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DYNAMICS OF GILPIN-AYALA COMPETITION MODEL

WITH RANDOM PERTURBATION

Maja Vasilova and Miljana Jovanović

Abstract

In this paper we study the Gilpin-Ayala competition system with random
perturbation which is more general and more realistic than the classical Lotka-
Volterra competition model. We verify that the positive solution of the system
does not explode in a finite time. Furthermore, it is stochastically ultimately
bounded and continuous a.s. We also obtain certain results about asymptotic
behavior of the stochastic Gilpin-Ayala competition model.

1 Introduction

One of the most common phenomena considering ecological population is that many
species which grow in the same environment compete for the limited resources or
in some way inhibit others’ growth. A particularly interesting type of this kind of
interaction is facultative mutualism, in which the interacting species derive bene-
fit from each other but, not being fully dependent, each can survive without the
symbiotic partner (e.g. plants producing fruits are eaten by birds and on the other
hand the birds help on dispersing the seeds of the fruit when they excrete them on
places far from the parent plant).

One of the famous models that regards dynamics of population systems is the
classical Lotka-Volterra competitive system. It was suggested independently by
Lotka and Volterra in the 1920s and was described by the following differential
equation

dNi

dt
= riNi

(
1− Ni

ki
− αij

Nj

ki

)
, i, j = 1, 2, i 6= j,

where Ni and ri are the population size and exponential rate of the growth of the
ith species, respectively, ki is the carrying capacity of the ith species in the absence
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of its competitor - the jth species, and αij is the linear reduction (in terms of ki)
of the ith species’ rate of growth by its competitor - the jth species.

Since that time, many different forms of the Lotka-Volterra competition model
have been studied (see, for example, [1], [2]). However, the Lotka-Volterra compe-
tition model is linear (i.e. the rate of change in the size of each species is a linear
function of sizes of the interacting species) and this property is considered as a
disadvantage of this model. In 1973, Gilpin and Ayala [3] claimed that a little more
complicated model was needed in order to obtain more realistic solutions, so they
proposed a few competition models, for example,

dNi

dt
= riNi

(
1−

(
Ni

ki

)θi

− αij
Nj

ki

)
, i, j = 1, . . . , d,

where θi are the parameters which modify the classical Lotka-Volterra model and
they represent a nonlinear measure of interspecific interference (i = 1, . . . , d). It
was noticed that the Gilpin-Ayala model has even some properties which do not
exist in the Lotka-Volterra model [4].

The mentioned examples are deterministic cases, but the population systems
are often subject to the environmental noise, i.e. they are exposed to the impact
of a large number of random unpredictable factors. So, it is natural to consider
what happens if the noise is included in the model. There are many papers which
consider stochastic Lotka-Volterra population models (see [5],[6],[7]), and just a few
papers deal with Gilpin-Ayala competition systems ([8],[9],[10]).

In a deterministic case, without further hypothesis on the matrix (αij)d×d, the
solutions of these models may not exist on [0,∞) and may explode at a finite time.
Since the solutions of the equations represent the size of the populations, they should
be both positive and finite. The main purpose of this paper is to show that, under
certain conditions for (αij), adding the environmental noise to the model will not
make any change in that property, i.e. the solution of the considered equation will
be positive and will not explode at a finite moment of time.

Let (Ω,F ,P) be a complete probability space with filtration {Ft}t≥0 satisfying
the usual conditions (it is increasing and right continuous while F0 contains all P-
null sets). Moreover, let w(t) = (w1(t), . . . , wd(t))T be a d-dimensional Brownian
motion defined on a filtered space and Rd

+ = {x ∈ Rd : xi > 0 for all 1 ≤ i ≤ d}.
Then, let |A| =

√
trace(AT A) be the trace norm of a matrix A (where AT denotes

the transpose of a vector or matrix A) and its operator norm by ‖A‖ = sup{|Ax| :
|x| = 1}.

