
∂S/∂z) (originally advocated by Radko) recovers his much simpler quadratic with

a2 = 1, (2.19a)

a1 = k2
[

(1−Atot

1 R0)Nu0 +A2

(

1−
R0

γtot

0

)]

, (2.19b)

a0 = −k4Atot

1
R0Nu

2

0
, (2.19c)

where γtot

0
= F tot

T /F tot

S and Atot

1
= R0d(1/γ

tot)/dRρ. As shown by Radko, a sufficient
condition for the existence of a positive real root is that Atot

1 > 0, or in other words that
γtot should be a decreasing function of Rρ. The physical interpretation of this so-called
“γ-instability” is fairly subtle, and is described in detail in the original paper (Radko
2003).

† To see why our formalism yields a cubic while Radko’s yields a quadratic, it should be
noted that (2.13) can be factored (with l = m = 0) as (λ+ k2Pr)(λ2 + b1λ+ b0). The first root
describes the viscous decay of any initial (horizontally invariant) velocity perturbation.
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3. Turbulent flux laws

To proceed forward and estimate growth time scales for the various mean-field modes
of instability excited by fingering convection, we need to determine the non-dimensional
turbulent fluxes Nu and γ as functions of the density ratio. Naturally, these depend on
the diffusivity ratios Pr and τ relevant of the system studied. Here, we choose to focus
on the case of salty water (Pr = 7 and τ = 0.01), as it is directly applicable to the
oceanographic context. Appendix A summarises the numerical algorithm, describes the
experimental protocol for determining heat and salt fluxes, and discusses the problem
of selection of the domain size to be used for these experiments. What follows are the
results of a body of simulations at different density ratios Rρ.

3.1. Typical results

Figure 1 shows a visualisation of the salinity field obtained in the saturated state of a
fingering system with Rρ = 1.2, Rρ = 2 and Rρ = 10. On account of the small diffusivity
of salt compared with all other fields, a broad range of spatial scales exists, and a high
numerical resolution is a priori required to resolve all arising structures and correctly
model the system. We find that, as expected, the salinity field has a complicated struc-
ture for small Rρ, but successively becomes more organised with increasing density ratio.
Regular, vertically elongated filamentary structures dominate for Rρ > 10. In order to
ensure that the smallest scales of the salinity field are fully resolved, we had to use the
highest resolution available (a grid of 768× 768× 1536) at Rρ = 1.2, although half that
resolution is sufficient for Rρ > 2. Furthermore, it turns out that a rough estimate of the
flux laws can in fact be made with a much coarser resolution (about 323). This rather
surprising result shows that the diffusion of salt does not play an important role in con-
trolling the mixing in the heat-salt system, for very turbulent flows (low Rρ). Moreover,
it suggests that low-resolution simulations may be sufficient to estimate turbulent fluxes
for any high-Pr, low-τ fluid.

3.2. Turbulent flux laws for the heat-salt system

The control parameters used in each simulation, along with some key results, are sum-
marised in table 1. Plots displaying the most important findings are shown in figure 2,
which also contains results from an accompanying set of 2D simulations.
As expected, we find that the turbulent fluxes |FS | and |FT | decrease rapidly with

increasing density ratio, and tend to be considerably larger in the three-dimensional
(3D) case than in 2D. The ratio of 3D to 2D fluxes is not constant, but tends to grow
with increasing Rρ. Because of their obvious oceanic relevance, table 1 also lists values for
the “eddy” diffusivities KT = κT |FT | and KS = κTRρ|FS | of heat and salt. At Rρ = 1.2,
we find KT ≈ 0.21 cm2/s and KS ≈ 41 cm2/s. Both quantities quickly decrease with
increasing Rρ.
The turbulent flux ratio γ tends to be larger in 2D than in 3D. It initially decreases

