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DYNAMICS OF HOMEOMORPHISMS ON MINIMAL SETS
GENERATED BY TRIANGULAR MAPPINGS

GIAN LUIGI FORTI, LUIGI PAGANONI AND JAROSLAV SMITAL

The main goal of the paper is the construction of a triangular mapping F of the
square with zero topological entropy, possessing a minimal set M such that F\M is
a strongly chaotic homeomorphism, as well as other properties that are impossible
for continuous maps on an interval.

To do this we define a parametric class of triangular maps on Q x I, where
Q is an infinite minimal set on the interval, which are extendable to continuous
triangular maps F : I2 —»• I2. This class can be used to create other examples.

1. INTRODUCTION

Let / = [0,1] be the closed unit interval. Let C denote the class of continuous maps
/ : / — > / , and A the class of triangular maps F : I2 —• I2, that is, the continuous
functions defined by

F(x,y) = (/(*), g(x,y)) = (/(*), gx(y)).

The map / € C is the base for F, and gx : I -> / is a family of continuous maps
depending continuously on x. Note that F transforms the layer Ix := {x} x / into the
layer J / ( l ) .

Triangular maps have much simpler dynamics than continuous maps of the square
in general [7]. This is because the projection TTI : (x, y) >-¥ x semiconjugates any F e A
to its base / via / o n x — n\oF. This implies, for example, that Sharkovsky's theorem
on the coexistence of periodic orbits remains valid in A [6]. Moreover, the projection
TTI maps the class Per (F) of periodic points of F onto Per (/), or the class UR(F) of
uniformly recurrent points of F onto UR(f). However there are exceptions: homoclinic
orbits [7] or isochronically recurrent points [4] of JF are not mapped by TTI onto the
corresponding classes of / .
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2 G.L. Forti, L. Paganoni and J. Smital [2]

A big difference between the dynamics of maps in C and in A already appears in
the simplest cases in which every periodic point of F is a fixed point and the base is
linear, see [5, 8] (see also [7, Theorem 3]).

However, the class of maps in A of type 2°° (with respect to the Sharkovsky's or-
dering) is more interesting. There are, for example, maps in A of type 2°° with positive
topological entropy [7] but with recurrent points which are not uniformly recurrent [5].
Such maps are impossible in C. In both of the preceeding examples, the map F has a
base / of type 2°° with an infinite minimal set Q such that F has "bad" behaviour
on the set TTJ"1(Q) = Q x I. (Recall that a set M is a minimal set for a map if it is
non-empty, closed and invariant and if no proper subset of M has the same properties.)

In the present paper we show that maps of type 2°° in A, even homeomorphisms on
minimal sets, may have very complicated dynamics. Note that if M is a minimal set for
F in A , then IT\{M) is a minimal set for / (this is true for any general semi-conjugacy,
see [11]), hence TTI(M) is either a periodic orbit or a solenoid, that is, a Cantor-type
set [1]. The first case, however, implies that M is essentially one-dimensional, so non
trivial behaviour is possible only of TTI(M) is infinite. We shall consider only this case.

In Section 2, starting from a Cantor-type set Q and a map / : Q -»• Q of type
2°°, we define a family T of functions F of type 2°°, non-decreasing on any layer
and such that F(Q x I) c Q x I. It is always possible to extend each F e T to a
function F € A preserving its type 2°° and the monotonicity on each layer. All these
functions have zero topological entropy. Then we define a parametric family 7o C 7".
This construction is based on an idea from [5] and can be further modified to get more
general maps.

In Section 3, we construct a subclass 7oi of To and prove that the maps in this class
have a minimal set containing an interval. (The existence of such maps was already
proved in [5].)

In Section 4 we show that there are maps in Toi which are distributionally chaotic,
and hence, chaotic in the sense of Li and Yorke on a minimal set. Recall that no map
in C having zero topological entropy can be chaotic on a minimal set [3].

In Section 5 we prove some results concerning functions in Toi and in other classes
7o2 C 7o and 7i C T • These results show properties which are impossible in C.

2. A PARAMETRIC CLASS OF TRIANGULAR MAPS

Let {0,1}N be the space of all sequences of two symbols equipped with the following
metric p: p(a,0) := max{l/i : a(i) ^ /3(i)} for any distinct a = {<*(*)}<>! and /? =
{£?(*) }t>i in {0,1}N. Since, as is well known, any Cantor-type set Q is homeomorphic
to {0,1}N, we may identify an element x € Q with the corresponding sequence i =
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[3] Minimal sets 3

Consider now the function / : Q -> Q acting on Q as an adding machine, that is,
for a € {0, 1} N , / ( a ) = a + 1000- • where the adding is in base 2 from the left to
right; for example, /(101100• • •) = 011100• • •, /(11100• ••) = 00Q10• • •, and so on.
Given a point xeQ, the point / s ( x ) £ Q is represented by the sequence x , obtained
by adding (in base 2) the sequence x and the eventually zero sequence representing the
number s written in base 2 from left to right. It is easy to see that w/(x) = Q for any
xeQ.

