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Abstract

Modern infectious disease epidemiology has a strong history of using mathe-
matics both for prediction and to gain a deeper understanding. However the study
of infectious diseases is a highly interdisciplinary subject requiring insights from
multiple disciplines, in particular a biological knowledge of the pathogen, a statisti-
cal description of the available data and a mathematical framework for prediction.
Here we begin with the basic building blocks of infectious disease epidemiology –
the SIS and SIR type models – before considering the progress that has been made
over the recent decades and the challenges that lie ahead. Throughout we focus on
the understanding that can be developed from relatively simple models, although
accurate prediction will inevitably require far greater complexity beyond the scope
of this review. In particular, we focus on three critical aspects of infectious disease
models that we feel fundamentally shape their dynamics: heterogeneously struc-
tured populations; stochasticity; and spatial structure. Throughout we relate the
mathematical models and their results to a variety of real-world problems.

1 Introduction

Infectious diseases pose a considerable challenge to modern life. In the 1950s and 60s,
with the development of safe vaccines and antibiotics it was largely felt that this age-
old foe was beaten. However, recent experience with the evolution of drug-resistant
pathogens, the emergence of new infections and the challenges of cost-effective control
highlight that we are still a long way from eradicating most diseases. This review is fo-
cussed upon how tools from mathematics and theoretical physics can provide meaningful
insights into infectious disease dynamics and hence provide both a general understand-
ing of the patterns and processes as well as enable a thorough understanding of the
impact of proposed control measures.

Infectious diseases are ubiquitous. It appears that being parasitic, and obtaining all
your needs from another living thing, is an incredibly successful strategy. Even very
simple organisms fall prey to infection, bacteria themselves can be infected by viruses

1



(termed phage), while higher organisms often have a range of specific pathogens that
depend on these organisms for their survival. Examples of high impact and high profile
infections exist from every group of living organisms: agricultural crops are commonly
infected with fungal or viral pathogens [223]; wild plant populations can be devastated
by infection (such as Sudden Oak Death [94]); insects also suffer with honey bees being
a notable example potentially related to Colony collapse disorder [86]; amphibians are
likewise infected, with Chytrid fungus destroying populations of frogs worldwide [61].
However, infection in mammals has received by far the most attention both due to the
impact on livestock production systems (eg Foot-and-Mouth disease [147, 90] or Clas-
sical Swine Fever [137]) and the effects on human health. Globally, it is estimated that
one quarter of all human deaths are due to infectious diseases [254].

This review focuses on infectious diseases, those illnesses caused by an infecting
organism that can be spread between individuals. This broad definition includes well-
known viral infectious such as measles, influenza and HIV or bacterial infections such
as meningitis and cholera, but also includes infection with fungal pathogens, proto-
zoa (such as the organism that causes malaria) and larger parasites (such a helminths
and other worms). Throughout this review, we generally focus on viral or bacterial
pathogens, as these are most commonly studied in the literature, and we will generally
use the term pathogen to refer to any infecting organism.

The study of infectious diseases naturally arises from two sources: the scientific desire
to understand the patterns of mortality (death) and morbidity (illness) that surround
us; and the desire to reduce illness and suffering. These two elements are epitomised
by the work of John Snow in the 1840’s and 1850’s. In what is widely regarded as the
birth of scientific epidemiology, Snow showed how clusters of cholera cases in London
were related to the local water supply, and by eliminating this source (famously re-
moving the handle of the Broad Street water pump) helped bring the epidemic under
control. However, Snow’s approach was predominantly statistical, looking for patterns
in existing data. It was not until the pioneering work of Kermack and McKendrick
[155] that epidemiology was placed on a strong mathematical foundation. Even so, it
was only with the advent of computers, which could rapidly integrate the underlying
ODE models, that the modelling of infectious disease dynamics became a practical tool
[16]. The predictive power of these modelling techniques was first illustrated by work on
Rubella using age-structured models (see Section 3) when it was shown that although
low levels of vaccination would reduce the overall prevalence of infection, it would de-
lay infection to later in life so that more women would be infected during pregnancy.
Hence a limited vaccination campaign would actually increase the amount of congenital
rubella syndrome in unborn babies [8]. In more recent times, predictive mathematical
models were used to inform control of the Foot-and-Mouth outbreak in 2001 (one of the
first times models were used during an epidemic [147, 90]), helped inform planning for
pandemic outbreaks [88, 175], and used for cost-effectiveness calculations before imple-
mentation of novel vaccine programmes [18, 244]. This review follows this chronological
progress and basic philosophy, using simple models to develop an intuitive understand-
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ing of infectious disease dynamics before describing the complexities that would need
to be included to make such models practically useful.

The epidemiology of infectious diseases is a complex and multi-factoral subject
[16, 151, 74]. As such, no single review can hope to cover all aspects. Here we fo-
cus largely on the population dynamics of infectious diseases – how the number of
individuals infected changes dynamically over time. This article therefore relies heavily
on tools from mathematics and theoretical physics (the theory of differential equations
and dynamical systems, statistical mechanics, and stochastic processes). However, there
are multiple disciplines that feed into epidemiology that we do not cover. Statistics is
one with which many readers will be familiar; statistics plays a vital role in both inter-
preting the observed infection data (accounting for the many biases in reporting) and
in parameter inference when we attempt to fit models to data. Obviously, a range of
biological sciences from microbiology to immunology to ecology are needed to inform
our understanding of the pathogen, the host and their interaction; while we do not
attempt a comprehensive review of such knowledge, the next section does provide suf-
ficient biological background to motivate and justify the choice of model formulation.
Finally, in recent years it has become apparent that other disciplines have a role to play:
economics is vital to underpin cost-effectiveness studies that are key to assessing control
programmes; sociology and psychology help to explain and predict human response to
outbreaks or new treatments; while medical insights are needed to understand the link
between the individual as a host for the pathogen and the individual as a patient that
requires treatment. Therefore, when developing models for the spread of an infectious
disease we not only need a range of mathematical skills but must account for the in-
sights provided by many other disciplines. Throughout, we had attempted to draw on
citations from the mathematical and biological literature whenever possible, so as to
introduce the reader to this (possible novel) fields of scientific publication.

The remainder of this review is partitioned into four main sections. In the next
section we review the basic mathematical models that underpin all work in this area,
using the ordinary differential equation models that date back to [155], and focus on how
our understanding of pathogen biology is translated into a system of equations. To the
quantitatively trained reader the formulation and solution of these early equations may
appear trivial, but the insights provided are key to many public-health decisions and
act as a building block for larger and more complex approaches. In Sections 3 to 5 we
build upon these foundations by considering three different aspects (population hetero-
geneity, stochastic dynamics and spatial structure) that fundamentally change the ways
in which we model the infection dynamics, before finally discussing how such methods
and insights could be combined to offer robust predictions and practical policy guidance.
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2 Basic Models

With only a very few exceptions, most mathematical descriptions of the population dy-
namics of infectious diseases rely on being able to partition the population into discrete
non-overlapping compartments [15, 180, 16, 151, 74]. This act of compartmentalisation
allows us to study the dynamics of infection by capturing the transition of individuals
between compartments. A simple example will illustrate the main points (Figure 1):
before the 2009 H1N1 (swine-flu) pandemic very few people in the population had seen
a similar infection before and could therefore be categorised as Susceptible, suscepti-
ble people that come in contact with the pathogen can become Infected and pass the
pathogen (influenza virus) on to other susceptible individuals, after a time infected peo-
ple generally ‘fight-off’ the infection, are no-longer able to transmit and are classified
as Recovered. This simply natural history of infection is familiar to us all, and the com-
partmentalisation into the three categories Susceptible, Infected and Recovered allows
us to develop simple mathematical models. Throughout the early sections of this re-
view, we will illustrate such compartmental models using the caricature method shown
in Figure 1. However, before we write these models in terms of differential equations,
there are two fundamental points that need emphasis.

S I R

infection

Figure 1: Compartmental caricature of the basic SIR model (solid lines show transition
or movement between classes; dashed lines show the action of transmission)

Firstly, in the description above we have taken a pathogen-centric view, categorising
the host (person) by their status with respect to the pathogen – this is an epidemio-
logical view-point and is necessary if we wish to study the pathogen dynamics. More
commonly we are accustomed to a medical perspective where we think about the status
of the patient and what symptoms they display. Sometimes these two view-points are
aligned and severe illness coincides with the peak of infectivity, however many other
scenarios are plausible; for example, with chickenpox (caused by the varicella zoster
virus) the peak of infection generally occurs a few days before the onset of a rash and
other symptoms [151].

Secondly, it must be noted that the Susceptible, Infected and Recovered categorisa-
tion ignores many important aspects of infection, and is at best an idealised paradigm
for some infections. Several elements complicate this picture (such a carrier states,
heterogeneous responses or vaccination) and we will deal with many of them later, but
for now we will briefly mention two additional complexities. Not all infections follow
the susceptible-infected-recovered pattern, there are many infections that can be caught
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multiple times; sexually transmitted infections (STIs) tend to follow this profile and in-
dividuals that are treated for infection generally return to the susceptible class, giving
rise to SIS (Susceptible, Infected, Susceptible) models. It is näıve to think that the
amount of pathogen an individual can transmit is constant throughout the time that
they are infected, clearly following infection (with a low level of the infecting pathogen)
there needs some time for the pathogen to build to sufficient levels for onward trans-
mission to be likely. This effect can be captured by adding an additional Latent (or
Exposed) class that individuals need to pass through before they become infectious (ie
actively transmitting).

Finally, we stress that although we begin this exploration of infectious disease dy-
namics by considering simple systems of ordinary differential equations (ODEs), their
formulation may be motivated by considering the stochastic behaviour of individuals.
In particular, following the work of [167] we can consider the ODEs as the limit of a
stochastic process where a large (infinite) number of individuals are moving between the
various model compartments. In this limit of infinitely many individuals, the stochastic
movement between compartments can be conceptualised as a continuous flow. Section
4 provides more details of this stochastic approach and the connections to the deter-
ministic models of sections 2 and 3.

2.1 A Generic Model

We can now put these elements together to create a generalised model for the dynamics
of infection in a population [15, 180, 16] (see Figure 2):

Susceptibles dS
dt = B + νR − λS − dS

Exposed dE
dt = λS − αE − dE

Infectious dI
dt = αE − γI − dI

Recovered dR
dt = γI − νR − dR

(1)

Equation (1) contains one rate (B) which determines the rate at which new-born indi-
viduals enter the population, and five per capita rates (ν, d, α, γ and λ) that determine
transitions between (or out of) categories. In this form the dynamics could be solved
relatively trivially, however there is an additional non-linear feed-back that needs to be
incorporated. The Force of Infection (λ) which quantifies the risk of infection is clearly
related to the number of infectious individuals in the population. In particular it is
standard to assume:

Force of Infection λ = βI/N (2)

where N is the total population size (N = S+E+I+R) and the parameter β captures
both the rate at which epidemiologically-relevant contacts are made and the probability
that contact between an infectious and susceptible individual leads to the transmission
of infection; the I/N term then accounts for the chance that the contact is infectious,
assuming contacts are made randomly within the population. We will see later how the
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force of infection becomes modified in spatial models where we account for non-random
mixing. In Equation (2) we have assumed Frequency dependent transmission; this is
derived by assuming that each individual has a fixed number of daily contacts that is
independent of population size, hence the force of infection is related to the frequency
of infectious individuals in the population. Frequency dependent transmission tends to
be the norm for human populations. The alternative is to assume Density dependent
transmission where more dense populations give rise to more contacts and hence the
force of infection is related to the density of infectious individuals: λ = βI. However, in
many theoretical settings it is often simpler to re-scale the variables such that the pop-
ulation size, N , is one; although clearly this is not feasible when dealing with changing
population sizes. Under such a re-scaling the two transmission assumptions are equiv-
alent.