Consider the Gilpin-Ayala competition model for a system with d interacting
species

dxi(t) = xi(t)

[
ri −

(
xi(t)
ki

)θi

−
d∑

i6=j

aijxj(t)
kj

]
dt (1)

for every 1 ≤ i ≤ d, where xi(t), ri and ki are the population size at a time t,
the intrinsic exponential growth rate and the carrying capacity in the absence of
competition, respectively, for the i-th species; then, aij , i 6= j = 1, . . . , d represent
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the effect of interspecific interaction and θi ≥ 0, i = 1, . . . , d are the parameters that
modify the classical Lotka-Volterra model. In this paper we observe the situation of
the parameter perturbation. In practice the intrinsic growth rate ri of the species i
is estimated by an average value plus an error term. In other words, we can replace
the rate ri with an average growth rate plus a random fluctuation term ri +σiẇi(t)
where σ2

i is the intensity of the noise and ẇi(t) is a white noise (i = 1, . . . , d). As a
result, Eq. (1) becomes the stochastic Gilpin-Ayala competition model:

dxi(t) = xi(t)

{[
ri −

(
xi(t)
ki

)θi

−
d∑

i 6=j

aijxj(t)
kj

]
dt + σidwi(t)

}
. (2)

We assume that the competitions among the different spaces are non-negative, i.e.

aij ≥ 0, i 6= j. (3)

The paper is organized as follows: In the next section we prove that the solution
of Eq. (2) is global and positive, which is a logical requirement since xi represents
the size of the ith species. Then, we prove that the solution is stochastically ulti-
mately bounded and continuous a.s. in Section 3. Since the explicit solution of Eq.
(2) does not exist, we analyze the asymptotic moment behavior of the solution in
Section 4 and, also, the pathwise behavior in Section 5.

2 Positive and Global Solutions

In the considered Eq. (2) the coefficients are locally Lipschitz continuous but do
not satisfy the linear growth condition. However, according to the existence-and-
uniqueness theorem, the coefficients of stochastic differential equations should sat-
isfy both mentioned conditions in order to have a unique global solution (i.e. no
explosion in finite time) for any given initial value. To overcome this problem, we
need to impose the simple hypotheses (3) to get a solution which is not only posi-
tive but also will not explode in any finite time and that is proved in the following
theorem.

Theorem 1. Let us assume that condition (3) holds. Then, for any given initial
value x0 ∈ Rd

+, there is a unique solution x(t) to Eq. (2) on t ≥ 0. Moreover, this
solution remains in Rd

+ with probability 1.

Proof. Since the coefficients of Eq. (2) are locally Lipschitz continuous, for any
given initial data x0 ∈ Rd

+ there is a unique maximal local positive solution x(t)
defined on t ∈ [0, ρ), where ρ is an explosion time. To show this solution is global,
we need to show that ρ = ∞ a.s. Let n0 be sufficiently large for every component of
x0 lying within the interval [n−1

0 , n0]. For each integer n ≥ n0, define the stopping
time

τn = inf{t ∈ [0, ρ)|xi(t) 6∈ (n−1, n), for some i = 1, . . . , d},
where throughout this paper we set inf ∅ = ∞ (as usual ∅ denotes the empty set).
Because τn is increasing as n → ∞, set τ∞ = limn→∞ τn. If we can show that
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τ∞ = ∞ a.s., then ρ = ∞ a.s. and x(t) ∈ Rd
+ a.s. for all t ≥ 0. To complete

the proof all we need to show is that τ∞ = ∞ a.s. or for all T > 0, we have
P (τn ≤ T ) → 0 when n →∞. To show this statement, we will define the Lyapunov
function V : Rd

+ → R+

V (x) =
d∑

i=1

(
xγ

i − 1− γ ln xi

)
, γ ≥ max

i
θi ∨ 1.