Denote by T the class of maps F: QxI-tQxI, where Q is a Cantor-
type set and F(x,y) = ( /(x), g(x,y)) where / : Q —¥ Q is the adding machine, and
g(x, •) : I -> / is continuous and non-decreasing for any i g Q , and the family g(x, •)
depends continuously on x with respect to the uniform metric. Thus F is continuous
on Q x / .

Note that each map F e T (and obviously also its monotonic extension F € A)
has topologically entropy h(F) = 0. Indeed, we have (see [7]).

supf/i^,/*); x e Q}+h(f) ^ h{F),

where h{F, I^j denotes the topological entropy of the map F:QxI—>QxI with
respect to the compact subset J£ , that is, the entropy h(F,Ix) is computed only for
trajectories starting from 7£. But since F* is monotonic on J^ for any i, we have
clearly h(F, /*) = 0, and of course h(f) = 0 since / is of type 2°°. Thus, h(F) = 0 .

Now we describe the construction of the mappings of a special subclass 7o of T .

First we take an increasing sequence of non-negative integers { fc i}^ with fco = 0
and such that, for all i ^ 1, fcj - ki-\ — 1 =: m* ^ 1. Thus kn — fcn_i + rnn + 1 =
mi H— • + mn + n. For any x&Q, the digits x(k\), x(fc2), • • • are called control digits
of i . If

i = x(l)--x(k1-l)x(k1) • • • x(fc»-1)x(fcn_1 + 1) • • -x(kn - l)x(fcn) • • • ,

we define, for every n ^ 1,

Xnfe) := (x(fcn_! + 1 ) , . . . ,x(kn - 1)) € {0, l}m« and | X n (x ) | := ^ x ( f c n _ x +i)2 i~

Then we consider a family Tn :— {<p(n, j), j = 0, . . . , 2mn — l } of functions from I
into / satisfying the following properties:

(1) each function <p(n,j) £ F n is continuous and non-decreasing :

(2) <pr(n,2mn -l)o-otpr(n,0) = ld for all r > 1
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where Id denotes the identity map. We call any map of F n a map of rank n. Moreover
we assume that

(3) n]imQo max{ \\<p{n, j) - Id\\} = 0

where ||-|| is the uniform norm.
Finally we define a function F : QxI-^QxIas follows. Take an arbitrary point

xeQ. If the first zero control digit of x is x{kn), then we define

F(x,y) = (f(x), <p(n,\Xn(x)\)(y)).

Otherwise, if x has no zero control digits, we set

Note that (1) and (3) guarantee the continuity of F in Q x / .

The class To consists of the functions constructed in this way for any possible

choice of the parameters kn and of the families F n .

Let 7T2 : (x,y) >-» y be the projection on the second variable and put tn := 2kn~x

for all n ^ 0. (Note that t0 - 1/2.) Given F e %, for any i ^ 0 and any y0 e I,

define yi := n2 [Fl(0, yo)] • Then, for any integer i ^ O we have

^(fi.tfo) = (/*(O),»0 = (/'(Q), ^(O(l/o)),

where V(0) = /d and, if 1 ^ i < tn, ip(i) is a composition of maps ip of rank not
greater than n.

For all 0 ^ j < 2"ln+1 - 1 and 0 ^ r < tn, we have the following relations

(4)

(5) ^ ( (2 j + l)tn + r) - V;(r)

where ipj(r) is the function obtained from ip(r) by replacing all maps (p of rank n with
cp{n+l,j).

Indeed,

fjtn (o) = n. . J £(1) • • • e(m n + 1 )0 • • • , S(2j+l)tn (Q) = 0 ^ • 0 U ( l ) •

kr,

= |xn+i(/(2 j+1) t"(0))| = | (4( l )>--^(mn + 1)) | = j . Thiswith
means that after 2jtn iterations, all the first n control digits are zero and so, for the
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next r iterations, we apply, the same functions <p as when starting from 0. Conversely,
after (2j + l)tn iterations the n-th control digit is equal to one and so, during the next
r iterations we proceed as in the previous case, but instead of using the functions <p of
rank n, we apply the function ip(n + 1, j). This is exactly what is written in formulas
(4) and (5). Obviously, if r < tn-i, the function ip(r) does not contain any map of
rank n and so ipj(r) = rp(r).

