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Highly supercooled liquids with soft-core potentials are studied via molecular-dynamics simulations in two

and three dimensions in quiescent and sheared conditions. We may define bonds between neighboring particle

pairs unambiguously owing to the sharpness of the first peak of the pair correlation functions. Upon structural

rearrangements, they break collectively in the form of clusters whose sizes grow with lowering the temperature

T. The bond lifetime tb , which depends on T and the shear rate ġ , is on the order of the usual structural or a

relaxation time ta in weak shear ġta!1, while it decreases as 1/ġ in strong shear ġta@1 due to shear-

induced cage breakage. Accumulated broken bonds in a time interval (;0.05tb) closely resemble the critical

fluctuations of Ising spin systems. For example, their structure factor is well fitted to the Ornstein-Zernike

form, which yields the correlation length j representing the maximum size of the clusters composed of broken

bonds. We also find a dynamical scaling relation, tb;jz, valid for any T and ġ with z54 in two dimensions

and z52 in three dimensions. The viscosity is of order tb for any T and ġ , so marked shear-thinning behavior

emerges. The shear stress is close to a limiting stress in a wide shear region. We also examine motion of tagged

particles in shear in three dimensions. The diffusion constant is found to be of order tb
2n with n50.75;0.8 for

any T and ġ , so it is much enhanced in strong shear compared with its value at zero shear. This indicates a

breakdown of the Einstein-Stokes relation in accord with experiments. Some possible experiments are also

proposed. @S1063-651X~98!16409-7#

PACS number~s!: 64.70.Pf, 83.50.Gd, 61.43.Fs

I. INTRODUCTION

Particle motions in supercooled liquids are severely re-

stricted or jammed, thus giving rise to slow structural relax-

ations and highly viscoelastic behavior @1,2#. Recently much
attention has been paid to the mode-coupling theory @3,4#,
which is an analytic scheme describing the onset of slow
structural relaxations considerably above Tg . There, the den-
sity fluctuations with wave numbers around the first peak
position of the structure factor are of the most importance
and no long-range correlations are predicted. For a long time,
however, it has been expected @5–8# that rearrangements of
particle configurations in glassy materials should be coopera-
tive, involving many molecules, owing to configuration re-
strictions. In other words, such events occur only in the form
of clusters whose sizes increase at low temperatures. In nor-
mal liquid states, on the contrary, they are frequent and un-
correlated among one another in space and time. Such an
idea was first put forth by Adam and Gibbs @5#, who in-
vented a frequently used jargon, cooperatively rearranging

regions ~CRR!. However, it is difficult to judge whether or
not such phenomenological models are successful in describ-
ing real physics and in making quantitative predictions.

Molecular-dynamics ~MD! simulations can be powerful
tools to gain insights into relevant physical processes in
highly supercooled liquids. Such processes are often masked
in averaged quantities such as the density time correlation
functions. As a marked example, we mention kinetic hetero-
geneities observed in recent simulations @9–18#. Using a
simple two-dimensional fluid, Muranaka and Hiwatari @9#
visualized significant large-scale heterogeneities in particle
displacements in a relatively short time interval, which was
supposed to correspond to the b relaxation time regime. In
liquid states with higher temperatures, Hurley and Harrowell

@11# observed similar kinetic heterogeneities but the correla-

tion length was still on the order of a few particle diameters.

The characterization of these patterns has not been made in
these papers. Recently our simulations on model fluid mix-
tures in two and three dimensions @13–15# have identified
weakly bonded or relatively active regions from breakage of
appropriately defined bonds. Spatial distributions of such re-
gions resemble the critical fluctuations in Ising spin systems,
so the correlation length j can be determined. It grows up to
the system size as T is lowered, but no divergence seems to
exist at nonzero temperatures @13,19–21#. Donati et al. have
observed stringlike clusters whose lengths increase at low
temperatures in a three-dimensional ~3D! binary mixture
@17#. In addition, Monte Carlo simulations of a dense poly-
mer by Ray and Binder showed a significant system size
dependence of the monomer diffusion constant, which indi-
cates heterogeneities over the system size @18#.

Most previous papers so far have been concerned with
near-equilibrium properties, such as relaxation of the density
time correlation functions or dielectric response. From our
point of view, these quantities are too restricted or indirect,
and there remains a rich group of unexplored problems in
far-from-equilibrium states. For example, nonlinear glassy
response against electric field, strain, etc. constitutes a future
problem @22#. In this paper we apply a simple shear flow

vx5ġy in the x direction and realize steady states @23#. The
velocity gradient ġ in the y direction is called the shear rate
or simply shear. We shall see that it is a relevant perturbation
drastically changing the glassy dynamics when ġ exceeds the
inverse of the structural or a relaxation time ta . As is well
known, ta increases dramatically from microscopic to mac-
roscopic times in a rather narrow temperature range @1,2#.
Generally, in near-critical fluids and various complex fluids,
nonlinear shear regimes are known to emerge when ġ ex-
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ceeds some underlying relaxation rate @23#. However, in su-
percooled liquids, it is unique that even very small shear can
greatly accelerate the microscopic rearrangement processes.
Similar effects are usually expected in systems composed of
very large elements such as colloidal suspensions.

Though rheological experiments on glass-forming fluids
have not been abundant, Simmons et al. found that the vis-
cosity h(ġ)5sxy /ġ exhibits strong shear-thinning behavior,

h~ ġ !>h~0 !/~11ġth!, ~1.1!

in soda-lime-silica glasses in steady states under shear @24–
26#, th being a long rheological time. After application of
shear, they also observed overshoots of the shear stress be-
fore approach to steady states. Our previous reports @14,15#
have treated nonlinear rheology in supercooled liquids, in
agreement with these experiments. Interestingly, similar jam-

ming dynamics has begun to be recognized also in rheology
of foams @27–29# and granular materials @30# composed of
large elements. Shear-thinning behavior and heterogeneities
in configuration rearrangements are commonly observed also
in these macroscopic systems.

As a closely related problem, understanding of mechani-
cal properties of amorphous metals such as Cu57Zr43 has
been of great technological importance @31–35#. They are
usually ductile in spite of their high strength. At low tem-
peratures T&0.6;0.7Tg , localized bands (&1 mm), where
zonal slip occurs, have been observed above a yield stress.
At relatively high temperatures T*0.6;0.7Tg , on the other
hand, shear deformations are induced homogeneously ~on
macroscopic scales! throughout samples, giving rise to vis-
cous flow with strong shear thinning behavior. In particular,
in their 3D simulations, Takeuchi et al. @34,35# followed
atomic motions after application of a small shear strain to
observe heterogeneities among poorly and closely packed

regions, which are essentially the same entities we have dis-
cussed. Our simulations under shear in this paper correspond
to the homogeneous regime at relatively high temperatures in
amorphous metals.