S E I R
λ α γ

infection

ν

B

d d d d

Figure 2: Compartmental caricature of the generic SEIRS model (solid lines show tran-
sition or movement between classes; dashed lines show the action of transmission; arrows
entering or leaving the system correspond to births and deaths respectively).

Together Equations (1) and (2) combine to generate a range of infection models
that can either be studied analytically or be rapidly integrated numerically. We first
highlight the three standard models that are contained within this more general for-
mulation. The simple SIR model is recaptured by setting B = d = ν = 0 and letting
α → ∞; this is the ideal simple model for conceptualising single epidemics which occur
sufficiently quickly that natural births and deaths can be ignored. The SIS model is
generated by setting B = d = 0 and letting α → ∞ and ν → ∞; this is the standard
model for sexually transmitted diseases. Finally, the general equation itself would be
described as an SEIRS model, with demography and waning immunity; in particular the
per capita rates are: d the natural death rate; α the rate of progressing from exposed
to infectious, such that 1/α (or more technically when accounting for the death rate
1/(α + d)) is the average exposed or latent period; γ is the rate of recovery, such that
1/γ (or more technically 1/(γ + d)) is the average infectious period; and ν is the rate
at which immunity is lost and the individual reverts to being susceptible.
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2.2 Early Behaviour

One of the most fundamental concepts in epidemiology is the Basic Reproductive Ratio
or Number, represented by R0. This quantity is defined as “The average number of
secondary cases produced by an average infected individual in a totally susceptible
population”, and in practice provides a quantitative guide to both invasion and control
of an infectious disease [15, 180, 16, 123]. In particular, when R0 is greater than one an
infection invading a näıve population can spread whereas when R0 is less than one chains
of infection will always die out. These logical arguments can be made mathematically
precise by calculating the Jacobian of the disease free equilibrium (S = N , E = I =
R = 0). For the general model defined by equations (1) and (2), the Basic Reproductive
Ratio can be calculated in three parts considering the dynamics associated with a newly
infected individual: the probability a newly infected individuals goes on to become
infectious; the rate at which new cases are then generated; and the average duration
over which the individual remains infectious.

R0 =
α

α+ d
× β

S

N
× 1

γ + d

=
βα

(α+ d)(γ + d)
≈ β

γ
. (3)

Equation (3) has been gained by noting that it is calculated when everyone is susceptible
(S = N) while the approximation holds if the natural death-rate is small compared to
the rates of transition through the exposed and infectious classes. Two points are imme-
diately noteworthy in the calculation of R0. The first is that many of the components of
the full SEIRS model do not play a role in the value of R0, in particular it is independent
of both the birth rate and whether (or not) there is waning immunity; thus the SIR
and SIS models have the same basic reproductive ratio for the same parameters despite
the differences in underlying structure. Secondly, the value of R0 depends on the trans-
mission rate β, which in turn depends on the rate at which (epidemiologically-relevant)
contacts are made. We therefore find that R0 depends on both the pathogen and the
population. For example although measles and influenza are both spread through close-
contact or local airborne interactions, R0 for measles is around 17 [16] whereas R0 for
influenza is between 1.5 and 3.0 [239]. Considering HIV infection illustrates the role of
the contacts, with values of R0 during the 1980s estimated as in the range 2-5 in the
UK, but 10-12 in sub-Saharan Africa [16].

Figure 3 shows the dynamics of Equations (1) and (2), for three different cases: the
SIS model, the SIR model and the general SEIRS model. In all three cases, the basic
reproductive ratio is approximately 2 (for the SEIRS the true value is 1.996 due to the
action of natural mortality). For the SIS and SIR models it is clear that they share the
same initial growth rates, while the presence of an exposed (latent) class in the SEIRS
model slows the dynamics. Thus, although R0 informs about the ability of a pathogen
to invade it does not completely determine the speed of invasion. Therefore in many
applications we also need to consider the early (asymptotic) growth rate, r, as this can
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Figure 3: Comparison of the basic infection models derived from equations (78) and
(2). The three curves show the proportion of infectious individuals in the population
(I/N), for the standard SIS model, the standard SIR model and the general SEIRS
model. (For all three models: β = 0.2, γ = 0.1. For the SIS model B = d = 0 and
α = ν → ∞; for the SIR model B = d = ν = 0 and α → ∞; for the SEIRS model
B = d = 10−4, α = 0.1 and ν = 10−3. All rates are given in days−1 (I(0) = I0 = 10−6,
N = 1, S(0) = N − I0.
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be more closely linked to available data. From consideration of the disease-free state of
the general model, the early growth rate is given by:

r =
1

2

[√
4S0βα+ (α− γ)2 − (α+ γ + 2d)

]
(4)

rSIR = rSIS = S0β − γ − d

where S0(= S(0)/N) is the proportion of the population susceptible at the start of the
outbreak. This raises an interesting and important applied issue, when we observe an
exponential growth of cases in the early phase of an epidemic; there are currently no ro-
bust techniques for distinguishing between a small scale epidemic where all cases report
symptoms of infection and a large scale epidemic where only a small proportion report
[18]. In general it is not until the epidemic peaks and we observe strong non-linear
effects that this distinction can be made.

2.3 Long-term Behaviour

Examining Figure 3 also leads us to think about the long-term dynamics of this system.
We first begin by considering a general solution before focussing on the specific cases
of the SIS and SIR models. When considering long-term endemic behaviour, it is
customary to set B = d which effectively rescales the population size N = 1. Under
this assumption the equilibrium dynamics are given by:

S∗ =
(α+ d)(γ + d)

βα
≈ γ

β

E∗ =
(βα− (α+ d)(γ + d))(ν + d)(γ + d)

βα(αν + νγ + αγ + αd+ νd+ γd+ d2)
≈ (β − γ)(ν + d)γ

β(αν + νγ + αγ)

I∗ =
(βα− (α+ d)(γ + d))(ν + d)

β(αν + νγ + αγ + αd+ νd+ γd+ d2)
≈ α(β − γ)(ν + d)

β(αν + νγ + αγ)

(5)

where again the approximations hold whenever the natural death-rate is small compared
to the rates of transition through the exposed and infectious classes. In general this
equilibrium is approached through a series of damped oscillations, which may interact
with any seasonal forcing in the basic parameters [153]. It should be noted that the
susceptible equilibrium is only viable (i.e. S∗ ≤ N = 1) when the basic reproductive
ratio is greater than one; when the basic reproductive ratio is less than one only the
disease free equilibrium is a viable fixed point of the system. It is worth noting that
at the equilibrium we have that (S∗ = 1/R0), this is a common feature of many epi-
demiological models and it related to the fact that at equilibrium the average number
of secondary cases produced per infected individual (Re = R0 × S/N) has to be equal
to one, otherwise the number of case would change.e.

For the SIS model, the dynamics simplify enormously. In particular we now have
the equilibrium solution:

S∗
SIS =

γ

β
I∗SIS = 1− γ

β
.
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For this model, the recovery of infected individuals back to the susceptible state is
sufficient to maintain the presence of infection, and the fact that there are only two
compartments means that S+ I = 1. In fact, the SIS model is equivalent to the logistic
growth model in ecology, and therefore has an algebraic solution:

ISIS(t) =
(β − γ)I0e

(β−γ)t

(β − γ) + I0β
[
e(β−γ)t − 1

]

where I0 is the proportion of infection in the population at t = 0.

In contrast, the simple SIR model without births and deaths does not have an en-
demic equilibrium; instead there is a single epidemic which eventually dies out. This
extinction of infection is caused by a depletion of susceptibles to a level that cannot
sustain the infection, without new births or waning immunity there is no way for the
susceptibles to be replenished and so the infection is doomed to extinction. Mathe-
matically, this is clear from the fact that the disease-free states are the only equilibria.
However, for the simple SIR the key question is how many individuals become infected
during the entire course of the epidemic, this addresses an issue of fundamental concern
for any outbreak – how big is the epidemic likely to be. The solution to this problem
dates back to the ground-breaking papers of Kermack and McKendrick [155], and arises
from considering dS

dR = dS
dt /

dR
dt . The Final Epidemic Size, R∞ is given by the relation:

R∞ = S0 [1− exp(−R0R∞)] (6)

where R0 is the basic reproductive ratio, S0 is the initial proportion of the population
that is susceptible to infection and R∞ is the proportion of the population that have
passed through the infectious class (specifically R∞ = S(0) − S(∞) assuming a small
initial seed of infection). We find that an identical formula holds for SEIR-type models,
all that is important is the lack of births, deaths and waning immunity. What is clear
from this formula is that there will always be some individuals that escape an epidemic,
although the proportion of the population that do escape becomes small as R0 becomes
large. We note that in practice epidemics rarely infect very high proportions of the
population and this is largely due to heterogeneities in risk (see below) with some in-
dividuals with high risk contributing most to the value of R0 whereas others with low
risk more likely to escape infection. Hence, the final epidemic size should be viewed as
an idealized calculation, although for the recent H1N1 (swine-flu) outbreak the value of
R∞ ≈ 0.37 (derived from R0 ≈ 1.25 [18]) is in good qualitative agreement with finding
from detailed serological studies [56].

2.4 Greater realism, more compartments

In the generic model above (Equation 1) there are four compartments that are used
to characterise an individual’s status with respect to the pathogen. Greater biological
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realism can be introduced by including more compartments and therefore greater het-
erogeneity in the dynamics. Later we discuss multiple compartments based on the host,
allowing us to consider age-structured models or multiple host species. Here we focus on
additional compartments due to the pathogen. Two approaches are worth highlighting
in detail.

One way in which additional compartments may be required is when there is a more
complex natural history of infection that needs to be captured. For example, we may
wish to have a short-duration Maternal Immunity class that individuals are born into,
individuals in this class would be protected against infection due to immunity gained
from the mother. Alternative, there are infections (such as typhoid) where carrier indi-
viduals exist who may be weakly infectious for extremely long periods of time or who
may intermittently revert to a highly infectious state; in such cases these additional
compartments need to be included in any model to produce realistic results. However,
the inclusion of these extra compartments is not conceptually challenging and uses the
existing framework that specifies the rates of entering and leaving each compartment,
although parameterisation of such models may be much more complex.