Note that from (5) with r = 0 we obtain

(6) 4>(tn) = Id, 4>((2j + l)tn) = r/,(2jtn),

Now we prove some identities concerning the functions in 7o •

LEMMA 1 . Let F € %• For every i~^\ take n ^ 1 such that tn-i ^ i < tn and
consider the representation of i in the form

+ 2a0t0

with 0 ^ as ^ 2m*+i - 1, 0, & {0,1} for 0 ^ s ^ n - 1 and 0O = O. If

v{i) = max{s ^ n — 1 : 0a — 0}

we write

i = (2an_i + l)tn_! + • • • + (2a1/(i)+i -I- l ) ^ w + i + 2au(i)tv(i) +

Then we have

(7)

^W(n,an_x) o v , 2 * - 1 ( n 1 ) ( n > a n _x - 1) o • • • o ^ - ^ ^ { n , 0 )

(8) ^;(0

where 7 ( 0 = "f) a ^ - J (< 2*«-i-(fl-1)) and 7(1) = 7(1) + an_12fc«-i-("-1).

In particular, for all n ^ 2 and ail j with 0 ^ j ^ 2 m " - 1,

(9) t / ^ n - x ) = V2fcn-1"(n"1>(n, j - 1) o • • • o ^ - 1 - ( n - 1 ) ( n , 0).

PROOF: First we prove (7) by induction on n. Let n = 1, that is, 1 ^ i < t\\ we
have

In this case i = 2aoto = ao, u(i) = 0 and 0(i) = 7(0 = 0. So (7) is satisfied.
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Assume (7) true for n and consider n + 1. We have to find the representation of
ip(i) for all i with tn ^ i < t n +i • Let

i = ( 2 a n + (3n)tn + ••• + ( 2 a i + ft)^ + 2aoto

and assume first (3n = 0. Then, i = 2antn + 6{i) and, by (4),

Since in this case 7(1) = 0, (7) is proved if we show that

(10) Tp{2antn) = <p2"n~n(n + l , o n - 1) o • • • o v
2*B"n(n + 1,0).

We prove (10) by induction on an. By the induction hypothesis and the representation

tn - 1 = (2(2m» - 1) + l) t n_x + • • • + 2(2m' - l)t0 )

we have

(11)
- 1) = ^ " - ^ ( n , 2TO- - 1) o < / - 1 " ( B - 1 ) ( n , 2 m " - 2) o • • • o ^ n - 1 " ( n " 1 ) ( n , 0)

n-1

where j(tn - 1) = £ (2mi+i - l )2 f c i^ = 2fcn-i-("-i) _ x

Now, by (5) and (11)

Since
y2tn-l^Qj — 1 . . . 1 0 • •

at the next iteration we apply the map (p(n + 1 , 0 ) , thus

hence (10) is proved for an = 1. Assume it is true for an = j . By (6)

T/>((2j + l)tn) =4>(2jtn)

and by (5) and the induction hypothesis we have

j + l)tn +tn-l)= ^{tn - 1) o Tjj(2jtn)
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Since
/ 2 i tn +2tn- l ( Q ) =

kn

with Xn+i{f2itn+2tn~1(SO)\ -= |(€(1).--- ,£(™n+i)) = j , at the next iteration we

apply the map ip(n + 1, j), thus obtaining (10) for an — j +1. Hence (10) is completely

proved.

Assume now /?„ = 1, that is,

i = (2an + l)tn + ••• + 0(i) = {2an + l)tn + r

and observe that 6(i) = 6{r).
By (5) and (10) we obtain

iKO = ran(r)°TP(2antn) = ran(r) o ^ n ( B + 1, an - 1) o • • • o ^ " " " ( n + 1,0).

If tn_i ^ r < tn, then i/(i) = i/(r) and

n - l

since 7(r) = ^Z ctj2kj~j - 7(1).

If r < t n _ i , then i>(i) = n - l , a n _ i = 0 and so j(r) = 7(1) = 0; in this case

Thus (7) is proved for n + 1. D

3. PROPERTIES OF MINIMAL SETS FOR MAPS IN 7" AND TO

THEOREM 1 . No F eT can have a minimal set with non-empty interior in Qxl.

PROOF: Assume there is a function F G T with a minimal set M containing a non-
empty open set G of Q x I. We may assume, without loss of generality, G C Q x (0,1).

Since TTI(M) is minimal for the base map, TTI(M) = Q and so, for any x S Q

the set M D /x is non-empty. Let x^ € <2 and Mo := M f l / ^ ; define j/o = max{i/ :
(^0)2/) € M } . By the minimality of M we have WF(^o,yo) = M , hence there is an
integer n such that (xn ,yn) := Fn(x0,yo) 6 G. Since XQ is the unique preimage of
xn with respect to fn and F (M) = M (see [1]), we have Fn(M0) = M n / , n . But
FU\M0 is non-decreasing and so yn = max{j/: (xn,y) 6 M } , contrary to the fact that
sup{y : (xn,y) 6 M } > yn. D

https://doi.org/10.1017/S000497270003255X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003255X


8 G.L. Forti, L. Paganoni and J. Smftal [8]

THEOREM 2 . Suppose that F £ % has a minimal set M containing the layer

/o- Then F\M is a homeomorphism.

