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The effect of time-variant temperature on the dynamics of a single gas bubble in a liquid

is investigated. With changes in temperature, several physical parameters controlling

bubble behaviour change, including surface tension, diffusivity, vapour pressure and gas

solubility. A single bubble model is formulated and a numerical simulation implemented

to model the radius-time profile of a bubble, across a range of initial bubble sizes and rates

of heating, taking into account the aforementioned parameter temperature dependences.

The model is validated experimentally in a Xanthan Gum gel phantom, tracking the

evolution of the bubbles using digital photography and an image analysis sizing algorithm.

It is shown that the natural tendency for a bubble to dissolve can be reversed by an

increase in temperature, but only above a certain radius-dependent threshold rate of

heating.
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1. Introduction

The dynamics of gas bubbles in liquids and viscoelastic materials have been studied

for almost a century (Rayleigh 1917). However, the majority of these studies neglect

the effect of changing temperature on the key parameters – surface tension, diffusivity,

vapour pressure and gas solubility – that control the growth or dissolution of a bubble,

instead assuming constant, temperature-independent values.

Several emerging applications now require a deeper understanding of the effects of heat-

ing and cooling on bubble dynamics. Those include: cavitation mitigation in spallation

neutron sources (Riemer et al. 2005); improving the performance of chemical processes in

bubble column reactors and multiphase slurries (Schafer et al. 2002); and the development

of minimally invasive and non-invasive medical procedures that use or involve acoustic

cavitation to modify tissue or deliver drugs (Coussios & Roy 2008). In the context of

biomedical applications, the present work is of particular relevance to the use of High

Intensity Focussed Ultrasound (HIFU) for the thermal ablation of deep-seated tumours

and other tissues. During the course of such treatments, bubbles can either be spon-

taneously nucleated due to the high rarefactional pressures attained at the ultrasound

focus, or larger vapour cavities can form due to tissue boiling. Subsequent cavitation

effects can be utilised to improve treatment efficacy as well as showing potential for use

in real-time treatment monitoring, whilst suppression of cavitation is also sometimes de-

sirable for improved treatment safety (Rabkin et al. 2005). Even though the effects of

acoustic excitation are not explicitly investigated in the present work, the heating pro-

files and range of temperature rises investigated have been chosen so as to be relevant

to ultrasound-induced tissue heating. In particular, the present work is relevant to un-

derstanding and modelling potential bubble growth or dissolution as a result of heating

or cooling. Changes to the size ranges present within a particular bubble population can
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directly impact on the type of cavitation activity that will be observed under acoustic

excitation (Church 2005).

Epstein & Plesset (1950) were among the first to study the behaviour of bubbles in a

liquid-gas solution at a constant (room) temperature. The analysis included a number

of important simplifying assumptions to allow a basic analytical solution of the diffusion

equation alone, arriving at the radius-time evolution of the bubbles. Studies since, on

the growth and dissolution of both gas and vapour bubbles, have used the diffusion

equation alongside an equation of motion and have employed solution methods ranging

from similarity solutions (see Scriven 1959; Cable & Frade 1987) to perturbation and

numerical solutions (see Barlow & Langlois 1962). A numerical solution is required if

the bubble evolution is to be accurately modelled, as the highly coupled nature of the

diffusion equation and the bubble equation of motion means no analytical solution exists

for the generalised problem (see Arefmanesh et al. 1992).

Scriven (1959) and Miyatake et al. (1994) are amongst those who have investigated

bubble behaviour at elevated temperatures, both considering vapour bubble growth in

superheated solutions. Their analyses focussed on heat and mass transfer controlled

growth at a constant temperature, rather than the bubble dynamics due to an im-

posed temperature profile, and hence it was not necessary to consider changing values

of temperature-dependent parameters. In a similar study, of water vapour bubbles in

perlite at high temperatures (∼ 1000◦C), it was necessary for Zahringer et al. (2001) to

consider temperature-dependent parameters, as energy lost to the vapourisation of the

water resulted in a temperature drop during the course of the simulation. However, it is

clear this temperature change is not an imposed variation as is the case with ultrasonic

heating.

Imposed temperature fields have been considered by Robinson & Judd (2001), who
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investigated the growth of hemispherical vapour bubbles in a spatially distributed tem-

perature field, however it was necessary to artificially perturb the bubbles to initiate

growth. It is not noted whether the temperature field was temporally as well as spatially

variant. Divinis et al. (2005) considered the problem of a vapour bubble growing around

an embedded miniature heater for a limited range of conditions that result in self-similar

growth. Some variation of temperature-dependent parameters was explored, but these

variations were approximated to fit with the self-similar solution rather than follow the

exact dependence. As the work considered vapour bubbles, bubble sizes and growth rates

were significantly greater than those expected in a gas diffusion controlled process. In

the work of Fan et al. (1999), dough expansion – by the way of bubble growth – was

considered during constant-rate heating, with the temperature-dependences of Henry’s

constant and vapour pressure incorporated into the model. Throughout the rising pro-

cess, the gas concentration profile in the surrounding medium remains spatially uniform

and the time-dynamics of the diffusion process seem to have been neglected.

In summary, there has been significant study of bubble dynamics in liquid-gas solution,

but the generalised problem considering the dynamics of gas bubble growth or dissolution

resulting from an imposed change in temperature has not been fully addressed in these

works. The solution to the generalised problem is affected by several factors that have

opposing influences. With an increase in temperature, gas within a bubble will expand

and vapour pressure also increases, which would ordinarily cause a bubble to expand.

Additionally, the solubility of gas in liquids decreases as temperature rises, making the

process of gas diffusion into a bubble more favourable at higher temperatures. However,

the natural tendency for a bubble in solution is to dissolve away, as the pressure within the

bubble is higher due to surface tension effects. The ultimate fate of a bubble – whether it

grows or dissolves away – will be dependent on the relative contributions of these effects.
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In this paper, the traditional model of a gas bubble in liquid is extended so as to sim-

ulate the response of a bubble to an arbitrary heating input. The model presented incor-

porates the temperature dependence of four parameters relevant to diffusion-controlled

bubble dynamics - surface tension, solubility (in the form of Henry’s constant), vapour

pressure and diffusion coefficient. The complexity of the model, even before the addi-

tion of the temperature-dependent terms, necessitates the use of a finite-difference based

numerical solver to accuractely predict the evolution of the bubble over time.