An additional way in which more compartments can be included is to subdivide
the infectious (and exposed) classes into more groups. Ignoring waning immunity this
would lead to the following set of equations:

Susceptibles dS
dt = B − λS − dS

Exposed dE1

dt = λS − α1E1 − dE1

Exposed dEn

dt = αn−1En−1 − αnEn − dEn n = 2, . . . ,m

Infectious dI1
dt = αmEm − γ1I1 − dI1

Infectious dIn
dt = γn−1In−1 − γnIn − dIn n = 2, . . . ,M

Recovered dR
dt = γMIM − dR

Force of Infection λ =
∑

n βnIn/N

(7)

This subdivision has two important implications. Firstly it allows us to control with
far more finesse the amount of infection an individual sheds over time. This is an en-
hancement to the concept of splitting the infected component into two (the exposed and
infectious components) and can be necessary to fully capture the known epidemiology
of some infections. HIV is a notable example of when this can prove necessary as early
and late stages of infection are estimated to be far more infectious than the intervening
asymptomatic stages [124]. The second element becomes more obvious when we consider
the transition of a single individual, which obviously brings in ideas of stochasticity (see
Section 4). When the exposed and infectious classes exist as a single compartment, the
time spent in each compartment is exponentially distributed and hence some individuals
recover rapidly while others are infectious for very long times. This is turn has implica-
tions for early growth rate of the infection in the population and the variability in the
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infection

Figure 4: Compartmental caricature of the multi-compartmental SE1 . . .EmI1 . . . IMR
model (solid lines show transition or movement between classes; dashed lines show the
action of transmission; arrows entering or leaving the system correspond to births and
deaths respectively).

number of secondary cases produced by infected individuals, which in turn influences
persistence [152, 174, 63]. In contrast, by having multiple exposed and infectious classes
that an individual must transition through before recovery, the total time spent in all
these classes is given by a gamma distribution. These multiple classes both act to speed
the growth rate of infection in the population (see Figure 2) and lead to less variability
in individual behaviour. In practice there is rarely sufficient data to necessitate more
than two or three exposed and infectious classes (m = M = 3). The individual-level
implications of this additional structure is considered in more detail in Section 4.4.2.

Here we have stressed the need to include multiple compartments (that reflect the
underlying biology) in any attempt to generate reliable predictions. However, writing
down such models in inherently unwieldy, and while necessary for accurate prediction
it adds comparatively little to our deeper understanding of the dynamics. Therefore,
in the sections that follow we often focus on how different elements (risk-structure,
stochasticity or spatial structure) effect the simple SIR and SIS models, and we leave it
to the reader to extrapolate in the obvious manner for models with more compartments.

2.5 Vaccination

Finally in this introduction to the basic epidemiological models, we introduce a vac-
cinated class to account for the effects of immunisation. Here we need to be a little
careful with our definitions: vaccinated generally means to have received the vaccine,
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whereas only a proportion of these will be immunised and protected against infection.
With the best vaccines the proportion that are protected can be very high, often in
excess of 99%, however with other vaccines, such as those against seasonal influenza
where the vaccine is developed based on predictions of future strains, the effectiveness
can be anywhere between 30 and 90% [38]. In the remainder of this section we therefore
formulate models based on the level (rate or proportion of the population) of successful
immunisation, with the implicit assumption that this would necessitate a higher level
of vaccination.

Vaccination is generally more common in diseases that naturally obey the S(E)IR-
type paradigm (rather than SIS-type infections). This is because vaccines generally
operate by triggering the host’s own natural immunity to the infecting pathogen, with-
out causing disease. A suitable equation for the dynamics of an SIR-type infection with
vaccination would be:

Susceptibles dS
dt = B(1− p) − λS − dS − vS/N

Infectious dI
dt = λS − γI − dI

Recovered dR
dt = γI − dR

Vaccinated dV
dt = Bp + vS/N − dV

Force of Infection λ = βI/N.

(8)

Here vaccination takes two forms (although generally either one or the other domi-
nates); firstly a proportion p of new-borne individuals are vaccinated and successfully
immunized and so enter the compartment V where they remain for life. Secondly we
assume a random vaccination (and immunization) rate v, and if the randomly selected
individual is susceptible then they are transfered to the V compartment. The first of
these is most common and equates to the typical childhood immunization campaigns
that have been so successful in reducing childhood mortality; the second of these is
associated with vaccinating to control a novel outbreak (such as influenza pandemic
[18] or foot-and-mouth [236]), or vaccinating wild animal populations [253, 7, 57]. It
should be noted that p refers to the proportion of new-borns immunised and therefore
lies between 0 and 1, whereas v is a rate and therefore is only constrained by resources
and logistics.

We first focus on the use of vaccination to eradicate infection. This can be ap-
proached in two ways: the first is to consider if (long-term) vaccination can prevent
an infection invading and spreading from the disease-free equilibrium; the second is to
consider the equilibrium state and how the prevalence of infection changes with vacci-
nation. Looking at the disease-free equilibrium with vaccination (and assuming B = d
and hence N = 1) we find:

S∗ =
1− p

1 + v/d
V ∗ = 1− 1− p

1 + v/d
.
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Figure 6: Compartmental caricature of the SIRV model (solid lines show transition or
movement between classes; dashed lines show the action of transmission; arrows entering
or leaving the system correspond to births and deaths respectively).

Examining the early growth rate of infection from this point gives:

dI

dt
= (βS∗ − γ − d)I

and hence the disease fails to invade (has negative growth rate) if

S∗ <
γ + d

β
=

1

R0
.

Therefore, we require immunity due to vaccination to be sufficient to drop the proportion
of susceptibles in the population below their non-vaccinated equilibrium value in the
presence of infection. What is important to realise is that it is not necessary to immunise
everyone to protect the entire population, the action of immunising one person has
additional benefits to other individuals who could have been infected by this person.
This level of addition protection in the population is known as herd-immunity [16, 151,
74]. Therefore vaccination is an altruistic act which benefits both the individual and
the population. Examining the two methods of vaccination separately gives critical
thresholds:

pc = 1− 1

R0
vc = (R0 − 1)d (9)

Immunising above these thresholds prevents a pathogen from successfully invading.

Alternatively, we can consider the equilibrium state with both infection and vaccina-
tion acting to reduce the susceptible population, again assuming B = d. Two equilibria
are possible depending upon whether the level of vaccination is sufficient to eradicate
infection or not:

S∗ = 1
R0

I∗ =
d(R0 − 1)− pdR0 − v

β

or
S∗ =

1− p
1 + v/d

I∗ = 0
(10)
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Figure 7: Illustration of the honeymoon effect for vaccination in the standard SIR model
and two levels of vaccination. Vaccination begins at time 0, when the system is at its
unvaccinated equilibrium. Two levels of vaccination at birth are considered p = 0.25
(black line) and p = 0.45 (thick grey line), noting that the critical threshold occurs
at pc ≈ 0.5. (The SIR model is given by: β = 0.2, γ = 0.1, α → ∞, ν = 0 and
B = d = 10−4; with all rates being in days−1).

Hence we find that immunisation has a linear impact on the prevalence of infection; the
proportion of infected individuals drops linearly with both types of vaccination until it
reaches zero at the critical thresholds. This is an important public-health observation,
as it generally means that it is better to do some vaccination even if there is not suffi-
cient resources (or demand) to reach the critical threshold. The exceptions to this rule
are when there exists complex interactions between disease severity and age-structure
[8] as vaccination generally increases the average age of infection (see Section 3.2).

The above analysis has focused on long-term dynamics, such that the impact of any
vaccination scheme has had time to equilibrate. However, very often vaccination pro-
grammes are introduced at a given point in time, acting as a substantial perturbation
to the system. One way of conceptualising this process is that when the vaccination
programme begins the population is likely to be at the non-vaccinated equilibrium point
given by Equation (5), which is likely to be far from the new appropriate equilibrium
point of the vaccinated population given by Equation (10). Convergence to this new
vaccination equilibrium is via damped oscillations. Again this has important health im-
plications as the number of infected individuals will first dip below the expected equilib-
rium level (and hence the vaccine programme is seen as a success) – this is known as the
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honeymoon effect [184]– before rising to much higher levels (when concerns about the
vaccine programme are likely to be raised). Figure 7 illustrates this behaviour for two
levels of vaccination given at birth below the critical threshold; not only do we observe
large oscillations and substantial honeymoon effects, but also we note how long it can
take for the dynamics to approach equilibrium. Given that this form of vaccination only
occurs at birth the time-scales of the programme are comparable with the time-scales
of the host life-cycle; this is why new vaccinate campaigns are often accompanied by
catch-up programmes in older age-groups.

Again, there are multiple improvements that can be made to the standard model of
vaccination (Equation 8). Clearly, adding an exposed class and subdividing the exposed
and infectious classes into sub-compartments will increase the realism of the infection
dynamics (although this will have limited impact on the critical eradication thresholds).
When waning immunity is a feature of the infection dynamics (ν > 0) then it becomes
natural to also include this facet in the vaccination dynamics, with the possibility of a
different rate of waning immunity to capture the fact that protection following infection
may be more long-lasting than that due to vaccination. In addition, for many vaccines
a single dose is insufficient to provide life-long immunity and therefore the impact of
booster vaccines later in life must be incorporated into the standard equations [4]. How-
ever, two improvements are particularly interesting from a practical perspective: those
concerning the use of vaccines in controlling novel outbreaks, and those that consider
in more detail the action of the vaccine itself.

Vaccination is often seen as a panacea against infection, and for many endemic
diseases where there is a childhood vaccination campaign this is generally the case.
However, vaccination can also be used reactively in the face of an on-going outbreak.
Classic examples include the use of vaccination to control bioterrorist use of small-
pox [92, 130] or pandemic influenza [88] in humans, or to limit the spread of livestock
infections such as foot-and-mouth disease [236]. In these reactive situations two modi-
fications are important. Firstly, there is generally a delay (of between a few days and
several weeks) between receiving the vaccine and being protected, which in turn de-
lays the impact of vaccination. Mathematically this can be captured by sub-dividing
the vaccinated compartment into P classes and allowing susceptibility to infection to
decrease as an individual moves through the classes; therefore immediately following
vaccination protection in limited and it is possible to acquire the infection. Secondly,
the assumption of random vaccination can be refined, only vaccinating individuals that
have not yet received the vaccine. The new equations become:

Susceptibles dS
dt = B − λS − dS − vS/(S + I +R)

Infectious dI
dt = λS +

∑
n σnλVn − γI − dI

Recovered dR
dt = γI − dR

Vaccinated dV1

dt = vS/(S + I +R) − µ1V1 − σ1λV1 − dV1

Vaccinated dVn

dt = µn−1Vn−1 − µnVn − σnλVn − dVn

Vaccinated dVP

dt = µP−1VP−1 − σPλVP − dVn

(11)
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Here the delay from vaccination to immunity weakens the impact of this control, whereas
the refinement in the vaccination procedure increases the speed at which herd-immunity
can be reached.

S I R

V1

Vn

λ γ1B

v/N

d

d

d d d

µ1

µn−1

σ1λ

σnλ

Figure 8: Compartmental caricature of the SIRV model (solid lines show transition or
movement between classes; dashed lines show the action of transmission; arrows entering
or leaving the system correspond to births and deaths respectively).

Finally, in all we have discussed above, it has been assumed that being vaccinated
either confers complete protection, or it leaves the individual completely susceptible. An
alternative is to assume that vaccines offer a more limited form of protection (known as
leaky vaccination [117]) but that this protection has three distinct forms: it can reduce
an individuals susceptibility to becoming infected; it can reduce the onward transmission
rate (or speed up recovery) if a vaccinated individual does become infected; and it can
reduce the severity of disease. This latter measure, while important from a medical and
public-health perspective, has no direct impact on the epidemiology and can be ignored
in the mathematical models. We can now recast the model for vaccination at birth
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using this leaky vaccine concept.

Susceptibles dS
dt = B(1− p) − λS − dS

Infectious dI
dt = λS − γI − dI

Recovered dR
dt = γI − dR

Vaccinated, uninfected dV
dt = Bp − λσV − dV

Vaccinated, infectious dJ
dt = λσV − γρJ − dJ

Force of Infection λ = βI/N + βτJ/N.