The non-negativity of this function is obvious because tγ − 1− γ ln t ≥ 0 for every
t > 0 and γ > 0. We use the Itô formula to V (x(t)) and obtain:

dV (x(t)) = γ

d∑

i=1

{
(xγ

i (t)− 1)

[
ri −

(
xi(t)
ki

)θi

−
d∑

i 6=j

aijxj(t)
kj

]

+
(γ − 1)σ2

i

2
xγ

i (t) +
σ2

i

2

}
dt + γ

d∑

i=1

σi

(
xγ

i (t)− 1
)
dwi(t)

≤ γ

d∑

i=1

{
ri

(
xγ

i (t)− 1
)

+

(
xi(t)
ki

)θi

+
d∑

i 6=j

aijxj(t)
kj

+
(γ − 1)σ2

i

2
xγ

i (t) +
σ2

i

2

}
dt + γ

d∑

i=1

σi

(
xγ

i (t)− 1
)
dwi(t)

≤ γ

d∑

i=1

{[
ri +

(γ − 1)σ2
i

2

]
(1 + xi(t))γ +

(1 + xi(t))θi

kθi
i

+
d∑

i 6=j

aij(1 + xj(t))
kj

+
σ2

i

2
−ri

}
dt+γ

d∑

i=1

σi

(
xγ

i (t)− 1
)
dwi(t).

Because γ ≥ maxi θi ∨ 1 it follows that

dV (x(t)) ≤ γ

d∑

i=1

{
(1 + xi(t))γ

[
ri +

(γ − 1)σ2
i

2
+

1
kθi

i

+
d∑

i6=j

aji

ki

]
+

σ2
i

2
− ri

}
dt

+ γ

d∑

i=1

σi

(
xγ

i (t)− 1
)
dwi(t)

= F (x(t))dt + γ

d∑

i=1

σi

(
xγ

i (t)− 1
)
dwi(t),
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where

F (x(t)) = γ

(
A1

d∑

i=1

xγ
i (t)dt + dA2

)
,

A1 = (2γ−1 ∨ 1)

[
r +

(γ − 1)σ2

2
+

1
kθ

+
(d− 1)a

k

]
,

A2 =
[
(2γ−1 ∨ 1)− 1

]
r +

σ2

2
+ (2γ−1 ∨ 1)

[
(γ − 1)σ2

2
+

1
kθ

+
(d− 1)a

k

]

and r = maxi ri, σ2 = maxi σ2
i , a = maxi,j aij , k = mini ki, θ = mini θi. Since

γ ≥ 1 and knowing that xγ ≤ 2[xγ − 1− γ ln x] + 2, γ ≥ 0, we obtain

F (x(t)) ≤ 2γA1V (x(t)) + dγ(2A1 + A2)
= K1V (x(t)) + K2.

Then

dV (x(t)) ≤ (
K1V (x(t)) + K2

)
dt + γ

d∑

i=1

σi(x
γ
i (t)− 1)dwi(t).

Integrating the last inequality from 0 to τn ∧ T , yields

V (x(τn ∧ T )) ≤ V (x(0)) + K1

∫ τn∧T

0

V (x(s))ds + K2 · (τn ∧ T )

+ γ

∫ τn∧T

0

d∑

i=1

σi(x
γ
i (t)− 1)dwi(t).

By taking expectations we get

EV (x(τn ∧ T )) ≤ V (x(0)) + K2T + K1

∫ T

0

EV (x(τn ∧ t))dt.

The Gronwall-Bellman inequality implies that

EV (x(τn ∧ T )) ≤ [
V (x(0)) + K2T

]
eK1T .

For every ω ∈ {τn ≤ T}, there is some i such that xi(τn, ω) 6∈ (n−1, n). Hence,

V (x(τn)) ≥ (xi(τn))γ − 1− γ ln xi(τn) =

[(
1
nγ

− 1− γ ln
1
n

)
∧

(
nγ − 1− γ ln n

)]

and then it follows that

∞ > [V (x(0)) + K2T
]
eK1T ≥ EV (x(τn ∧ T ))

= P (τn ≤ T )V (x(τn)) + P (τn > T )V (x(T )) ≥ P (τn ≤ T )V (x(τn))

≥ P (τn ≤ T )

[(
1
nγ

− 1− γ ln
1
n

)
∧

(
nγ − 1− γ ln n

)]
.
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Because
(

1
nγ − 1 − γ ln 1

n

) ∧ (
nγ − 1 − γ ln n

)
tends to infinity when n → ∞, this

implies that limn→∞ P (τn ≤ T ) = 0 and, therefore, P (τ∞ ≤ T ) = 0. Since T > 0
is arbitrary, we deduce that P (τ∞ = ∞) = 1. Thus, the theorem is proved.

