
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 354, Number 1, Pages 387–411
S 0002-9947(01)02857-4
Article electronically published on August 20, 2001

DYNAMICS OF IMPLICIT OPERATIONS AND
TAMENESS OF PSEUDOVARIETIES OF GROUPS

JORGE ALMEIDA

Abstract. This work gives a new approach to the construction of implicit
operations. By considering “higher-dimensional” spaces of implicit operations
and implicit operators between them, the projection of idempotents back to
one-dimensional spaces produces implicit operations with interesting proper-
ties. Besides providing a wealth of examples of implicit operations which can
be obtained by these means, it is shown how they can be used to deduce from
results of Ribes and Zalesskĭı, Margolis, Sapir and Weil, and Steinberg that the
pseudovariety of p-groups is tame. More generally, for a recursively enumer-
able extension closed pseudovariety of groups V, if it can be decided whether a
finitely generated subgroup of the free group with the pro-V topology is dense,
then V is tame.

1. Introduction

The theory of finite semigroups has developed considerably ever since, in the mid-
1970’s, Eilenberg [16] systematized the connections with the theories of rational
languages and finite automata. His approach, which gave a natural framework
for several earlier results, led to the notion of a pseudovariety, introduced jointly
with Schützenberger [17]. Pseudovarieties are classes of finite semigroups which
are closed under three of the most simple algebraic constructions, namely taking
homomorphic images, subalgebras and finite products. Many results and problems
fell then into the general setting of finding an algorithm to test membership in
a pseudovariety. In case such an algorithm exists, the pseudovariety is said to be
decidable. The difficulty lies in the fact that most often pseudovarieties are described
not explicitly in terms of verifiable properties of their members but rather implicitly
in terms of generators.

An operator on pseudovarieties which has deserved a great deal of attention is the
semidirect product. It is intimately connected with the composition of sequential
functions and a cascade composition of automata [15]. A central question in the
theory has been to determine conditions for the semidirect product V ∗W of two
pseudovarieties V and W to be decidable. Rhodes [33] has shown recently that it
does not suffice for the factors to be decidable. Yet, Steinberg and the author [6]
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have obtained a refined version of decidability, which was later called tameness
in [7], such that the semidirect product of any finite number of tame pseudovarieties
is decidable.

To prove that a pseudovariety is tame is often quite hard and few examples can
be found in the literature. For the pseudovariety G of all finite groups, tameness
follows from a seminal paper by Ash [11]. For the pseudovariety A of all finite
aperiodic semigroups, tameness has been announced by J. Rhodes (in a talk given at
the International Conference on Algorithmic Problems on Groups and Semigroups,
Lincoln, Nebraska, May, 1998 and later submitted for publication as [34]). These
two results coupled with the joint result of Steinberg and the author quoted above
imply that the Krohn-Rhodes group complexity of finite semigroups is computable,
thus solving a long-standing problem in the theory of finite semigroups which has
prompted many of its developments. See [7] for further references.

On the other hand, various connections between tameness and other areas of
mathematics have been found. In geometric topology, a weak version of tameness
has drawn considerable attention (cf. [23, 22]) and tameness of pseudovarieties of
groups turns out to have remarkable links with model theory (cf. [25, 5, 4]).

Thus, it appears to be a worthwhile pursuit to obtain further results on tameness
of pseudovarieties, the group case being of particular relevance. In the present
paper, we address the case of extension closed pseudovarieties of groups V, of
which the pseudovariety Gp of all finite p-groups is an example. We show that
if denseness of finitely generated subgroups of the free group with respect to the
pro-V topology is decidable, then V is tame. In particular, Gp is tame. A weaker
property had been established previously by Steinberg [37] but it also had been
observed by Steinberg and the author [6] that Gp could not be tame with respect
to the most common algebraic language. Since such a language had been the only
one to play a role so far, a significant new step seemed to be necessary to deal
with Gp. Although the details of the argument are somewhat delicate, the idea in
the construction of the new language is in fact quite simple, being rather close to
standard ideas in dynamical systems.

This work was started while the author was visiting the University of Essex in
the Summer of 1999 integrated in a workshop on quasi-crystals. The author wishes
to thank several participants in the workshop: Peter M. Higgins for his hospitality
and for asking a question on implicit operations which ultimately led to this work;
Stuart Margolis and Ben Steinberg for very clear presentations of some of the main
ideas in [28] and [37]; Ben Steinberg also for several stimulating discussions, for
the observation that, at least without the requirement of computability, it would
be possible to enlarge the natural algebraic language to capture closure of rational
subsets of the free group with respect to the p-group topology without needing to
solve an extra word problem, and for his comments on a preliminary version of this
paper. Also thanks to Jon McCammond for his patience in exploring a strange
word problem at a stage when details of the proof herein had gone astray.

2. Dynamics of implicit operations

Throughout this section we consider a pseudovariety V of finite algebras of fixed
type. For the applications in the present paper, we will be interested only in the
case of pseudovarieties of finite semigroups. But, since the theory is the same in
the more general setting, there seems to be no reason to develop it only in that
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TAMENESS OF PSEUDOVARIETIES OF GROUPS 389

restricted context. We only assume that the algebraic type, or signature, involves
only finitely many operations and that the operations have finite arity.

Denote by S and M respectively the pseudovarieties of all finite semigroups and
all finite monoids.

This paper assumes familiarity with standard notions and basic results on im-
plicit operations. The reader is referred to [2, Chapter 3] and [1, 9] for details.

2.1. Pro-V topologies and pro-V algebras. Recall that an algebra S of the
same type as the members of V is said to be residually in V if homomorphisms
from S into members of V suffice to separate the points of S. We always endow
finite algebras with the discrete topology. The pro-V topology of an algebra S
which is residually in V is the initial topology for the homomorphisms from S into
members of V. Such a topology is clearly Hausdorff. Moreover, the basic algebraic
operations, being preserved under homomorphisms, are continuous. We say that
an algebra endowed with a topology is a topological algebra if the basic algebraic
operations are continuous. A compact algebra is a Hausdorff topological algebra in
which the topology is compact. We also say that a topological algebra S is residually
in V if continuous homomorphisms into members of V suffice to separate points
of S.

On the other hand, pro-V algebras are compact algebras which are residually
in V. In case V consists of all finite algebras, we call them profinite algebras.
Equivalently, pro-V algebras are projective limits of (topological) algebras in V.
That such projective limits are pro-V algebras is immediate. For the converse,
given a pro-V algebra S, consider a set of representatives of isomorphism classes of
continuous homomorphic images V of S in V together with specific continuous onto
homomorphisms ϕV : S → V and connect them by homomorphisms ψ : W → V
such that ψ ◦ ϕW = ϕV . It is an elementary exercise to check that this defines a
directed family of algebras and connecting homomorphisms whose projective limit
is isomorphic to S as a topological algebra (see [9] for details). It is worth noting
that, for some classes of algebras, including semigroups, the separation property in
the definition of a profinite algebra is equivalent to zero-dimensionality [1].

We denote by ΩAV the free pro-V algebra on the set A and by ΩAV the free
algebra in the (Birkhoff) variety generated by V. Such free objects are characterized
by appropriate universal properties. For instance, ΩAV comes endowed with a
mapping ι : A → ΩAV such that, for every mapping ϕ : A → S into a pro-V
algebra S, there exists a unique continuous homomorphism ϕ̂ : ΩAV → S such
that ϕ̂ ◦ ι = ϕ.

While the existence of free algebras was shown by Birkhoff in the 1930’s and a
proof may be found in any introductory textbook on Universal Algebra, the proof
of existence of free pro-V algebras has to take into account the topology, which
makes it somewhat more complicated. A specific way to realize ΩAV is as the most
general projective limit of A-generated algebras in V. See, for instance, [9] for
details. However, straight out of the definitions, one can show that the subalgebra
of ΩAV generated by the set A is a free algebra on A in the variety generated by V.
Thus, we will view ΩAV as this subalgebra of ΩAV. Moreover, the closure of ΩAV
in ΩAV retains the properties of the free pro-V algebra on A and therefore ΩAV
is dense in ΩAV. Furthermore, the induced topology on ΩAV is such that every
homomorphism ϕ : ΩAV→ V into a member V of V is continuous: the restriction
of such a homomorphism to A extends uniquely to a continuous homomorphism
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ϕ̂ : ΩAV→ V whose restriction to ΩAV must be ϕ because ΩAV is the subalgebra
generated by A. Hence the induced topology on ΩAV contains its pro-V topology.

Suppose S is a topological algebra which is residually in V. We endow S with a
natural pro-V metric by letting, for distinct s1, s2 ∈ S, d(s1, s2) = 2−r(s1,s2) where
r(s1, s2) is the size of the smallest V ∈ V for which there is a continuous homo-
morphism ϕ : S → V such that ϕs1 6= ϕs2, and d(s1, s1) = 0. When convenient,
we may wish to represent the functions d and r respectively by dS and rS . It is
immediate to verify that d is indeed a metric on S, in fact an ultrametric in the
sense that the triangle inequality is strengthened to the inequality

d(s1, s3) ≤ max{d(s1, s2), d(s2, s3)}.
Since we are only taking continuous homomorphisms into members of V, the topol-
ogy induced by the metric d is contained in the topology of S. In case the topology
of S is the pro-V topology, the open d-balls in fact form a base of this topology
and hence the two topologies coincide. In case S is just a plain algebra which is
residually in V, we consider the metric dS associated with the pro-V topology.