(12)

where the effect on vaccination on susceptibility, transmission and recovery are captured
by the parameters σ (≤ 1), τ (≤ 1) and ρ (≥ 1). By considering the invasion of the
disease-free equilibrium we can again derive the critical eradication threshold:

pc =
R0 − 1

R0 −RV
RV =

τσβ

ργ + d

where RV is the equivalent of the basic reproductive ratio when the entire population is
vaccinated. From this formulation it is clear that any of these three actions (separately
or in combination) can lead to eradication of the infection as long as RV < 1.

S I R

V J

λ γB(1− p)

Bp

d d d

d d

λσ

Figure 9: Compartmental caricature of the generic SIRVJ model (solid lines show transi-
tion or movement between classes; dashed lines show the action of transmission; arrows
entering or leaving the system correspond to births and deaths respectively).

3 Heterogeneous Populations

Heterogeneous populations are ones in which the total host population may be par-
titioned into two or more groups, classes or populations with distinct characteristics;
this may be according to a variety of reasons including multiple species, ages groups
or risk structure. In each of these there may be biological or behavioural differences
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which affect the spread or transmission of disease. Sometimes it may be easy to com-
partmentalise a population, not only according to disease status (e.g. S,E,I,R), but also
by another natural partition of the population; for multiple species this is particularly
easy, as each different species would form its own category. Conversely it may be hard
to decide upon exactly how it is best to separate out a varying range of behaviour; for
instance for STIs (sexually transmitted infections), where the number of sexual partners
an individual has puts them at differential risks of contracting a disease, it is far from
obvious how to determine where the boundary between “low risk” and “high risk” lies.
Similarly when dealing with age-structure, it is unclear how to partition the population
into discrete age-classes.

In the SIR modelling framework, instead of having just three states (according to
infection status) there are now three states per population category. In the case of two
populations (these can be thought of as two different species in this example) the SIR
diagram (without demography) now looks a little different (see Figure 10).

S1 I1 R1

S2 I2 R2

β12

β21

β22

β11

Figure 10: Compartmental caricature of the basic two-population SIR model.

In the standard SIR model transmission of the pathogen between all individuals
in the population is assumed to be governed by a single rate parameters (β) which is
equivalence to assuming that all individuals mix randomly with each other. When the
population is heterogeneous, we have the opportunity to allow different transmission
rates within and between the classes. In particular, the transmission terms now depend
upon who acquires infection from whom, and these new rates are now give by terms of
the form βTo From (i.e. β21 denotes the transmission rate of disease going to species 2
from species 1).

A general multi-species model therefore takes much the same form as discussed
above, but the rates are now species dependent and the force of infection is expressed
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as a weighted sum. For species i the SIR dynamics are given by,

Susceptibles dSi

dt = Bi − λiSi − diSi

Infectious dIi
dt = λiSi − γiIi − diIi

Recovered dRi

dt = γiIi − diRi

Force of Infection λi =
∑

j βijIj

(13)

This transmission interdependence becomes more obvious if we write in full a two-class
model and SIR dynamics :

Susceptibles dS1

dt = −β11S1I1 − β12S1I2
Class 1 Infectious dI1

dt = β11S1I1 + β12S1I2 − γI1
Recovered dR1

dt = γI1

Susceptibles dS2

dt = −β21S2I1 − β22S2I2
Class 2 Infectious dI2

dt = β21S2I1 + β22S2I2 − γI2
Recovered dR2

dt = γI2

(14)

where the force of infection for each class λi has been included explicitly, and we have
scaled the population size to one. This formulation for transmission can be represented
more succinctly in the form of a transmission matrix known as the WAIFW (or Who
Acquires Infection From Whom) matrix:

β =

(
β11 β12
β21 β22

)
(15)

This allows the change of infectious individuals to be written in vector notation:

dI

dt
= S.βI− γI (16)

The same heterogeneous population structure, transmission matrix and vectorisation
concepts can be applied in a similar fashion to SEIR, SIS and other models of disease
progression.

In the unstructured SIR model (see Section 2) parameterisation of the infection rate,
β, is relatively easy and is often derived from the equilibrium dynamics; in particular
given that S∗ = γ/β and both the proportion seronegative (susceptible) and the dura-
tion of infection can be measured with relative ease, calculating β is not conceptually
challenging. However, in heterogeneous populations where we have partitioned the host
into n classes, estimating the matrix, β in much harder as there are now n2 entries and
often data for just n different data points. This means that often we are only able to
estimate n parameters within the WAIFW matrix, and in general any matrix with n
degrees of freedom can be made to fit the equilibrium dynamics. It therefore requires
much more careful thought as to how to parameterise the matrix in these cases; how
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this is done depends on the specific population, the disease being modelled and the
epidemiological understanding of the transmission routes [110]. This will be discussed
in more detail below.

3.1 Heterogeneous Reproductive Ratio

As for single homogeneous population models, being able to estimate the basic repro-
ductive ratio, R0, for heterogenous populations is highly desirable. As before this ratio
may be derived from first principles by considering how individuals become infected
and generate secondary cases. We will begin with a two-population model, although
the argument generalises to multiple populations. The basic reproductive ratio for an
infected individual in population 1 or 2 (R01 and R02 respectively) can be found as in
Section 2.2:

R01 = Average infectious period of 1s×
(rate of generating infected 1s + rate of generating infected 2s)

=
1

γ1
(β11N1 + β21N2) (17)

R02 =
1

γ2
(β12N1 + β22N2)

Note that the definition that everyone is susceptible, now becomes S1 = N1 and
S2 = N2, where N1 and N2 are sizes of the two populations.

To calculate a population-level basic reproductive ratio, it is now necessary to av-
erage these two values. Here we return to the definition of R0 which states that it is
the number of secondary cases produced by an average infected individual; we therefore
need to calculate what populations average infected individual belongs to during the
early dynamics following disease invasion. To do this we return to the differential equa-
tions and the eigenvectors of the disease-free equilibrium. In particular, the eigenvector
associated with the dominant eigenvalue will have the form (−S̃1, Ĩ1, R̃1,−S̃2, Ĩ2, R̃2).
The true population-level value of R0 is then a weighted average of the individual R0

values according to the ratio of early infection:

R0 = R01
Ĩ1

Ĩ1 + Ĩ2
+R02

Ĩ2

Ĩ1 + Ĩ2
(18)

This value of R0 has many of the same properties as the value calculated for homoge-
neous (single-population) models: R0 = 1 defines the critical threshold at which invasion
is successful in a totally susceptible population, and 1 − 1/R0 determines the level of
random immunisation needed to eradicate an infection.

As well as different disease progression types (e.g. SIS, SEIR etc., see Section 2.1),
heterogeneous populations may exhibit different types of transmission behaviour de-
pendant upon the disease and population(s) in question. It is important to understand

22



the underlying mechanisms which drive infection events, whether they are behavioural
and/or biological. There is no set rule of partitioning populations; is not the same for
every population, sometimes it may be straightforward and in others individuals may
even start in one subpopulation and end up in another. There are some key variants
which highlight many of these features which are now discussed.

3.2 Age

Age structure is generally considered to be highly important, in particular in the trans-
mission of disease amongst human populations. In general children of school-age have
very different mixing behaviour to adults or pre-school children; there are strong lev-
els of assortative mixing (i.e. children meet a lot of other children at school whereas
adults spend time with other adults at work). This means that it would be expected
that the diagonal terms in the WAIFW matrix are dominant. In addition, there are
important physiological differences between adults and children, meaning that children
can respond very differently to infection; for example children and the elderly can often
be the most severely affected by a disease. Also, children’s behaviour (with regard to
hygiene and physical interactions between individuals) is far different from adults; be-
cause of this and physiological effects, it is common that βChild Child > βAdult Adult.

Of more fundamental importance to both the modelling and the epidemiology, is
that in addition to the standard progression through infectious states (that is left to
right in Figure 11) there is also movement between classes (top to bottom in Figure 11).
All individuals are born into the first class (children) and, after a period of time, move
into the adult class. Movement between classes conserves epidemiological status, such
that infected children that mature become infected adults. One important consequence
of such age-structured models is that adults are older than children, and have therefore
had longer to come into contact with any endemic infection. Therefore, at equilibrium,
susceptibility declines with age.

Usually when considering long-term processes such as ageing, demography (births
and natural deaths) are also incorporated, with individuals being born into the youngest
age-class. Denoting children and adults by subscripts C and A, the two-class age-
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Figure 11: Compartmental caricature of the child/adult age-structured population SIR
model

structure model becomes:

dSC
dt

= B − βCCSCIC − βCASCIA−LSC − dCSC

dIC
dt

= βCCSCIC + βCASCIA − γIC−LIC − dCIC

dRC

dt
= γIC−LRC − dCRC

dSA
dt

= −βACSAIC − βAASAIA+LSC − dASA (19)

dIA
dt

= βACSAIC + βAASAIA − γIA + LIC − dAIA

dRA

dt
= γIA+LRC − dARA

with the parameter L capturing the per capita rate at which children leave the child-
hood class and move into the adult population.

In fact, as age structure is so influential in some diseases, that the population can
be partitioned into a whole range of age-classes; examples include: preschool, primary
school, secondary school and adult [152]; different age classes for each school age year
from 0 to 20 [224, 53]; or to match recorded age-related records [18]. It is worth noting
that in the limit of infinitely many age-classes this discrete age structured model becomes
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Figure 12: An example of a two class age structured SIR model with parameters for

a typical human population (β =

(
100 10
10 20

)
, γ = 10, B = dC = 1/60 years−1,

dA = 0 and L = 1/15 years−1). In this case 50% of each population start as susceptible
and 0.01% of each are infectious. Initially it is seen that many näıve adults become
infected (adults make up 80% of the population), however as time passes, the infection
is predominantly seen in the child population even though it is smaller in size; this
reflects that as children, individuals are at risk of becoming infected with the disease
and if this occurs they will be not become a susceptible adult once they mature.
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an integro-PDE of the form:

∂S(a)

∂t
= Bδ(a)− S(a)

∫ ∞

0
β(a, a′)I(a′) da′ − dS(a)− ∂S(a)

∂a

∂I(a)

∂t
= S(a)

∫ ∞

0
β(a, a′)I(a′) da′ − γI(a)− dI(a)− ∂I(a)

∂a
(20)

∂R(a)

∂t
= γI(a)− dR(a)− ∂R(a)

∂a

where both ageing and time are continuous.

To return to the issue of parameterisation mentioned earlier, we have already stated
that because of child behaviour and physiology, it is expected that βCC > βAA and
that the WAIFW matrix is assortative (the diagonal terms dominate). However, in
principle we have four transmission parameters that need to be estimated within these
constraints (or more generally n2 parameters for n populations). If we are faced with just
information on the endemic equilibrium (or alternatively just on the early dynamics),
then this at most allows us to fit two transmission parameters with some freedom in
how the WAIFW matrix is constructed. Commonly assumed forms for the WAIFW
matrix are:

β =

(
β1 β2
β2 β2

)
β =

(
β1 β1
β2 β2

)
β =

(
β1 β2
β1 β2

)
β =

(
β1 β2
β2 β1

)

which correspond to special transmission between children, age-dependent susceptibil-
ity, age-dependent transmissibility, and strong assortativity. All of these matrices can
be parameterised to generate the same endemic levels of infection and susceptibility;
which form is chosen depends on additional information about the relative strengths
of the transmission routes. This problem obviously becomes more complex as more
age-classes are included in the model formulation.