P R O O F : Since M is a compact set and F is continuous, F\M is a homeomorphism
if and only if it is one-to-one on any set M^ = M n / j , xeQ- Consider first the case
x e Orb(0), that is, x = f3(0) for some s ^ 0 and let tn> s. By (6), ip(tn) = Id
and this implies that at any step j < tn the function <p to be applied to is injective
on 7T2 [-FJ (^o)j • Thus F is injective on Fs(lo), which, by the minimality of M, equals
Mx . Take now an aribtrary point x € Q\ Orb (0). If all control digits of x are equal to
one, then the function to be applied to is the identity. Assume now that the first zero
control digit of x is x(kn) and take the neighbourhood U of x in Q given by all t G Q
with the first kn digits of their representations equal to those of x, that is, t{i) = x(i),
1 ^ i ^ kn. Thus, for every t € U,

F(t,y) = (/(*), v(n, |xnU)|)(»)) = (/(*).¥>(". |xn(30|)(l/)),

that is, the function ip to be applied to is the same for all t € U.

Let t0 be the first point in Orb (0) belonging to U, hence

^ = fro (0) = x(l) • • • x(kn - 1)0 • • • e U n Orb (0)

with to(i) = 0 for i ^ kn. Every * e 17 n Orb (0) is of the form t = / r (0 ) with r ^ r0

and so,
/ ' — - o ( o ) = 0 . . . 0 . . . .

kn

Hence, for the first r^ iterations we apply the same maps either starting from 0 or from
/ r - r o ( O ) . This implies that, for every y e I,

(12) *2[Fro&v)]=*2[Fr°{r-ro®,y)]-
Define J := ^ [ M ^ ] = 7r2[Fro(/o)]; it follows that

- TT2 [Fr° ( / r - r o (0), ^ ( r -

C TrjfF-o (r-r°(Q), J)] =

By t he previous argument concernig the points of the orbit of 0, the map <p(n, \Xn(x)\)

is injective on J. So it is sufficient to show tha t 7r2[MxJ C J. Since, by the hypothesis,
IQ C M, the minimality of M implies

«=o
whence

(13) M£c |J{Mt: teOrb(0)nC/}.

Since 7r2[Mt] C J for every t € Orb (0)nJ7, by (13) the same holds for the set 7r2[MxJ. D
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[9] Minimal sets 9

REMARK. We conjecture that Theorem 2 is still valid for functions F e T.

Let us denote by erg and T& the following functions depending on the parameter

(14) *s(t) = (1 - 6)t,

Now we introduce the subclass 7oi of 7o consisting of those functions F 6 % that
satisfy the following additional conditions:

Vn ^ 1 3jn> 0 ̂  j n ^ 2m"+i - 2, such that:

<p(2n-l, j 2 n - i

(16) if j n > 0 then, for all r ^ 1, <pr(n, j n - 1) o • • • oipr{n,0) = Id.

(17)

| (1 - O2r»+i) p \ (1 — d2n) f are sequences dense in [0,1J.

(Of course, by (3), we must have also lim Sn = 0).

REMARK. Note that given the sequence {kn}, it is always possible to construct a

(decreasing) sequence {6n} converging to 0 and satisfying (17).

Now we prove the following

THEOREM 3 . Every F € 7oi has a minimal set M D IQ.

P R O O F : Take a point (0,y0) € IQ. By (9) and (14)-(17) we have

J / 2 ( j 2 n + l + l ) t 2 n = ^ ^ ^ ^ + l ^ ^ + l ) °---O i/"*" ^ (2n + 1 , 0 ) ( t / 0 )

(18)
= ^2n-2n(2n + 1, j2n+1)(y0) = t/0(l - 62n+lf

2n~2n

and similarly

By the hypotheses on the sequence {£„}, we have

(20)

Set M = WF(Q, 0) and let tu = (u, v) € M . Since F '(w) visits any neighbourhood of

IQ, U>F(W) contains a point from IQ and consequently, by (20), (0,0) S ujp(w). This

implies UJF(W) D M, that is, M is a minimal set for F, containing / Q . D
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4. DISTRIBUTIONAL CHAOS

We start this section by defining the notion of distributional chaos.
Let g be a map from a metric space (S, d) into itself. For any pair (x, y) of points

of S and any positive integer n, we define a distribution function $™y : R —> [0,1] by

**„(*) = - # { * = 0 ̂  t < n and d(gi(x),gi(y)) < t}.

Obviously $"y is a left-continuous non-decreasing function, $"y(0) = 0 and $£y(i) = 1
for all t greater than the maximum of the numbers d(gl(x),gl(y)), 0 ̂  i ^ n - 1. Note
that for the definition of each &%y we need only to know the first n iterates of g.