Another interesting issue is as follows. Several experi-
ments have revealed that the translational diffusion constant
D of a tagged particle in a fragile glassy matrix becomes
increasingly larger than the Einstein-Stokes value DES

5kBT/2pha with lowering T, where h is the ~zero-shear!
viscosity and a is the diameter of the particle @2,36–38#. In
particular, the power-law behavior D}h2n with n>0.75
was observed at sufficiently low temperatures @36#. Thus
D/DES increases from of order 1 up to order 102 –103 in
supercooling experiments. Furthermore, smaller probe par-
ticles exhibit a more pronounced increase of the ratio
Dh/T}D/DES with lowering T @37#. It is generally believed
that h is proportional to the a relaxation time ta or the
rotational relaxation time 1/D rot for anisotropic molecules
(D rot being the rotational diffusion constant! @36,37,39#.
Therefore, individual particles are much more mobile at long
times t*ta than expected from the Stokes-Einstein formula.
In a MD simulation on a 3D binary mixture with N5500 in
3D @40#, the same tendency was apparently seen despite their
small system size. Very recently, in a MD simulation in a 2D
binary mixture with N51024, Perera and Harrowell have
observed clear deviation from the linear relation D}ta ,

where ta is obtained from the decay of the time correlation
function as in our case in Sec. VI @41#. We will examine this
problem in a much larger 3D system with N5N11N2

5104 generally in the presence of shear, where the viscosity
and the diffusion constant both vary tremendously in strong
shear (ġ*1/ta).

The organization of this paper is as follows. In Sec. II, our
model binary mixtures and our simulation method will be
explained. In Sec. III, bonds among particle pairs will be
introduced at distances close to the first peak position of the
pair correlation functions. Breakage of such bonds will then
be followed numerically, which exhibits heterogeneities en-
hanced at low temperatures. Their analysis will yield the
correlation length in Sec. IV. Rheology of supercooled liq-
uids will be studied in Sec. V. These effects were briefly
reported in our previous reports @13–15#. In Sec. VI, results
on the motion of tagged particles will be presented.

II. MODEL AND SIMULATION METHOD

We performed MD simulations in two dimensions ~2D!
and three dimensions ~3D! on binary mixtures composed of
two different atomic species, 1 and 2, with N15N255000
particles with the system volume V being fixed. Parameters
chosen are mostly common in 2D and 3D. They interact via
the soft-core potential @9–15,41–43#,

vab~r !5e~sab /r !12, sab5

1

2
~sa1sb!, ~2.1!

where r is the distance between two particles and a ,b
51,2. The interaction is truncated at r54.5s1 in 2D and r

53s1 in 3D. The leapfrog algorithm is used to integrate the
differential equations with a time step of 0.005t0 , where

t05~m1s1
2/e !1/2. ~2.2!

The space and time are measured in units of s1 and t0 . The
mass ratio is m2 /m152, while the size ratio is

s2 /s151.4 ~d52 !, s2 /s151.2 ~d53 !, ~2.3!

where d is the space dimensionality. This size difference
prevents crystallization and produces amorphous states in
our systems at low temperatures.

We fixed the particle density at

n50.8/s1
d , ~2.4!

where n5n11n2 is the total number density. The system
linear dimension is L5118 in 2D and L523.2 in 3D. Then
our systems are highly compressed. In fact, the volume frac-

tion of the particles may be estimated as p(s1
2n11s2

2n2)

50.93 in 2D and as 4
3 p(s1

3n11s2
3n2)50.57 in 3D, where

overlapped regions are doubly counted. In such cases, ac-
cording to the Henderson and Leonard theory @43–45#, our
binary mixtures may be fairly mapped onto one-component
fluids with the soft-core potential with an effective radius
defined by

seff
d

5 (
a ,b51,2

xaxbsab
d , ~2.5!
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where x15n1 /n and x25n2 /n512x1 are the compositions
of the two components and are 1/2 in our case. As in the
one-component case, the thermodynamic state is character-
ized by a single parameter ~effective density!,

Geff5n~e/kBT !d/12seff
d . ~2.6!

For example, Bernu et al. @43# confirmed that the equilib-
rium pressure p may be well fitted to the scaling form,
p/nkBT21>616.848(Geff)

4, at all x1 in 3D. In Tables I
and II we list Geff chosen in our simulations together with the
corresponding scaled temperatures and pressures in 2D and
3D. Our pressure data agree very well with the above scaling
form for 3D.

We introduce here the pair correlation functions gab(r)
by

^n̂a~r!n̂b~0!&5nanbgab~r !1nadabd~r!, ~2.7!

where

n̂a~r!5(
j

d~r2ra j! ~a51,2! ~2.8!

are the number densities in terms of the particle positions
ra j (a51,2,j51, . . . ,N/2). The time dependence is sup-
pressed for simplicity. In a highly compressed state the in-
terparticle distances between the a and b particles are char-
acterized by

lab5sab~e/kBT !1/12. ~2.9!

The last factor (e/kBT)1/12 represents the degree of expulsion
or penetration from or into the soft-core regions (r,sab) on
particle encounters, though it is not far from 1 in our case.
The one-fluid approximation may be justified if the pair cor-
relation functions satisfy

gab~r !5G~r/lab ,Geff!. ~2.10!

Namely, gab(r) are independent of a , b , and x1 once the
distance is scaled by lab . The pressure is then expressed as
@45#

p

nkBT
2152

n

2dkBT(
a ,b

E drxaxbvab8 ~r !rgab~r !

56VdGeffE
0

`

ds
1

s132d
G~s ,Geff!, ~2.11!

where vab8 (r)5dvab(r)/dr and Vd is the volume of a unit

sphere, so it is 4p/3 in 3D and p in 2D. We shall see that
Eq. ~2.10! holds very well around the first peak of the pair
correlation functions in our simulations. This fairly supports
the one-fluid approximation, because the soft-core potential
and the pair correlation functions decrease very abruptly for
r*lab and for r&lab , respectively, and the dominant con-
tribution arises from r;lab;sab .