On the other hand, if S is a pro-V algebra and s is an element of an open set O,
then we may separate s from each element t of the complement S \O by means of
a continuous homomorphism ϕt : S → Vt into a member of V. The balls

Bt = {u ∈ S : d(t, u) < 2−|Vt|}
cover the compact set S\O and none of them contains the point s since r(t, s) ≤ |Vt|.
We may therefore extract from them a finite covering of S \ O consisting of balls
centered at points t1, . . . , tn. Let V = Vt1×· · ·×Vtn , which is another member of the
pseudovariety V. Now the homomorphisms ϕti induce a continuous homomorphism
S → V which shows that the ball {u ∈ S : d(s, u) < 2−|V |}, being disjoint from all
the balls Bti with i = 1, . . . , n, is contained in O. Hence here again the topology
of S is induced by the metric d. In particular, the induced topology on ΩAV from
that of ΩAV is contained in its own pro-V topology and therefore the two topologies
coincide.

By observing that an algebra S which is residually in V embeds in a product of
members of V as a subalgebra, whose closure is compact by Tychonoff’s Theorem,
it may be shown that the completion of S with respect to the metric dS is a
pro-V algebra. In particular, ΩAV is the completion of the residually in V plain
algebra ΩAV with respect to the pro-V metric.

For a more detailed discussion of pro-V topologies in case V is a pseudovariety
of finite groups, see [28, Section 1]. For later use, we will need the following slight
generalization and sharpening of [28, Proposition 1.6]. Say that a subalgebra T of
an algebra S is a retract of S if there is a homomorphism % : S → T (called a retract
mapping) whose restriction to T is the identity. In particular, if G is a group which
is the free product of H with another subgroup, then H is a retract of G.

Lemma 2.1. Let T be a retract of an algebra S which is residually in V. Then,
for any u, v ∈ T , dS(u, v) = dT (u, v). In particular, the pro-V topology of T is the
induced topology from the pro-V topology of S.

Proof. Let % : S → T be a retract mapping. Let u and v be distinct elements of T .
It suffices to show that rS(u, v) = rT (u, v). Suppose ϕ : T → V is a homomorphism
into a member of V such that ϕu 6= ϕv. Consider the homomorphism ϕ◦% : S → V .
Since the restriction of % to T is the identity, we also have ϕ%u 6= ϕ%v. Hence
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rS(u, v) ≤ rT (u, v). The reverse inequality is true for any subalgebra, retract or
not. Indeed, for a homomorphism ϕ : S → V such that ϕu 6= ϕv, the restriction
of ϕ to T still distinguishes u and v.

The above considerations could be extended without any further effort to the
case in which S is not required to be residually in V leading to a pseudometric
dS and a non-Hausdorff topology. For the applications we have in mind the above
special case is sufficient.

2.2. Implicit operations. Elements of ΩAV are also called implicit operations.
Since the operational point of view plays an important role in this paper, it is worth
spending some time explaining this connection. Given any pro-V algebra S, we view
SA both as a direct power of S and as the set of all functions from A to S. By the
universal property defining ΩAV, each ϕ ∈ SA extends uniquely to a continuous
homomorphism ϕ̂ : ΩAV → S. This allows us to interpret each π ∈ ΩAV as an
|A|-ary operation πS : SA → S on S: for each ϕ ∈ SA, take πS(ϕ) = ϕ̂(π). This is
called the natural interpretation of π as an operation on S. It is easy to check that
the natural interpretation of π commutes with continuous homomorphisms in the
sense that, for every continuous homomorphism ρ : S → T between pro-V algebras
and every ϕ ∈ SA, the equality πT (ρ ◦ ϕ) = ρ(πS(ϕ)) holds. An |A|-ary operation
with an interpretation on each member of V which commutes with homomorphisms
is said to be an |A|-ary implicit operation on V. In particular, through the natural
interpretation, to every element of ΩAV is associated an |A|-ary implicit operation
on V. Since ΩAV is residually in V this mapping is injective.

Assuming the set A is finite, the natural interpretation mapping of the preceding
paragraph is in fact a bijection. A simple way to establish every implicit operation
π is the natural interpretation of some element of ΩAV is to construct a suitable
Cauchy sequence in ΩAV. For each positive integer n, let Sn be the direct product
of representatives of isomorphism classes of members of V with at most n elements.
The restriction on the algebraic type assumed at the beginning of the section guar-
antees that Sn is finite and, therefore, Sn lies in V. Since the free algebra on A
in the variety generated by Sn is still finite, there is some wn ∈ ΩAV such that
πSn = (wn)Sn . It follows that (wn)n is a Cauchy sequence with respect to the
metric d for certainly d(wm, wn) < 2−min{m,n}. Let π′ be the limit of this sequence
in ΩAV. We claim that the natural interpretation of π′ is the original implicit
operation π. Indeed, if S ∈ V, then for all sufficiently large n ≥ |S|, we have
d(π′, wn) < 2−|S| and so π′S = (wn)S = πS . For further details and examples see
[2, Chapter 3]. From hereon we will always view the elements of ΩAV as implicit
operations.

Members of ΩAV are rather special implicit operations as they may be con-
structed from the component projections using the basic operations of the algebraic
signature. In this context they are known as explicit operations.

Note that, for sets A and B of the same cardinality, ΩAV and ΩBV are isomor-
phic topological algebras via a mapping which extends a bijection between A and B.
We will therefore sometimes write ΩrV instead of ΩAV where r = |A| which may
also be viewed as an instance of the preceding remark if the natural number r is re-
garded as a set as in set theory. This amounts to fixing an ordering for the elements
of A and describing explicitly the components on which implicit operations depend,
in the form π(x1, . . . , xr), which is often convenient. We will nevertheless continue
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to use the more compact notation whenever spelling out components serves no real
purpose.

When A ⊆ B, we identify ΩAV with a closed subalgebra of ΩBV, namely the
image of the unique continuous extension of the inclusion A ↪→ B to a homomor-
phism ι : ΩAV → ΩBV. This is possible since ι is injective. Viewing elements of
free pro-V algebras as implicit operations, injectivity of ι is obvious: an element of
ΩAV is mapped by ι to a |B|-ary operation which only depends on the |A| com-
ponents corresponding to the elements of A, that is the composite of ι with the
projection ΩBV→ ΩAV given by restriction is the identity mapping of ΩAV.

2.3. Implicit operators. Let B and C be finite sets and let S be a pro-V algebra.
For c ∈ C, denote by xc : SC → S the projection in the c-component. We say that
a mapping f : SB → SC is an implicit operator if, for each c ∈ C, the composite
xc ◦ f is of the form πS for some π ∈ ΩBV. If f : SB → SC is an implicit
operator and xc ◦ f = (πc)S for every c ∈ C, where πc ∈ ΩBV, then we also write
f =

(
(πc)c∈C

)
S

. Denote by O(SB, SC) the set of all implicit operators SB → SC .
The definition of implicit operator determines an onto function

ε : (ΩBV)C → O(SB, SC)

(πc)c∈C 7→
(

(πc)c∈C
)
S
.

The function ε is in general not injective but it will be injective if S = ΩAV with
B ⊆ A (or, more generally, if |B| ≤ |A|) since πS(ϕ) = π′, where ϕ ∈ (ΩAV)B maps
each b ∈ B to xb and π′ ∈ ΩAV is obtained from π by ignoring the components in
A \B.

For a pro-V algebra S, we endow the set O(SB, S) with a metric defined by

d(g, h) = inf{d(π, ρ) : g = πS , h = ρS}.(2.1)

To prove that this function is indeed a metric, we first show that the infimum in
its definition is in fact a minimum. To start, we prove that, for each g ∈ O(SB, S)
the set Kg of all π ∈ ΩBV such that πS = g is closed. Suppose then that (πn)n
is a convergent sequence in Kg with limit π. If πS 6= g then there exists some
ϕ ∈ SB such that πS(ϕ) 6= g(ϕ) and so, since S is residually in V, there exists
some continuous homomorphism ψ : S → V into some member V of V such that

ψ(πS(ϕ)) 6= ψ(g(ϕ)).(2.2)

But, for sufficiently large n, we have (πn)V = πV which implies

ψ(πS(ϕ)) = πV (ψ ◦ ϕ) = (πn)V (ψ ◦ ϕ) = ψ((πn)S(ϕ)) = ψ(g(ϕ))

which contradicts (2.2). Next, since the distance function d : ΩAV × ΩAV → R
is continuous the infimum in the image of the restriction of d to the compact set
Kg ×Kh must be attained and this is just the value defined above for d(g, h). The
proof that d is an ultrametric follows then easily from its definition in terms of an
ultrametric on ΩAV. For instance, if d(g, h) = 0 then by the above there exist
π ∈ Kg and ρ ∈ Kh such that d(π, ρ) = 0 which implies that π = ρ and so g = h.