To validate the predictions of the numerical solver, an experimental setup has been

devised to allow the optical tracking and sizing of bubbles entrapped within a Xanthan

Gum gel phantom. By inputting the temperature profiles obtained during the experi-

ments into the numerical solver, direct comparison between theory and experiment is

possible, and subsequent refinements to the model are suggested on the basis of the

differences observed.

2. Single-bubble model

A single-bubble model is formulated, in spherical coordinates, to determine the re-

sponse of a bubble to arbitrary heating inputs. The following assumptions are made in

this analysis to allow construction of the model:

• The bubble remains perfectly spherical at all times, allowing the problem to be

considered in a single dimension.

• Temperature across the bubble, and its surrounding shell of liquid, is assumed to be

spatially uniform. The transport parameters are therefore not spatially dependent, and

can be determined by temperature alone.

• Bubble growth and dissolution is driven by the mass diffusion of dissolved gas, a
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slow process taking place over tens or hundreds of seconds, making the contributions

from inertial and convection effects negligible.

• The water vapour pressure can be determined from temperature alone, as thermo-

dynamic equilibrium is maintained by rapid vapour transfer at the bubble wall given the

distance and time scales in question.

The model can broadly be divided into three parts: an equation of motion to describe

changes in bubble radius, mass diffusion of gas through the bubble wall, and the tem-

perature dependence of the relevant physical parameters. These aspects of the model are

described in the following sections.

2.1. Equation of motion

The Rayleigh-Plesset equation is commonly used to model the change in bubble radius

R with time t due to an incident pressure field:

RR̈+
3

2
Ṙ2 =

1

ρL

[

pg + pv − p∞ − 2σ

R
− 4ηṘ

R
− pac

]

, (2.1)

where pg and pv are the gas and vapour pressures within the bubble respectively, p∞

the ambient liquid pressure, σ the surface tension coefficient, ρL the liquid density, η

is viscosity, pac an acoustic forcing term and the dot notation represents differentiation

with respect to time.

In this work, the effect of acoustics is neglected, meaning that the bubble radius is

controlled by diffusion effects. Changes in the bubble size occur slowly and hence the

magnitudes of the bubble wall velocity Ṙ and acceleration R̈ are small.The contribution

of the inertial terms, and that of the viscous stress 4ηṘ/R, can therefore be neglected

as they are small relative to the magnitudes of the pressure terms. The result is that a
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static pressure balance is sufficient to define the variation of the bubble radius over time:

pg + pv = p∞ +
2σ

R
, (2.2)

As there exist only two unknown variables – internal gas pressure and bubble radius

– a single equation of state is necessary to close this part of the problem. Due to the

importance of mass diffusion in this work, the ideal gas equation is chosen and written in

terms of the mass of gas within the bubble m. This allows the formation of an equation

relating the gas pressure within the bubble to a time-variant temperature T (t) and the

initial state of the bubble, represented here by the ‘0’ subscript:

pg = pg0
m

m0

R3
0

R3

T (t)

T0

. (2.3)

Substituting (2.3) into (2.2) and rearranging gives a time-dependent cubic equation to

solve for the bubble radius R:

(p∞ − pv)R
3 + 2σR2 − pg0R

3
0

m

m0

T (t)

T0

= 0, (2.4)

which can be non-dimensionalised with respect to length, pressure and temperature:

(

1 − pv
p∞

)

a3 + γa2 − pg0
p∞

µθ = 0, (2.5)

where a, µ and θ are the non-dimensional bubble radius, mass and temperature respec-

tively, with respect to the initial states, and γ = 2σ/p∞R0 is the non-dimensional surface

tension.

2.2. Mass diffusion

The Laplace pressure, caused by surface tension at the liquid-gas interface, gives rise to

a pressure gradient across the bubble wall. This gradient drives a mass diffusion process,

resulting in bubble growth or dissolution dependent on the direction of the gradient.

Ordinarily, gas bubbles in liquid will dissolve away as the gas pressure within the bubble

is higher than the ambient pressure within the liquid, leading to gas diffusing out of the
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bubble. The rate of mass diffusion ṁ is dependent on the diffusion coefficient D, the

surface area of the bubble and the concentration gradient of the gas ∂c/∂r within the

bulk liquid at the bubble wall:

ṁ = 4πR2D
∂c

∂r

∣

∣

∣

∣

r=R

. (2.6)

To calculate the concentration gradient, it is first necessary to know the form of the

gas concentration profile c(r, t) in the surrounding liquid. The concentration profile is

found by solving the mass diffusion equation in spherical coordinates:

∂c

∂t
+ v·∇c = D∇2c =

D

r2

[

∂

∂r

(

r2
∂c

∂r

)]

, (2.7)

where v is the velocity field of the liquid. Given the assumption of purely radial motion,

and taking the liquid as incompressible, the velocity field consists only of a radial com-

ponent equal to R2Ṙ/r2. We move to a non-dimensional form using R0, the equilibrium

bubble radius, as a length scale, and ω0, an arbitrary angular frequency, as a time scale:

∂c

∂τ
+
a2ȧ

ζ2

∂c

∂ζ
=

1

Pe

1

ζ2

∂

∂ζ

(

ζ2 ∂c

∂ζ

)

, (2.8)

where τ is dimensionless time, ζ the dimensionless radial coordinate and Pe = R2
0ω0/D

the Peclet number.

In a Eulerian view of the fluid, the liquid does not remain static as the bubble changes

in size. Following the method of Fyrillas & Szeri (1994) amongst others, we transform into

a Lagrangian coordinate system, hence tracking particles within the liquid volume with

time and therefore ensuring a spatially accurate concentration profile. The Lagrangian

coordinate ψ is a measure of volume rather than position, and is defined as:

ψ =
1

3

(

ζ3 − a3
)

, (2.9)

so as to fix the bubble wall at a set position (ψ = 0). This allows boundary conditions
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to be applied at a fixed point rather than on a moving boundary. An added advantage

sees the convective term absorbed into the temporal derivative, simplifying solution of

the equation. Rewriting the diffusion equation (2.7) and mass flux (2.6) in Lagrangian

coordinates we obtain:

∂c′

∂τ
=

1

Pe

∂

∂ψ

[

(

3ψ + a3
)

4

3
∂c′

∂ψ

]

(2.10)

and
dµ

dτ
=

3a4

Pe

∂c′

∂ψ

∣

∣

∣

∣

ψ=0

, (2.11)

where the concentration c′ has been redefined relative to the initial saturation concen-

tration c∞, that is c′ = c− c∞.

To solve the diffusion problem, it is assumed that diffusion takes place in a region

around the bubble of fixed volume. The initial width of this region is comparable to the

diffusion length LD ∝
√
DtD, where tD is the time over which diffusion is taking place.