In our systems the structural relaxation time becomes very
long at low temperatures. Therefore, the annealing time was
taken to be at least 105 in 2D and 104 in 3D. No appreciable
aging effect was detected in the course of taking data in
various quantities such as the pressure or the density time
correlation function except for the lowest temperature cases,
Geff51.4 in 2D and Geff51.55 in 3D. A small aging effect
remained in the density time correlation function in these
exceptional cases, however.

Our simulations were performed in the absence and pres-
ence of shear flow @46,47#. In the unsheared case (ġ50) we
performed simulations under the microcanonical ~constant
energy! condition. However, in the sheared case (ġ.0), we
kept the temperature at a constant using the Gaussian con-
straint thermostat to eliminate the viscous heating effect. No
difference was detected between the profile-based and
profile-unbased thermostats @47#, so results with the profile-
based thermostat will be presented in this paper. Our method
of applying shear is as follows: The system was at rest for
t,0 for a very long equilibration time and was then sheared
for t.0. Here we added the average velocity ġy to the ve-
locities of all the particles in the x direction at t50 and
afterwards maintained the shear flow by using the Lee-

FIG. 1. A typical particle configuration and the bonds defined at

a given time at Geff51.4 in 2D. The diameters of the circles here are

equal to sa . The areal fraction of the soft-core regions is 93%. A

1/16 of the total system is shown.

TABLE I. Simulations in 2D.

Geff 1.0 1.1 1.2 1.3 1.4

kBT/e 2.54 1.43 0.85 0.526 0.337

p/nkBT21 15.1 22.6 33.5 50.2 75.1

TABLE II. Simulations in 3D.

Geff 1.15 1.3 1.4 1.45 1.5 1.55

kBT/e 0.772 0.473 0.352 0.306 0.267 0.234

p/nkBT21 18.9 26.7 33.4 37.2 41.4 46.3
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Edwards boundary condition @46,47#. Then steady states
were realized after a transient time. In our case shear flow
serves to destroy glassy structures and produces no long-
range structure.

III. PAIR CORRELATIONS AND BOND BREAKAGE

A. Pair correlations

Because of the convenience of visualization in 2D, we
first present a snapshot of particles at Geff51.4 in 2D in Fig.
1, which gives an intuitive picture of the particle configura-
tions. We can see that each particle is touching mostly six
particles and infrequently five particles at distances close to
sab(51.09521lab). Similar jammed particle configurations
can also be found in 3D, where the coordination number of
other particles around each particle is about 12. Then it is
natural that the pair correlation functions gab(r) (a ,b
51,2) have a very sharp peak at r>sab , as displayed in
Fig. 2 for Geff51.4 in 2D and Geff51.55 in 3D. Furthermore,
the heights of these peaks are all close to 7 in 2D and 4 in
3D. This confirms the scaling form ~2.10! around the first
peak.

We introduce a density variable representing the degree of
particle packing by

r̂eff~r!5s1
dn̂1~r!1s2

dn̂2~r!, ~3.1!

in terms of which the local volume fraction of the soft-core
regions is pr̂eff(r) in 2D and by (4p/3) r̂eff(r) in 3D. We
also consider the local composition fluctuation,

dX̂~r!5

1

n
@x2n̂1~r!2x1n̂2~r!# , ~3.2!

where x15x251/2 in our case. In Fig. 3 we show the corre-
sponding, dimensionless structure factors,

Srr~q !5s1
2dE dre iq•r^d r̂eff~r!d r̂eff~0!&, ~3.3!

SrX~q !5s1
2dE dre iq•r^d r̂eff~r!dX̂~0!&, ~3.4!

SXX~q !5s1
2dE dre iq•r^dX̂~r!dX̂~0!&, ~3.5!

where d r̂eff5 r̂eff2^r̂eff&. They are linear combinations of
the usual structure factors,

Sab~q !5nanbE dre iq•r@gab~r !21# , ~3.6!

from the definitions ~3.1! and ~3.2!. The temperatures in Fig.
3 are common to those in Fig. 2. Note that the dimensionless

FIG. 2. The pair correlation functions gab(r) in quiescent states

as functions of r/sab at Geff51.4 in 2D ~a! and at Geff51.55 in 3D

~b!.

FIG. 3. The structure factors S(q) defined in Eqs. ~3.3!–~3.5! in

quiescent states at Geff51.4 in 2D ~a! and at Geff51.55 in 3D ~b!.

The dimensionless wave number q is measured in units of s1
21 .

The solid, dashed, and dotted lines correspond to reff-reff , X-X , and

reff-X correlations, respectively.
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wave number q is measured in units of s1
21 . The Srr(q) has

a pronounced peak at q;6 and becomes very small
(;0.01) at smaller q both in 2D and 3D. In this sense our
systems are highly incompressible at long wavelengths. On
the other hand, SXX(q) has no peak and is roughly a constant
over a very wide q region, suggesting no enhancement of the
composition fluctuations and no tendency of phase separa-
tion at least in our simulation times.

From Fig. 3 we may estimate the magnitude of the iso-
thermal compressibility KTX5(]n/]p)TX /n . In equilibrium
it is expressed in terms of the fluctuation variances as

kBTKTX5n24 lim
q→0

@S11~q !S22~q !2S12~q !2#/SXX~q !

5

s1
d

~s1
dn11s2

dn2!2
lim
q→0

@Srr~q !2SrX~q !2/SXX~q !# .

~3.7!

The first line was the expression in Ref. @48#, and the second
line follows if use is made of Eqs. ~3.1! and ~3.2!. The di-
mensionless combination nkBTKTX is equal to 0.0028 in 2D
and 0.0067 in 3D. If we assume that the adiabatic compress-
ibility KsX5(]n/]p)sX /n is of the same order as KTX , the
sound speed c turns out to be of order 10 in units of s1 /t0 .

Our structure factors were obtained by time averaging
over very long times, which are 105 for 2D and 104 for 3D.
However, irregular shapes of SXX(q) persisted at long wave-
lengths q&1. Such large-scale composition fluctuations have
very long lifetimes (@ta) and are virtually frozen through-
out the simulation. Therefore, we admit the possibility that
our supercooled states at low temperatures might phase-
separate to form crystalline regions on much longer time
scales. On the contrary, the long-wavelength fluctuations of
r̂eff have much shorter time scales; probably they vary on
acoustic time scales ;1/cq .