quickly with growing Rρ, attains a minimum around Rρ ≈ 7 (γ ≈ 0.45 in 3D) and then
slowly increases again. A widely used theoretical prediction based on linearly fastest
growing modes, originally proposed by Schmitt (1979), tends to over-estimate γ consid-
erably, and also predicts the minimum to occur at a smaller (Rρ = 4) value of Rρ. The
total flux ratio γtot (see §2.2), which plays a prominent role in the γ-instability theory, is
shown in figure 3. Its value deviates significantly from the turbulent flux ratio γ at higher
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Figure 1. Snapshots of the salinity field S in simulations of fingering convection in the heat-salt
system (Pr = 7, τ = 0.01). a) Salinity field at Rρ = 1.2, plotted on the three planes x = 0, y = 0
and z = Lz. b-d) Volume rendering of the salinity field for Rρ = 1.2, Rρ = 2 and Rρ = 10 (from
left to right). In all cases, the simulation domain contains 5×5×10 FGW (see main text). Note
how the typical amplitude of the salinity perturbation in a finger is of the order of 1/Rρτ , or,
in dimensional terms, dSoz/τ .

values of Rρ, where the Nusselt number is lower. As a result, the position of the minimum
of the curve occurs for lower Rρ, thus restricting the range for which the γ-instability is
expected to Rρ 6 4. Furthermore, since the growth rate of the instability is proportional
to d(1/γtot)/dRρ, we find that γ-modes should only be significant for Rρ 6 2.

Finally, we find that the Stern number A, which controls the dynamics of the collective
instability, exceeds unity for Rρ 6 7 in the 3D case, while two-dimensional simulations
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Figure 2. Parametric dependence of the non-dimensional fluxes FT , FS as well as their ratio γ
and of the Stern number A as a function of Rρ. Results from both three- and two-dimensional
simulations are shown. Panel c) also contains a theoretical prediction of γ(Rρ) based on the
fastest growing linear modes (Schmitt 1979).

Rρ = 1.2 Rρ = 1.5 Rρ = 2.0 Rρ = 4 Rρ = 7 Rρ = 10

resolution 7682 × 1536 7682 × 1536 3842 × 768 3842 × 768 3842 × 768 3842 × 768
∆taverage 39.1 57.8 121.2 223.8 422.7 390.1
|FT | 153.5 ± 11.7 73.2 ± 5.7 37.6 ± 2.2 13.3 ± 1.0 5.48± 0.38 3.35± 0.21
|FS | 241.8 ± 13.1 126.4 ± 7.5 70.3 ± 3.1 27.4 ± 1.5 12.1± 0.65 7.29± 0.34
γ 0.63 ± 0.02 0.58 ± 0.01 0.53 ± 0.01 0.49 ± 0.01 0.45± 0.01 0.46± 0.01
√

〈u2〉 14.1 ± 0.4 9.4 ± 0.3 6.5 ± 0.15 3.7± 0.1 2.37± 0.06 1.82± 0.04
KT [10−6m2/s] 21± 2 10± 1 5.3 ± 0.3 1.9± 0.1 0.77± 0.05 0.47± 0.03
KS [10−6m2/s] 41± 2 27± 2 20± 1 15± 1 11± 1 10± 0.5
A 76± 3 23± 1 9.4 ± 0.3 2.7± 0.1 1.1± 0.05 0.63± 0.03

Table 1. Summary of simulations of fingering convection for the heat-salt system
(τ = 0.01,Pr = 7) in a computational domain containing 5 × 5 × 10 fastest growing finger
wavelengths (FGW, see Schmitt 1979). ∆taverage denotes the length of the time interval over
which the data has been averaged, KT = κT |FT | and KS = κTRρ|FS | are the “eddy” diffu-
sivities for heat and salt, taking κT = 1.4 × 10−7m2/s, and A is the Stern number defined in
(2.16).
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Figure 3. Comparison of the flux ratio γtot as calculated using the total heat and salt fluxes
(both turbulent and convective), and γ as calculated using only the fluxes due to turbulent
fingering convection. The diffusive contributions become important as Rρ increases and the
fingering fluxes drop, affecting not only the values of the flux ratio but also the location of the
minimum of the curve.

considerably under-estimate A and therefore underestimate the range of Rρ for which
the system may be unstable to these modes.
Further discussion of the implications of these simulations is deferred to §5. For now,

the above results provide the necessary data to apply the mean-field theory of §2 to the
oceanic parameter regime.