The boundary conditions are calculated using Henry’s Law, which relates dissolved gas

concentrations to gas pressure: at the bubble wall, c′w = Hpg − c∞, whereas on the

outer edge of the diffusion layer the gas concentration is assumed to equal the initial

saturation concentration, i.e. c′
∞

= 0. We also require a function to describe the initial

gas concentration profile within the diffusion volume; this is assumed to be the steady-

state profile obtained from solving (2.10) with ∂c′/∂τ = 0 and negligible contribution

from the convective term:

c′0 =
c′w0

(3ψ + 1)
1

3

(2.12)

A combination of (2.5), (2.10) and (2.11), along with these boundary conditions, gives

sufficient information to solve the standard problem of a bubble growing or dissolving in

a liquid at a constant temperature.
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2.3. Parameter temperature dependence

The third section of the model considers the temperature dependence of the physical

properties that govern bubble dynamics. Increased temperatures result in decreased gas

solubility within the bulk liquid, i.e. Henry’s constant H is reduced, and lower surface

tension σ at the water-air interface. However, both vapour pressure pv and diffusivity

D increase with temperature. The following formulae for the parameter temperature

variation in water have all been determined empirically from experimental data, and are

presented here for the temperature range 20–60 ◦C (293–333 K). In all cases, the units

of the temperature T are Kelvin (K).

The International Association for the Properties of Water and Steam (see IAPWS

1994) gives the following interpolation formula for the variation of the surface tension

(units Nm−1) with temperature:

σ = 0.2358θ1.256c (1 − 0.625θc) where θc = 1 − T

647.1
. (2.13)

The variation of vapour pressure with temperature is highly nonlinear, and tabulated

values at various temperatures are commonly available as published steam tables. Fil-

imonov (1991) devised an equation to allow computer calculation of these quantities:

pv = pref exp

[(

T

Tref
− 1

)(

22.486
Tref
T

+ 0.3182
T

Tref
− 2.9558

)]

(2.14)

where pref and Tref are 610 Pa and 273K respectively, being the pressure and temper-

ature evaluated at the triple point. This equation is correct to 0.1% in the temperature

range that is considered in this work.

The experimental data of Rettich et al. (2000) has been used in the present work to

form a new, simplified empirical relationship for the variation of the oxygen-in-water

Henry’s constant (units kg m−3 Pa−1) with temperature, accurate to within 1% over the
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relevant temperature range (R2 = 0.9995):

1

H(T )
= 107 ×

(

1.387− 339.47

T

)

, (2.15)

and a similar procedure has been carried out using the experimentally determined diffu-

sion coefficients of Han & Bartels (1996), giving the following emperical relationship for

the temperature-dependent oxygen-in-water diffusion coefficient (units m2s−1), accurate

to within 3% (R2 = 0.993):

D(T ) = 10−9 ×
(

19.81− 5305

T

)

. (2.16)

In comparison to the Arrhenius-type fits obtained by the original authors, the newly

determined formulae offer simplicity whilst giving sufficient accuracy in their predictions.

The significance of the parameter temperature dependence is shown in figure 1; in-

creasing temperature from 293 K to 333 K more than doubles the diffusion coefficient D,

increases the vapour pressure pv by a factor of over eight, decreases the surface tension

coefficient σ by 10% and reduces Henry’s constant H by over a factor of 1.5.

3. Numerical solution

As noted in the introduction, numerical solutions are necessary for all but the simplest

problems in bubble dynamics. The highly coupled nature of the equations of motion

and mass diffusion defining this problem necessitates the use of a numerical solver, the

algorithm of which is described in figure 2.

Inputting the initial conditions into the algorithm at the top-left of the flowchart of

figure 2 allows calculation of the concentration gradient and subsequent computation of

the change in bubble mass. The new bubble radius and gas pressure are then found,

the updated boundary conditions (B.C.) calculated using Henry’s Law, and the diffusion

equation solved for the new concentration profile. This process is repeated at each time-
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Figure 1. Variation in parameter values with temperature in the range 293 – 333 K for (a)

surface tension, (b) vapour pressure (c) diffusion coefficient and (d) Henry’s constant. Solid lines

represent the empirical relationships of (2.13)–(2.16); the experimental data points (squares)

used in forming the empirical relationships are shown for comparison.

step, calculating the new values of the temperature-dependent variables, to output the

bubble radius-time profiles.

The algorithm will only produce accurate radius-time profiles should the changing mass

within the bubble, and hence the mass flux, be calculated accurately. As the calculation
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Solve diffusion equation New B.C. Update pg/p∞

Figure 2. Flowchart describing numerical simulation algorithm for each timestep

of mass flux is reliant on the value of the concentration gradient at the bubble wall, there

must be sufficient numerical accuracy in this region of the spatial grid. This is particularly

important as the most rapid spatial changes in the concentration profile occur in the

region closest to the bubble wall. However, a uniform spatial grid in the Lagrangian

coordinate ψ results in a rarefaction of the grid points at the bubble wall when viewed

in the real-world radial coordinate r. The neccessary accuracy required in the solution

can be achieved by using a second coordinate transformation that re-concentrates grid

points in the region of interest, whilst also maintaining a fixed boundary at the bubble

wall. The Lagrangian coordinate ψ is mapped onto the new spatial coordinate y such

that y = 0 at ψ = 0 and y = 1 at ψ = ψmax, and ensuring dy

dψ
6= ∞ at ψ = 0:

y = ln
(

α(ψ + 1)
1

n + (1 − α)
)

(3.1)

where α =
e − 1

(ψmax + 1)
1

n − 1
, (3.2)

with n an integer chosen to obtain adequate spatial accuracy in the solution.

The diffusion equations are rewritten in terms of the new spatial coordinate y and

solved using the Crank-Nicolson method across a spatial grid spanning the diffusion
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volume. The spatial derivatives are estimated by an average of the difference approxi-

mations at times τ and τ + ∆τ , rather than solely at the previous timestep; this adds

stability to the computation and gives second order accuracy in both time and space.

The set of simultaneous difference equations obtained for the gas concentration c′k+1 at

each spatial grid-point are written as a tridiagonal matrix, which is inverted to obtain

the new spatial concentration profile. From the diffusion equation solution a third order

forward-approximation is used to calculate the concentration gradient at the bubble wall:

∂c′

∂y

∣

∣

∣

∣

y=0

=
c′4 + 9c′2 − 4.5c′3 − 5.5c′1

3dy
, (3.3)

the solver then continuing around the path detailed in figure 2 for each timestep in

the period of calculation. Given the parameter values, and the forms of the parameter

temperature dependences, the response of a bubble to any variation in temperature can

be predicted in any liquid.