In turn, the product operator space O(SB, SC) '
∏
c∈C O(SB, S) is endowed

with an induced metric from the above metric on each factor in a standard way,
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say by taking the `1-distance defined by

d((gc)c∈C , (hc)c∈C) =
∑
c∈C

d(gc, hc).(2.3)

With respect to this metric, the function ε is a contractive mapping and, therefore,
continuous. Since (ΩBV)C is a compact space, it follows that so is O(SB, SC).

Composition of implicit operations is easily described in terms of implicit op-
erators. Namely, given a |C|-ary implicit operation π ∈ ΩCV and a |C|-tuple
ϕ ∈ (ΩBV)C of |B|-ary implicit operations, the implicit operation π(ϕ) ∈ ΩBV is
defined by the equality

(π(ϕ))V = πV ◦ ε(ϕ)

determining its interpretation on each V ∈ V. If an ordering is chosen for the
elements of C and the components of C-powers are spelled out, say ϕ = (ρ1, . . . , ρr),
the above equality becomes the perhaps more easily readable formula

(π(ρ1, . . . , ρr))V = πV ((ρ1)V , . . . , (ρr)V ).(2.4)

It is a straightforward exercise in abstract nonsense to check that these formulas
define a |B|-ary implicit operation on V.

The following inequality holds for implicit operations π, π′ ∈ ΩCV and ρi, ρ
′
i ∈

ΩBV (i ∈ C),

d(π(ρ1, . . . , ρr), π′(ρ′1, . . . , ρ
′
r)) ≤ max{d(π, π′); d(ρi, ρ′i) : i = 1, . . . , r},

where r = |C|, in view of the definition of the pro-V metric: if all the distances
d(π, π′) and d(ρi, ρ′i) do not exceed 2−n, then πV = π′V and (ρi)V = (ρ′i)V when-
ever V ∈ V satisfies |V | < n and the equality (2.4) yields (π(ρ1, . . . , ρr))V =
(π′(ρ′1, . . . , ρ

′
r))V . As a consequence we obtain that composition of implicit opera-

tions is continuous in the sense that the function

ΩCV × (ΩBV)C → ΩBV

(π, ρ1, . . . , ρr) 7→ π(ρ1, . . . , ρr)

is continuous, as it is even distance-reducing.
Let us now consider the special case when B = C = A where A is a finite set.

Denote by O(SA) the metric space O(SA, SA). Since composition of implicit oper-
ations (of appropriate arities) produces implicit operations, the composite of two
elements g, h ∈ O(SA) is again an element of O(SA). Hence O(SA) is a semigroup.
One the other hand, from the continuity of composition of implicit operations and
the definition of the metric on implicit operators, see (2.1) and (2.3), it follows
that composition of implicit operators is also continuous. In particular, O(SA) is a
compact monoid. The following is a more precise result.

Proposition 2.2. The rule OA : S 7→ O(SA) defines a functor from the category
of pro-V algebras with onto continuous homomorphisms as morphisms into the
category of profinite monoids.

Proof. We must first define how OA transforms onto continuous homomorphisms
ϕ : S → T between pro-V algebras. Given g ∈ O(SA), there are πa ∈ ΩAV (a ∈ A)
such that g = ((πa)a∈A)S . We claim that the element h = ((πa)a∈A)T of O(TA)
is independent of the choice of the πa, which allows us to define OA(ϕ) to be the
mapping O(SA)→ O(TA) which sends each g to the operator h defined above.
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To establish the claim, we consider an element ψ of TA. Since ϕ is onto, there is
δ ∈ SA such that ψ = ϕ◦δ. Since the πa are implicit operations on V, h◦ϕA = ϕA◦g
where ϕA : SA → TA is ϕ componentwise. Hence

h(ψ) = h ◦ ϕA(δ) = ϕA ◦ g(δ)

which shows that h depends only on g and not on the choice of the πa, thereby
proving the claim.

From the claim it also follows that OA preserves composition of morphisms and
identity morphisms. We have thus shown that OA is a functor with values in the
category of topological monoids. To complete the proof, it remains to show that,
for each pro-V algebra S, the topological monoid O(SA) is actually profinite. For
this purpose, it suffices to show that, for any two distinct elements g, h of O(SA),
there is an onto continuous homomorphism ϕ : S → T into some T ∈ V such that
(OA(ϕ))(g) 6= (OA(ϕ))(h). Indeed, by hypothesis there is some ψ ∈ SA such that
g(ψ) 6= h(ψ). Since S is a pro-V algebra, it follows that there is some continuous
homomorphism ϕ : S → T into some member of V such that ϕA(g(ψ)) 6= ϕA(h(ψ)).
Without loss of generality, we may assume that ϕ is onto. Then the operators
(OA(ϕ))(g) and (OA(ϕ))(h) are different since they act differently on ϕA(ψ).

The last part of the above proof amounts to showing that the monoid O(SA) is
the projective limit of the monoids O(TA) where T is a finite homomorphic image
of S. We will use this fact below.

2.4. Polynomial operators and the role of monoid implicit operations.
Denote by P(SB, SC) the subset of O(SB, SC) which is the image of (ΩBV)C

under ε. We will call its elements the polynomial operators (we might also call
them explicit operators).

We also represent P(SA, SA) by P(SA). Note that P(SA) is a submonoid of
O(SA). It is in general not a finitely generated monoid. For instance, let S = Ω1S
be the free monogenic profinite semigroup. Then P(S) consists of all operators of the
form x 7→ xr (r ≥ 1) with composition corresponding to exponent multiplication,
whence P(S) is not finitely generated under composition. The same example shows
that O(SA) is not in general a finitely generated profinite monoid.

If we are willing to go into a higher dimension, that is in a sense we allow for
some auxiliary memory, then we can generate implicit operators using composition.
Thus the role played by monoid implicit operations in the construction of implicit
operators is rather important as the main result of this subsection shows.

Some finiteness assumption seems to be unavoidable in this context. We say that
a pseudovariety V requires bounded memory for the computation of polynomials if,
for every n ≥ 1, there is some k ≥ 0 such that every p ∈ ΩnV may be computed
from the n projections x1, . . . , xn using at each step either a projection or one of
the basic operations applied to memorized values, and storing in the process values
in at most k memory cells.

There are several common examples of pseudovarieties which require bounded
memory for the computation of polynomials. First note that this property is pre-
served under taking subpseudovarieties since the corresponding polynomials are
obtained by restriction. The pseudovariety of all finite semigroups (or monoids)
has this property since, in computing a word, we need only remember the letters
composing it and, reading the word say, from left to right, at each step remember
only the value of the prefix read so far. In computing polynomials for groups or
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inverse semigroups, we may need an extra cell for computing inverses. For rings,
we also need an extra memory cell to compute products before adding them to
a partial sum. In contrast, groupoids (in the sense of algebras with one binary
operation) require an unbounded number of memory cells since all kinds of partial
products have to be stored before the end result may be computed.

Proposition 2.3. Let V be a pseudovariety of finite finitary type which requires
bounded memory for the computation of polynomials. Let S be a pro-V alge-
bra. Then, for every n there is some m ≥ n such that every element of O(Sn)
may be computed from the first n components of an implicit operator of the form
πM (ρ1, . . . , ρr) with r ≥ 1 bounded, some π ∈ ΩrM, and some ρ1, . . . , ρr ∈ P(Sm),
where M = O(Sm). The way the computation of an implicit operator depending on
n variables from one depending on m variables takes place is by repeating the first
variable m− n times at the beginning before applying the operator on m variables.

Proof. We first claim that the hypotheses on V guarantee that every polynomial
operator may be computed as in the statement of the proposition with π ∈ ΩrM.
Let k be an upper bound on the number of memory cells required to compute
polynomials in n variables over V and let m = n + k. For each basic operation f
in the algebraic type consider the special polynomial operators such that, for some
i ≤ k, every j-component with j 6= i is the j-projection, while the i-component is
f evaluated at the projections in some order. Note that, since the algebraic type is
finite and finitary, there are only finitely many such operators. The hypothesis that
V requires only k memory cells for computing polynomials in n variables means
that every such polynomial is obtained by applying a composite of the preceding
polynomial operators to (x1, . . . , x1, x2, . . . , xn), which proves the claim, where we
take r to be the number of special polynomial operators considered above.

To complete the proof, it suffices to observe that every implicit operator is the
limit of a sequence of polynomial operators. Indeed, since O(Sn) is the projective
limit of the O(T n) = P(T n) where T runs over the finite homomorphic images of S,
standard techniques show that every element g of O(Sn) may be approximated by
polynomial operators within any desired positive tolerance and whence g is the
limit of some sequence of polynomial operators. By the above, all elements of such
a sequence may be computed from an expression (πl)M (ρ1, . . . , ρr) with πl ∈ ΩrM
and the ρi ∈ P(Sm) independent of l. By taking a subsequence we may assume that
the sequence (πl)l converges, say to π ∈ ΩrM. Since the mapping ε is continuous,
it follows that g = πM (ρ1, . . . , ρr), as desired.

Thus to obtain a general implicit operator f ∈ O(SA) on a pro-V algebra S
for a pseudovariety V which requires bounded memory for the computation of
polynomials, it suffices to know monoid implicit operations and explicit operations
on V. In particular, taking S = ΩAV, we conclude that implicit operations on V
are constructed by composing explicit operations in a way described by monoid
implicit operations. On the other hand, Proposition 2.3 says nothing interesting in
the case of semigroups or monoids.