Having the whole sequence {^Sy(*)}n>i

y(t) = lim sup ̂ y (t).

y(*)}n>i w e

*xy (t) = lim inf *S (t), Ky(t

We shall refer to &xy as the lower and $*y as the upper functions of x and y.
If there is a pair (x, y) of points of S such that $«„(£) < $„„(*) for all t in some

non degenerate interval, then we say that g is distributionally chaotic (see [9, 10]).
The main result of this section is the following.

THEOREM 4 . For every e, 0 < e < 1, tiere exists a function F£ e 7oi such that
for u = (0,0) and v = (0,1),

$;„(£) = 1, 0 < t < 1 and $„„(*) ^ e, 0 < t ^ 1 - e.

PROOF: Fix e € (0,1). We construct the function Fe by choosing j n — 0 for all
n and the functions <p(n,j) £ F n , depending on integer parameters an, 6n and mn, as
follows:

ip(2n-l,j)= <
Id, 02n-l ^ j ' < &2n-l

. Id, 02n-l + &2n-l ^ j < 2m2n~1

, 0,2n ^ j < b2n

. Id, a2n + b2n ^ j < 2m 2"

where cr52n-\
 an(^ r<52n a r e * n e functions defined in (14), <r̂ 2 _ and r$ are their

left-inverses given by

a|2n_1 (t) = min{l, t /(l - <J2n-i)}, ^ ( t ) = max{0, (t - S2n)/(l - 62n)} t e [0,1],
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[11] Minimal sets 11

and {<$„} is a sequence satifying (17) with lim 5n = 0.
n—foo

In this way we get a function Fe £ 7oi • Thus what remains to be chosen are the

parameters an, bn and mn.

Before starting with the choice of these parameters we need some properties of FE.

Let Ji := *2[F*(l£] and A< := |J4| = |tf(»)(J)|.

By applying the functions as or T$ to an interval J C / , we get

\as(J)\<\J\, |T«(

Moreover, for every j ^ 2 m " — 1 and s ̂  r ,

\fs(n,j) o V
r (n , j - 1) o • • • o v>r(n,0)(J)| ^ \J\

since first we apply the functions as or T$ and then their left-inverses for a smaller

number of times. Thus, by (7) it is easy to prove by induction that for any interval

JCl

(21) ty(i)(J)\<\J\.

For any j with o n + i ^ j ^ bn+\ — 1 we have tp{n + l,j) = Id; thus, by (9) we obtain

ip(2jtn) — ip(2o.n+itn). Then, if we set

by the structure of the family Tn+i we have

(22) J = aa
6^

2"n~n(I) or J = r ^ 2 ^ (I)
V I on+i V I d n + 1 V /

according to whether n is even or odd. By (4), (5), (8) and (21) we have

A, =

\J\. « = 2j<n + r, 0 ̂  r

(2an + 1

, i = (2j + l)tn+r,

This implies that, if A2an+1tn = \J\ < l / ( n + 1).

(23) \i ^ A2an+1tn < ^ j j y , 2an+itn ^ i < 2bn+1tn.
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Now we have to choose the parameters an,bn and m n . The choice will be made
iteratively in order to assure that, for n ^ 1,

(24) ^ ' - ^ ( l / n j ^ l - l / n and * J , » ( l - e ) < e .

The relation $u«
n n~1(l/n) ^ 1 - 1/n means that the number of i's less than 26n£n_1

for which Aj < 1/n is "almost the same" as 26nin_i while $£{,(1 - e) ^ e means that
the number of i's less than tn for which Aj < 1 — e is "small" in respect to tn.

Let n — I. Take ai = 6X - 1 < 2mK Then we have Ao = 1, Ai = 1 - 6X and
Aj = 1 for all 2 ^ i ^ 2 m i = ti. So, the first inequality of (24) is trivially satisfied and

*&(1 " e) = ^ T # { * : <K t < 2mi and A4 < 1 - e} < - L .

If we choose mi such that l / 2 m i ^ e, then the second inequality of (24) is satisfied.

Assuming we have determined ar,br and mr for all r ^ n, now we choose the

parameters an+i,6n+i and mn+i. By (22),

so we take an+i so that A2an+1tn < l/{n +1 ) . Now, by (23),

# { i : 0 ^ i < 2bn+1tn and A; < l / (n + 1)} ^ 2{bn+l - an+1)tn

and so we can take bn+i so that

2(6n+1 - an+1)tn i _ 1
n + 1'

that is, the first inequality of (24) is satisfied for n + 1. Assume mn+i has been chosen
w i t h a n + 1 + b n + i < 2 m " + i a n d t a k e a n + 1 + b n + 1 ^ j < 2 m " + i . T h e n (p(n + l , j ) = Id.

If i = 2jtn + r with 0 ^ r < tn then, by (4), (9) and the structure of F n + i we have
ij>{i) = ip(r) otp(2jtn) = ip(r) and so A; = Ar. The second inequality in (24) implies

(25)
#{ i : i = 2jtn+r and 0 ^ r < tn : Aj < 1-e} = # { r : 0 ^ r < tn and Ar < 1-e} ^ etn.