One method to address this uncertainty is to measure the mixing patterns between
the age-classes – although this does not directly quantify the degree of transmission.
The pan-European POLYMOD study [199] surveyed 7,290 people in eight countries to
determine age-dependent mixing patterns. The data generated has allowed far bet-
ter parameterisation of comparmentalised age-stuctured models, and is now a standard
approach that has been used in a variety of setting from the shifting patterns in both
the incidence of pertussis (whooping cough) [218], to control of pandemic influenza [185].

3.3 Super-spreader and super-shedders

Super-spreaders and super-shedders as the names suggest are individuals that are often
responsible for relatively large numbers of secondary cases. Hence understanding the
role of such individuals in an epidemic has clear implications for disease containment
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Figure 13: Compartmental caricature of super-shedder/non-super-shedder structured
population SIR model. Population 1 is the super-shedders, and it is generally assumed
that f much larger that 1, and that most individuals belong to population 2.

and control.

Biologically speaking a super-shedder is an individual that, due to some underlying
biological or physiological mechanism, excretes (or “sheds”) a significant amount more
infectious material than a “normal” member of the population. Because of this, the
individual is responsible for a higher than average proportion of the infections which
occur; mathematically, if the transmission from super-shedders is f times higher than
from normal individuals, then transmission from super-shedder to any other individual,
regardless of class, will be fβ (Figure 13). It is usually assumed that such individuals
are born into the super-shedders class (so that if they become infectious they will be a
super-shedder) and remain super-shedders for life.

Johne’s Disease is a prime example of when super-shedders may be important. It is
caused by Mycobacterium avium subspecies paratuberculosis and can infect a range of
animals, although the main focus of attention is cattle. The disease causes wasting in
animals, and eventually death. Recently there has been much interest in this disease as
it is known that some dairy cows spread much more infectious material that others (in
some cases this has been found to be up to 23,000 as much! [99]); many papers describe
how identifying the super-shedder cows within a herd is difficult and costly [6] but with-
out such measures the economic loss through reduced milk production and cattle death
may be great [211]. It is clear that modelling work (using the types of heterogeneous
model outlined in this section, potentially combined with stochastic models to account
for small population sizes on farms) needs to be done to look at possible controls to
reduce the spread of the disease and the economic impact of Johne’s disease for farmers.

Although super-spreaders [151] (also referred to as super-contactors [182]) are re-
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sponsible for way above average number of secondary cases, the underlying causes are
very different to that of the super-shedders. These individuals shed “normal” amounts
of infectious material, however they have very high levels of mixing (they come into
contact with a large number of other individuals) and hence are able to infect many
more others. The disease transmission for super-spreaders, is therefore governed not by
biology, but by behaviour (Figure 14).

S1 I1

S2 I2

fβ

fβ

β

f2β

Figure 14: Compartmental caricature of super-spreader/non-super-spreader structured
population SIR model. Population 1 is the super-shedders, and it is generally assumed
that f much larger that 1, and that most individuals belong to population 2.

The most prominent examples of super-spreaders come from risk-structured mod-
els for sexually transmitted infections, which take into account the high variability in
the number of sexual partners between individuals. People who have many different
sexual partners are super-spreaders (high-risk), those with few partners are low-risk.
High-risk people are much more likely to partner (mix with) other high-risk members
of the population and so it would be expected that this is where a large proportion of
transmissions occur (see Section 3.6.3).

West Nile virus provides another example of a disease with prominent and impor-
tant super-spreaders. West Nile virus entered the east coast of North America in 1999
and gradually tracked westwards, this is an avian infection that is spread by mosquito
vectors (see Section 3.5) but can also infect humans with often severe consequences.
A full model would therefore need to include human, mosquito and bird populations,
however the bird population is not homogeneous. The American Robin (Turdus mi-
gratorius) has been found to be the culprit for a disproportionate amount of disease
propagation [179]. Kilpatrick et al. [179] observe that mosquitoes have a preference for
the American Robin over other species of bird and hence the Robin has much higher
contact rate, acting as a super-spreading species.

Whilst the distinction between super-shedders and super-spreaders may appear
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slight, the effect of super-spreaders on a population is much greater than that of super-
shedders due to the f2β transmission term (c.f. Figures 13 and 14). Figure 15 provides
an illustrative example of invasion of infection into a totally susceptible population un-
der the two different model assumptions; it is clear that the presence of super-spreaders
greatly enhances the spread of infection.

These differences of model assumptions translate into structural difference in the
WAIFW matrix and differences in the basic reproductive ratios:

βsuper−shedders =

(
fβ β
fβ β

)
R0 =

β

γ
(fN1 +N2)

βsuper−spreaders =

(
f2β fβ
fβ β

)
R0 =

β

γ
(f2N1 +N2) (21)

For super-spreaders the transmission matrix, β, is symmetric as there is the same likeli-
hood of transmission between both classes regardless who is infecting whom. Conversely,
the same is not true of the super-shedders who are no more likely to become infected
than any other individuals, but then transmit more readily. These matrices emphasise
the slight but important differences in model structure between the biological and be-
havioural phenomena. The associated basic reproductive ratios highlight the quantitive
implications, with the value for super-spreaders greater for all f > 1. It should be
noted that given that super-spreaders are distinguished in terms of their behaviour, it
may be possible to observe the interactions of a population and hence detect super-
spreaders before an epidemic [182]. In contrast, it may be far more difficult to predict
which individuals are likely to be super-shedders, and this may differ widely for different
pathogens.

3.4 Multiple Species

For two or more different species not only do we expect transmission parameters to differ
but it is also likely that other rates, such as birth/death and recovery, may also be dif-
ferent due to inherent differences between species. Two species models are often needed
when both livestock and a wildlife reservoir can act as hosts for the same pathogen;
African buffalo are a clear example where control on foot-and-mouth disease in cattle
is limited by the presence of infection in wildlife [39], while the controversy in the UK
about the role of badgers in the transmission of bovine Tuberculosis [162, 156] largely
hinges around estimating transmission parameters. In addition, there are a number
of infectious diseases, known as zoonoses, (such as bubonic plague or West Nile virus)
which can infect both humans and other animals, and so models must take both species
into account. However, the formulation of these two species models adds little novelty
to the methods discussed above. One situation where there are subtle, yet important
differences, is when individuals of one species (vectors) are required for transmission of
infection between members of a different species; models for such vector-borne diseases
are now explored in some detail with particular emphasis on the dynamics of malaria.
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Figure 15: Example of the differences between the roles of super-spreaders and super-
shedders during an epidemic (no demography) where f = 2, β = 0.9 and γ = 1. Super-
shedders make up 20% of the total population and initially all individuals are susceptible
excluding the 0.1% of each population which start infectious. Whilst the two epidemics
look qualitatively similar, the outbreak of the epidemic across the population including
super-shedders is slower and smaller than that of the super-spreader epidemic. This
corresponds with the difference in reproductive ratios (R0) of 1.08 and 1.44 for super-
shedders and super-spreaders respectively.
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3.5 Case Study: Vector-Borne Disease

Some of the biggest world-wide health challenges at the moment (such as malaria) are
vector-borne infections therefore accurate predictive models are vital to target con-
trols effectively. In addition, vector-borne infections require a very specific type of
multi-species model, to account for the cross-species interactions that are involved in
transmission. We first outline some basic vector biology to motivate the transmission
models.

3.5.1 Introduction to the biology of VB diseases

A vector-borne disease is one for which transmission in a primary (host) population
only occurs via a secondary (vector) population. The host population may consist of
a human population (for malaria or dengue infections), livestock (for blue-tongue in-
fections) or other wild populations such as birds (for West Nile virus). Vectors are
generally blood-sucking arthropods and some of the most important vectors for the
spread of disease are the mosquito (responsible for the spread of a multitude of dis-
eases including malaria, west nile virus, dengue fever,etc.), the sandfly (which notably
causes leishmaniasis) and ticks (which can transmit Lyme disease). Many vector-borne
diseases are deadly to humans and Africa is the continent with the high prevalence of
vector-borne disease induced mortality. In general the majority of vector-borne diseases
occur in the tropics where the climate is most suitable for the vectors, although with
climate change the range of vector-borne infections is increasing.

Malaria (caused by a protozoan parasite) is the deadliest vector-borne disease to
humans; it kills around 1.2 million people per year [221] and is endemic in much of
Africa and other regions with tropical climates. As well as persisting as an endemic
disease in many locations, recently there have been epidemic outbreaks in areas which
were formerly malaria free as well as sharp rises in the number of cases in endemic
regions. The vector for human malaria is the female Anopheles mosquito which takes
blood-meals from humans in order to complete her reproductive cycle [115].

The specifics of the transmission does vary slightly across different vector-borne
diseases, as do the host and vector populations, however the basic transmission cycle
remains fairly consistent: the cycle begins with an infected host receiving a bite from a
susceptible vector, as the vector take its blood meal the pathogen is transmitted to the
vector and replicates until eventually the vector becomes infectious. At this stage upon
biting a susceptible host the vector will transmit the disease back to the host population.
This very specific biological transfer requires both the host and vector population and
so in the absence of one or the other, the pathogen cannot spread through a population.

3.5.2 Outline of basic VB disease modelling

Modelling vector-borne infections is quite different to modelling directly-transmitted
pathogens due to the biological process involved; a human cannot directly infect another
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human with malaria (or in general a host cannot infect another host), and this needs
to be taken into account with an appropriate model. A vector-borne disease model
can be thought of as a specific type of heterogeneous population model, where the
natural partition of the total population is into the two species: the host and the
vector. Typically for each population SIR or SI-type dynamics are assumed, however
in contrast to other models where a high level of assortativity between individuals in a
class is often expected, there is no transmission within classes and hence a transmission
(or WAIFW) matrix is of the form:

β =

(
0 βH
βV 0

)

For ease of notation the double subscript is dropped and βi corresponds to transmis-
sion to species i. This type of transmission is know as criss-cross transmission (Figure
16) as no assortative transmission occurs – individuals cannot contract the infection
directly from another individual of the same species. Although the total population is
partitioned into these two very separate categories, homogenous mixing between vectors
and hosts is assumed. It is worth noting that this not the only example of criss-cross
transmission, for example in the spread of STIs in a strictly heterosexual population,
all individuals only mix with others of the opposite sex and so same-sex transmission
does not occur directly.

Transmission of the vector-borne infections is generally considered to be frequency
rather than density dependent; once the vector is sated from its blood-meal it will not
bite again until necessary (for the female mosquito, one blood meal is usually taken
per batch of eggs and feeding occurs on average once every four days [183]). The
transmission dynamics are determined by this vector biting rate (a), the probability
of a bite leading to infection for the host or vector (pH and pV respectively) and the
numbers of susceptible and infectious hosts (SH and IH) and vectors (SV and IV ).
Where the number of vectors always refers to those of biting maturity (and gender).
This gives the force of infection as:

λi = βiIj =
apiIj
NH

where i 6= j

The Standard Ross-MacDonald Malaria model [220, 177] is usually given in the
following form where parameters are as before, with the addition of a disease-induced
per capita mortality rate, mH .