2.5. Examples of implicit operators. Recall that, for an element v of a finite
semigroup V , vω denotes the unique idempotent power of v. This defines a unary
implicit operation x 7→ xω on finite semigroups (and similarly on finite monoids)
which therefore has a natural interpretation on each profinite monoid of the form
O(SA). This operation now allows us to set up a rather general recursion scheme
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to construct implicit operations on an arbitrary pseudovariety V of finite algebras.
Note that xω is the limit of the sequence (xn!)n of explicit operations.

Proposition 2.4. Let A be a finite set, S a pro-V algebra, πa an element of
ΩAV (a ∈ A), and sa an element of S (a ∈ A). Define recursively a sequence
((un,a)a∈A)n≥0 by

u0,a = sa, un+1,a = πa((un,b)b∈A).

a) Each of the sequences (un!,a)n converges in S.
b) The function g sending each (sa)a∈A to (limn un!,a)a∈A belongs to O(SA) and

is precisely the idempotent ((πa)a∈A)ωS .

Proof. It suffices to observe that the correspondence (sa)a 7→ (πb((sa)a))b is pre-
cisely the function h = ((πa)a)S : SA → SA. Since hω = limn h

n!, the result
follows.

We say that an implicit operation π ∈ ΩAV is computable if there is an algorithm
which given V ∈ V and ϕ ∈ V A, outputs the value πV (ϕ).

We denote by ◦ωa ((πb)b) the component xa ◦ g of the function g of Proposi-
tion 2.4(b). An immediate corollary of the above proposition is the following result
which in computer science might be called a fixed point theorem.

Corollary 2.5. Let π1, . . . , πr ∈ ΩrV. Then ◦ωi (π1, . . . , πr) (i = 1, . . . , r) is also
a member of ΩrV. Moreover, if each πi is a computable operation, then so is each
◦ωi (π1, . . . , πr).

Here are several examples of application of the above scheme. Denote by S the
pseudovariety of all finite semigroups and, for a prime p, by Gp the pseudovariety of
all finite p-groups. Recall that a pseudoidentity (over V) is a formal equality π = ρ
between implicit operations (on V) of the same arity. A (pro-V) algebra S satisfies
the pseudoidentity π = ρ if πS = ρS . The class of all members of V which satisfy all
pseudoidentities in a given set Σ is said to be defined by Σ. Reiterman [32] showed
that every subpseudovariety of V is defined by some set of pseudoidentities.

Examples 2.6. 1) For π ∈ Ω1V, denote ◦ω1 (π) by π◦ω . For example, for V = S
and π(x) = xn, we obtain the implicit operation

π◦ω(x) = lim
k
xn

k!

which we naturally denote by xn
ω

. By the elementary Euler congruence theorem,
the pseudoidentity xn

ω

= x is valid in Gp if n is not divisible by p while the
pseudoidentity xn

ω

= 1 is valid in Gp otherwise. In fact, Gp is defined by the
pseudoidentity xp

ω

= 1.
2) Let π ∈ ΩrV and ρ, ρ2, . . . , ρr ∈ ΩtV. Define recursively a sequence (un)n by

letting u0 = ρ and un+1 = π(un, ρ2, . . . , ρr). Then the sequence (un!)n converges,
namely to

◦ω1 (π, x2, . . . , xr)(ρ, ρ2, . . . , ρr).

Particular cases for V = S are

xω = ◦ω1 (x1x2, x2)(1, x),
xω−1 = ◦ω1 (x1x2, x3, x3)(1, 1, x).
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3) For recurrence depending on a bounded number of previous steps, say

u0 = ρ1, . . . , uk−1 = ρk, un+k = π(un, . . . , un+k−1) (n ≥ 0),

we get

lim
n
un! = ◦ω1 (x2, x3, . . . , xk, π)(ρ1, . . . , ρk).

This gimmick allows us to delay the start of a recursion which really only depends
on the previous step. For instance, for V = M, we obtain the following implicit
operation:

xr
ω−1

= ◦ω1 (x2, x
r
2)(1, x).

For example, if G is a finite group with exponent 12, then G satisfies the pseu-
doidentities x2ω = x4 and x2ω−1

= x8. Note that, in Ω1M, we have the equalities(
xr

ω−1
)r

= xr
ω

=
(
xr

ω)rω
. More generally, Ω1M may be viewed as a profinite

semi-ring whose addition is the semigroup operation and whose multiplication is
composition. Then xr

ω

is just the multiplicative ω-power of xr in this semi-ring.
4) A more general example is obtained by introducing parameters as in (2). For

the recurrence defined by

u0 = ρ1, . . . , uk−1 = ρk, un+k = π(un, . . . , un+k−1, τ1, . . . , τs) (n ≥ 0),

we obtain the implicit operation

lim
n
un! = ◦ω1 (x2, x3, . . . , xk, π, xk+1, . . . , xk+s)(ρ1, . . . , ρk, τ1, . . . , τs).

Rather than taking the ω-power of an implicit operator, we may wish to take
another power, say with exponent ε where xε ∈ Ω1S. Say, if T ∈ O(Sn) is the
implicit operator T = (π1, . . . , πn), then we will also write ◦εi (π1, . . . , πn) instead
of xi ◦ T ε. The operations of the form ◦ω−1

i (π1, . . . , πn) play an important role
in Section 6 as a convenient technical refinement of the operations of the form
◦ωi (π1, . . . , πn). We have, of course, the following equality:

◦ωi (π1, . . . , πn) = (◦ω−1
i (π1, . . . , πn)) ◦ (π1, . . . , πn).

But, again applying the delay trick, we obtain the equality

◦ω−1
i (π1, . . . , πn) = ◦ωn+1(π1, . . . , πn, xi)

so that each operator ◦ω−1
i and ◦ωj could be defined in terms of the other.

All the following examples concern finite semigroups.

Examples 2.7. 1) Define, recursively,

[x, 1y] = [x, y] = xω−1yω−1xy,

[x, n+1y] = [[x, ny], y].

Then the sequence ([x, n!y])n converges to

[x, ωy] = ◦ω1 ([x1, x2], x2)(x, y).

Groups satisfying the identity [x, ny] = 1 for some n ≥ 1 are called (right) Engel
groups (where, for an infinite group, xω−1 is interpreted as the inverse of x). By a
theorem of Zorn, the finite Engel groups are the finite nilpotent groups. Denoting
the pseudovariety of all such finite groups by Gnil, we conclude that it is defined
by the pseudoidentity [x, ωy] = 1.
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2) Consider the implicit operation

uω = ◦ω1 ([[x1, x2], [x1, x3]], x2, x3)([x, y], x, y).

Clearly every finite solvable group satisfies the pseudoidentity uω = 1. E. Plotkin
proposed in the Semigroup Conference held in St Petersburg in July, 1999, a con-
jecture which is equivalent to stating that the pseudoidentity uω = 1 defines the
pseudovariety Gsol of all finite solvable groups (see [24] for motivation and some ev-
idence towards the conjecture). Since the pseudoidentity uω = 1 only involves two
variables, the validity of this conjecture would entail a result due to Thompson [38]
stating that a finite group is solvable if and only if all its 2-generated subgroups are
solvable. While Thompson derived this result as a corollary of his complete clas-
sification of simple groups whose proper subgroups are solvable, a proof of which
extends over 410 published pages, Flavell [18] obtained a direct short and elemen-
tary proof of the same corollary.

3) The implicit operation

vω = ◦ω1 ((x2(x1x3)ω)ω, x2, x3)(xω , x, y)

has been considered by M. V. Volkov and the author in unpublished work showing
that vωyvω and vωx(vωy)ωvω describe two arbitrary H-equivalent group elements
of a finite semigroup.

3. Tame pseudovarieties

Steinberg and the author introduced in [7] the notion of a tame pseudovariety
as a reformulation of an earlier notion used in [6]. Before introducing these and
some related notions which are the object of the main results in this paper, we
recall the following theorem which is extracted from [7, Theorem 12.4] which in
turn is a simplified reformulation of [6, Theorem 5.10], and is the basic motivation
for the notion of tameness. Here, a pseudovariety is said to be decidable if there is
an algorithm to test membership in it.

Theorem 3.1. Let V1, . . . ,Vn be tame pseudovarieties of semigroups. Then their
semidirect product V1 ∗ · · · ∗Vn is decidable.

This remarkable result is in contrast with the general situation. Rhodes [33] has
shown that there is for instance a decidable pseudovariety V such that Sl ∗V is
undecidable, where Sl stands for the pseudovariety of all finite semilattices. Like
any finitely generated pseudovariety, Sl is tame, so Rhodes’ pseudovariety V is not
tame by Theorem 3.1.

As it is perhaps to be expected, the notion of tameness is somewhat technical.
It envolves several ingredients underlying which lies a suitable choice of an enlarged
signature.

By an implicit signature we mean a set σ of implicit operations over finite semi-
groups which contains the basic semigroup operation of multiplication. For short-
ness, as in [7, Section 8], we will say that σ is highly computable if it is a countable
recursively enumerable set and its members are computable operations. In the
following we assume that σ is a highly computable implicit signature. Profinite
semigroups are viewed as σ-algebras under the natural interpretation of semigroup
implicit operations.