4. Model predictions and sensitivity analysis

The single bubble model and numerical solver formulated in §2 and 3 can be used

to predict the response of a bubble to arbitrary temperature variations in both water

and Xanthan Gum. Xanthan Gum is a polysaccharide which, on dissolution in water,

forms a viscous, transparent gel suitable for optical validation of the model predictions.

The numerical simulations were based on the response of an oxygen bubble, rather than

an air bubble. This was due to the greater availability of parameter data for oxygen

in both water and Xanthan Gum, and overcame the difficulties of accounting for the

temperature-dependences of more than one gas in solution.

The values of the Xanthan Gum parameters as determined by Teresaka & Shibata

(2003) (table 1) show that the properties of the gel differ, in some cases significantly,
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Parameter and Units Value in Water Value Range for Xanthan Gum Scaling Factors

σ (Nm−1) 0.0721 0.050 – 0.060 0.69 – 0.83

H (kgm−3Pa−1) 4.10 × 10−7 4.05 – 4.7 × 10−7 0.985 – 1.15

D (m2s−1) 1.95 × 10−9 3.1 – 4.8 × 10−10 0.16 – 0.245

Table 1. Numerical Simulation Parameter Values; all values given at 297 K

from those of water. However, due to the high water content of the Xanthan gel, it is

assumed that the form of the parameter temperature dependences are identical to those

in water. To take account of the differing base values, the temperature dependences of

Xanthan Gum are defined by (2.13)– (2.16) multiplied by an appropriate scaling factor,

the values of which are listed in table 1, except for that of vapour pressure (2.14) which is

assumed to be identical in both water and Xanthan Gum. Without further experimental

measurements, this is the best approximation available for use in the model. On the

numerical grid, a temporal step of 0.01 in τ and a spatial step of 0.01 in the transformed

(y) co-ordinate system was used in the calulations, along with the value for the gas

constant for oxygen Rg = 259.83 Jkg−1K−1 and the diffusion layer width L = 10mm.

The value of ω0 was chosen such that the non-dimensional time scale τ is equivalent to

the dimensional time t.

An arbitrary heating profile (figure 3) is used in the following sections, for illustrative

purposes only, to explore the effect and significance of the key parameters on the nature

of the bubble response. The profile is obtained from a basic numerical solution of the

heat equation in 3-D Cartesian coordinates at a point located at a distance from an

axisymmetric source.
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Figure 3. Arbitrary heating profile used in numerical simulations.

4.1. Effect of bubble radius

Three distinct regimes of behaviour can be seen in the non-dimensional radius-time (a-τ)

curves in Xanthan Gum, dependent on the values of the initial bubble radius R0. The

different types of behaviour are described below and shown in figure 4.

• Smaller bubbles show an immediate decrease in bubble size and ultimately bubble

dissolution (solid black line).

• Larger bubbles start to expand on heating, and growth continues by diffusion of gas

into the bubble once the temperature reaches its upper value (dash-dotted black line).

This behaviour is more evident the larger the bubble, as the increase in gas pressure due

to surface tension is lower and hence the initial concentration gradient is shallower.

• The third behaviour sees intermediate sized bubbles initially shrink as gas diffuses

out through the bubble wall. As the temperature increases, the value of Henry’s constant
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Figure 4. Change in the non-dimensionalised radius-time (a − τ ) profiles for bubbles of 10, 20

and 40 µm in Xanthan Gum and Water, in response to the heating profile of figure 3.

decreases; over time the bulk liquid becomes supersaturated and the bubble will begin

to grow (dashed black line).

From these observations, it seems that there will be a threshold bubble size for a

particular heating profile, above which the bubble will grow. The threshold will depend

on the shape and absolute values of the heating profile. It would be expected that the

bubble size threshold would decrease as the heating input rate increases, as the gas

concentration profile within the liquid changes more rapidly.

Figure 4 also shows that the response of the bubbles to the heating input is highly

dependent on the surrounding medium. Bubbles in water, which has a higher diffusion

coefficient than Xanthan Gum, will dissolve away faster, resulting in a greater radius

threshold. The figure indicates that a bubble in water with a certain initial radius will

behave in a similar manner to a bubble in Xanthan Gum of approximately half that

radius.
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4.2. Effect of Henry’s constant, diffusion coefficient and surface tension

The importance of the surrounding medium, and hence the values of the physical pa-

rameters governing the bubble behaviour, has been noted in the previous section. The

parameters for Xanthan Gum in table 1 demonstrate some variability in the measured

values of surface tension, Henry’s constant and diffusion coefficient. To understand the

effect of these variations on bubble behaviour, the response of a bubble in Xanthan Gum

with initial radius of 20 µm has been investigated across the full range of parameter

values.

Within the ranges of parameter values given in table 1, there is no change in the

general behaviour of the bubble – there is always an initial dissolution followed by bubble

growth. However, the radius to which the bubble grows at τ = 600 varies significantly

in comparison to the ‘base case’ – the case in which all parameter values are at the

midpoint of their ranges. When altering only one parameter from its midpoint value,

varying surface tension has the least effect; bubble size at τ = 600 differs by less than

0.3% from the base case despite a ±10% change in the parameter value, with lower

surface tensions leading to slightly greater growth. Altering Henry’s constant shows a

variation of around 4% within the quoted parameter range (±7% change in parameter

value), with greater solubilities giving increased bubble growth. The parameter with the

greatest variation in parameter range, and the greatest effect on the bubble size, is the

diffusion coefficient, with a variation in size from the base case of approximately ±10%.

As would be expected, growth rate increases with increased diffusion coefficient.

Given the values of Henry’s constant, diffusion coefficient and surface tension are not

constant, but are known to lie within a certain range, model-based predictions of the

maximum and minimum possible bubble growth were sought to enable comparision with

experimental results. Figure 5 shows the theoretical upper (thick dotted) and lower (thick



Bubble dynamics in time-variant temperature fields 19

0 100 200 300 400 500 600
0

1

2

3

4

5

6

Non−dimensional time (τ)

N
on

−
di

m
en

si
on

al
 R

ad
iu

s 
(a

)

Midrange Parameter Values

Parameter Variation − Minimum Growth

Parameter Variation − Maximum Growth

No p
v
 temperature variation

No H temperature variation

No D temperature variation

Figure 5. Effect of parameter variations on the behaviour of a 20µm bubble in Xanthan Gum.