Hosts dSH
dt = B + γHIH − βHSHIV − dHSH
dIH
dt = −γHIH + βHSHIV − (dH +mH)IH

Vectors dSV
dt = bV NV + γV IV − βV SV IH − dV SV
dIV
dt = −γV IV + βV SV IH − dV IV

(22)

Demography is included so that the long term dynamics of the endemic disease can be
studied. Parameters correspond not just to the disease in question but also to the pop-
ulations, for example the natural death rate for humans, dH , is generally much smaller
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Figure 16: Compartmental caricature of Vector-borne infection model showing criss-
cross transmission terms

than that of the vector dV ; for mosquitoes the average life expectancy is only 32 days
[230]. In addition, there is no disease-induced mortality term for the vector population
as the mosquito rarely suffers adverse effects from malarial infection. This system of
equations (22) can easily be amended to incorporate a latency period by adding an
additional exposed, E, class to both the host and vector populations.

R0 may be again be determined from first principles using the expected duration
of infection and the rates of transmission. However, for such vector-borne infections, it
is standard to calculate the number of secondary host (human) cases generated by an
average host (human) case, incorporating the cycle of transmission through the vector.
As such we find the expected number of infected hosts from a single infected vector:

infected hosts = duration of infection× rate of transmission

=
1

(dV + γV )
× λH ×NH

=
apH

(dV + γV )

and similarly, the expected number of infected vectors from a single infected host:

infected vectors = duration of infection× rate of transmission

=
1

(dH +mH + γH)
× λV ×NV

=
apV NV

(dH + γH +mH)NH

Therefore the expected number of cases generated around a complete cycle (R0) is given
by the product:

R0 =
a2pHpV NV

(dH + γH +mH)(dV + γV )NH
(23)
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Figure 17: Human - mosquito malaria epidemic. (NH = 105, NV = 106, a = 1/4 days−1,
pH = pV = 0.9, γH = 1/30 days−1, B = bHNH , bH = dH = 1/42 years−1, mH =
1/40 days−1, bV = dV = 1/32 days−1).
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(It should be noted that this value of R0 that includes a complete cycle is the square of
the value calculated using the eigenvector approach given in Section 3.1; however they
agree on the invasion threshold).

This reproductive ratio yields some important information regarding the spread of
vector-borne disease. Firstly, although there are several parameters which influence the
value of R0, births of either hosts or vectors do not play a part. Secondly (and somewhat
intuitively) as the bite rate or transmission probabilities increase, so does R0 although
the bite rate enters in a squared form given that two bites are needed to complete a
cycle. Finally, and most importantly, the ratio of vectors to humans is critical; if we are
able to reduce the mosquito population to an appropriate level (compared to the size of
the human population) it may be possible to reduce R0 < 1; below the critical threshold.
This result is equivalent to Ross’s Threshold Theorem for malaria [220] which states
that if the number of mosquitoes is below a certain figure then the amount of malaria
in a given area will reduce to zero – disease extinction without the need to completely
eradicate the mosquito.

3.5.3 Quasi-equilibrium Assumption

The quasi-equilibrium assumption is an approximation method which may be used suc-
cessfully on this system of ODEs due to the nature of the time scales involved; since
the vector rates are generally much more rapid to the corresponding host rates, the
model becomes a multi-scale analysis problem. (In enzyme kinetics this approach is
more commonly referred to as the quasi-steady-state assumption (QSSA) and in other
disciplines as the method of multiple scales).

The quasi-equilibrium assumption [151] states that due to the relatively short life
expectancy of a vector compared to the host species (a human typically lives 500 times
longer than a mosquito) and the timescale of the disease, that an individual vector
effectively sees a sustained level of infection within the host population for the duration
of its life and so the dynamics can be approximated by assuming that dSV

dt = dIV
dt = 0

(and that the population is of constant size NV ). Hence the quasi-steady state vector
populations are given by:

S∗
V =

NV (bV + γV )

γV + λV + dV

I∗V =
NV λV

γV + λV + dV
(24)

which are functions of SH , IH and NH due to the dependence of λV on these variables.
Combining these quasi-steady state solutions with the original host equations yields a
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Figure 18: Example of how epidemic profiles may vary from the original deterministic
system when using the quasi equilibrium assumption (parameters the same as in fig-
ure 17). Here the quasi-equilibrium assumption slightly overestimates the size of the
epidemic and predicts that it will occur earlier.

new closed 2-dimensional system:

dSH
dt = B + γHIH − λHSH − dHSH
dIH
dt = −γHIH + λHSH − (dH +mH)IH

where λH =
apHI∗

V

NH
≈ apH

NH

NV apV IH
(NHγV +apV IH+NHdV )

(25)

This quasi-equilibrium assumption may be justified more rigorously using the method
of matched asymptotic expansions (for more details see [200, 55, 106]).

This method is advantageous as it halves the dimensionality of the system and so
enables more simple analysis of the dynamics. Since it is usually only the host popula-
tion which is of interest (from the point of view of reducing numbers of infections and
subsequent deaths) this new system is very appealing to those in public-health.
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The quasi-equilibrium assumption is exact for the equilibrium dynamics of the full
system – as we have simply solved the equilibrium for the two species sequentially.
More-over the quasi-equilibrium assumption generally gives a good approximation to
the full dynamics and whilst this should give a reasonable idea of the epidemic profile
(with respect to amplitude and time scales), there will be slight temporal variation
from the true behaviour as under the quasi-equilibrium assumption the vector popu-
lation responds instantly to any changes in the host (see Figure 18). This temporal
variation is reflected in the reproductive ratio for the vector-borne model under the
quasi-equilibrium assumption; R0 is determined more simply than before as we now
focus solely on the host dynamics:

R0 = duration of infection× rate of transmission

=
1

(dH + γH +mH)
× λH ×NH

=
(a2pHpV )NV

(dH + γH +mH)(NHγV + apH +NHdV )

which is always less that the value calculated from the full model (Equation 23), al-
though in general the differences tend to be small.

3.5.4 Extensions to the Vector-Borne Infection Model.

We have formulated the most basic model of a vector-borne disease such as malaria,
however it would be naive to assume that all the inherent biology of the system has
been captured within these simple equations. There are a number of key issues with
this model which may lead to problems when trying to predicted outbreaks in specific
populations.

Firstly, not all vector-borne diseases follow this exact pattern; for West Nile Virus
evidence has been found that vertical transmission from females to eggs can occur in
the mosquito (Culex Univittatus) [187]. Vertical transmission can be captured by a
relatively simple modification to the vector equations:

dSV
dt = bV SV + (1− p)bV IV + γV IV − βV SV IH − dV SV
dIV
dt = pbV IV − γV IV + βV SV IH − dV IV

(26)

where p is the probably that infection is transferred from mother to offspring. This leads
to far greater persistence of infection in the vector population, and hence breaks the
separation of time-scales needed for the quasi-equilibrium assumption. It should noted
that there is no possibility of vertical transmission for either hosts or vectors for malaria.

The basic vector-borne disease model (in common with most simple epidemiological
models) assumes that the death rate of both hosts and vectors is a constant per-capita
rate, leading to exponentially distributed life expectancies (c.f. duration of infection in
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Section 2.4). However the age at which a vector becomes infectious and hence its life
expectancy whilst infectious determines the number of secondary infections that will
result from this one vector. On average a vector which is infected at an early age will
spend a longer time being infectious than a similar vector which was infected nearer to
the end of its life, and hence will take more blood-meals whilst infected and consequently
spreads more infection to the host population. It has been suggested that logistically
distributed life expectancies (and hence age-dependent death rates) are more realistic
and may lead to better model predictions [230, 41]. To include this feature into the
model we would need to combine the age-structured models (seen in Section 3.2) with
the vector models (of Section 3.5.2), which would vastly increase the dimensionality of
the system.

Climate is key for many vector-borne diseases. Mosquitoes in particular thrive in
warm, humid climates. Generally mosquitoes need temperatures of 16 ◦C minimum
[115] and pools of water to reproduce and, in even hotter conditions, the reproductive
cycle shortens considerably. It is not just the mosquito that responds to climate, but also
the malaria causing parasite which needs these high temperatures in order to develop.
In regions where the temperature fluctuates during the year, peak transmission would
be expected during the warm summer months when there is an abundance of mosquitoes
and an appropriate temperature for parasite growth. There are many ways in which
this seasonality may be incorporated, such as a temporally forced birth rate, biting
rate or transmission probabilities. Taking vector birth-rate as an example, usually such
seasonal varying rates are give by a sinusoidal function of the form:

bV (t) = b0(1 + b1cos(ωt))

where ω is the period of forcing, b0 is the average birth rate and b1 is the amplitude
of seasonality. However this is not to suggest that there are no other potentially viable
functions which could be based directly on data. There are clear parallels between this
approach as the work on childhood infections in age-structured models, where season-
ality is incorporated into the child-to-child transmission rate to capture the increase in
mixing during school terms [224, 53, 95].

This basic deterministic model makes the assumption that hosts and vectors mix
homogeneously, however the locations of a host and vector population may not overlap
so neatly; in order to prevent desiccation of vectors and to reside a suitable environment
for reproduction, mosquitoes are often situated around marshlands or over types of wet
habitats. In general human towns would not coincide directly with such areas, and
so human-mosquito interactions would be limited by this spatial aspect (the impact of
spatial structure is discussed in more detail in section 5). In other cases, even when the
mosquito is found in all areas, the spread of disease may not be consistent, particularly
in mountainous regions where there is high temperature variation; this variation may
lead to areas of low or no transmission, seasonal transmission and constant transmission
with increasing temperature isoclines. Such a system may be modelled by partitioning
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the populations into regions of distinct transmission patterns (such as low/mid and
high) and assume homogeneous mixing throughout a region with a small exchange be-
tween populations of different regions.

Some vectors are not so preferential in their choice of host; in the case of Lyme dis-
ease, the vector (Ixodes tick) usually feeds on a range of small mammal hosts and deer.
However as can also be the case with other tick-borne diseases (such as virus which
cause encephalitis and haemorrhagic fever [115]) once the tick population surpasses a
threshold, the rise in numbers can cause a change from the ticks’ enzootic (animal) hosts
to human hosts, at which point zoonotic disease transmission occurs into the human
population. Modelling vector-borne diseases with multiple host classes can be done in a
compartmentalised structure to ensure these more complex dynamics are captured [169].

Recent years we have made huge scientific advantages due to technology (both com-
puting power and physical capacities to conduct laboratory research). Despite this many
biological phenomena, in particular within host pathogen-immune interaction and even
basic vector biology, remain a mystery. Not only is there evidence to suggest that vectors
may select specific hosts for their blood-meal dependent on host species [179, 227], but
that they can also have a preference for infected hosts over susceptible ones [66]. Better
understanding of such underlying biological mechanisms and this relationship between
parasite, host and vector are necessary for improving the accuracy and effectiveness of
mathematical models.

3.6 Case Study: HIV

Since the first reported cases of AIDS (Acquired Immune Deficiency Syndrome) in the
early 1980s, the disease has now claimed approximately 30 million lives worldwide [241]
and there are an estimated 34 million people living with AIDS [242]. One approach
to predict the future pattern of the epidemic is to use simple exponential or polyno-
mial extrapolations of the observed trends to make predictions about the near future
[58, 68, 122, 142, 195]. However, this approach has two main limitations: it may be
sensitive to the type of functional form used to fit to historical data; it also provide no
information or understanding of the HIV transmission mechanisms or the impact of in-
terventions. Mathematical models parameterised to match epidemiological and clinical
observations offer an alternative mechanistic approach.