An important example of an implicit signature is the canonical signature κ con-
sisting of the basic multiplication operation and the unary operation xω−1. The
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word “canonical” is not used here in any technical sense but it rather just reflects
the fact that the signature κ pervades most of finite semigroup theory. Clearly κ
is highly computable.

Let V be a pseudovariety of semigroups. The free object over a set A in the
variety of σ-algebras generated by V is denoted by ΩσAV. It is the σ-subalgebra of
ΩAV generated by the component projections xa (a ∈ A). In particular, we view
ΩσAV as a topological σ-algebra. By the discussion in Section 2, the topology of
ΩσAV induced from that of ΩAV is the initial topology for all homomorphisms of
σ-algebras into members of V. We say that V is σ-recursive if the word problem
for ΩσAV is decidable. By [6, Theorem 3.1] V is σ-recursive if and only if the variety
of σ-algebras generated by V has a recursively enumerable basis of identities.

By a graph we mean what is usually called in the literature a directed multigraph
given by a set of vertices V , a disjoint set of edges E, and adjacency functions
α, ω : E → V . A labeling of a graph G = V ∪ E by a semigroup S is a function
ϕ : G → S1 such that ϕE ⊆ S, where S1 denotes the smallest monoid containing
S as a subsemigroup. The labeling ϕ is said to be consistent if

(ϕαe)(ϕe) = ϕωe

for every edge e.
A relational morphism of semigroups is a relation µ : S → T between two semi-

groups S and T with domain S such that, as a subset of S×T , µ is a subsemigroup.
In this case, µ′ = µ ∪ {(1, 1)} is a relational morphism S1 → T 1. If ϕ and ψ are
labelings of a graph G respectively by the semigroups S and T , we say that they
are µ-related by a relational morphism µ : S → T if (ϕg, ψg) ∈ µ′ for every g ∈ G.

We say that a labeling ϕ of a graph G by a semigroup S is µ-inevitable for a
relational morphism µ : S → T if there is a µ-related consistent labeling of G by T .
A labeling of a finite graph by a finite semigroup S is said to be V-inevitable if it
is µ-inevitable for every relational morphism µ : S → T into a member T of V.
We say that a relational morphism µ : S → T characterizes V-inevitability if, for
every labeling of a finite graph by S, the labeling is V-inevitable if and only if it is
µ-inevitable.

Given a finite A-generated semigroup S, the author [3, Proposition 3] has shown
that, for every onto continuous homomorphism ϕ : ΩAS→ S and every labeling γ of
a finite graph by S, there is a labeling δ of the same graph by ΩAS such that ϕ◦γ = δ
and pV ◦ δ is consistent where pV is the natural projection ΩAS → ΩAV given by
restriction of implicit operations. (The continuity assumption is incorrectly left out
in the statement of [3, Proposition 3].) In the language of relational morphisms, this
property may be reformulated by saying that the closed relational morphism µS,V :
S → ΩAV generated by the pairs (a, a) with a ∈ A characterizes V-inevitability
since, by the universal property of ΩAS, a pair (s, π) ∈ S×ΩAV lies in µS,V if and
only if there is some ρ ∈ ΩAS such that ϕ(ρ) = s and pV(ρ) = π. This is a sort of
compactness theorem but it is not directly usable to derive computability results
since ΩAV is in general far too large as it is uncountable. The basic idea in [6] is to
work with a computable part of ΩAV, namely a suitable relatively free σ-algebra
ΩσAV.

Following [6, Section 4] but again with a similar reformulation in the language of
relational morphisms, we say that V is σ-reducible if for every finite semigroup S
the relational morphism νσS,V : S → ΩσAV generated by the pairs (a, a) with a ∈ A
characterizes V-inevitability. On the other hand, as in [7, Section 8], we say that
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V is weakly σ-reducible if, for every finite semigroup S, the intersection of µS,V
with S × ΩσAV characterizes V-inevitability. Note that, by elementary point set
topology, since ΩσAV is endowed with the induced topology of ΩAV, the closure
νσS,V of νσS,V in S × ΩAV coincides with µS,V ∩ (S × ΩσAV).

A recursively enumerable pseudovariety V of semigroups is said to be tame if it
is σ-recursive and σ-reducible for some highly computable implicit signature σ. If
the pseudovariety V is tame with respect to the implicit signature σ then we also
say that it is σ-tame.

The most important example of a tame (in fact κ-tame) pseudovariety to date
is the pseudovariety G of all finite groups. This was proved by Ash [11] up to
two translations. The need for one of these translations comes from the fact that
Ash considered edge-labelings of finite graphs by finite monoids, consistency in
groups being replaced by every undirected circuit having trivial label, where the
label of an undirected path is obtained by successively multiplying the labels of its
edges, inverted if the edge is traversed by the path in the opposite of its direction.
That this leads to an equivalent property follows from [3, Section 4]. The other
translation is required because Ash did not use the natural relational morphism
νκS,V but rather the submonoid of S × ΩκAG generated by all pairs (a, a) together
with all pairs (s, aω−1) such that sas = s. However, the equality between the
two relational morphisms was proved in [6, Lemma 4.8]. Delgado [14] proved that
Ash’s relational morphism is closed in S×ΩκAG. Hence νκS,G = νκS,G, a circumstance
which is rather special.

Another equally important example of a κ-tame pseudovariety which has been
announced by J. Rhodes [34] is the pseudovariety A of all finite aperiodic semi-
groups. See McCammond [30] and Zhiltsov [39] for two proofs of κ-recursiveness.
Using Theorem 3.1, it follows that the Krohn-Rhodes complexity of finite semi-
groups (see the discussion following Corollary 6.3) is computable.

Steinberg proved in [37] that the pseudovariety Gp is weakly κ-reducible and it
is obviously κ-recursive since ΩκAGp is the free group on the set A, which follows
from a result of Baumslag [12] proving that the free group is residually a finite p-
group. However, by Baumslag’s result, Gp may not be defined by identities in the
signature κ and so, by [6, Proposition 4.2], Gp is not κ-reducible. So, the question
of whether κ might be enlarged to some highly computable implicit signature σ so
that Gp is σ-tame remained open. In Section 6 we show how to apply the techniques
developed in Section 2 to obtain such a signature. In the next section, we introduce
some preliminary results which we require for that purpose.

4. The subgroup theorem

We say that a pseudovariety of groups V is closed under extension if, for any
group G and normal subgroup N such that N and G/N both lie in V, G also
belongs to V. Equivalently, the pseudovariety V is an idempotent for semidirect
product. Throughout this section we assume that V is a pseudovariety of groups
closed under extension. See [28, Sections 1 and 2] for a more systematic study of
pro-V topologies with respect to pseudovarieties of groups.

The subgroup theorem states that an open subgroup of a free pro-V group is
itself a free pro-V group (cf. [19, Proposition 15.27]). Since a refined version of
this result will be used in Section 6, it seems appropriate to present here a rather
short and elementary proof. The proof depends on the following lemma which is
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easily extracted from the proof of [28, Proposition 1.9], which in turn reformulates
[20, Lemma 3.1] where an elementary four-line proof attributed to J. Poland is
presented. The proof found in [28] has the advantage of leading to better estimates.

Lemma 4.1. Let G be a group which is residually in V endowed with the pro-V
topology. Let H be a clopen subgroup of G. Then every normal subgroup U of H
such that H/U ∈ V contains a normal subgroup UG of G such that G/UG ∈ V
and (G : UG) ≤ (G : U)!.

Proof. In [28], the group UG is taken to be the core of U , that is the intersection
of all conjugates of U in G and, using the hypothesis that V is extension closed,
it is shown that G/UG ∈ V. As it is well known, say by letting G act on right
cosets of U by right translation, the kernel of this action is contained in UG and
the desired inequality follows.

It is deduced in [28, Proposition 1.9] that the pro-V topology of H is the induced
topology from the pro-V topology of G. The estimate added above allows us to
prove the following finer result.

Lemma 4.2. Let G be a group which is residually in V endowed with the pro-V
topology. Let H be a clopen subgroup of G. Then the pro-V metric dH and the
restriction to H of the pro-V metric dG have the same Cauchy sequences.

Proof. Denote by d and r respectively the restriction of dG and rG to H . We
claim that the following inequalities of functions hold in the sense that they hold
whenever the functions are evaluated at the same element of H ×H :

rH ≤ r ≤ ((G : H) · rH)!(4.1)

To prove the claim, we have already observed in the proof of Lemma 2.1 that the
first inequality holds in a much more general setting. For the second inequality,
suppose that u, v ∈ H are distinct and let ϕ : H → K be a homomorphism into a
member of V such that ϕu 6= ϕv. Then the kernel U of ϕ is a normal subgroup
of H and ϕ induces a one-to-one homomorphism ϕ′ : H/U → K. In particular,
H/U ∈ V and so, by Lemma 4.1, U contains a normal subgroup UG of G such
that G/UG ∈ V and (G : UG) ≤ (G : U)!. By taking |K| minimum, so that
(H : U) = rH(u, v), we deduce that

r(u, v) ≤ (G : UG) ≤ (G : U)! = ((G : H) · (H : U))! = ((G : H) · rH(u, v))!

which proves the claim.
To finish the proof, in view of the first inequality in (4.1), every sequence of H

which is Cauchy with respect to the metric dH is also Cauchy for d. For the converse,
let f(n) = ((G : H) ·n)!. Since f is an increasing function, a little calculation shows
that, for any ε > 0,

d ≤ 2−f(d− log2 εe) ⇒ dH ≤ ε

which implies that Cauchy sequences for d are also Cauchy sequences for dH .