Let now i = (2j + l)tn + r with 0 ^ r < tn. Again, by (5), (8) (9) and the structure

of r n + i we obtain

ip(i) = tpj{r) o tp{2jtn) = ipj(r) = ip(9(r))

and so Ai = ^e(r) • Note that 6(r) may assume all values from 0 to £„(,.) — 1 where
0 ^ v{r) ^ n — 1. (See the notation of Lemma 1.)
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Now we intend counting the number of indices r with 0 ^ r < tn for which
u(r) = I. This means counting the indices having in their binary representation 0 at
the place fcj, 1 in the places kp, I < p < n and 0 in all places greater or equal to
fcn. Thus the required number is tn/2

n~1. These indices can be collected in tn/ti2
n~l

blocks of type I containing the numbers having in their binary representation the same
digits in the places greater or equal to ki, that is, in blocks of indices of the form

r = ( 2 a n _ i + l ) i n _ i + ••• + {2al+1 + l)tl+1 + 2atti + s with 0 ^ s < tt

with the same aq, I ^ q < n — 1.

For each block B of type I and any index i = (2j + l)tn + r , r € B, by (7) and
the structure of F n + i , we have Aj = |^>(i)(/)| = |j0(s)(7)| = As and, by the second
inequality in (24), we get

#{i :ie B and Aj < 1 - e} = # { s : 0 ^ s < U and X3 < 1 - e} ^ ett.

Since the number of blocks of type I is tn/ti2
n~l and 0 ^ I ^ n - 1 we obtain

n—1 , n—1 1

#{i : z = (2j + l)tn + r, 0 ^ r < tn and A4 < 1 - e} ^ ^ T^Zi£t< = e t 5Z
i=o ' (=o

From (25) and this inequality we get

" i
#{i : i = 2jtn + r, 0 < r < 2tn and Xt < 1 - e} ^ etn J^ ^ = 2t" {l ~ 2"("+1))e-

p=0

Since tn+i = 2m"+i(2tn) , we conclude that

and A,

2(a n + 1 + bn + 1) t n + 2ef„ (1 -

2m«+i(2tn)

and we choose m n + i so that $u"+ 1(l - e) ^ e. D

Summarising, by Theorems 2, 3 and 4 we have the following

COROLLARY 5 . For every e, 0 < e < 1, there exists a function Fe € 7oi satisfy-

ing the following properties:

(i) F£ has a minimal set M C Q x I such that F€\M is a homeomorphism;
(ii) M contains points u and v such that

$;„(«) = 1, 0 < t < 1 and $„„(*) s£ e, 0 < t < 1 - e.

Note that the behaviour described in Corollary 5 is impossible in dimension one.
Indeed any f € C with h(f) = 0 is not chaotic (in the sense of Li and Yorke) on any
minimal set [3].
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5. OTHER RESULTS

In this section of the paper we present some other results about the functions in
the class 7oi • Moreover we define other subclasses of T and we prove some properties
of them.

THEOREM 6 . For every function F in 7oi no point of the layer 1$ is isochroni-

cally recurrent.

P R O O F : We have to prove that for every j/o £ / there exists a neighbourhood

U — Ui x U2 of (O,?/o) such that for every positive integer u, there is an integer r for

which Frv(0,yo) & U. The proof is analogous to that in [4].

We distinguish two cases: j/o < 1 and j/o = 1.

Let yo < 1 • We choose U = I x C/2 with sup £/2 < 1, and take an integer p such
that

1 > sup £/2.
V

Consider the set

A := | n : n ^ 1 and 7r2[F2(J"+1+1)tn(0, 0)] > 1 - - } .

By (19), the set A contains infinitely many elements and by the nionotonicity of the
functions (p(n,.), for every t € / we have

1 - -

for any n € A.

Take an integer v and let 2q + £) Ct̂ *, Ci € {0,1}, q ^ 0, be its binary repre-

sentation. Fix any n 6 A; since

for r = 2 ( j n + 1 + l)«n2f c«-2 m n + 1 V 2 m " + 1 - 1 we have

with j n + i + 1 = (£(1), ••• , £ (mn+i ) ) . Since n = rv - 2 ( j n + i + l)tn = 0 _ ^ 0 - • • , we

have / " ( 0 ) = 0 - - 0 - - - and Fr"(O,yo) = F 2 ( ' » + 1 + 1 ) t n ( / " ( Q ) ) y M ) .

Bn+1
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Since 7T2[F20'"+1+1)tn(/'i(O),t)] = 7T2[F2(i"+1+1)t"(0,i)] for every t 6 / , by the

definition of A we get

t" (0,0)1
J

- .
p

In the case yo — 1 we proceed in a similar way starting from a neighbourhood U = / x [ / 2

with inf (J72) > 0 and using formula (18). D

REMARK. The previous result shows that for each function in 7oi the point 0 is
isochronically recurrent for the base map while it is not the projection of any isochron-
ically recurrent point of the triangular map F.