HIV (Human Immunodeficiency Virus), the virus which causes AIDS, is transmitted
through bodily fluids, notably blood and semen. As such, certain behaviours make an in-
dividual at greater risk of contracting HIV; most notably, unprotected sexual intercourse
and intravenous drug use. Individuals regularly participating in such behaviours often
form subpopulations of the general population and so it is natural to model HIV trans-
mission amongst and between these subpopulations. Most of the early work modelling
HIV transmission dynamics focused on male homosexual communities in developed
countries where early cases were predominately detected [14, 9, 46, 48, 47, 136, 134, 181].
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In developed countries, most new infections still occur in men that have sex with men
or those sharing injecting equipment. In contrast, in developing nations, HIV is mainly
spread through heterosexual contact, requiring a different set of modelling assumptions.

To illustrate the progression of HIV transmission modelling over the years we will
start with a simple single population compartment model, similar to the model described
in Section 2.1. We will then add several complexities relevant to HIV transmission to
the model and describe their impact on the predicted epidemic patterns. Given the huge
public-health importance of HIV and the devastating effect that this pathogen can have
on the population, there are a wealth of papers focussed towards predicting long-term
dynamics. In many of these studies the aim is to generate accurate predictions and hence
all known epidemiological and behavioural factors are included. Here we focus on spe-
cific elements of increased realism to better illustrate the effects of these heterogeneities.

3.6.1 One group: HIV in homogeneous male homosexual communities

The early work on modelling HIV transmission dynamics predominantly involved sim-
ple deterministic ordinary differential equations, similar to the SEIR equations (1) de-
scribed in Section 2.1. Male homosexual communities were the primary focus of these
early models, as they were the primary focus of detected disease. For HIV the latent
period following infection is very short compared to the infectious period and so the
exposed class is often ignored [14]. However subsequent studies have found that the
rates of transmission vary with the time since infection in a complex manner, often
being high immediately after infection [48]. The basic model we adopt here consists
of three compartments; susceptible individuals (S), infectious individuals (I) and in-
fectious individuals who have developed AIDS (A), are symptomatic and assumed to
no-longer partake in sexual activity. Individuals transition between the compartments
according to biologically and behaviourally defined rates (see Figure 19). The full set
of equations are:

Susceptible dS
dt = −λS

HIV positive dI
dt = λS − ηI

AIDS dA
dt = ηI

(27)

where the force of infection λ is a product of the transmission probability per sexual
contact τ , average rate of sexual partner change c, and proportion of the sexually
active population who are infected, I/(S + I) (individuals who have developed AIDS
are assumed to be removed from the sexually active population)

λ = τc
I

S + I
(28)

As is the case for most infectious diseases in human populations, transmission is assumed
to be frequency dependent and this is reflected by the form of λ; however, unlike many
other infections the active populations size (S + I) can be substantially reduced by the
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disease. Infectious individuals develop AIDS at rate γ. Clearly this model has parallels
with the standard SIR model, with the A compartment playing a similar role to R.

S I A
λ η

infection

Figure 19: Generic SIA model (dashed lines show the direction of transmission)

The timescales of HIV infection are long, with an estimated infectious period of
between 8 and 10 years even without treatment [194]. So for greater realism, demog-
raphy must be included in the model (see Figure 20). This is introduced in the form
of an immigration rate B, with individuals entering the sexually active population as
susceptible; in addition we include a disease induced mortality rates m and a rate of
leaving the sexually active population d:

dS
dt = B − λS − dS
dI
dt = λS − (η + d)I
dA
dt = ηI − (m+ d)A

(29)

The terms B and d obviously mimic births and deaths in the standard SIR model, but
refer to the sexually active population.

S I A
λ η

infection

B

d d d

m

Figure 20: Generic SIA model with demography (dashed lines show the direction of
transmission)

These early models assume that everyone in the population has the same number of
partners and that the duration of partnerships can rapidly break and new ones reform.
A natural modification is therefore to assume partnerships have a given duration [250];
explicitly including partnerships in this way slows transmission, as individuals in a
susceptible-susceptible partnership are effectively protected against infection. However,
if partnerships were allowed to overlap, such that one person could be in two concurrent
partnerships, then the spread of infection is generally much faster was predicted to be
far more rapid [250, 196, 178, 81, 82]. Concurrency also has a great impact when
considering variable infectiousness over the infectious period (see Section 3.6.6).
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3.6.2 Multiple groups: HIV in heterogeneous male homosexual communi-

ties

In practice, not all individuals have the same number of sexual contacts over time
leading to differences in the rate of change of sexual partners, c. In fact, a great deal of
heterogeneity is observed in the number of sexual contacts of individuals in a population
[171], with most people having very few partners in a given time period and a small
number of individuals having very many. Many models have been formulated to account
for this [14, 47, 140]. Following Jacquez et al. [136] we partition the population into
n groups based on sexual activity level, so that group i has on average ci partners per
unit time. Following similar methodology to before, we can calculate the transmission
rates in terms of the underlying parameters. The total number of contacts per unit
time of a susceptible individual in group i is ci, the fraction of these contacts that are
with group j is given by ρij , Ij/(Sj + Ij) is the probability that the contact with group
j is with an infectious individual and τij is the fraction of those contacts that result in
transmission. Therefore the rate at which a susceptible individual in group i is infected
by infectious individuals in group j is given by:

ciρijτij
Ij

Sj + Ij
(30)

So the equations of this expanded heterogeneous population therefore become:

dSi

dt
= Bi −

n∑

j=1

ciρijβijSi
Ij

Sj + Ij
− diSi

dIi
dt

=

n∑

j=1

ciρijβijSi
Ij

Sj + Ij
− diIi − ηIi (31)

dAi

dt
= ηIi − diAi −DAi

where Bi is the recruitment rate of individuals into activity group i. This model is
an example of partitioning a heterogeneous population into risk classes, in the same
manner as was done for age structure or multi-species models (Section 3).

3.6.3 Mixing patterns

It is not just the number of partners an individual has in a given time period that
determines how risky their behaviour is, the type of partner chosen plays a major role
as well. For example, a single sex act with a low-risk partner is far less likely to lead to
infection than a sex act with a partner that is high-risk. Therefore it is not simply the
number of sexual partners that determines an individual’s risk of being infected, but
also the risk-status of these partners. This can be captured using the mixing matrix
ρ, where ρij denotes the proportion of contacts from individuals with i contacts to
individuals with j contacts. There are a three constraints on this mixing matrix: all
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elements must be non-negative; each row must sum to one; and the number of contacts
of group i with group j must equal the number of contacts of group j with group i.

ρij ≥ 0
∑

j

ρij = 1 (32)

ci(Si + Ii)ρij = cj(Sj + Ij)ρji

There are two obvious forms for the mixing matrix that satisfy these conditions, and
can be readily parameterised from the type of individual-level data that is commonly
collected. Firstly, proportionate or random mixing, where individuals form partnerships
at random but in proportion to their expected number of partners (this can be compared
with configuration-type models of network generation [192]):

ρij = cj
Sj + Ij∑

k ck(Sk + Ik)
(33)

This type of mixing was used in the early models of sexually-transmitted infections as
it does not require detailed information about partnerships [14]. However, proportion-
ate mixing does not agree with studies of sexual mixing patterns (where high-partner
individuals preferentially pair with other high-partner individuals) and models that use
this assumption have been found to predict epidemic growth rates that are inconsistent
with epidemiological data [134].

The second type of mixing that clearly satisfies the mixing matrix conditions (32)
is known as restricted mixing, where all partnerships are made within risk group. The
mixing matrix in this case is just the identity matrix, ρij = δij . In network theory
terminology, restricted mixing is usually referred to as fully assortative mixing, where
individuals only form contacts with others who have the same (or similar) defining char-
acteristics [116].

It is more likely that the reality is somewhere between these two extreme mixing
patterns and fortunately linear combinations of these two extremes also satisfy equation
(32). This intermediate behaviour can be captured by preferred mixing [136], where a
fraction ρi of a group i’s contacts are reserved for restricted mixing and the remainder
for proportionate mixing:

ρij = ρiδij +
cj(1− ρi)(Sj + Ij)∑
k ck(1− ρk)(Sk + Ik)

(34)

This formulation has allowed the investigation of the effect of mixing patterns on
the rate of spread of infection and the overall proportion of the groups that ultimately
become infected. In general, assortative mixing gives multi peaked epidemics - an early
small peak from the rapid spread in the small but high activity classes and then a later
but extensive peak due to the slower spread over a longer time in the low activity classes
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Figure 21: The change in total number infected in the population as predicted by
equation (31) after introduction of one infected in the high risk group, for random
(equation (33)), assortative (equation (34) with ρi = 0.99) and disassortative mixing.
The population structure can be represented in vector form with 5 risk groups; with
the average number of contacts per year c = (12, 24, 48, 96, 192) and the fraction of
the population in each risk group N = (0.24, 0.24, 0.43, 0.14, 0.06) = S(0) [136]. Other
parameters are a birth rate B = 100 per month and η = 0.2 (years)−1, di = 0.012
(years)−1∀i, βij = 0.01∀ij, D = 1 (years)−1.

(Figure 21).

In the case of HIV, AIDS related mortality and behavioural changes can result in
changes in the composition of the sexually-active population. For example, if infection
is concentrated in the high risk groups then their proportional representation in the
population is reduced when infected individuals are removed from the sexually active
population. Therefore the conditions (32) for the mixing matrices are no longer satisfied
and so the mixing patterns ρij , rate of partner change ci of the different groups, or both
must be altered [116].

In the search for ever more reliable and accurate descriptions, there are many more
complexities that have been included in the above models to account for observed HIV
transmission mechanisms. In practice, models are only limited by available data and
our willingness to include multiple complicating factors.
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3.6.4 HIV in heterosexual communities

HIV in heterosexual communities can be thought of as a specific case of the multiple
group model described in the previous section. In this case there are two groups, males
and females, and the mixing between them is strictly disassortative (just like the vector-
borne disease transmission in Section 3.5.2), so that males only form partnerships with
females and vice versa. The two groups can be further stratified by age and sexual
activity level and the relevant mixing parameters between groups can be approximated
from empirical studies. Such models are required for developing countries where the
majority of infection is in the heterosexual population; in such areas, it has long been
realised that AIDS is capable of turning positive population growths negative [12, 11],
driving the need for a rigourous understanding of HIV dynamics.

3.6.5 The impact of demography

The level of sexual activity is just one factor that can divide a population into different
risk classes. It is also possible to stratify the population by age, type of sexual activity
and intravenous drug use, amongst others, and to define the relevant mixing patterns
between the groups, which often results in strong assortative mixing. When age is used
in these models it is natural to allow individuals to age and change their behaviour as
time progresses [1, 13], although such models require large amounts of data to param-
eterise this socio-demographic behaviour. Using mixing matrices involving age, gender
and sexual activity level for a heterosexual population, it has been shown that the po-
tential demographic impact of AIDS is enhanced by several known heterogeneities: a
high level of sexual activity in the younger age classes compared to the older age classes;
a male preference for younger female partners; and unequal transmission probabilities
between males and females [10].