As is well known, the temperature dependence of the
static pair correlation functions is much milder than that of
the dynamical quantities. Similarly, their shear dependence is
also mild even for ġta@1 as long as ġ!1. In particular,
their spatially anisotropic part is at most a few percent of
their isotropic part around the first peak positions r>sab in
our case. This is consistent with the fact that the attained
shear stress in our simulations is at most a few percent of the
particularly high pressure p of our systems. Note that the
average shear stress sxy in sheared steady states may be
related to the steady-state pair correlation functions gab(r)
as @45#

sxy52

1

2(a ,b
nanbE drvab8 ~r !

rxry

r
gab~r!, ~3.8!

where rx and ry are the x and y components of the vector r

connecting particle pairs. The dominant contribution here
arises from the anisotropy at r>sab .

B. Bond breakage

Because of the sharpness of the first peak of gab(r) in our
systems, we can unambiguously define bonds between par-
ticle pairs at distances close to sab in the absence and pres-

ence of shear. Such bonds will be broken on the structural
(a) relaxation time, because the bond breakage takes place
on local configurational rearrangements. We define the
bonds as follows. For each atomic configuration given at
time t0 , a pair of particles i and j is considered to be bonded
if

r i j~ t0!5uri~ t0!2rj~ t0!u<A1sab , ~3.9!

where i and j belong to the species a and b , respectively.
We have set A151.1 for 2D and 1.5 for 3D. The resultant
bond numbers between a and b pairs, Nbab , are related to
the first peak structure of gab(r) as follows. We consider the
coordination number nab of b particles around an a particle
within the distance A1sab @43#,

nab5nbE
r,A1sab

drgab~r !;Cnbsab
d , ~3.10!

where C is about 5 in 2D and 12 in 3D. Then we simply have

Nbaa5

1

2
Nanaa ~a51,2!, Nb125

1

2
N1n121

1

2
N2n21 .

~3.11!

In 2D at Geff51.4, we find n1152.19, n125n2152.54, and
n2253.41, which are consistent with the bond numbers,
Nb1155514, Nb11513 135, and Nb2258436, counted in a
simulation. In 3D at Geff51.55, these numbers are n11

55.57, n125n2156.90, and n2258.30, which are again con-
sistent with Nb11513 925, Nb11534 476, and Nb22520 744
in a simulation. We stress that our bond definition is insen-
sitive to A1, owing to the sharpness of the first peak, as long
as it is somewhat larger than 1 and smaller than the second
peak distances divided by sab .

After a lapse of time Dt , a pair is regarded to have been
broken if

r i j~ t01Dt !.A2sab ~3.12!

with A251.6 for 2D and 1.5 for 3D. This definition of bond
breakage is also insensitive to A2 as long as A2>A1 and
A2sab is shorter than the second peak position of gab(r).
We have followed the relaxation of the total surviving ~un-
broken! bonds Nbond(Dt) from the initial number

Nbond~0 !5Nb111Nb121Nb22 ~3.13!

to zero with increasing Dt . No significant difference has
been found between the bond breakage processes of the three
kinds of bonds, 1-1, 1-2, and 2-2, so we consider their sum
only. We define the bond breakage time tb by

Nbond~tb!5Nbond~0 !/e . ~3.14!

The relaxation is not simply exponential at low temperatures,
apparently because of large-scale heterogeneities composed
of relatively weakly and strongly bonded regions. If we fit
Nbond(Dt) to the stretched exponential form, Nbond(Dt)

;exp@2(Dt/tb)
a8#, the exponent a8 is close to 1 at relatively

high temperatures but is considerably smaller than 1 at the
lowest temperatures ~for example, a8;0.6 at Geff51.55 in
3D!.
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In Fig. 4 we show the bond breakage time tb5tb(T) in
the absence of shear as a function of the temperature. It
grows strongly with decreasing the temperature. As will be
shown in Eq. ~6.8! in Sec. III, the bond breakage time tb is
proportional to the a relaxation time ta obtained from the
decay of the self-part of the time correlation function Fs(q ,t)
at q52p . The shear dependence of the bond breakage time
tb5tb(ġ) is also of great interest. As shown in Fig. 5, the
bond breakage rate 1/tb(ġ) consists of the thermal breakage
rate 1/tb(0) strongly dependent on T and a shear-induced
breakage rate proportional to ġ . It is expressed in the sim-
plest conceivable form,

1/tb~ ġ !>1/tb~0 !1Abġ , ~3.15!

where Ab50.57 in 2D and 0.80 in 3D. In the strong shear
condition ġtb(0).1, jump motions are induced by shear on
the time scale of 1/ġ . We shall see that the bond breakage
occurs more homogeneously with increasing shear. There-
fore, it is natural that, when the strain g5ġDt reaches 1, a
large fraction of bonds have been broken by shear.

IV. HETEROGENEITY IN BOND BREAKAGE

Following the bond breakage process, we can visualize
the kinetic heterogeneity without ambiguity and quantita-
tively characterize the heterogeneous patterns. In Fig. 6 we
show spatial distributions of broken bonds in a time interval
of @ t0 ,t010.05tb# in 2D, where about 5% of the initial
bonds defined at t5t0 have been broken. The dots are the
center positions Ri j5

1
2 @ri(t0)1rj(t0)# of the broken pairs at

the initial time t0 . The broken bonds are seen to form clus-

ters with various sizes. The heterogeneity is marked in the
glassy case ~b! with Geff51.4 and ġ50, whereas it is much
weaker for the liquid case ~a! with Geff51 and ġ50. The
bond breakage time tb is 17 in ~a! and 53104 in ~b!. In ~c!
we set ġ50.2531022 and Geff51.4 with tb532;1/ġ . The
heterogeneity is known to become much suppressed by
shear, while its spatial anisotropy remains small. Notice that
even in normal liquids, bond breakage events frequently oc-
cur in the form of strings involving a few to several particles,

obviously because of the high density of our system. In
glassy states, such strings become longer and aggregate,
forming large-scale clusters. In 3D we also observe stringlike
jump motions in accord with Ref. @17# and aggregation of
such strings at low temperatures.

In Fig. 7 we write the broken bonds in two consecutive
time intervals, @ t0 ,t010.05tb# and @ t010.05tb ,t010.1tb#
at Geff51.4 and ġ50. The clusters of broken bonds in the
two time intervals mostly overlap or are adjacent to one an-
other. This demonstrates that weakly bonded regions or col-

lectively rearranging regions ~CRR! follow complex space-
time evolution on the scales of j and tb . We do not know its
evolution laws but will encounter a dynamical scaling law
between j and tb in Eq. ~4.4! below.