Hence, from Theorems 2, 4 and 6 we get the following

COROLLARY 7 . For every e, 0 < £ < 1, there exists a function Fe € 7oi such

that:

(i) Fe has a minimal set M D IQ;
(ii) FE\M is a homeomorphism;

(iii) no point of IQ is isochronically recurrent;

(iv) $*„(£) = 1 for 0 < t < 1 and $„„(*) ^ e f o r O < i ^ l - e , where
u= (0,0) and v = (0,1).

Now we define another subclass 7o2 of 7o as follows: for every n ^ 1

<p(n, 0) - <p(n, 1) = Id,

tpr(n, 2P - 1) o • • • o <pr(n,0) = Id, 1 ^ p ^ mn, for all r > 1.

THEOREM 8 . For every F € 7o2 we have

lim F2'(O,j/o) = (Q,j/o)
s—foo

for every yo £ / •

PROOF: Formulas (6) and (9) and the definition of 7o2 imply y2s = J/O for every
integer s. u

COROLLARY 9 . There exists F S 7o2 such that:

(i) for every y0 & I, lim F2* (0, y0) - (Q, y0);
s—*oo

(ii) F has a minima] set M D IQ_;
(iii) F | M is a homeomorphism;
(iv) no point of Ig is isochronically recurrent.
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P R O O F : By Theorems 2 and 6, the only thing to be proved is that 7oi n 7o2 7̂  0-
It is enough to take in the definition of 7oi, j n — 2 for all n, <p(n, 0) = <p(n, 1) = Id
and choose <p(n,jn + 1) = <p(n, 3) as the left inverse of <p(n, 2). All other functions can
be chosen equal to the identity. D

REMARK. A one-dimensional map / has zero topological entropy if and only if the set
{x 6 / : lim f2 (x) = x} coincides with the set of the isochronically recurrent points

s-»oo

[7, Table 1]. We recall (see Section 2) that our maps have zero topological entropy
and so properties (i) and (iv) of Corollary 9 show a completely different behaviour with
respect to the one-dimensional case.

To present the last results of the paper we introduce another subclass 71 of 7". Let
{^i}i^:i D e a n increasing sequence if positive integers with ki — i —> +00, and {<^t}£i
a sequence of mappings from / into / of the form

<pi(t) — tSi, with Si > 0, lim Si = 1.
t—>oo

As in the definition of the class 7o, the digits x(ki),x(k2),... are called control digits

of x € Q. We define a function / : QxI-^QxIas follows:

If the first zero control digit of x is x(kn),

F(x,y) = (f(x),<pn{y));

otherwise F(x,y) = (/fe),2/)- The condition lim Si = 1 assures the continuity of F.

Moreover, it is easy to recognise that F is a homeomorphism of Q x / onto itself.

THEOREM 1 0 . There exists a function F S 71 with the following properties:

(i) for any w € {0} x (0,1) we have Wf(w) — Q x I;

(ii) F has two minimal sets, namely Q x {0} and Q x {1};
(iii) {0} x (0,1) C Rec (F)\UR{F);
(iv) for any u € {0} x (0,1) and v = (0,0) or v = (0,1),

(26) *;„(*) = !. *««(*) = 0, t 6 ( 0 , l ) ;

hence F is distributionally chaotic.

P R O O F : (i) Since the functions <pi commute, the value Fm(0, yo) = (fm{Q),ym)

depends only on the number of times any function <pi is applied.

Given a positive number r, take n so that kn ^ r < fcn+i. Then the points
/*(Q), 0 ^ i < 2r are represented by all the 2r sequences

01, • • • a r0 • • • , Qi € {0,1}, 1 ^ i 5% r
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which have the ( n + l)-th control digit equal zero and so the only functions that may
enter in the expression of yi, 1 ^ i ^ 2 r , are <p\, ... , <pn+i • The number of times the
function ipi, l ^ t ^ n + 1, enters the expression of y2^ equals the number of sequences
a\ • • • aT0 • • • having a^ = 0 and ak3 = 1 for all 1 ^ s < i. This number is 2r~* for
1 < i ^ n , and 2r~" for i = n + 1. So, we have

_ i —(n—1

Since

for the next 2fcn iterations we use exactly the same functions as starting from 0. We
may proceed in this way until the &n+i digit is zero. Thus, for all m with 2 ^ m ^

(27) ym2kn = V?*"-

In order to construct the function F we start by imposing on the sequence
the additional condition

(28) s!i-iS2» = 1, i > 1.

This implies

Hence, by (27) and (28) for all n ^ 1 we obtain

(m2*2n-2n)

(ma*a»-i-2B)

m2*2»-i = <p?l/2n-1~2n(yo) = %2" , i ^ m ^ 2*2«-*»-i-1.