3 Properties of the solution

In this section, firstly we deduce that the p-th moment of the solution of Eq. (2) is
finite for every p > 0. Then, we prove that the solution is stochastically ultimately
bounded and continuous.

Theorem 2. Let condition (3) holds. Then for any p > 0,

sup
t≥0

E

[
d∑

i=1

xp
i (t)

]
≤ K < ∞. (4)

Proof. Define the function V : Rd
+ → R+ by

V (x) =
d∑

i=1

xp
i , p > 0.

By applying the Itô formula to etV (x(t)), we obtain

d[etV (x(t))] = et
d∑

i=1

xp
i (t)dt + pet

d∑

i=1

xp
i (t)

[
ri −

(xi(t)
ki

)θi

−
d∑

i 6=j

aijxj(t)
kj

+
(p− 1)σ2

i

2

]
dt + pet

d∑

i=1

σix
p
i (t)dwi(t)

≤ etF (x(t))dt + pet
d∑

i=1

σix
p
i (t)dwi(t),

where

F (x(t)) = p

d∑

i=1

xp
i (t)

[
1
p

+ ri −
(xi(t)

ki

)θi

+
(p− 1)σ2

i

2

]
.

It is easy to conclude that there exists a positive constant K such that F (x(t)) ≤ K.
Therefore,

d[etV (x(t))] ≤ Ketdt + pet
d∑

i=1

σix
p
i (t)dwi(t).

Integrating the last inequality from 0 to τn ∧ t and then taking expectations, yields

etEV (x(τn ∧ t)) ≤ V (x(0)) + KE

∫ τn∧t

0

esds ≤ V (x(0)) + K
(
et − 1

)
.

We proved in Theorem 1 that limn→∞ τn = ∞, a.s. Then, by virtue of Fatou’s
lemma and by letting n →∞ the required assertion (4) follows.
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Corollary 1. Under the condition of Theorem 2, for any p > 0,

lim sup
T→∞

1
T

∫ T

0

E|x(t)|pdt < ∞. (5)

Proof. Because

E|x(t)|p ≤ d
p−2
2 E

(
d∑

i=1

xp
i (t)

)
, (6)

from the previous theorem (5) follows directly.

Definition 1. The solution of Eq. (2) is said to be stochastically ultimately bounded
if for any ε ∈ (0, 1), there is a positive constant H = H(ε) such that for any initial
value x(0) ∈ Rd

+, the solution x(t) of Eq. (2) satisfies

lim sup
t→∞

P {|x(t)| ≤ H} ≥ 1− ε. (7)

Theorem 3. Let condition (3) holds. The solution of Eq. (2) is stochastically
ultimately bounded.

Proof. By virtue of Tchebychev’s inequality and (6) we have that for H > 0

P
{
|x(t)| > H

}
≤ E|x(t)|2

H2
≤ K

H2
.

Therefore, by choosing H sufficiently large, (7) follows.

In order to prove that the solution of the Eq. (2) is continuous a.s. it is necessary
to apply the following lemma.

Lemma 1. (Kolmogorov-Čentsov theorem on the continuity of stochastic process)
[11] Suppose that a d-dimensional stochastic process {x(t), t ≥ 0} satisfies the con-
dition

E|x(t)− x(s)|α ≤ C|t− s|1+β , 0 < s, t < ∞,

for some positive constants α, β and C. Then, there exists a continuous modification
x̃(t) of x(t), which has the property that for every γ ∈

(
0, β

α

)
, there is a positive

random variable h(ω) such that

P

{
ω : sup

0<|t−s|<h(ω);0≤s,t<∞

|x̃(t)− x̃(s)|
|t− s|γ ≤ 2

1− 2−γ

}
= 1.

In other words, almost every simple path of x̃(t) is locally but uniformly Hölder-
continuous with exponent γ.