We define the structure factor Sb(q) of the broken bonds
as

Sb~q !5

1

Nb
K U(

^i , j&
exp~ iq•Ri j!U2L , ~4.1!

where the summation is over the broken pairs, Nb is the total
number of the broken bonds in a time interval @ t0 ,t01Dt# ,
and the angular average over the direction of the wave vector
has been taken. Furthermore, we have averaged over 5–50
Sb(q) data calculated from sequential configurations of bro-
ken bonds. Figure 8 displays the resultant Sb(q) after these
averaging procedures on logarithmic scales at several Geff

FIG. 4. Temperature dependence of the bond breakage time

tb(0) at zero shear (d) in 2D and (L) in 3D. The e is the poten-

tial parameter in the soft-core potentials ~2.1!. The time is measured

in units of t0 in Eq. ~2.2!, so tb(0) is dimensionless.

FIG. 5. The normalized bond breakage time tb(ġ)/tb(0) versus

ġtb(0) for various Geff in 2D ~a! and 3D ~b!. All the data collapse

on the curve 1/(11Abx) with x5ġtb(0).
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without shear. The enhancement of Sb(q) at small q arises

from large-scale kinetic heterogeneities growing with in-
creasing Geff both in 2D and 3D. From a plot of 1/Sb(q)
versus q2 in our previous reports @13#, we already found that
Sb(q) can be nicely fitted to the Ornstein-Zernike ~OZ! form:

Sb~q !5Sb~0 !/~11j2q2!. ~4.2!

The correlation length j is determined from this expression.
It grows up to the system length at the lowest temperatures
and is insensitive to the width of the time interval Dt as long
as it is considerably shorter than the bond breakage time tb

@13#. The agreement of our Sb(q) with the OZ form becomes
more evident in the plots of Sb(q)/Sb(0) versus qj in Fig. 9,
in which all the data collapse onto a single OZ master curve
both in 2D and 3D. In particular, in 3D the deviations are
very small, although j;L for low T and small ġ in our case.

We also notice that Sb(q) is insensitive to the temperature
at large q, so from the OZ form ~4.2! we find

Sb~0 !;j2. ~4.3!

The clusters of the broken bonds are thus very analogous to
the critical fluctuations in Ising spin systems. In fact, small-
scale heterogeneities with sizes l in the region 1!l!j are
insensitive to the temperature. The relation ~4.3! is analogous
to the relation x}j22h in Ising spin systems between the
magnetic susceptibility x5limq→0S(q) and the correlation
length j near the critical point. Here S(q) is the spin struc-
ture factor and h is the Fisher critical exponent (!1 in 3D!.

Obviously, j represents the order of the maximum length
of the clusters. However, Adam and Gibbs @5# intuitively
expected that the minimum size of CRR increases as
exp„const/(T2T0)… on lowering T towards T0 . It has also

FIG. 6. Snapshots of the broken bonds in 2D without and with

shear. The system length is 118s1 . Here Geff51 with weak hetero-

geneity ~a!, and Geff51.4 with enhanced heterogeneity ~b!. For ġ
52.531022 ~c!, the heterogeneity is much suppressed. The flow is

in the upward direction and the velocity gradient is in the horizontal

direction from left to right. The arrows indicate the correlation

length j obtained from Eq. ~4.2!.

FIG. 7. Broken bond distributions in two consecutive time in-

tervals, @ t0 ,t010.05tb# (h) and @ t010.05tb ,t010.1tb# (d), at

Geff51.4 in 2D. The arrow indicates j .
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been discussed as to whether or not there is an underlying
thermodynamic phase transition at a nonzero temperature T0

in highly supercooled liquids @19–21#. From our data we
cannot detect any divergence of j at a nonzero temperature,
although this is not conclusive due to the finite-size effect
arising from j;L .

Furthermore, as in critical dynamics, we have confirmed a
dynamical scaling relation between the bond breakage time
tb and the correlation length j ,

tb>Ajz, ~4.4!

where z54 in 2D @41# and z52 in 3D. The coefficient A is
independent of Geff and ġ chosen in our simulations, as
shown in Figs. 10~a! and 10~b!. Notice that the data points at
the largest j in Fig. 10 are those at zero shear for each Geff .
At present we cannot explain the origin of these simple num-
bers for z. We may only argue that z should be larger in 2D
than in 3D because of stronger configurational restrictions in
2D. It is surprising that Eq. ~4.4! holds even in strong shear
ġtb(0)@1, where the correlation length is independent of T

and is determined by shear as

j;ġ21/z. ~4.5!

In Fig. 10~b! for 3D, however, we notice j.L at Geff

51.50 and 1.55 for weak shear. At present we cannot assess
the influence of this finite-size effect.

In a zeroth-order approximation, therefore, the kinetic
heterogeneities are characterized by a single parameter, j or
tb , owing to the small space anisotropy induced by shear in
our systems. The shear rate ġ is apparently playing a role
similar to a magnetic field h in Ising spin systems. Thus, ġ
and T are two relevant external parameters in supercooled
liquids, while h and the reduced temperature (T2Tc)/Tc are
two relevant scaling fields in Ising systems.

V. SUPERCOOLED LIQUID RHEOLOGY

We next examine nonlinear rheology in our fluid mixtures
in supercooled amorphous states. We first display in Fig. 11

the shear-dependent viscosity h(ġ) ~in units of et0 /s1
d) ver-

sus ġ in steady states at various Geff in 2D and 3D. This
rheological behavior is similar to those in the experiments
@24–26#. The viscosity is much enhanced at large Geff ~low
T! and at low shear, but it tends to be independent of T at
very high shear. Remarkably, glassy states exhibit large non-
Newtonian behavior even when ġ is much smaller than the
microscopic frequency 1/t051, whereas such large effects
are expected to appear only for ġ;1/t0 in normal liquids far
from the critical point @47,49#.

In Fig. 12 we demonstrate that the viscosity h(ġ)

FIG. 8. Sb(q) versus q on logarithmic scales for various Geff at

ġ50 in 2D ~a! and 3D ~b!. Its long-wavelength limit is of order j2

as Eq. ~4.3!.