Theorem 4.3. Let H be a subgroup of a free group G in the variety generated by V
and suppose H is a free factor of a clopen subgroup in the pro-V topology of G.
Then the completion of H with respect to the restriction of the pro-V metric dG
of G is a free pro-V group.
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Proof. If V is the trivial pseudovariety, consisting only of singleton groups, then the
result is trivial. Otherwise, V contains some Z/pZ and therefore also Gp for some
prime p. Since the free group is residually a finite p-group, we may assume that
the group G is free. Hence H is also a free group by the Nielsen-Schreier theorem.
The completion of H with respect to the metric dH is therefore a free pro-V group.
Since, by Lemmas 2.1 and 4.2, dH and the restriction of dG to H have the same
Cauchy sequences, the completion of H with respect to this restriction is the same
topological group and so it is a free pro-V group.

This brings us to the subgroup theorem which is now a simple corollary of a
special case of Theorem 4.3.

Corollary 4.4. Let H be a clopen subgroup of a free pro-V group G. Then H is
itself a free pro-V group.

Proof. Let X be a free generating set for G. Then the subgroup G′ generated by X
is dense in G and it is free in the variety generated by V. Let H ′ = H ∩G′. Since
H is clopen in G, H ′ is clopen in G′. Moreover, since H is open, H ′ is dense in H .
Hence H is the completion of H ′ with respect to the restriction of the metric dG.
Since H ′ is trivially a free factor of itself, by Theorem 4.3 it follows that H is a free
pro-V group.

5. Computing closures of subgroups

We start this section by recalling some constructions from geometric group theory
which we require. See [28, Section 2.1] for details.

For a subset Y of a group G, let 〈Y 〉 denote the subgroup generated by Y . As
stated in [36, 28], if G is a free group on a finite set A, then we associate to Y a
finite inverse automaton as follows:
• take a linear graph labeled by each word in Y , with individual (directed)

edges labeled by elements of A so that the label (in the sense of Section 3) of
one of the (undirected) simple paths traversing the whole graph is the original
word;
• glue these graphs together by identifying all their ends to a single vertex v0

which is declared to be the unique initial and final state;
• fold edges so that the resulting automaton becomes inverse, that is the trans-

formations defined by the labels are partial bijections: whenever there are
two edges with the same label leaving from the same state or arriving at the
same state, identify the two edges and repeat this procedure until no further
identifications of this kind are possible.

This automaton is reduced in the sense that it has a unique initial and final state,
from which every state is accessible, and there is no state of degree 1 except possibly
the initial and final state. The automaton recognizes precisely the reduced group
words in the alphabet A which lie in 〈Y 〉. Conversely, every finite reduced inverse
automaton A over the alphabet A recognizes a finitely generated subgroup of the
free group on A whose associated automaton is A, namely the fundamental group of
the underlying graph. It can be shown that the automaton A depends only on the
subgroup 〈Y 〉 and not on the specific generating set Y [29]. For a finitely generated
subgroup H of the free group G on a set A, we represent this automaton by A(H).

A congruence on an inverse automaton A is an equivalence relation ∼ on its set
of states which is compatible with the action of the corresponding input alphabet A,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TAMENESS OF PSEUDOVARIETIES OF GROUPS 403

both in the forward and backward directions, so that an induced action as partial
bijections for the elements of A is obtained on the set of ∼-classes of states. The
resulting quotient automaton is denoted A/∼.

As in [28, Section 2.1], let H and K be finitely generated subgroups of a free
group G such that H ⊆ K, and consider an associated congruence ∼H,K on A(H)
defined as follows. In the automaton A(H), fix for each state p a reduced word
up labeling a path from the initial state to p. The congruence ∼H,K identifies two
states p and q if upu−1

q ∈ K. Let L be the finitely generated subgroup of G such
that A(L) = A(H)/∼H,K . The definition of the congruence ∼H,K is made precisely
so that the quotient A(L) of A(H) embeds in A(K), from which it follows that L
is a finitely generated free factor of K by [28, Proposition 2.6].

Let V be a nontrivial pseudovariety of groups closed under extension and con-
sider the free group F = ΩκnV endowed with the pro-V topology. The following
result is implicit in [35, 28] and is presented here in order to mention a basic idea
underlying most of what follows.

Proposition 5.1. Suppose a finitely generated subgroup H of F is not dense and
say ϕ : F → G is a homomorphism onto a member of V such that ϕH $ G. Then
one can compute from ϕ a closed finitely generated free factor L of some clopen
subgroup K of F such that A(L) is a quotient of the automaton A(H).

Proof. Let K = ϕ−1ϕH . Then K is a proper clopen subgroup of F , hence
finitely generated, containing H . Consider the congruence ∼H,K on A(H) as de-
fined above and again let L be the finitely generated subgroup of F such that
A(L) = A(H)/∼H,K . Then, as observed above, L is a free factor of K. Moreover,
by [35, Corollary 3.8] L is a closed subgroup of F . This completes the proof since
all the constructions are effective.

Let p be a prime integer. We consider on the free group F = ΩκnGp the pro-Gp

topology, whose open subgroups have index which is a power of p.
Ribes and Zalesskĭı [35] have shown how to compute the closure in F of a finitely

generated subgroup H . Margolis, Sapir and Weil [28] further refined that result by
giving an efficient formulation of the algorithm. As motivation for the main ideas
in the proof of the key result in the next section and in preparation for that proof,
we now present the refined formulation of the algorithm of which Proposition 5.1
is one of the essential ingredients.

For each reduced group word w ∈ F and each x ∈ X , let |w|x denote the sum of
the exponents in the occurrences of the letter x in the word w. For each m-tuple
(w1, . . . , wm) of elements of F , let Ap(w1, . . . , wm) be the m×n matrix with entries
in Z/pZ whose (i, j)-entry is the mod p-class of |wi|xj .

Proposition 5.2 ([28]). Let H be a finitely generated subgroup of the free group F .
If H is dense, then H contains a subgroup of rank n which is dense in F . Moreover,
if {w1, . . . , wn} is a generating set of the subgroup H, then H is dense in F if and
only if the matrix Ap(w1, . . . , wn) is invertible over the field Z/pZ.

Proposition 5.3 ([28]). Suppose {w1, . . . , wm} is a generating set of the subgroup
H of the free group F such that the matrix Ap(w1, . . . , wm) has rank less than n over
the field Z/pZ. Then the restriction homomorphism ϕ : F = ΩκnGp → ΩκnV(Z/pZ),
where V(Z/pZ) is the pseudovariety of all finite Abelian groups of exponent p, is
such that ϕH $ ΩκnV(Z/pZ).
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One may then proceed by finding a finite set {v1, . . . , vr} of generators for a free
factor K of a clopen subgroup of F according to Proposition 5.1. Then express the
wi in terms of the vj and repeat the procedure until a closed subgroup K is found in
which H is dense, that is K is the closure of H . Since each time this construction
is applied the number of states goes down strictly or at the next step we find
a dense subgroup, the process will stop in a finite number of steps. Moreover,
by Lemmas 2.1 and 4.2, the induced topology on each successive closed subgroup
approximating the closure of H coincides with its own pro-V topology, so that the
algorithm does indeed produce the closure of H in ΩκnV. A more detailed analysis
of this procedure further allowed Margolis, Sapir and Weil to deduce that a set of
generators for the closure of H is actually obtained in polynomial time.

Let us put these results into a more general framework. Say that denseness is
decidable for the pseudovariety of groups V if V is recursively enumerable and there
is an algorithm to test whether, given a finite subset Y of the free group ΩκnV, the
subgroup 〈Y 〉 is dense. By the above, Gp is an example of such a pseudovariety.
For the purpose of finding an efficient algorithm, Proposition 5.3 plays a role in the
case of p-groups. But, just for decidability purposes, it is superfluous as the next
trivial observation shows.

Proposition 5.4. If V is a recursively enumerable pseudovariety of groups with
decidable denseness, then there is an algorithm to find for each non-dense finitely
generated subgroup H of ΩκnV a homomorphism ϕ : ΩκnV → G onto some G ∈ V
such that ϕH $ G.

Proof. That the subgroup is not dense is equivalent to the existence of such a
homomorphism. Knowing that one exists, since V is recursively enumerable, we
can just by brute force try successively each onto homomorphism ϕ : ΩκnV → G
with G ∈ V until one is found with the required property.

The above discussion proves most of the following result. Missing details may
be found in [35, 28].

Theorem 5.5. Let V be an extension closed pseudovariety of groups. Let H be a
finitely generated subgroup of the free group ΩκnV and let H be its closure.

a) The group H is a finitely generated subgroup of ΩκnV which is a free factor of
a clopen subgroup.

b) The rank of H does not exceed that of H.
c) The automaton A(H) is a quotient of A(H).
d) If V is recursively enumerable and has decidable denseness, then there is an

algorithm to construct a finite set of generators of H.