The ‘base case’ for comparison is shown by the thick solid line; dotted and dot-dashed thicker

lines show the bounds of bubble behaviour given the ranges of parameter values in table 1.

The thinner lines give predictions of bubble behaviour omitting the temperature-dependence of

Henry’s constant H (solid), vapour pressure pv (dash-dot) and diffusion coefficient D (dashed).

dashed) bounds of the growth of a bubble in Xanthan Gum, given the possible range of

parameter values. The upper bound on growth is obtained using the maximum parameter

values for Henry’s constant and diffusion coefficient, and the minimum value for surface

tension. Using the opposite extremes in parameter values yields the lower bound on

bubble growth. The base case is shown as a thick black solid line for comparison.

The quantification of the effects above is for a 20µm bubble. The role of surface tension

will vary significantly with bubble size, as the Laplace pressure varies as 1/R, making

this a more important parameter at smaller bubble radii. The relative effects of Henry’s

constant and the diffusion coefficient are, however, relatively consistent with bubble ra-



20 I. R. Webb, M. Arora, R. A. Roy, S. J. Payne and C.-C. Coussios

dius. The exact values that the parameters take will be most important near to the radius

threshold, where they are key in determining whether the bubble grows or dissolves.

4.3. Importance of the inclusion of temperature dependence

To understand the importance of including temperature-variant parameter properties in

the model, each of the parameter temperature dependences was removed to ascertain

changes in the bubble behaviour. Due to its key role in determining the concentration

profile within the liquid, Henry’s constant has the greatest effect on the behaviour of a

bubble. If the temperature dependence is not present, the smallest bubbles may never

grow, independent of the rate of heating.

The presence of the temperature dependences of diffusion coefficient, vapour pressure

and surface tension are respectively of decreasing importance – the latter is so minimal

that the bubble response is almost independent of the inclusion of the temperature depen-

dence at initial radius R0 = 20µm. The effect of the other three parameters is illustrated

by figure 5 for a bubble above the threshold radius. The increase of vapour pressure and

diffusion coefficient with time increases the rate of bubble growth, although these changes

are not key in determining the general bubble behaviour. However, the time dynamics of

the bubble response are significantly altered should the temperature-dependent changes

in Henry’s constant be neglected, although in this case the bubble does still grow. The

bubble growth predicted is still a diffusion-driven process, but instead of the concentra-

tion gradient switching in direction due to a reduction in overall solubility and liquid

supersaturation, the gradient switches due to increasing vapour pressure within the bub-

ble reducing the internal gas pressure below the ambient value. Although the effect of

removing temperature dependences of vapour pressure and Henry’s constant is the same

irrespective of the bubble size, in reducing the bubble size at any timepoint, the radius

threshold is important when considering the effect of the temperature-dependence of the
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diffusion coefficient. Removing the temperature-dependence of the diffusion coefficient

slows the diffusion process, independent of its direction; hence bubbles below the ra-

dius threshold dissolve more slowly and those above it grow more slowly than when the

temperature-dependence is present.

From this analysis, it can be seen that the inclusion of the temperature dependences

of vapour pressure, Henry’s constant and diffusion coefficient are important in predicting

the response of a bubble to an arbitrary temperature profile, whereas the temperature-

dependence of surface tension can safely be neglected without any distinguishable change

to the model predictions.

5. Experimental set-up and procedure

A 0.5% Xanthan Gum solution was prepared by dissolving 0.4g of food-grade Xanthan

Gum powder in 80ml of filtered deionised water. As hydrated Xanthan has the tendency

to aggregate into clumps, the powder was added slowly to the water, with a magnetic

stirrer employed to ensure thorough mixing. It is during this mixing process that small air

bubbles become trapped within the gel matrix formed by the hydrated Xanthan polymer

chains. The viscosity of Xanthan Gum is sufficient to counter the effects of buoyancy and

hence stop the bubbles rising quickly to the surface of the gel.

The experimental setup in shown in figure 6. A symmetrical design using two identical

100Ω resistors (Multicomp MC14659) was chosen to minimise thermal convection within

the gel and hence reduce the translation of the bubbles within it. Evaporation of the

gel during experiments was also of concern and this was minimised by the addition of

a Perspex lid to the phantom holder. A series of 1mm diameter holes were added, at

5mm intervals, for the positioning of thermocouples used to monitor the temperature
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Figure 6. Diagram of Experimental Setup

field within the gel. Power was provided by a DC power supply (HP Agilent E3630A)

allowing heating inputs of 0 - 4 W per resistor.

Photographs of the bubbles in the gel phantom were taken using a 10.1-Megapixel dig-

ital SLR Camera (Canon EOS 400D, 3888 x 2592 pixels) with a 5x macro lens (Canon

MP-E 65); the area of focus was approximately 4mm x 3mm giving a resolution of ap-

proximately 1.15 µm per pixel. The camera was connected to a PC via a Universal Serial

Bus (USB) interface, and remotely controlled using the bundled Canon EOS Utility,

allowing photographs to be taken at fixed time intervals of 30 seconds throughout the

duration of the experiment. The best picture quality was obtained using a small aperture

(f13) and a 1.6 second exposure time at speed ISO100 in full manual mode. The small
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aperture was chosen to maximise depth of field, approximately 0.25mm at these settings,

and ensure the bubbles photographed were in focus throughout the entire duration of

the experiment. However, this results in diffraction-limited images and accordingly there

will be some diffraction broadening of the bubbles, which will be of greater importance

at smaller bubble radii. A fluorescent backlight (Jessops Lightbox 6X9) was used to max-

imise contrast between the bubbles and surrounding medium and reduce any shadowing

from other light sources, whilst minimising any additional heating effect.

Temperatures were measured using three T-type thermocouples (Omega Engineering

HYP-2 with SMP connector) at variable locations in the phantom holder, with a 5mm

spacing between thermocouples. The temperature data was recorded on a PC via a

USB-linked data logger (Picotech TC-08) using the bundled Picotech software (Picolog

recorder) simulataneously with data acquisition from the camera. The temperature pro-

files recorded were subsequently used in the theoretical model to predict the radius-time

profiles of specific bubbles. The camera was positioned centrally between the two resis-

tors, such that either one thermocouple was visible in centre frame, or the field of view

was between two adjacent thermocouples. As a result of the symmetrical nature of the

spatial temperature field, there was little spatial variation (< 1◦C) of the temperature

profile across the field of view in this area at all times, and hence all bubbles were assumed

to experience the same temperature variation.