FIG. 9. Sb(q)/Sb(0) on logarithmic scales for various Geff and ġ
in 2D ~a! and 3D ~b!. The solid line is the Ornstein-Zernike form

1/(11x2) with x5qj .
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5sab /ġ is determined solely by the bond breakage time
tb(ġ) in Eq. ~3.15! as

h~ ġ !>Ahtb~ ġ !1hB , ~5.1!

where Ah and hB are 0.34 and 6.25 in 2D, and 0.24 and 2.2
in 3D, respectively. Because the linearity h}tb is systemati-
cally violated at small tb , the presence of the background
viscosity hB independent of Geff and ġ may be concluded.
Note that the effective exponent (ġ/h)(dh/dġ) remains
about 20.8 in Fig. 11. As well as the kinetic heterogeneities,
steady state rheology is determined only by a single param-
eter, tb or j . This suggests that a sheared steady state can be
fairly mapped onto a quiescent state with a higher tempera-
ture but with the same j .

Substitution of Eq. ~3.15! then yields

h~ ġ !>Ah /@tb~0 !21
1Abġ#1hB . ~5.2!

This form coincides with the empirical law ~1.1! by Simons
et al. @24,25#. Figure 13 shows that the ratio @h(ġ)
2hB#/@h(0)2hB# can be fitted to the universal curve 1/(1
1Abx) with x5ġtb(0) independently of Geff both in 2D and
3D. In strong shear ġtb(0)@1, we have the temperature-

independent behavior h(ġ)>(Ah /Ab)/ġ1hB , which is evi-
dently seen in Fig. 11. If the background viscosity is negli-
gible, a constant limiting stress follows as

sxy>s lim5Ah /Ab , ~5.3!

which holds for

1/tb~0 !!ġ!smin /hB;0.1/t0 . ~5.4!

Here, s lim is 0.59 in 2D and 0.30 in 3D in units of e/s1
d and

is typically a few percent of the pressure in our systems. The
upper bound in Eq. ~5.4! is very large in the usual glass-
forming liquids but should be attainable in colloidal systems,
while the lower bound can be very small with lowering T.

We will argue to derive the above behavior intuitively.
Supercooled liquids behave as solids against infinitesimal
strain on time scales shorter than tb(0) even if the tempera-
ture is considerably above the so-called glass transition tem-
perature. Fluidlike behavior is realized only after the bond
breakage processes. It is natural that the viscosity is of order
tb(0) in the linear regime. This is usually justified from the
time correlation function expression for the viscosity in
terms of the xy component of the stress tensor @45#. In strong
shear, on the other hand, the bond breakage occurs on the
time scale of 1/ġ . Upon each bond breakage induced by
shear, the particles involved release a potential energy er

FIG. 10. Universal relation between the correlation length j(ġ)

in units of s1 and the bond breakage time tb(ġ) in units of t0 in

Eq. ~2.2!. In 2D ~a!, the line of the slope 4 is a viewing guide and L

is the system length. The corresponding 3D plot is shown in ~b!

with the slope being 2.

FIG. 11. The viscosity h(ġ) in units of et0 /s1
d versus the shear

rate ġ in units of 1/t0 at various Geff in 2D ~a! and 3D ~b!. The data

tend to become independent of Geff at high shear.
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whose maximum is e . There should be a distribution of er ,
but let us assume er;e for simplicity. It is then instanta-
neously changed into energies of random motions ~and prob-
ably sounds! supported by the surrounding particles. The
heat transport is rapid in this dissipative process. Because of
this and also because of the background thermal motions
superposed, we have not detected clear temperature inhomo-
geneities such as hot spots around broken bonds in our simu-
lations. The heat production rate is estimated as

Q;ne/tb~ ġ !;neġ , ~5.5!

where n is the number density. Because Q is related to the
viscosity by Q5sxyġ5h(ġ)ġ2, we obtain

sxy5h~ ġ !ġ;ne ~5.6!

in high shear, so s lim;ne . Due to disordered particle con-
figurations, however, it is natural to consider a distribution of
the released energy er , which will explain the viscosity be-
havior at lower shear. Such a distribution was calculated for
a model foam system in shear flow by Durian @28#.

VI. MOTION OF TAGGED PARTICLES

In this section we will follow the motion of tagged par-
ticles in a glassy matrix both in the absence and presence of
shear in 3D. We will present results only in three dimen-

sions. We first plot in Fig. 14 the self-part of the density time
correlation function for various Geff in the usual zero shear
condition,

Fs~q ,t !5

1

N1
K (

j51

N1

exp@ iq•Drj~ t !#L , ~6.1!

where q52p , Drj(t)5rj(t)2rj(0), and the summation is
taken over all the particles of the species 1. This function is

FIG. 12. h(ġ) versus tb(ġ) for various Geff in 2D ~a! and 3D

~b!. The h(ġ) is determined by tb(ġ) only irrespective of Geff .

FIG. 13. @h(ġ)2hB#/@h(0)2hB# vs ġtb(0) in 2D ~a! and 3D

~b!. The solid curve is 1/(11Abx) with x5ġtb(0).

FIG. 14. The self-part of the intermediate scattering function

Fs(q ,t) at q52p and ġ50 in 3D. Geff increases from left.
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proportional to the ~incoherent! scattering amplitude from
labeled particles. As is well known, this function has a pla-
teau at low temperatures (Geff*1.45 in our case!, during
which the particle is trapped in a cage. After a long time the
cage eventually breaks, resulting in diffusion with a very
small diffusion constant D. In this paper we define the a
relaxation time ta such that Fs(q ,ta)5e21 at q52p .

We generalize the time correlation function ~6.1! in the
presence of shear flow by introducing a new displacement
vector of the jth particle as

Drj~ t !5rj~ t !2ġE
0

t

dt8y j~ t8!ex2rj~0 !, ~6.2!

where ex is the unit vector in the x ~flow! direction. In this
displacement, the contribution from convective transport by
the average flow has been subtracted, which can be known
from the time derivative,

]

]t
Drj~ t !5vj~ t !2ġy j~ t !ex . ~6.3!

To get a clear understanding of the meaning of this subtrac-
tion, let us consider a Brownian particle placed in shear flow
as a simple example. On time scales longer than the relax-
ation time of its velocity, its position r(t) obeys

]

]t
r~ t !5ġy~ t !ex1f~ t !, ~6.4!

where f(t) is the Gaussian random force characterized by

^ f m(t) f n(t8)&52Ddmnd(t2t8) (m ,n5x ,y ,z). Then the
modified displacement vector reads

Dr~ t ![r~ t !2ġE
0

t

dt8y~ t8!ex2r~0 !5E
0

t

dt8f~ t8!. ~6.5!

Here the convective effect does not appear explicitly and the
diffusion behavior follows as

^Dr~ t !2&56Dt . ~6.6!