Moreover, in view of Theorem 4.3, we obtain the following result.

Theorem 5.6. Let V be a nontrivial extension closed pseudovariety of groups and
let H be a closed subgroup of the free group F = ΩκnV. Then the completion of H
with respect to the restriction of the metric dF to H is a free pro-V group.

A pseudovariety V of groups is called arborescent in [8] if (V ∩Ab) ∗V = V,
where Ab denotes the pseudovariety of all finite Abelian groups. The name is
justified by the result that arborescent pseudovarieties V are those for which the
profinite Cayley graph of each ΩnV is a profinite tree [21, 8]. In particular, an
extension closed pseudovariety of groups is arborescent.
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On the other hand, a pseudovariety of groups is called an RZ-pseudovariety
in [37] if the closure of a finitely generated subgroup of ΩκnV is itself finitely gen-
erated and the product of closed finitely generated subgroups is closed. By [35,
Proposition 3.4 and Theorem 5.1], extension closed pseudovarieties of groups are
RZ-pseudovarieties.

The following extension of Ash’s result is due to Steinberg [37, Theorem 11.12].

Theorem 5.7. Every arborescent RZ-pseudovariety is weakly κ-reducible.

In particular, an extension closed pseudovariety of groups is weakly κ-reducible.

6. Tameness of extension closed pseudovarieties of groups

Throughout this section we consider a nontrivial pseudovariety V of groups which
is closed under extension. We always consider on the free group ΩκnV the pro-V
topology.

Consider the implicit signature σ (depending on V) obtained by adding to the
canonical signature κ all implicit operations of the form

◦ω−1
j (w1, . . . , wn)(v1, . . . , vn)(6.1)

with j = 1, . . . , n, the wi κ-terms such that the subgroup 〈w1, . . . , wn〉 is dense
in ΩκnV, and the vi κ-terms such that each vi induces the same element of the free
group ΩκnV as wi.

The aim of this section is to establish the following result.

Theorem 6.1. Let V be a nontrivial extension closed pseudovariety of groups.
a) If V has decidable denseness, then the implicit signature σ is highly com-

putable.
b) The group ΩσnV is the free group of rank n. More precisely, ΩσnV = ΩκnV

with each operation in σ \ κ restricting to a component projection on V.
c) The pseudovariety V is σ-reducible.

Note that (a) is the only part of Theorem 6.1 with a computability hypothesis
(and thesis). Yet, the other two parts seem to be worthless on their own.

Before proceeding with the proof of Theorem 6.1, it is worth drawing as a con-
sequence the main theorem of this paper.

Theorem 6.2. Every recursively enumerable extension closed pseudovariety of
groups which has decidable denseness is tame.

Proof. Let V be a pseudovariety satisfying the hypothesis of the theorem and con-
sider the associated implicit signature σ. Since σ is highly computable by Theo-
rem 6.1(a), it suffices to show that V is σ-tame. That V is σ-recursive follows from
Theorem 6.1(b) as the solution of the word problem in the free group also solves the
word problem in ΩσnV. Finally, σ-reducibility of V is given by Theorem 6.1(c).

As an immediate corollary, in view of Proposition 5.2, we obtain the following
result.

Corollary 6.3. The pseudovariety Gp is tame.

It follows from the Krohn-Rhodes decomposition theorem [26] that every finite
semigroup S divides a wreath product in which the factors are alternately finite
aperiodic semigroups and finite groups; moreover, the group factors may be taken
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from the extension closed pseudovariety of groups generated by the subgroups of S.
The group complexity of a finite semigroup is the least number of group factors
without any further restriction on them. When raising the question of computability
of group complexity, Krohn and Rhodes already proposed refined versions of the
complexity function by restricting its domain to finite semigroups with subgroups
in a given extension closed pseudovariety H of groups and considering only group
factors from H (cf. [26, 27]). The cases of the pseudovarieties of p-groups and
solvable groups naturally deserve special attention.

In view of Theorem 3.1, the computability of the complexity function cH with
respect to a certain extension closed pseudovariety H of groups follows from tame-
ness of the pseudovarieties H and A. Thus, Corollary 6.3 immediately yields the
following corollary.

Corollary 6.4. If A is tame, then the p-group complexity of finite semigroups in
which all subgroups are p-groups is computable.

The remainder of the section is dedicated to the proof of Theorem 6.1.

Proof of Theorem 6.1(a). By successively enumerating all pairs w1, . . . , wn and
v1, . . . , vn of n-tuples of κ-terms in the alphabet {x1, . . . , xn}, over all positive
integers n, and for each of them testing whether the subgroup 〈w1, . . . , wn〉 is
dense in ΩκnV and whether wi = vi in ΩκnV, discarding those pairs of n-tuples for
which one of these tests fails, we effectively enumerate the elements of the implicit
signature σ, except possibly for those in κ. Hence σ is recursively enumerable. Since
xω−1 = limn→∞ x

n!−1, by the analogue of Corollary 2.5 for (ω − 1)-powers every
element of σ is a computable implicit operation. Hence σ is highly computable.

The following simple observation contains the central idea of the paper.

Lemma 6.5. Let w1, . . . , wn be κ-terms over the alphabet {x1, . . . , xn} such that
the subgroup 〈w1, . . . , wn〉 is dense in ΩκnV. Then

(w1, . . . , wn)ω = id = (x1, . . . , xn) in O((ΩnV)n).(6.2)

Proof. By definition of the pro-V topology, given any G ∈ V and any homo-
morphism ϕ : ΩκnV → G, the restriction of ϕ to the subgroup H generated by
{w1, . . . , wn} is onto. In other words, the images ϕxi of the free generators may
be expressed by means of a (group) word in terms of the images ϕwj of the gen-
erators. This means that the operator (w1, . . . , wn) ∈ O(Gn) is invertible. In
particular, since the monoid O(Gn) is finite, it follows that

(w1, . . . , wn)ω = id = (x1, . . . , xn) in O(Gn).(6.3)

Let (π1, . . . , πn) = (w1, . . . , wn)ω. By (6.3), every G ∈ V satisfies the pseudoiden-
tities πi = xi (i = 1, . . . , n), that is V satisfies them, which establishes (6.2).

Proof of Theorem 6.1(b). Consider an implicit operation of the form (6.1) with the
wi κ-terms such that the subgroup 〈w1, . . . , wn〉 is dense in ΩκnV and the vi κ-
terms such that vi = wi in ΩκnV. Then the operation coincides in O((ΩnV)n) with
◦ωj (w1, . . . , wn) and this operation is the projection xj by Lemma 6.5.

Proof of Theorem 6.1(c). The departure point for the proof that the pseudovariety
V is σ-reducible is that V is weakly κ-reducible (Theorem 5.7). Indeed, from
that result it follows that it suffices to show that, given any finite n-generated
semigroup S, any element s ∈ S, and any group word w ∈ ΩκnV belonging to νκS,Vs,
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there is some π ∈ ΩσnS such that π = w in V and ϕπ = s, where ϕ : ΩAS → S is
the canonical homomorphism determined by the choice of generators of S. In other
words, in view of Theorem 6.1(b), it suffices to show that

νκS,V ⊆ νσS,V.(6.4)

The first step is to reformulate the problem in terms of rational languages. Let

Ls = (ϕ−1s) ∩ {x1, . . . , xn}+.
Then Ls is a rational language whose closure Ls in the free group ΩκnV is the set
νκS,Vs. Denote by ψ the canonical projection ΩnS → ΩnV given by restriction of
implicit operations to V. Since ψ is continuous and ΩnS is compact, the mapping
ψ is closed. Denoting the closure of Ls in ΩnS by Cl(Ls), we deduce that

νκS,Vs = Ls = ψ(Cl(Ls)) ∩ ΩκnV.

Hence, for a group word w ∈ ΩκnV, we have

w ∈ νκS,Vs if and only if Cl(Ls) ∩ ψ−1w 6= ∅.