We want to show that it is possible to choose the sequence of parameters {sn) in order
to assure that

Vt/0€(0,l), wF((0,2/o)) D/o-

Since the w-limit sets are strongly F-invariant, this implies U>F((Q, J/O)) = Q x / .

To this aim it is enough to assure that the values given by (29) with m — 1 are
dense in / and this is equivalent to requiring that

(30) 2fc2n~2rMog(s2n+i) is dense in (-co,+oo).
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If {s2n+i} is a sequence satisfying (30) and

(31) lim s2n+i = 1,
n—¥+oo

then the whole sequence {sn} constructed by using (28) satisfies the required property
l ims n = 1. To satisfy (30) and (31) we define the sequence {s2n+i}^=i by

n

(3 2) Iog(s 2 n + 1 )= .°""

where {crn}n°=i IS a sequence dense in (—co, +oo) satisfying

(33)
1

n

So (i) is proved. In the following, given the sequence {o"n}> we show how to construct
the sequence {kn} in order to satisfy (33).

Property (ii) is obvious. By (i), every point w € {0} x (0,1) is recurrent and, by
(ii), U>F{W) is not a minimal set. So w is not uniformly recurrent (see [1]). Now we
prove (iv). In order to assure (26) we take sequence {<?„}, dense in (—oo,+oo) and
such that <T2n-i < 0 and a2n > 0.

Now we recursively define the sequences {kn} and {sn}.

We start the recursive process by taking hi arbitrarily, si = s2 = 1 and k2 > &i
satisfying (33). Assume now we have constructed k{, Si for i ^ 2n so that (33) is
satisfied. By (28) and (32) we immediately get s2n+i and s2n+2 •

Suppose now n even [n odd]. We take 0 < pn < l /2n such that, for yo ^ pn

[j/o ^ 1 — Pn} and for all j with 0 < j < 2k2n, we have

This is possible since only a finite number of continuous functions enter in the expression
of yj and for them both points 0 and 1 are fixed.

Then we find an integer p so that, for y0 — 1 - (l/2n) [y0 — ( l /2n) ] ,

(35) yp2k2n = vfn+i" (vo) < Pn [yp2k2n = 'pfu+T (yo) > i - p n j .

Now, we choose fc2n+i so that

(36)

and k2n+2 > k2n+1 satisfying (33).
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Now we show that the function F constructed in this way satisfies (26). Take
j/o € (0,1) and n0 such that y0 £ [(l/2no), 1 - ( l /2n 0 ) ] . Choose n even and greater
than no- For every r, p2k2n $J r ^ 2fc2n+1-1 we can write r = m2k2n + j with
p s? m ^ 2fe2»+i-fc2"-1 and 0 ^ j < 2**". So, by (29), (34) and (35)

2/m2*2n < yp2»=2n < Pn and yT < — .

Thus

: 0 ̂  i < 2 f c 2"+i-1 and Vi < ^ - } ^ 2fc2»+1~1 - p 2 f c 2 " ,

and so, by (36)
2*2n+Xl/j_\
uu V 2 7

Hence we conclude that $„„(<) = 1 for t 6 (0,1).
Similarly, if we take n odd, we get

2n'

and so $„„(*) = 0 for t 6 (0,1). D

REMARK. Again the properties proved in Theorem 10 are impossible in C. Indeed for a
one-dimensional map / with h(f) = 0 we have Rec (/) = UR(f) and each w-limit set
contains only one minimal set. The next theorem shows something more: the existence
of a triangular map F with h{F) = 0 having an w-limit set containing infinitely many
minimal sets.

THEOREM 1 1 . There exists a triangular map F of type 2°°, strictly increasing
on any layer Ix, having an w-limit set containing uncountably many minimal sets.

PROOF: By [2, Theorems 6.2, 6.5] there exists a function / € C of type 2°° having
an infinite w-limit set Q D Q containing isolated points and such that Q\Q is a single
orbit disjoint from Q. Moreover, this function acts as the adding machine on Q and for
every x € Q\Q we have w/(x) = Q. We take such a function as base of the triangular
map we are constructing. We choose po € Q\Q with Orb (p0) — Q\Q and associate to
it the zero sequence. Then we code Orb (po) by associating to each point pn — /"(po)
the corresponding sequence /"(Q). Now we define F(x,y) = (f(x),gx(y)) on Q x I as
follows: for x € Q, gx = Id and for x e Q\Q, gx as in the construction of the class
71 on the corresponding points of Orb (0). Arguing as in the proof of Theorem 9 we get
u)~(z) = Q x I for any z € [Q\Qj X (0.1). Clearly, any set Q x {a} is a minimal set
for F contained in ui~(z). It is easy to see that it is possible to extend F continuously
to a triangular map F : I2 —)• I2 increasing on any layer. D
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