Theorem 4. The solution x(t) of Eq. (2) is continuous a.s.
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Proof. Denote for i = 1, . . . , d

fi(x(t)) = xi(t)

[
ri −

(xi(t)
ki

)θi −
d∑

i6=j

aijxj(t)
kj

]
,

gi(x(t)) = σixi(t).

Let 0 < s < t < ∞, t − s ≤ 1, p ≥ 2. Since dxi(t) = fi(x(t))dt + gi(x(t))dwi(t), it
follows that

xi(t)− xi(s) =
∫ t

s

fi(x(u))du +
∫ t

s

gi(x(u))dwi(u),

and hence

|xi(t)− xi(s)|p ≤ 2p−1

{∣∣∣∣∣
∫ t

s

fi(x(u))du

∣∣∣∣∣

p

+

∣∣∣∣∣
∫ t

s

gi(x(u))dwi(u)

∣∣∣∣∣

p}
.

Taking expectations on both sides of the last inequality and using the Hölder’s
inequality and moment inequalities for the Itô integral, yields

E|xi(t)− xi(s)|p ≤ 2p−1

{
(t− s)p−1E

∫ t

s

∣∣fi(x(u))
∣∣pdu (8)

+

(
p(p− 1)

2

) p
2

(t− s)
p−2
2 E

∫ t

s

∣∣gi(x(u))
∣∣pdu

}
.

By using the inequality
(∑d

i=1 xi

)p ≤ dp−1
∑d

i=1 xp
i , Fubini theorem and Hölder’s

inequality we get

E

∫ t

s

∣∣fi(x(u))
∣∣pdu ≤ (d + 1)p−1E

∫ t

s

{
rp
i

∣∣xi(u)
∣∣p +

1

kpθi

i

∣∣xi(u)
∣∣p(1+θi)

+ ap
d∑

i 6=j

∣∣∣∣∣xi(u)
xj(u)

kj

∣∣∣∣∣

p}
du

≤(d + 1)p−1

∫ t

s

{
rp
i E

∣∣xi(u)
∣∣p +

1

kpθi

i

E
∣∣xi(u)

∣∣p(1+θi)

+ ap
d∑

i 6=j

1
kp

j

(
E

∣∣xi(u)
∣∣2p

)1/2(
E

∣∣xj(u)
∣∣2p

)1/2
}

du

where a = maxi,j aij . According to Theorem 2 we get

E

∫ t

s

∣∣fi(x(u))
∣∣pdu ≤ C1(t− s) (9)
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where C1 is a generic constant. Furthermore,

E

∫ t

s

∣∣gi(x(u))
∣∣pdu ≤ |σ|pE

∫ t

s

∣∣xi(u)
∣∣pdu ≤ C2(t− s) (10)

where |σ| = maxi |σi| and C2 is a generic constant. From (8)-(10) it follows

E|xi(t)− xi(s)|p ≤ K̃(t− s)
p
2 .

where K̃ is some constant. By applying Lemma 1, we conclude that almost ev-
ery simple path of xi(t) is locally but uniformly Hölder-continuous with exponent
γ ∈ (

0, p−2
2p

)
and, therefore, almost every simple path of xi(t) must be uniformly

continuous on t ≥ 0, i.e. the solution x(t) = (x1(t), . . . , xd(t)) of Eq. (2) is contin-
uous a.s.

4 Asymptotic behavior of the solution

Since the considered Eq. (2) does not have an explicit solution, it is reasonable to
study an asymptotic moment estimation.

Theorem 5. For any θ > 0, there exists a positive constant K such that, for any
initial value x0 ∈ Rd

+, the solution of Eq. (2) satisfies the property

lim sup
t→∞

1
t
E

∫ t

0

d∑

i=1

1
2kθi

i

xi(s)θ+θi ds ≤ K.

Proof. Define the function V : Rd
+ → R+ by

V (x) =
d∑

i=1

xθ
i .