Thus, to show that a given w ∈ νκS,Vs belongs to νσS,Vs, it suffices to establish that

Cl(Ls) ∩ (ψ−1w) ∩ ΩσnS 6= ∅.
Dropping reference to the finite semigroup S and the element s, it suffices to show
that, for any rational language L over the alphabet {x1, . . . , xn} and any group
word w,

w ∈ L⇒ Cl(L) ∩ (ψ−1w) ∩ ΩσnS 6= ∅.(6.5)

The next step consists in a reduction to the case in which the rational language
L is a subsemigroup of {x1, . . . , xn}+. The essential ingredient is the Pin and
Reutenauer [31] rules to compute the closure of a rational language in ΩκnV: for
rational languages L and K,

(1) L = L if L is finite;
(2) L ∪K = L ∪K;
(3) LK = L ·K;
(4) L+ = 〈L〉.
(In fact it suffices for this purpose to assume that V is an RZ-pseudovariety,

cf. [35, Theorem 5.5] and [37, Theorem 9.4].) If a language L is finite, then any w
in L is also an element of Cl(L)∩ψ−1w∩ΩσnS and so finite languages satisfy (6.5).
We now show that union and concatenation preserve property (6.5). So, suppose L
and K are rational languages verifying (6.5). If w ∈ L ∪K = L ∪K, then at least
one of the sets Cl(L)∩ (ψ−1w)∩ΩσnS and Cl(K)∩ (ψ−1w)∩ΩσnS is nonempty and,
therefore, so is their union Cl(L∪K)∩ (ψ−1w)∩ΩσnS, which shows that L∪K still
satisfies (6.5). On the other hand, if w ∈ LK = L ·K, say w = uv with u ∈ L and
v ∈ K, then the sets P = Cl(L) ∩ (ψ−1u) ∩ ΩσnS and Q = Cl(K) ∩ (ψ−1v) ∩ ΩσnS
are both nonempty. Since

(ψ−1u)(ψ−1v) ⊆ ψ−1(uv) = ψ−1w(6.6)

and Cl(LK) = Cl(L) ·Cl(K), as multiplication on a compact semigroup is a closed
mapping, it follows that the set Cl(LK)∩(ψ−1w)∩ΩσnS contains PQ and, therefore,
it is also nonempty. Hence LK again satisfies (6.5). Thus it remains to show that
the plus operation L 7→ L+ also preserves property (6.5).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



408 JORGE ALMEIDA

A further useful step is provided by the following result which is an adaptation
of Anissimov and Seifert’s theorem stating that the rational subgroups of a group
are the finitely generated subgroups [10]. For a proof one can follow closely see the
presentation given by Berstel [13]; we will only describe the minor changes.

Lemma 6.6. Let L ⊆ {x1, . . . , xn}+ be a rational language. Then there is a (com-
putable) finite subset Y of ΩκnS such that:

i) Cl(Y +) ⊆ Cl(L+);
ii) 〈Y 〉 = 〈L〉.

Proof. Consider first a subset of ΩκnS of the form

K = w0T
∗
1w1 · · ·T ∗r wr(6.7)

where the wi are elements and the Ti are subsets of ΩκnS. Set

ui = w0w1 · · ·wi (i = 0, . . . , r),
vi = wi+1 · · ·wr (i = 0, . . . , r − 1),
vr = 1,
Si = uiTiviu

ω−1
r (i = 1, . . . , r),

P = {ur} ∪ S1 ∪ . . . ∪ Sr.
Since uω−1

r = limk→∞ uk!−1
r , we have uω−1

r ∈ Cl(K+) and so Cl(P+) ⊆ Cl(K+).
Since, in the free group ΩκnV, Si = uiTiu

−1
i , a little calculation shows that 〈P 〉 =

〈K〉.
The proof may now proceed by induction on the star-height of the rational

language L, the above step allowing us to reduce star-height by 1 whenever it is
positive. Since star-height 0 languages are finite languages, this concludes the proof
of the lemma.

Applying Lemma 6.6 and the observation that L+ = 〈L〉, we obtain that, to
show that a rational language of the form L+ satisfies (6.5), it suffices to establish
that, for any finite subset Y of ΩκnS,

w ∈ 〈Y 〉 ⇒ Cl(Y +) ∩ (ψ−1w) ∩ ΩσnS 6= ∅.(6.8)

This brings us to the core of the proof of Theorem 6.1 involving the calculation of
the pro-V closure of finitely generated subgroups of the free group ΩκnV. A further
remark which is useful at this point is that not all group words w ∈ ΩκnV need to
be considered in (6.8). Indeed, since both Cl(Y +) and ΩσnS are κ-subsemigroups
of ΩnS, using (6.6) we conclude that it suffices to show

Cl(Y +) ∩ (ψ−1w) ∩ ΩσnS 6= ∅(6.9)

for any w in a generating set for the closure in ΩκnV of the subgroup 〈Y 〉.
In the special case in which the finitely generated subgroup 〈Y 〉 is dense in ΩκnV,

we may readily conclude the proof. Indeed then there are elements w1, . . . , wn
of 〈Y 〉 such that the subgroup 〈w1, . . . , wn〉 is dense in ΩκnV. Since Cl(Y +) is a
κ-subsemigroup of ΩnS, we may take w1, . . . , wn ∈ Cl(Y +) with the same property.
By Lemma 6.5, setting

(π1, . . . , πn) = (w1, . . . , wn)ω,

the restriction of each πi to V coincides with the component projection xi. Since
each component of the finite power (w1, . . . , wn)k belongs to Cl(Y +), each πi is an
element of Cl(Y +). Hence πi ∈ Cl(Y +) ∩ (ψ−1xi) ∩ ΩσnS, which proves (6.9) for
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w = xi. Moreover, note that each generator xi is obtained as the projection of a
σ-term in Cl(Y +) which uses only one operation symbol from σ \ κ, namely

xi = ◦ω−1
i (w1, . . . , wn)(w1, . . . , wn).

Hence, every element of ΩκnV can be obtained as a σ-term in Cl(Y +) which only
uses symbols of σ \ κ and without nesting them.

It remains to treat the case in which the finitely generated subgroup H = 〈Y 〉
is not dense in ΩκnV. Set Y = {w1, . . . , wm}. By Theorem 5.5, there is a finite set
Z = {z1, . . . , zr} of elements of ΩκnS such that Z generates the closure K = H,
which is a free factor of a clopen subgroup of ΩκnV, and A(K) is a quotient of
the automaton A(H). Since the subgroup K contains H , one may rewrite the
elements of Y , viewed as elements of ΩκnV, as reduced group words w′1, . . . , w

′
m

(and therefore as κ-terms) in the elements of Z.

Remark. A word of warning concerning notation. As we have done with words, we
are viewing κ-terms in various contexts: either as abstract κ-terms or as represent-
ing implicit operations either on all finite semigroups or just on V. This is clearly
an abuse of notation but the context should make it clear at which level the κ-term
is being taken. Each element of the free group ΩκnV has many representations as
a κ-term and even as the restriction to V of elements of ΩκnS. We do not claim
that the zi have liftings ẑi to ΩκnS such that the elements of Y , viewed as elements
of ΩκnS, have expressions as κ-terms in the ẑi. It is easy to give examples in which
this is not possible. On the other hand, whenever we talk about a reduced group
word w, we associate with it the unique κ-term obtained from w by replacing every
exponent −1 with ω − 1.

Set Y ′ = {w′1, . . . , w′m}, viewed as a subset of ΩκrS. We claim that, if

w ∈ 〈Y ′〉 ⇒ Cl((Y ′)+) ∩ (ψ−1w) ∩ ΩσrS 6= ∅,(6.10)

then (6.8) also holds. Here, another abuse of notation is taking place as we are
still representing by ψ the restriction mapping ΩrS→ ΩrV and by Cl( ) the pro-V
closure in ΩκrV. Suppose then that v ∈ H . There exists a sequence of group words
(uk)k such that

v = lim
k→∞

uk(w1, . . . , wm).

Consider the sequence (uk(w′1, . . . , w
′
m))k. Since this sequence has some convergent

subsequence in the compact group ΩrV, we may without loss of generality assume
that the sequence itself is convergent. Denote the limit by v′. Set

θ : ΩrV → ΩnV
xi 7→ zi (i = 1, . . . , r)

to be a continuous homomorphism. Then, applying θ to v′ we obtain v. Now, since
Z generates a closed subgroup of ΩκnV and V is extension closed, by Theorem 5.6
the mapping θ is an isomorphism of topological groups onto the closure ofK in ΩnV.
In particular, θ is one-to-one. Therefore v′ ∈ ΩκrV so that v′ ∈ 〈Y ′〉. By (6.10),
there is some π′ ∈ Cl((Y ′)+) ∩ ΩσrS whose restriction to V is v′.

To establish the claim, it remains to construct a σ-term π ∈ Cl(Y +) whose
restriction to V is v. By the special case, and induction on the number of states of
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the automaton A(H), we may assume that the σ-term π′ has no nested operation
symbols from σ \ κ and, more precisely, that π′ is a κ-term in σ-terms of the form

◦ω−1
j (t′1, . . . , t

′
r)(s

′
1, . . . , s

′
r) with t′i, s

′
i ∈ ΩκrS such that ψt′i = ψs′i(6.11)

where the s′i belong to Y ′. Since the operation symbols in κ, namely product and
the (ω − 1)-power, stay within the closed subsemigroup of ΩnS generated by the
arguments, and since κ ⊆ σ, it suffices to deal with operations of the form (6.11).
By the same reasoning, the operation ◦ω−1

j (t′1, . . . , t′r) also preserves membership in
closed subsemigroups of ΩnS. Summarizing, we want to modify an operation of the
form (6.11), by replacing the s′i by si ∈ ΩκnS so that ψsi = ψθs′i, and si ∈ Cl(Y +).
But this is easy: Y ′ was obtained from Y by writing the elements of this set, viewed
as group words, as κ-terms in the new generators z1, . . . , zr. This implies that to
each s′i corresponds some si ∈ Y such that ψsi = ψθs′i (= ψθt′i). Thus we may take

π = ◦ω−1
j (θt′1, . . . , θt

′
r)(s1, . . . , sr).

In this way we conclude the verification of the remaining case in the proof of The-
orem 6.1(c).
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groupe libre—addenda, Portugal. Math. To appear.
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