6. Image analysis

To allow comparison with model predictions, an algorithm based on an edge-detection

method has been developed to compute bubble radii across the experimentally-obtained

photograph sequences. As translation of bubbles is likely, due to convection, it is necessary

to account for any frame-to-frame movement to enable tracking of bubbles across the full
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Figure 7. (a) Superposition of photographs from the beginning (red) and end (green) of the

experimental sequence; white bounding boxes indicate ‘regions of interest’ tracked through the

sequence of photographs; (b) and (c) Edge detection for sizing bubbles; the superposed lines

shows the minimum pixel value (red) and its associated gradient (blue)

sequence. The translation is visualised by superposing the images from the start and end

of the sequence in separate primary channels – the first image forms the red channel, with

the final image forming the green channel – resulting in an image such as that of figure

7a. Superposition of the images also allows the immediate visualisation of the nature of

size changes in the bubble population during the course of the experiment.

The edge-detection algorithm developed is most accurate when there is a single in-

focus bubble within the frame. A set of regions of interest is manually selected from

the overlaid photographs, with each region containing a single bubble; these regions are

identified by a surrounding white rectangular box, as illustrated in figure 7a. To find the
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edges of the bubble, the minimum pixel value for each row and each column is found,

and two orthogonal curves of such minima are constructed, one of which is shown in

figure 7b. As the minimum pixel value changes most rapidly across the bubble wall,

the position of the maximum gradients will correspond to these points (figure 7c). The

bubble radius is then computed as the mean of the bubble radii as found in the two

orthogonal directions; should these values differ by more than 10% the output from the

automatic algorithm is flagged and a manual sizing method used to confirm the radius

value. The manual sizing method involves the selection on screen of the top, bottom,

leftmost and rightmost points on the bubble boundary; the bubble radius is then found

from an average of the two radii, as with the automatic method. A comparison between

the automatic and manual methods showed the two to be near-equivalent, with a mean

error of less than one pixel.

By following each of the defined regions throughout the sequence of photographs, the

evolution of the bubble radius over time is tracked. The radius-time curves produced can

then be compared against those predicted by the numerical solver using the corresponding

thermocouple data.

7. Model comparison

7.1. Bubble dissolution with no external heating

To verify the experimental technique and to confirm that the values of Xanthan Gum

parameters obtained from the literature were correct, an initial set of experiments without

any external heat input were conducted. As was expected, all of the bubbles were found

to dissolve.

Without any external heating, the model developed is greatly simplified, as tempera-

ture dependences do not have to be taken into account. In the case of bubble dissolution
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with analytical predictions, for Xanthan Gum (region between solid lines) and water (dotted

line).

in Xanthan Gum, the time scales are such that a quasi-steady state gas concentration

profile can be assumed, and an analytical solution for the bubble dissolution time ob-

tained. As all bubbles of the same radius contain the same mass of gas, dissolution time

must be solely dependent on bubble radius for a bubble in a particular medium. It can

further be shown that the rate of change of mass is only dependent on the physical pa-

rameters of the medium, and hence all bubbles will dissolve along the same radius-time

profile. Therefore, the rate of dissolution is the same for all bubbles of a particular radius,

giving a simple comparative measure. The relationship between bubble size and rate of

dissolution can be expressed as:

Ṙ =
−6RgTσHD

3R2p∞ + 4σR
. (7.1)

Although the resolution of the optical setup is good, a quantisation error will be
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present, and very slight changes in position of the bubble and picture clarity will result

in errors in sizing. To compensate for these inaccuracies, a five-point moving average

is calculated for the experimentally-obtained radii and assigned to the central (third)

member of each five-point set. As the average calculated will still not be an exact measure

of the bubble size, the bubble radii are grouped into 2 µm wide ‘bins’; this allows a

measure of variation in the observed rates of collapse at a particular bubble ‘size’ to be

computed. The dissolution rate associated with the centre-point of the five-point set is

then calculated using the gradient of the line of best fit through these five points. Plotting

the set of dissolution rates for a particular radius ‘bin’ and finding the standard deviation

of the computed rates of collapse for 32 bubbles across four experiments results in figure

8. The predicted region for Xanthan Gum, based on the range of parameter values in

table 1, lies between the solid black curves, and the predicted curve for bubbles in water

is shown as the black dotted line.

The experimental results show good agreement with the analytically-predicted region,

agreeing with the values measured by Teresaka & Shibata (2003). The theoretical curve

for water lies some distance below the majority of the experimental measurements, which

shows the importance of using the correct set of parameter values for the medium in

question. The bubble wall velocities recorded in figure 8 can also be used to justify

the assumption that allows the inertial terms in the Rayleigh–Plesset equation to be

neglected. Micron-sized bubbles have collapse velocities of the order of tens of microns

per second, a value which decreases as bubble size increases, meaning the inertial terms

will take values several orders of magnitude below the smallest pressure term. The viscous

stress term 4ηṘ/R, even for a viscosity as high as 1 Pa s, has a magnitude of less than 1

Pa for bubbles greater than 7 µm and only becomes comparable to the vapour pressure

term for bubbles of sub-micron sizes. The use of an ‘equilibrium’ pressure balance, rather
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Figure 9. (i) Temperature profiles obtained from thermocouple measurements in three separate

experiments. (ii) Comparison of experimental observations and predicted region of response

(bounded by solid/dashed lines) of a 47µm bubbles in Xanthan Gum, in response to heating

profile (a)

than the full Rayleigh-Plesset equation, is therefore acceptable for diffusion-controlled

processes on these time scales.

7.2. Bubble response to heating

By varying the input voltage across the pair of resistors in the experimental setup, a wide

variety of heating rates and profiles were used to heat the bubbly Xanthan Gum medium.

The range of temperature profiles cannot easily be described by a single parameter, so

comparison between experimental observations and the theoretical model is achieved by

inputting the exact temperature profile, as measured by the thermocouples, and the inital

bubble radii into the numerical solver. This allows the radius-time response specific to a

particular bubble and heating profile to be obtained.

The measured temperature profiles from three different experiments, covering a wide

range of heating rates, are shown in figure 9(i). Using the temperature curve labelled

(a), the upper and lower bounds of the predicted responses of a 47µm bubble from this
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experiment are calculated and shown in figure 9(ii). It is immediately clear that the model

is not capturing the general behaviour of the bubble’s response to the heating, predicting

a continuing rise in the bubble growth, which is in contrast to the slowing of the bubble

growth shown in the experimental results. The experimental radius-time profiles therefore

suggest that a factor limits the bubble growth after a certain time; it is postulated that,

due to the bulk liquid containing many bubbles in close proximity, the supply of gas for

continued growth may be limited or even exhausted by the rapidly-expanding bubble.