4. Dominant modes of instability as a function of background density

ratio

The flux laws determined above enable us to estimate the growth rates for the various
mean-field modes of instability discussed in §2. As seen in §2.2.3, up to four modes of
instability exist, but it is not immediately clear which mode dominates in the various
regions of parameter space. To answer this question in the oceanic context, we now
examine the solutions of the growth rate equation (2.13) for different values of R0, with
the corresponding γ0, Nu0, A1 and A2 calculated from the turbulent fluxes measured
in section 3 and shown in table 2. We then find the largest growth rate for a given
mode geometry (as determined by k and l), maximising Re(λ) over the three roots of
the cubic. Figure 4 shows this maximum growth rate as a function of wavenumber for
three representative values of the background density ratio: R0 = 7, where the fingering
instability is weak, R0 = 1.5, where the density gradient is close to unstable and turbulent
fluxes are large (see table 2), and an intermediate value of R0 = 4. The plots show l on a
logarithmic scale to capture the wide range of relevant horizontal lengths, from the small
filaments of the fingering instability up through extensive lateral intrusions.
Since the growth rate of the fingering instability is recovered from our mean-field theory

when A1, A2, etc. are zero (as discussed in §2.2.3), an analogous feature appears here
even though A1, A2 6= 0. This “fingering” mode appears as a “bulb” on all plots, at
the smallest horizontal scales (large l) and large vertical scales (low k). Note, however,
that mean-field theory should not be applied to model such small-scale structures. In
practice, the bulb merely serves to indicate the region of l space (log l > −1) above
which the theory is no longer applicable.
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Table 2. Empirically derived parameters for growth rate prediction using the unified theory at
high, midrange, and low values of background density R0. A1 and A2 are estimated by using
neighboring values of the density ratio.

R0 Nu0 γ0 A1 A2

7.0 5.48 0.45 0.16 -11.61
4.0 13.3 0.49 0.27 -25.7
1.5 73.2 0.58 0.56 -217.31

At high density ratio (top of figure 4), in the absence of lateral gradients, only the
fingering mode remains. The presence of a lateral gradient introduces two additional
regions of instability, one oscillatory and one direct, both confined to large vertical and
horizontal scales (i.e., small k, l). As expected, lateral gradients break the symmetry of
the solutions, since the kφ terms in (2.13) distinguish between positive and negative k
perturbations. The direct mode corresponds to a lateral intrusion which typically grows
on a time scale of about 30 hours, with a horizontal scale of the order of a kilometer and
vertical scale of a few metres (i.e., with a slope of the order of φ).
For an intermediate density ratio (R0 = 4, middle panels of the figure), the gravity

waves of the collective instability appear at a range of vertical and horizontal scales
starting at l = 0.055, k = 0.06 (a physical size of about a metre in each direction), with
a growth time scale of about 30 hours. The lateral gradient strongly modifies the gravity
waves, increasing both their maximum growth rate and the size of the instability region
for negative k values, while suppressing growth for positive k. As with R0 = 7, the lateral
gradient also triggers a direct intrusive mode at large horizontal scales.
Finally, at low density ratios the system is dominated by the collective instability

(oscillatory) and the γ- (direct) instability, and is now unstable to a continuous range of
modes on both large and small horizontal and vertical scales. At the scales for which the
mean-field theory is valid (k ≪ 1), the collective instability grows fastest, most unstable
on scales of a metre both horizontally and vertically, and with a growth time scale around
two hours regardless of the presence of a lateral gradient (φ = 0.01). For comparison, a
γ-mode of the same vertical scale grows at roughly a third this rate.
Figure 5 shows the growth rate of various modes in our theory at low density ratio