On the other hand, in the incoherent scattering amplitude,
Drj(t) in Eq. ~6.1! should be taken as the net displacement
rj(t)2rj(0) even in shear flow. If qxÞ0, it strongly depends
on the thickness of the scattering region in the y ~velocity
gradient! direction due to a position-dependent Doppler ef-
fect @23,50#. Only for qx50, it is proportional to Fs(q ,t) in
the above definition.

Figure 15 shows Fs(q ,t) at q52p for various ġ with a
fixed temperature, Geff51.5 or kBT/e50.267 in 3D. Com-
parison of this figure with Fig. 14 suggests that applying
shear is equivalent to raising the temperature. Recall that we
have made the same statement in analyzing the bond struc-
ture factor Sb(q) and the nonlinear rheology. Also, we may
define the shear-dependent a relaxation time ta5ta(ġ) by

Fs~q ,ta!5e21. ~6.7!

In Fig. 16 we recognize that ta is proportional to the bond
lifetime tb as

ta>0.1tb . ~6.8!

This relation holds for any Geff and ġ in our 3D simulations.
The decay of Fs(q ,t) is not exponential for large ta . If it is
fitted to the stretched exponential form exp@2(t/ta)a# around
t;ta , the exponent a is increased from values about 0.8 to
1 with increasing ġ as well as with raising T. Furthermore,
the time correlation function ~6.1! has turned out to be al-
most independent of the direction of the wave vector q.

Next, it is convenient to analyze the mean square dis-
placement of tagged particles of the species 1,

^@Dr~ t !#2&5

1

N1
(
j51

N1

^@Drj~ t !#2&. ~6.9!

Figure 17 shows the transition from the ballistic behavior

^@Dr(t)#2&>3(kBT/m1)t2 to the diffusion behavior

^@Dr(t)#2&>6Dt in shear flow at Geff51.5. The arrows in
the figure indicate the a relaxation time ta(ġ). The diffu-
sion behavior is almost attained at t;ta . Figure 18 demon-
strates the surprising isotropy of the statistical distribution of
Dri(t), where the mean square displacements of the x, y, and
z components of the vector Drj(t) are separately displayed.
We can thus determine D from the mean square displace-

FIG. 15. The time correlation function Fs(q ,t) at q52p de-

fined by Eqs. ~6.1! and ~6.2! in shear flow, where ġ50, 1024,

1023, 1022, and 1021 from the right. The temperature is fixed at

kBT/e50.267 (Geff51.5). Increasing ġ is equivalent to raising T.

FIG. 16. The linear relationship between ta and tb for various

Geff and ġ in 3D. The tb is determined from the bond breakage

~3.14!, and ta from the decay of the time correlation function ~6.7!.
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ment in addition to ta in shear flow. Note that the x compo-

nent in Fig. 18 is not the usual mean square displacement
due to the second term in Eq. ~6.2!. In the Appendix we will
consider the variances of the net displacement vector rj(t)
2rj(0).

Figure 19 shows the shear rate dependences of the viscos-
ity h (;ta) and the inverse diffusion constant D21 from
the linear (ġ&1025) to the non-Newtonian regime at Geff

51.55 in 3D, where D is measured in units of s1
2/t0 and h

in units of et0 /s1
d . We deduce the relation D21;ġ2n with

n50.75–0.80 in agreement of the experiment @36#, which is
appreciably milder than the viscosity decrease h;ta

;ġ21. In Fig. 20, we plot D versus h/kBT ~in units of

t0 /s1
d) obtained for various Geff and ġ . The Einstein-Stokes

formula, which holds excellently in normal liquids, appears
to be violated in supercooled liquids as the other simulations
have suggested @40,41#. It is widely believed that this break-
down is a natural consequence of the dynamic heterogeneity
in glassy states @36–38#. Detailed numerical analysis will
appear in a forthcoming paper.

In our case h/kBT changes over 4 decades until j reaches
the system dimension L, whereas it has been changed over
12 decades in the experiments @36,37#. Though the same
tendency indicating the breakdown of the Einstein-Stokes
relation has been obtained in our simulation, we should ad-
mit that our system size in 3D is not yet sufficiently large
and our data at Geff51.5 and 1.55 might be somewhat af-
fected by the system size effect. It is worth noting that the
Monte Carlo simulation of a dense polymer by Ray and
Binder @18# shows that the monomer diffusion constant de-
creases with increasing system size.

VII. SUMMARY AND DISCUSSIONS

Most of our findings in this work have been obtained from
numerical analysis only without first-principles derivations.
Nevertheless, we believe that they pose new problems and
suggest new experiments. We make some discussions men-
tioning possible experiments below.

FIG. 17. The mean square displacement in sheared states at

Geff51.5. The shear rate ġ is 0, 1024, 1023, 1022, and 1021 from

the right. Increasing ġ is equivalent to raising T. The arrows indi-

cate ta for each ġ . The diffusion ~linear! behavior is attained at t

;ta .

FIG. 18. The mean square displacements of the x, y, and z com-

ponents. They are very close to one another even in strong shear

ġtb(0)@1. This demonstrates surprising isotropy of the distribu-

tion of the displacement vector ~6.2!.

FIG. 19. Shear rate dependences of the inverse diffusion con-

stant D and the viscosity h at the lowest temperature, Geff51.55.

The slope of D21 is noticeably smaller than that of h .

FIG. 20. The diffusion constant D versus the viscosity h divided

by kBT for various Geff and ġ . Here D is measured in units of

s1
2t0

21 and h/kBT in units of s1
2dt0. The solid line represents the

Einstein-Stokes formula D5kBT/2phs1 , which agrees well with

the numerical data for h/kBT&10.
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~i! Introducing the concept of bond breakage, we have

succeeded to quantitatively analyze the kinetic heterogene-

ities in simple model systems, which have been witnessed by

a number of the authors. As shown in Fig. 6, strings com-

posed of broken bonds are very frequent and they aggregate

at low temperatures to form clusters. The bond breakage

time tb is related to the correlation length j as Eq. ~4.4!. In

future work we should clarify the relationship of our patterns
in the a relaxation and those by Muranaka and Hiwatari @9#
on a much shorter time scale.

~ii! The weakly bonded regions identified by the bond
breakage are purely dynamical objects. Large-scale heteroge-
neities have not been clearly detected in snapshots of the
usual physical quantities such as the densities, the stress ten-
sor, the kinetic energy ~5temperature!, etc. On the other
hand, in granular matters in shear flow @30#, stress heteroge-
neities have been observed optically by using birefringent
materials. We admit the possibility that such stress heteroge-
neities also exist in supercooled liquids but are masked by
the thermal fluctuations. We will check this point in the fu-
ture.