Although the model presented considers gas diffusion only to be occurring in a thin

region surrounding the bubble, the fixed-value boundary condition on the outer edge of

the diffusion layer still theoretically allows gas to diffuse into and out of the remainder

of the bulk liquid to maintain this concentration value and hence allow ‘infinite’ growth.

The model is therefore altered at this point to limit the supply of gas available to

the bubble; this is achieved by altering the boundary condition on the outer edge of the

diffusion layer from one of fixed value to one of zero gradient, as used by Arefmanesh

et al. (1992). This ensures that gas can no longer diffuse into or out of the diffusion

layer. Implementation in the numerical solver is through use of a second-order Taylor

expansion for the gradient at the outer edge, resulting in the condition:

3c′n + c′n−2 − 4c′n−1 = 0 , (7.2)

where n is the number of spatial grid points. The result is a small change in the Crank-

Nicolson matrix used in the solution of the diffusion equation. In the subsequent theo-

retical predictions, the diffusion layer surrounding the bubble was limited to a constant

width of 0.5mm. Although the proximity of one bubble to another varied considerably,

this value was chosen based on the presence of approximately 20–25 bubbles in each 4

by 3 mm field of view.

Using the revised model, the behaviour of bubbles of a range of sizes was predicted for
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Figure 10. Comparison of experimental observations(Exp) and predicted responses(Th) of bub-

bles with limited gas availability in Xanthan Gum at various heating rates; the bubble responses

in each plot are due to the correspondingly-lettered temperature profile of figure 9(i). The left–

hand plots show the predicted bubble responses using saturation concentration calculated from

initial temperature; the right-hand plots are the corresponding plots using slightly raised (2–4%)

saturation concentrations. The theoretical predictions are given as upper and lower bounds of

bubble behaviour, using the extremes of the Xanthan parameter ranges as discussed in §4.2; it

is expected the bubble behaviour should lie between these bounds.
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all temperature profiles of figure 9(i), and plotted alongside the measured radius-time

profiles from the experiments. Temperature-dependent properties, and hence saturation

concentration within the bulk liquid, were at first calculated for the initial experimentally-

recorded temperature. As the left-hand plots of figure 10 show, the revised model no

longer predicts a near-constant bubble growth-rate with time; the growth of larger bub-

bles does continue but the growth-rate slows significantly after an initial faster expansion.

The general behaviour of the larger bubbles is now captured well by the model predic-

tions. However, for bubbles of smaller initial radius, the experimental observations often

show bubble growth whereas the model predicts dissolution – in general the behaviour of

the bubble reponse is not predicted well by the model for these bubble sizes, even when

considering the wide range of values that the Xanthan Gum parameters can take.

A closer comparison of the bubble responses shows that model and experiment do not

correspond well early on in most of the traces – the model predicts that bubble growth will

begin later than is observed experimentally, and that bubble dissolution will occur more

rapidly than is seen in experiments. Smaller bubbles that can be seen in the experiments

to grow, or to dissolve and then grow, are all predicted by the model to dissolve away

entirely. These discrepancies suggest that the difference in concentrations between the

bulk liquid and at the bubble wall could in reality be lower than the calculated value in

the model.

A small increase in the dissolved gas concentration would be expected from the disso-

lution of bubbles within the liquid prior to the start of heating. The bubble population is

likely to include many micron and sub-micron sized bubbles that are invisible to the opti-

cal set-up used, and hence the exact increase in gas concentration is difficult to quantify.

The right-hand plots of figure 10 show that an increase in the saturation concentration

of the order of 2–4% (equivalent to a 1-2K change in temperature) can significantly alter
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the predictions of the model for a specific temperature input. Although still not a perfect

match, the basic time-dynamics of every bubble, whether it grows, dissolves or dissolves

then grows, are now predicted to a good degree of accuracy in the majority of cases.

This demonstrates that the value of the gas concentration in the bulk liquid is key in

determining the nature of the bubble response caused by an arbitrary heating profile.

As heating continues, thermal equilibrium will be attained and, over time, a new

saturation concentration will be reached. As the solution is now at a higher temperature,

this concentration will be of a lower value than that at the beginning of the heating.

Bubbles that are growing due to the heating are slowly exhausting the supply of dissolved

gas within the liquid, as shown in figure 10 by the decreasing growth rate with time. In the

long term, the lack of gas for diffusion in the surrounding liquid, or the lower value of the

gas saturation concentration at the elevated temperature, will reassert the concentration

gradient present pre-heating and gas will diffuse out of the bubble. Therefore, even though

a bubble can grow if it is heated quickly enough, it will eventually dissolve away as

conditions re-equilibrate at the higher temperature.

8. Discussion

The comparisons of figure 10 show that predicting the exact response of a bubble to

an arbitrary time-variant temperature profile is difficult to achieve. The main difficulties

arise due to limited knowledge of the form of, and parameter values describing, the gas

concentration profile within the bulk liquid; such values will vary significantly between

different media and among bubbles within a single bubble population. However, it is

clear that inclusion of the relevant temperature dependences, especially that of Henry’s

constant, are key in obtaining accurate predictions of bubble behaviour. The close agree-

ment of the bubble dynamics seen in experiments and predicted by the model shows that
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the bubble growth and dissolution is a diffusion-driven process, rather than one solely

due to thermal expansion and increased vapour pressure.

The diffraction-limited nature of the optical set-up will mean that the measurements

of the bubble radii will be slightly larger than the actual sizes. The exact difference in

size is difficult to ascertain due to unknowns about the camera optics and the robustness

of the sizing algorithm to the varying image contrasts that occur at different bubble sizes,

and to the softening of the bubble edge caused by diffraction broadening. However, an

experimental calibration suggests that the maximum error is of the order of 3µm. As the

bubble size is overestimated by the sizing method, a slightly closer match between theory

and experiment can be achieved by using a smaller initial radius in the numerical solver,

but this alone cannot fully account for the large mismatches seen.

It has also been demonstrated that the temporal dynamics of bubble growth and

dissolution are very sensitive to small changes in the gas distribution surrounding a

bubble. Of the assumptions made in the construction of the model, those of the value

of the saturation concentration, the initial concentration profile and the width of the

diffusion layer will all have an effect on how the nature of the concentration profile varies

with time, and hence the exact form of the bubble response. Additionally, the parameter

temperature dependences have been based on those in water rather than in Xanthan

Gum, and although the Xanthan Gum phantom is composed of over 99% water, the

difference in the key parameter values shows that the polymeric nature of the Xanthan

chains does result in differences in the behaviour of the two substances.