(Rρ = 1.5) and in the presence of lateral gradients (φ = 0.01). Also shown are the
growth rates of the collective instability of Stern et al. (2001), of the γ-instability of
Radko (2003), and of the intrusive instability of Walsh & Ruddick (1995, absent Reynolds
stresses). For a horizontally invariant perturbation (l = 0, equivalent to a domain width
of 2π/l → ∞), the mean-field theory matches Radko’s γ-instability. For perturbations
with moderate horizontal scales (2π/l = 200d, approximately two metres in dimensional
terms), the unified theory predicts the presence of gravity waves with similar vertical
scales and recovers the collective instability. As the vertical wavelength decreases, the
mode gets flatter, and becomes a γ-mode. At the largest horizontal scales (2π/l = 2·105d,
about two kilometers), our theory recovers the growth rate of intrusive modes from
Walsh & Ruddick (1995).
Using this unified formalism, we have therefore demonstrated how the dominant type of

large-scale instability in salt fingering systems depends strongly, not only on the scale of
the perturbations considered, but also on the background density ratio. Field observations
(You 2002) reveal that Rρ can vary significantly in the ocean. In nearly unstable regions
(Rρ → 1), the collective and γ-instabilities control the dynamics of the system (also see
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Figure 4. Predicted real part of growth rates for the fastest growing perturbations, where
colour is scaled to log Re(λ). Only positive values are shown; the region is left white if no modes
grow. The horizontal axis shows vertical wavenumber, and the vertical axis shows the logarithm
of horizontal wavenumber to capture the broad range of expected scales. This particular dis-
play choice yields these characteristic “flower-plots.” The left-hand column shows results in the
absence of lateral gradients (φ = 0) while the right-hand column shows results for a typical
oceanic value of φ = 0.01. In each of the six figures, regions surrounded by a dark contour show
oscillatory behaviour, by contrast with the direct modes. For example, the symmetric “bulbs”
at high l are direct modes, corresponding to the growth rate of individual fingers. Top: High
density ratio (R0 = 7). Middle: Midrange density ratio (R0 = 4). Bottom: Low density ratio
(R0 = 1.5).
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Figure 5. Comparison of the real component of projected growth rates between theories at
Pr = 7, τ = 1/100, for R0 = 1.5 and φ = 0.01. The l = 0 (2π/l = ∞) mode growth rate is
identical to the one predicted by the γ-instability of Radko (2003); the remaining lines have
horizontal perturbation wavelengths of 200d = 1.8 m and 200000d = 1.8 km. The mean-field
theory captures both the collective instability at large vertical scales and the γ-instability at
small vertical scales, and matches well with the intrusive instability at the largest scales.

Paper II), but as the system becomes more strongly stratified, these modes disappear and
lateral gradients emerge as the dominant factor in the creation of large-scale structures.

5. Discussion and Conclusions

5.1. Turbulent flux laws

The simulations of §3.2 are of direct relevance to the problem of parameterising double-
diffusive mixing in the ocean. These problems arise in basin-scale ocean circulation mod-
els (Gargett & Holloway 1992; Zhang et al. 1998; Merryfield et al. 1999) and in fine-scale
studies focusing on the dynamics of intrusions, internal waves, and thermohaline stair-
cases (Walsh & Ruddick 2000; Simeonov & Stern 2004; Stern & Simeonov 2002; Radko
2005). While several attempts have already been made to deduce the small domain flux
laws from numerical simulations (Shen 1995; Stern et al. 2001; Stern & Simeonov 2005;
Radko 2008), the computational restrictions in early studies precluded direct treatment of
the oceanographic case (characterised by three-dimensional dynamics, Pr=7, τ = 0.01).
Instead, simulations were either two-dimensional or employed diffusivity ratios signifi-
cantly higher than the heat-salt value of 0.01. The double-diffusive flux laws were de-
duced by extrapolation of the numerical results obtained in the computationally accessi-
ble regime—an approach clearly requiring a posteriori validation. The simulations sum-
marised in table 1 are the first DNS that meet the challenge of solving the actual heat/salt
problem in three dimensions. A comparison of these results with earlier studies reveals a
good qualitative agreement with earlier estimates. In retrospect, it is perhaps surprising
to see how well the former educated guesses of flux laws (Schmitt 1979; Stern et al. 2001)
captured the pattern of heat/salt diffusivities as a function of density ratio.
The comparison with oceanographic field measurements is more ambiguous since small-