~iii! It is of great interest how the kinetic heterogeneities,
which satisfy the dynamic scaling ~4.4!, evolve in space and
time and why they look so similar to the critical fluctuations
in Ising systems in the mean field level. In our steady-state
problem T and ġ are two relevant scaling fields, the critical

point being located at T5ġ50. No divergence has been de-
tected at a nonzero temperature in our simulations.

~iv! In his experiments, Fischer @51# has reported large
excess light scattering with a correlation length
j (20–200 nm) that increases on approaching the glass
transition from a liquid state. This indicates the presence of
very large-scale density heterogeneities in supercooled liq-
uids, which is often called Fischer’s clusters. Motivated by
this effect, Weber et al. @52# performed Monte Carlo simu-
lations on a dense polymer and found that short-range nem-
atic orientational order can give rise to enhancement of long-
range density fluctuations. They expected that such
anisotropic interactions could be the origin of Fischer’s clus-
ters. This suggests that Fischer’s clusters do not exist in liq-
uids composed of structureless particles.

~v! We have examined nonlinear rheology in glassy
states. The rheological relations obtained are simplest among
those consistent with the experiments @24–26#. The mecha-
nism of the non-Newtonian behavior in supercooled liquids
is conceptually new and should be further examined in ex-
periments such as in colloidal systems in glassy states. In
particular, polymers should exhibit pronounced non-
Newtonian behavior, as the glass transition is approached,
even without entanglement. Rheology of chain systems re-
mains totally unexplored near the glass transition.

~vi! In our systems, small anisotropic changes of the pair
correlation functions gab(r) near the first peak (;sab) can
give rise to the limiting shear stress s lim , which is 3–5 % of
the pressure in our case. Note that our systems are highly
compressed with high pressure. However, the pressure need
not be very high in supercooled liquids in the presence of an
attractive part of the potential. Even in such cases, we expect
that s lim is a few percent of the shear modulus. This is sug-
gested by the previous work on amorphous alloys @31–35#,
where the yield stress sy in the inhomogeneous case ~in

which shear bands appear! is known to be 2–3 % of the
shear modulus.

~vii! Stillinger expected that in fragile glass-forming liq-
uids shear flow occurs by tear and repair of slipping walls
separating strongly bonded regions @7#. We have not ob-
served such localization of slips or jump at least in our tem-
perature range. But there might be a tendency that broken
bonds form surfaces at low temperatures in 3D, though not
conspicuous, which should be checked in the future.

~viii! There is no tendency of phase separation for the
parameters used. However, there are many cases in which
the composition fluctuations are enhanced towards the glass
transition temperature. It is of great interest how the two
transitions influence each other @53,54#. It is also known that
shear flow can induce composition fluctuation enhancement
in asymmetric viscoelastic mixtures, when emergence of less
viscous regions can reduce the effective viscosity @23#. We
expect that this effect can come into play also in supercooled
liquids, for example, for large enough size ratios or in the
presence of small attraction between the two components.
Experiments to detect this effect seem to be promising in
colloidal systems.

~ix! We have introduced the time correlation function
Fs(q ,t) in shear and found its simple relaxation behavior in
Fig. 15. It coincides with the usual time correlation function
for qx50 or when the scattering vector is perpendicular to
the flow direction. Dynamic scattering experiments in shear
flow would be very informative to detect the shear-induced
diffusion @23#. A direct diffusion measurement in sheared
supercooled fluids, which will be analyzed in the Appendix,
is also very interesting. Though our system size is still too
small, we have detected a tendency of the breakdown of the
Einstein-Stokes relation in 3D to obtain D;h2n with n
50.75–0.8.

~x! In strong shear the structural relaxation is character-
ized by ta;0.1tb;0.1/ġ as Eq. ~6.8!. This nonlinear effect
could be measured as a drastic reduction of the rotational
relaxation time by dielectric response or by more sophisti-
cated techniques @36,37# from sheared supercooled liquids.
The same effect is expected for periodic shear flow.

~xi! Understanding transient mechanical response in terms
of the kinetic heterogeneities is of great importance. For ex-
ample, we have found a stress overshoot after application of
shear strain in accord with the experiments @24,25#. We
should also understand glassy behavior of the complex shear
modulus against small periodic shear @55#. We will report on
these topics shortly.

~xii! In our systems, we have not yet found essential dif-
ferences between 2D and 3D except for the difference in the
value of the dynamic exponent z in Eq. ~4.4!. We believe that
a large part of the essential ingredients of glassy dynamics
can be understood even in two dimensions.

~xiii! In a forthcoming paper, we will focus our attention
on jump motions of particles over distances longer than s1 .
They will be shown to occur heterogeneously in space and
determine the diffusion constant. These heterogeneity struc-
tures are essentially the same as those in the bond breakage
processes studied in this paper.
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APPENDIX

Let us calculate the variances among the x, y, and z com-
ponents, x j(t)2x j(0), y j(t)2y j(0), and z j(t)2z j(0), of
the net displacement vector rj(t)2rj(0) of the jth particle in
shear flow. We fix its initial position rj(0) at r0

5(x0 ,y0 ,z0). The average displacement arises from the con-
vection as

^rj~ t !2rj~0 !&5ġty0ex . ~A1!

Assuming the isotropy of the subtracted displacement ~6.2!,
which is suggested by Fig. 18, we may write the variances of
the y and z components as

G~ t !5^@y j~ t !2y j~0 !#2&5^@z j~ t !2z j~0 !#2&. ~A2!

The variance of the x component then becomes

^@x j~ t !2x j~0 !2ġty0#2&5G~ t !12ġ2E
0

t

dt1~ t2t1!G~ t1!.

~A3!

The cross correlation exists between the x and y components
as

^@x j~ t !2x j~0 !#@y j~ t !2y j~0 !#&5ġE
0

t

dt1G~ t1!. ~A4!

In the diffusion time regime t*ta we may set G(t)52Dt to
obtain

^@x j~ t !2x j~0 !2ġty0#2&>2Dt~11
1
3 ġ2t2!, ~A5!

^@x j~ t !2x j~0 !#@y j~ t !2y j~0 !#&>Dġt2. ~A6!

Note that D is strongly dependent on ġ in strong shear as
shown in Fig. 19. Measurements of the above variances are
very informative.
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