Now we use the Itô formula to V (x(t)):

dV (x(t)) ≤
[
F (x(t))− θ

2

d∑

i=1

xθ+θi
i (t)
kθi

i

]
dt +

d∑

i=1

θσix
θ
i (t)dwi(t),

where

F (x(t)) = θ

d∑

i=1

xθ
i (t)

[
ri − xθi

i (t)
2kθi

i

− (1− θ)σ2
i

2

]
.

Furthermore, by taking into consideration the fact that polynomial F (x(t)) has an
upper positive bound K, the last equality becomes

dV (x(t)) ≤ Kdt− θ

2

d∑

i=1

xθ+θi
i (t)
kθi

i

dt +
d∑

i=1

θσix
θ
i (t)dwi(t).
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Integrating from 0 to t gives

V (x(t)) +
θ

2

∫ t

0

d∑

i=1

xθ+θi
i (s)
kθi

i

ds ≤ V (x(0)) + K̄t + Mt, (11)

where Mt = θ
∫ t

0

∑d
i=1 σix

θ
i (s)dwi(t) is a real-valued continuous local martingale

vanishing at t = 0. Taking expectations on both sides of (11) results in

E

∫ t

0

d∑

i=1

xθ+θi
i (s)
kθi

i

ds ≤ 2
θ

[
V (x(0)) + K̄t

]
.

The required assertion follows immediately from this for K = 2
θ K̄.

The conclusion of Theorem 4 is very powerful since it is universal in the sense
that it is independent of the system parameters aij , and of the initial value x0 ∈ Rd

+.
It is also independent of the noise intensity σ2

i , i = 1, . . . , d.

5 Pathwise estimation

In this section, we consider some limit inequalities for growth rates of the population
size.

Theorem 6. Let us assume that condition (3) holds. Then, there exists a positive
constant K such that, for any initial value x0 ∈ Rd

+, the solution of Eq. (2) has the
property that

lim sup
t→∞

ln
( ∏d

i=1 xi(t)
)

t
≤ K a.s.

Proof. For each 1 ≤ i ≤ d, we apply Itô’s formula to lnxi(t) and obtain

d
(
ln xi(t)

)
=

[
ri −

(
xi(t)
ki

)θi

−
d∑

i6=j

aijxj(t)
kj

− σ2
i

2

]
dt + σidwi(t).

Integrating both sides of this equality from 0 to t yields

ln xi(t) = ln xi(0) + Mi(t) +
∫ t

0

[
ri −

(
xi(s)
ki

)θi

−
d∑

i 6=j

aijxj(s)
kj

− σ2
i

2

]
ds, (12)

where Mi(t) = σiwi(t) is the real-valued continuous local martingale vanishing at
t = 0, with the quadratic variation 〈Mi(t),Mi(t)〉 = σ2

i t. From (12), it follows that

d∑

i=1

ln xi(t) ≤
d∑

i=1

ln xi(0) +
d∑

i=1

Mi(t) +
∫ t

0

d∑

i=1

[
ri −

(
xi(s)
ki

)θi

− σ2
i

2

]
ds.
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Thus, by the strong law of large numbers for martingales, we have that
limt→0

Mi(t)
t = 0, for i = 1, . . . , d. Since

d∑

i=1

[
ri −

(
xi(s)
ki

)θi

− σ2
i

2

]
≤ K

for some positive constant K, it follows that

lim sup
t→∞

1
t

[
ln

d∏

i=1

xi(t)

]
≤ lim sup

t→∞

[
ln

∏d
i=1 xi(0)

t
+ K

]
= K, s.i.

which is the required assertion

Theorem 7. Under the condition (2), there exists a positive constant K such that,
for any initial value x0 ∈ Rd

+, for the solution of Eq. (2) it holds that

lim sup
t→∞

ln
( ∏d

i=1 xi(t)
)

ln t
≤ d a.s.

Proof. For each 1 ≤ i ≤ d, if we apply Itô’s formula to eδt ln xi(t) for δ > 0 and
integrate from 0 to t, we have

eδt ln xi(t) = ln xi(0) + Mi(t) (13)

+
∫ t

0

eδs

{
δ ln xi(s) + ri −

(
xi(s)
ki

)θi

−
d∑

i6=j

aijxj(s)
kj

− σ2
i

2

}
dt

where Mi(t) =
∫ t

0
eδsσidwi(s) is a real-valued continuous local martingale vanishing

at t = 0 with quadratic variation

〈Mi(t),Mi(t)〉 =
σ2

i (e2δt − 1)
2δ

.