Figure 10 shows that small changes in saturation concentration levels can result in

significant changes in predicted bubble behaviour. These changes are greater than may

be expected because the difference between the gas concentration at the bubble wall

and the saturation concentration, rather than the saturation concentration itself, is the
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significant value that determines the bubble behaviour. Small percentage changes in sat-

uration concentration will result in significant lowering of the concentration difference

between the bubble wall and the bulk liquid, which for larger bubbles can cause a com-

plete reversal of the concentration gradient at the bubble wall and immediate growth.

For smaller bubbles, lower concentration differences will reduce the radius-threshold nec-

essary for a bubble to grow, and slow the dissolution of smaller bubbles for a particular

heating profile. The change occurs as a smaller increase in temperature is now sufficient

to cause the necessary reduction in Henry’s constant that results in bubble growth. An

accurate experimental determination of the bulk-liquid saturation concentration would

reveal whether values are higher than calculated from the measured temperature, and

hence whether the postulation made in the previous section is correct.

Changing the value of bulk-liquid saturation concentration has a more pronounced

effect on the behaviour of bubbles of smaller initial radii, as shown by the differences

between the left and right-hand plots of figure 10. To explain this variation in behaviour,

the relative ratio of transferred mass to bubble mass needs to be considered. Whereas

the amount of mass within the bubble is proportional to radius cubed, transferred mass

can be shown to be approximately proportional to the bubble radius. Bubbles of larger

radii have high initial mass, and so the amount of gas diffusing into or out of a larger

bubble is small relative to that already within its walls. The bubble is therefore more

robust to small changes in the local environment – inevitably growing in response to an

increase in temperature. In contrast, the amount of gas diffusing through the bubble wall

for smaller bubbles is more significant than that for larger bubbles, when compared with

the initial bubble mass. A small change in saturation concentration, especially for those

bubbles close to the radius-threshold of a particular temperature profile, can result in a
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complete change in bubble behaviour – growth where there was once dissolution, or vice

versa.

Given the sensitivity of the bubble response to the relative difference between bubble

wall and saturation gas concentrations, it follows that the exact nature of the initial

gas concentration profile around a bubble will also have an effect on the subsequent

time-dynamics of the bubble response. The assumed equilibrium profile will be more

appropriate than a step-change based profile, as the bubbles have existed in the medium

for some time before heating commences. However, as noted when considering the set-up

of the numerical solver, the exact value of the concentration gradient at the bubble wall is

a key factor in determining subsequent bubble behaviour. A more accurate determination

of the value of the concentration gradient, calculated from a better-known concentration

profile, would therefore result in a more realistic radius-time profile.

It is fairly intuitive to see that restriction or expansion of the diffusion layer, relative to

the arbitrary 0.5mm limit chosen, will change the quantity of gas available for diffusion.

The exact size that a bubble can grow to, or the rate at which a bubble dissolves, will

differ dependent on this value. In the experiments carried out, there was no control

over the distribution of bubbles and bubble sizes within the Xanthan Gum. This led

to some bubbles being in close proximity to others, whilst in other regions there could

be separations of several bubble radii. The actual amount of gas available for growth

of any particular bubble is therefore highly variable. Further investigation using the

model suggests that the best matches between theory and experiment occur when using

a diffusion layer width of approximately eight to twelve times that of the bubble radius.

The assumption of a one-dimensional system also comes into question when considering

the gas concentration distribution around the bubble – ‘competition’ for gas between

growing bubbles, extra dissolved gas within the bulk liquid that has diffused out of a
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dissolving bubble, and large expanses of liquid with no bubbles present will all break the

spherical symmetry that the model assumes.

Although it is not an issue in this work, due to the limited resolution of the optical

setup, the accuracy of calculations for very small bubbles could be called into question

owing to the short time periods over which changes in the bubble radius are occurring.

The assumption that the temporal dynamics are slow enough to neglect the inertial terms

in the Rayleigh–Plesset equation may no longer be valid when considering small bubble

radii with dissolution times of the order of seconds, rather than minutes.

The model in its current state is open to several modifications to increase its suitability

in describing real-world applications. Introduction of parameters to account for dissolu-

tion or growth in viscoelastic liquids, in addition to simple liquids like water, will allow

the bubble response in a much greater range of materials and media to be modelled. In

processes such as the rising of dough caused by yeast, the generation of additional gas(es)

through chemical or biological processes would be necessary to accurately describe the

evolution of bubbles. Finally, the model would need significant adaptation should there

be an external driving force acting on the bubbles, so as to fully describe the inertial and

diffusion characteristics of a multi-time-scale problem and account for phenomena such

as rectified diffusion during acoustic cavitation.

In many of the situations arising, where application of such a model would be of use,

it is accepted that the accurate determination of many of the parameter values and

properties discussed above will be very difficult to achieve. However, often it will not be

necessary to know the exact radius-time profile of a bubble’s evolution; knowledge of the

basic temperature-dependent parameters, and the expected void fraction and bubble size

distribution would be sufficient to obtain a general overview of the dynamics of bubble

population from the model.
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9. Conclusions

A single-bubble model in liquid has been developed to describe the dynamics of bubbles

undergoing an arbitrary time-variant change in temperature. For a particular heating

profile, the model predicts a range of bubble behaviours and a threshold for bubble

growth that are both dependent on the initial bubble radius. An investigation into the

effect of each of the temperature dependencies on the model predictions has shown it

essential to include the temperature dependence of Henry’s constant to allow accurate

prediction of the time-dynamics of bubble growth or dissolution; the dependencies of

diffusion coefficient and vapour pressure are of decreasingly lower importance, whereas

that of surface tension can be neglected without any detectable change to the predictions.

Experimental validation in Xanthan Gum gel phantoms has shown that using the

correct parameter values for Xanthan Gum is key in obtaining agreement with model

predictions for bubbles dissolving without any external heating. When a bubbly mixture

is heated, agreement between model and experiment is only seen when the amount of

dissolved gas available for bubble growth within the theoretical model is limited. The

effect of small changes in the value of the gas saturation concentration, especially on the

response of smaller-radii bubbles and those close to the radius-threshold, is shown to be

significant in the ability to accurately predict the radius-time evolution of a bubble in a

time-variant temperature field.
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