scale mixing in the ocean is driven by a combination of double-diffusion and turbulence—
their relative contribution is uncertain and much debated. Nevertheless, the careful analy-
sis of the NATRE (North Atlantic Tracer Release Experiment) data set by St. Laurent & Schmitt
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(1999) made it possible to evaluate the salt finger diffusivities directly from observations.
The estimated salt diffusivity is characterised by a monotonically decreasing dependence
on density ratio, reducing fromKS = 50·10−6 m2/s at Rρ = 1.4 toKS = 10·10−6 m2/s at
Rρ = 1.8 (St. Laurent & Schmitt 1999). Once again, these values are in broad agreement
with the DNS results summarised in table 1.
Finally, the presented synthetic data (table 1) make it possible to assess the relevance of

several hypotheses proposed to explain the physics of equilibration. Most notably, Stern
(1969) suggested that the amplitude of salt fingers could be limited by the collective insta-
bility, with equilibrium fluxes characterised by values of A ∼ 1. A similar suggestion was
put forward by Kunze (1987), who pointed out that Stern’s (1969) criterion is equivalent
to specifying the Richardson number based on scales of individual fingers and speculated
that an increase in A above unity would be followed by the rapid destruction of fingers
by secondary instabilities—an idea most recently revisited by Inoue et al. (2008). Our
results, which reveal variation in A by two orders of magnitude, emphasise the limitations
of Stern/Kunze hypothesis and motivate the search for alternative conceptual models.

5.2. Large-scale instabilities and implications for the formation of thermohaline

staircases

In this paper, we have treated three proposed mechanisms for large-scale instability in
salt fingering systems, unifying under one framework what had previously been studied
in isolation (Walsh & Ruddick 1995; Stern et al. 2001; Radko 2003). Note that a related
approach to the problem, considering the effect of the Richardson number on the fluxes
and focussing on thermohaline interleaving rather than the oscillatory modes of the
collective instability, may be found in the recent work of Smyth & Ruddick (2010). In our
work, as in theirs, considering all instability mechanisms in a single formalism opens the
possibility of comparing the growth rates of the various mean-field modes to one another
and establishing the dominant ones in each region of parameter space. Furthermore,
using the realistic flux laws discussed above, we are now able to give robust quantitative
predictions for the presence and growth rates of each mode individually.
For the heat-salt system, we find that no single one of the proposed instability mech-

anisms is expected to dominate in all fingering-unstable regions of the ocean. At high
density ratio (Rρ > 7), for example, the Stern number drops below one and only lateral
intrusions may be destabilised. As shown in §4, intrusive modes with horizontal scales
on the order of a kilometer and vertical scales of a few metres are expected to grow on
a time scale of about 30 hours. As the density ratio decreases below seven, gravity-wave
modes are also destabilised, growing fastest at horizontal and vertical scales of a few
metres. The relative growth rates of the gravity waves and the intrusive modes depend
sensitively on their spatial extent and on the slope of the isothermal contours (φ) with
respect to the vertical, in a manner which can be evaluated through our theory. Finally,
when the background stratification is close to neutral stability, which is the case for most
fingering regions of the ocean, γ-modes are also unstable and grow on similar time scales
as the gravity waves—on the order of a few hours, much faster than the intrusive modes.
These findings also enable us to place constraints on existing theories for the forma-

tion of thermohaline staircases. Indeed, all three mean-field modes of instability have
been proposed to generate these structures in the process of their nonlinear development
(Walsh & Ruddick 1995; Stern et al. 2001; Radko 2003). However, it is important to note
that staircases are typically only observed to exist in very low density ratio environments
(Rρ < 2, see Schmitt 1981). We find that in this parameter regime (see figure 5), intru-
sions grow one to two orders of magnitude slower than gravity waves or γ-modes unless
lateral gradients are exceptionally strong (which could happen in some regions of the
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Mediterranean outflow, for example). This limits the relevance of intrusive modes when
applied to the formation of staircases in the bulk of the thermocline. We also find that
gravity-wave modes grow faster than γ-modes on all spatial scales for which mean-field
theory is applicable (vertical wavelength greater than about 100d, see Appendix). This
should a priori point to the collective instability as the mechanism responsible for layer
formation.