Fix ε ∈ (0, 1
2 ) arbitrarily and θ > 1. For every integer n ≥ 1, using the exponential

martingale inequality we have

P

{
sup

0≤t≤n

[
Mi(t)− ε

2eδn
〈Mi(t),Mi(t)〉

]
≥ θeδn ln n

ε

}
≤ 1

nθ
.

Since the series
∑∞

n=1
1

nθ converges, the application of the Borel-Cantelli lemma
yields that there exists an Ωi ⊂ Ω with P (Ωi) = 1 such that for any ω ∈ Ωi an
integer ni = ni(ω) can be found such that

Mi(t) ≤ ε

2eδn
〈Mi(t),Mi(t)〉+

θeδn ln n

ε
,
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for 0 ≤ t ≤ n and n ≥ ni(ω), i = 1, . . . , d. Thus (13) results in

eδt ln xi(t) ≤ ln xi(0) +
θeδn ln n

ε
+

ε

2

∫ t

0

σ2
i e2δs−δnds

+
∫ t

0

eδs

{
δ ln xi(s) + ri −

(
xi(s)
ki

)θi

−
d∑

i 6=j

aijxj(s)
kj

− σ2
i

2

}
ds

for 0 ≤ t ≤ ni(ω) and n ≥ ni(ω) whenever ω ∈ Ωi. Now let Ω0 =
⋂d

i=1 Ωi. Clearly,
P (Ω0) = 1. Moreover, for all ω ∈ Ω0, let n0 = max{ni(ω) : 1 ≤ i ≤ d}. Then, for
all ω ∈ Ω0, it follows from the last inequality that

eδt
d∑

i=1

ln xi(t) ≤
d∑

i=1

ln xi(0) +
θdeδn ln n

ε
+

∫ t

0

eδs
d∑

i=1

[
δ ln xi(s) + ri

−
(

xi(s)
ki

)θi

− σ2
i (1− εeδ(s−n))

2

]
ds

for 0 ≤ t ≤ n and n ≥ n0(ω). Since

d∑

i=1

[
δ ln xi(s) + ri −

(
xi(s)
ki

)θi

− σ2
i (1− εeδ(s−n))

2

]
≤ K,

for all x ∈ Rd
+ for some positive constant K = K(θi), we have

eδt ln
d∏

i=1

xi(t) ≤ ln
d∏

i=1

xi(0) +
θdeδn ln n

ε
+ K

eδt − 1
δ

for 0 ≤ t ≤ n and n ≥ n0(ω). Consequently, for all ω ∈ Ω0, if n − 1 ≤ t ≤ n and
n ≥ n0(ω),

ln
∏d

i=1 xi(t)
ln t

≤ e−δ(n−1) ln
∏d

i=1 xi(0) + θdeδ ln n
ε + K

δ − K
δ e−δ(n−1)

ln(n− 1)

which implies that

lim sup
t→∞

ln
∏d

i=1 xi(t)
ln t

≤ θdeδ

ε
s.i.

In the end, by letting θ → 1, δ → 0 and ε → 1, it follows that

lim sup
t→∞

ln
∏d

i=1 xi(t)
ln t

≤ d s.i.

and the proof is completed.

The conclusion of Theorem 7 is very powerful since it is universal in the sense
that it is independent both of the noise intensity σ2

i , i = 1, . . . , d, and of the initial
value x0 ∈ Rd

+. It is also independent of the system parameters aij as long as it
exists in the sense of hypothesis (3).
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[10] M. Vasilova, M. Jovanović, Stochastic Gilpin-Ayala competition model with
infinite delay, Submitted.

[11] X. Mao, Stochastic version of the Lassalle theorem, J. Differential Equations
153 (1999), 175-195.

Maja Vasilova:
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