However, the aforementioned correspondence between the locations of observed oceanic
staircases (Rρ < 2) and interval of strongly decreasing γtot(Rρ) is too remarkable to be
dismissed. In addition, the only existing numerical simulation to date for which staircase
formation has been observed (Radko 2003) has unambiguously identified a γ-mode as
the staircase precursor. For these reasons, the γ-instability could prove to be just as
important as a generating mechanism for these large-scale structures. At this point, large-
scale numerical simulations are the only avenue towards further progress, an avenue we
follow in part II of this paper.
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Appendix A. Numerical determination of flux laws

A.1. Description of the numerical algorithm

We measure the nondimensional turbulent fluxes of heat and salt as functions of the
density ratio using the following numerical algorithm. We solve the original set of equa-
tions (2.1a–2.1d) for homogeneous fingering convection using, as explained in §2.1, triply-
periodic boundary conditions for all perturbations, e.g.

T (x, y, z, t) = T (x+ Lx, y, z, t) = T (x, y + Ly, z, t) = T (x, y, z + Lz, t) , (A 1)

where (Lx, Ly, Lz) defines the dimensions of the computational box (in units of d). Note
that in these units the global Rayleigh number of a simulation is equal to L4

z. In this
section, all quantities refer to the full field containing all scales (by contrast with §2.2).

We use a spectral algorithm based on the classical Patterson-Orzagmethod (Canuto et al.

2007) widely used for simulations of homogenous turbulence. Nonlinear products are eval-
uated on a grid in physical space, and the 3/2-rule is used to avoid aliasing errors (for
reference, N grid points in a coordinate direction corresponds to Fourier modes up to
wavenumbers of (2/3)N in that direction). Note that our simulation is a Direct Numeri-
cal Simulation (DNS), with no subgrid scale model. A third order, semi-implicit Adams-
Bashforth / Backward-Differencing algorithm (Peyret 2002) is used for time-stepping. All
diffusive terms are treated implicitly, while the advection terms are explicitly treated. The
above time-stepping method was chosen since it offers a relatively large stability domain
that includes a part of the imaginary axis at a comparatively low cost. In order to guar-
antee numerical stability, the time step is adjusted dynamically. The code was designed
to run efficiently on massively-parallel supercomputers and employs a transpose-based
parallel transform algorithm (Stellmach & Hansen 2008).
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A.2. Experimental protocol for determination of fluxes

We are primarily interested in the high-Rayleigh number limit, where for fixed fluid
parameters Pr and τ the transport properties depend only on the background density
ratio R0. This implies the need to use a reasonably tall computational box (Lz ≫ 1
in units of d). Our simulations must also permit a large enough number of fingers to
exist in the horizontal directions to provide good statistical estimates of the turbulent
fluxes. On the other hand, the domain size should be small enough to suppress any
secondary large-scale instabilities, which would drive the local density ratio Rρ away
from the background R0 and modulate the turbulent fluxes we are trying to measure.
After a careful study of the outcome of a series of simulations, further detailed below,
we found that a computational domain of size 5× 5× 10 in units of the “fastest growing
wavelength” (FGW) is a good compromise. The FGW is defined as the wavelength of the
fastest growing mode of the fingering instability, and depends on the model parameters
Pr, τ and R0 (see e.g. figure 4 of Schmitt (1979)). We find that it is also a good measure
of the width of the fully nonlinear fingers in the parameter regime considered (see figure
8 and discussion below). Finally, note that since large-scale perturbations cannot grow
in these “small-box” simulations, Rρ = R0 everywhere in the domain. In this section, we
will equivalently use the notation R0 or Rρ to denote the density ratio since they are the
same.

After selecting a value of the density ratio, calculating the corresponding domain size
in units of d, and determining an appropriate spectral resolution for the simulations
(see below, and table 1), we initialise the calculation with low-amplitude white noise
perturbations in T and S, and let the system evolve with time. Vertical turbulent fluxes
of heat and salt, defined as

FT =< wT >,

FS =< wS >, (A 2)

are then computed, where < ... > denotes a volume average over the computational
domain. Figure 6 shows time series of −FT and −FS (note that both fluxes are negative
for fingering convection), as well as that of their ratio γ, for three values of Rρ and for a
fluid with the characteristic properties of salty water (τ = 0.01,Pr = 7). After a period
of exponential growth, the system settles into a statistically stationary finite amplitude
state in which all plotted quantities fluctuate about well-defined temporal averages, the
state of homogeneous fingering convection. The turbulent fluxes reported in table 1 are
measured from temporal means of FT and FS once the system is in that state.

A.3. The effect of the domain size

In the last part of this appendix, we estimate the optimal box size for calculating local flux
laws, while meeting the criteria described above (large enough to provide good statistics,
small enough to suppress secondary instabilities). Guidance for our choice can come from
simulations in the less computationally demanding parameter regime of Pr = 7, τ = 1/3.
Figure 7 shows the averaged Nusselt number and γ values for simulations from two
domains at these parameters. The first uses a computational domain of approximately
5×5×8 fastest-growing wavelengths (FGW), and the second is much taller, approximately
6 × 6 × 20 FGW. Comparison of the turbulent fluxes as a function of Rρ shows strong
agreement between the two sets of simulations except at the highest and lowest values of
the density ratio, where some divergence occurs (discussed below). Overall, these results
suggest that the smallest box-size provides sufficient statistics and a large-enough domain
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Figure 6. Time series derived from simulations of fingering convection in the heat-salt system
(Pr = 7, τ = 0.01) for the three cases Rρ = 1.2, Rρ = 1.5 and Rρ = 2 (the first and third also
shown in figure 1). a) Fluxes −FT and −FS (note that for salt fingering FT and FS are both
negative quantities), b) Turbulent flux ratio γ.

to yield accurate flux laws at most density ratios. Meanwhile, neither set of simulations
seem to exhibit any large-scale modes of instability, which also satisfies our requirements.
In order to understand the difference between the turbulent fluxes measured in the two

geometries at large density ratio, we examine the geometry of the nonlinear fingers in
more detail. For an experimental estimate of the height of fingers in a given simulation,
we look to the autocorrelation of the vertical velocity, averaged over all x and y:

f(s) =

∫ ∫ ∫

V

w(x, y, z)w(x, y, z + s) dx dy dz

We estimate a typical finger height by the distance s beyond which the autocorrelation
function drops below 0.05, and similarly for the typical finger width.
Figure 8 shows the results of these calculations for the small (5 × 5 × 8 FGW) and

medium (6 × 6 × 20 FGW) domains, using ten sample points separated by 5000 time
steps at each value of the background density ratio R0. By inspection of the results for
the medium domain, we find that fingers are typically about 0.5–2 FGW in width, and
4–6 FGW in height, for most values of the density ratio except very close to marginal
stability. As a result, both box sizes are sufficiently wide to accommodate many fingers.
The small box is tall enough to contain typically two fingers, while the larger box contains
approximately five. Both domains seem to be satisfactory except at the largest values of
R0 (where elevator modes are expected to dominate as R0 → 1/τ), for which the small
box is too short to contain even a single finger. Large fluctuations in the Nusselt number
result, shown in figure 9.
For the purpose of extending mean-field theory to more difficult parameter ranges

(such as Pr ≪ 1, τ ≪ 1 of interest in the astrophysical context), these results provide a
valuable guide. For most values of R0, boxes of no more than 5× 5× 10 FGW in height
may be expected to provide robust flux averages, while suppressing large-scale structures
such as gravity waves that would otherwise swamp the finger field and complicate the
averaging process. However, as the background density ratio increases toward a com-
pletely stable stratification, taller boxes are necessary to prevent finger overshoot from
artificially increasing the measured fluxes.
One final feature bears comment, namely the sharp increase and sudden decrease

in finger height variability as R0 increases above 1.6. This transition, apparently not
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Figure 7. Small and medium box average values of the turbulent flux ratio γ(R0) and the
logarithm of the Nusselt number Nu(R0). For most R0 values the calculated small-box averages
of Nu and γ closely compare with their medium-box counterparts, even where the finger height
exceeds the small box height (identifiable in the bottom panel of figure 8). At large R0, however,
the averages diverge, seen in the logarithmic (Nu0 − 1) values.

a function of box size, corresponds to a kink in the γ(Rρ) curve (see figure 7), but
speculation as to its cause is deferred to future work.
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