3.6.6 Variable infectivity

It has been found that a typical pathway for an individual infected with HIV consists
of three stages. The initial short-duration stage, referred to as primary/acute infection,
is characterised by a high viral load and high infectiousness. This is followed by an
asymptomatic phase, where the viral load remains low and individuals are much less
infectious. The final stage is the symptomatic stage including the onset of AIDS, where
the viral load rises again. These three stages can be neatly captured by including more
infectious compartments in the simple models (see Section 2.4), with associated trans-
mission rates and rates for moving between them parameterised to match observations
[48]. As with the simple SIR model, the simple equations for HIV (29) show damped os-
cillations to equilibrium; however undamped oscillations in incidence may be generated
if there is variable infectivity throughout the infectious period [232].
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3.6.7 Variable incubation period

Studies have found that the incubation period from infection to the development of
AIDS varies considerably between individuals, but does not fit the classic exponential
distribution of standard models (Section 2.1). This means that the rate of movement
out of the infectious class is better captured as a function of time since infection, rather
than a constant value. A reasonable function for this variable incubation period is
η(τ) = kτ [14], where τ denotes the time since an individual was infected and k is some
constant. The infectious class is now given by I(t, τ), a function of both time t and
duration of infection τ , and the system described by (29) becomes:

dS(t)

dt
= B − dS(t)− λ(t)S(t)

∂I(t, τ)

∂t
+

∂I(t, τ)

∂τ
= λ(t)S(t)− (η + d)I(t) (35)

dA(t)

dt
= ηI(t)− dA(t)

The implications of this extended form of model are that the rise in cases of AIDS
follows the rise in incidence of HIV infection but with a fairly clear delay. This is in
contrast with the simple model (Equation 27) with constant incubation period, η, where
there is a less marked lag between the rise in HIV cases and the rise in AIDS [14].

In conclusion models of HIV dynamics illustrate many elements of good mathemat-
ical modelling: a close integration of models, epidemiological data and clinical under-
standing; the use of models as a tool in better informing public-health; and the inclusion
of multiple heterogeneities that may all play a key role in future dynamics. However, as
with all attempts to model the real world, we are soon overwhelmed with the number
of heterogeneities (age, gender, sexual activity, sexual preference, intravenous drug use,
etc etc) many of which will be interdependent and interact. The skill of a modeller
is therefore to assess and investigate which of these many factors are fundamental in
addressing questions of epidemiological relevance. The history of modelling work in
HIV is therefore the story of increasing sophistication as we both learned more about
the infection and refined our modelling techniques.

4 Individuals and Stochastic Transmission

For models of infectious disease transmission the modelling scale can range from the
truly microscopic, such as the within host dynamics of disease [235], to the national and
global scale [93]. The deterministic (ODE) epidemic models that formed the subject of
the previous sections treated numbers of individuals experiencing each disease status as
continuously differential quantities, which assumes an effectively infinite total popula-
tion. This motivates formulating ODE models at the bulk population-level scale where
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the infinite population assumption is appropriate [44]. Whilst classical deterministic
models for epidemic dynamics have a long and highly successful history in theoretical
epidemiology, nonetheless formulating epidemic models at the scale of the discrete indi-
vidual and taking into account the stochastic nature of transmission from individual to
individual can capture phenomena that cannot be explained by a classical model. This
is especially true when the number of infected hosts is small. A single infectious indi-
vidual within a naive population has the potential to seed a large epidemic (if R0 > 1)
similar to that predicted by an ODE model. On the other hand by chance the infec-
tious seed individual could fail to recruit secondary cases; the epidemic might fail to
take hold despite R0 > 1 (Figure 22). This phenomenon cannot be explained using a
deterministic epidemic model. The motivation behind stochastic models at the individ-
ual scale is clear, and indeed random models of disease date back to Daniel Bernoulli
(c. 18th century). However, the numerical investigation of truly population-sized but
individual scale epidemic models with stochastic transmission has only become feasible
due to advances in electronic computational power.
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Figure 22: Three realisations of the stochastic SIR model initiated by a single infected (Recov-
ery rate γ = 0.2 (days)−1, reproductive number R0 = 2, population size N = 100 plus the initial
infected). Transmission and recovery occur at random times and lead to integer changes in the
number of infecteds. Identical initial conditions can lead to very different outcomes, ranging
from a large percentage of the population becoming infected at some point to a small percentage
or even complete failure of the infection to invade the population.

The stochastic dynamics for compartmental epidemic models (e.g the SIR model)
consist of individuals transitioning between disease states. In order to formulate a
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stochastic compartmental model the modeller has to specify the law in probability for
the time and the type of each transition. In the literature many probabilistic mecha-
nisms have been used to capture these transitions, including continuous time models
[19, 34, 36, 20], discrete time models [147, 160] and generational time models such as the
Reed-Frost chain binomial model [40] or the branching process epidemic model [111]. As
an introduction to the characteristic dynamic properties of stochastic individual based
models we will focus on modelling an outbreak of an infectious pathogen within the SIR
modelling framework. The goals of this section will be to introduce the basic probabilis-
tic properties of discrete event based epidemic models, before describing in some detail
methods for numerically simulating stochastic epidemics with the desired probabilistic
structure, and the mathematical relationship between the stochastic epidemic model
and related deterministic epidemic models. Special attention will be given to phenom-
ena that cannot be adequately captured by continuous and deterministic models such
as random early epidemic extinction, the emergence of persistent stochastically driven
oscillations and occassional epidemic fade-outs.

4.1 Event-based Stochastic Epidemic Models

Probabilistic compartmental epidemic models for individuals are usually introduced by
considering the risk of disease transmission from currently infectious individuals to the
currently susceptible ones, in addition to defining a probability law for the time spent
within each disease compartment before recovery. Such transitions between compart-
ments are examples of stochastic events. The set of possible stochastic events, E , defines
the possible transitions for epidemic states, such as the transmission of disease to each
individual. This implicitly assumes that stochastic events such as transmission and re-
covery occur at a sufficiently quick time-scale as to be treated as instantaneous.

Although simpler approaches exist which allow the stochastic realisation of some
model types, we feel that it is important to be relatively precise in our definitions
and approach both to allow sufficient generality and to better inform the link between
stochastic and deterministic models. In order to simplify our discussion we will re-
strict attention to SIR-type epidemics amongst a homogenous populations. Population
heterogeneity and alternative disease compartments can be introduced via population
subdivision and the introduction of additional events with defined arrival rates. For the
basic SIR model the epidemic state at time t is the vector,

X(t) = (S(t), I(t), R(t)). (36)

Where S(t), I(t) and R(t) describe the integer number of susceptible, infected and
removed individuals in the population class at time t. There are two possible events for
the basic SIR model, transmission (eI) and recovery (eR), which are most conveniently
described as vectors that model the impact of the event on the number of S, I and R
individuals.

eI = (−1, 1, 0), (37)

eR = (0,−1, 1). (38)
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The event-based stochastic epidemic model is an example of a pure jump process [158].
The advantage of treating the stochastic epidemic in this manner is that analysing
and simulating the stochastic dynamics reduces to considering the random sequence of
events and their time of arrival, {(ek, Tk)}k≥1, where the event-time pairs are ordered
by their arrival time. At the arrival time for the kth event the epidemic state undergoes
a transition

X(Tk) = X(Tk−) + ek (39)

Where X(Tk−) = limt↑Tk
X(t); that is the epidemic state instantaneously before the

arrival time.

Stochastic models with many possible next events have competing waiting times;
the next event that occurs is the one with the shortest waiting time. Denoting the
random waiting time for the next event of type e, ∆Te, (which is a random variable)
we select the event with the shortest waiting time:

∆T = min
e∈E

{∆Te}. (40)

with the next event type, enext, being the one that has the minimum time:

enext = argmin
e∈E

{∆Te}. (41)

The distribution of event waiting times is determined by the choice of model, based on
any available data.

4.1.1 Arrival Rates and the Basic Stochastic SIR Model

The simplest probabilistic model for event arrivals is to postulate that each event occurs
at some probabilistic rate re(t), e ∈ E , which may be time inhomogeneous and may
depend on the population size, the current state of the system or even the history of
the epidemic. A popular assumption is that the event arrival rates depend only on the
current state of the epidemic (X(t)), this describes a Markovian jump process. Event
rates represent the stochastic analog to the rates of change familiar from deterministic
models and hence can similarly be motivated by real epidemiological and demographic
data. For special cases where the arrival rates are either deterministic or Markovian
we will show that the distribution for waiting time until next event and the next event
type can be given in a particularly simple form.

For any given event type e, the probability of the event occurring in the near future
is proportional to the rate event arrival process, more precisely,

P(∆e[t, t+ h] = 1) = re(t)h+ o(h), h > 0. (42)

The ‘work horse’ of random models for the SIR process is the stochastic construction
where each individual upon being recruited to the infected class remains infectious for
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the random length of time T , called the infectious duration [63]. During that time, the
infectious individual makes random infectious contacts with the rest of the population,
the standard model being contact at the points of a Poisson process [29]. When a
susceptible is contacted that individual is infected and recruited to the infectious class.
The most popular choice is to have the infectious durations exponentially distributed
since the stochastic epidemic construction with Poisson process contacts and exponential
durations can be described as a Markov process [84] with event arrivals governed by the
rate of individual infectious contacts (β/N) and the rate parameter of the exponential
duration time (γ). Since, individuals are assumed interchangeable within a homogeneous
population, the arrival rate for any infection event (rI) or recovery event (rR) are,

rI(t) = rI(X(t)) =
βS(t)I(t)

N
, (43)

rR(t) = rR(X(t)) = γI(t). (44)

The probabilistic dynamics for the basic stochastic SIR model [19] are therefore,

P[(S, I)(t+ h)− (S, I)(t) = (−1, 1) | (S, I)(t)] = β
S(t)

N
I(t)h+ o(h), (45)

P[(S, I)(t+ h)− (S, I)(t) = (0,−1) | (S, I)(t)] = γI(t)h+ o(h). (46)

We do not explicitly include the number of removed individual R(t), as it is a redundant
variable when the population is fixed at size N .

4.1.2 Deterministic and Markovian Arrival rates

The special case where the arrival rate of an event re(t) is deterministic (independent
of the stochastic dynamics) is important, both as a model for events occurring due
to an external influence upon the epidemic and because of its analytical convenience.
Any arrival process with a deterministic rate is a necessarily a Poisson process [158].
The number of new event arrivals for the Poisson process on an interval, ∆e[t1, t2], is
independent for disjoint intervals and Poisson distributed,

∆e[t1, t2] ∼ Poisson
(∫ t2

t1

re(s)ds
)
, t1 ≤ t2. (47)

Aditionally, for constant rate arrivals the waiting time, ∆Te, until the next event of a
Poisson process is distributed exponentially with rate parameter given by the process
rate [67],

∆Te ∼ exp(re). (48)

so that ∆Te is drawn from an exponential distribution. For the basic stochastic SIR
model the Markovian arrival rates given by (43) and (44) are piecewise constant between
the arrival of new epidemic events, which implies that the waiting times for both the
next transmission and the next recovery events are exponentially distributed. For the
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basic SIR model the properties of sets of exponential random variables applied to (40)
and (41) giving the distributions of ∆T and enext in simple form for any state X(t),

∆T ∼ exp(rI(t) + rR(t)), (49)

P(enext = eI) =
rI(t)

rI(t) + rR(t)
, (50)

P(enext = eR) =
rR(t)

rI(t) + rR(t)
. (51)

This can be straightforwardly generalised to time homogenous Markovian epidemics
with more compartments and more event types.

4.1.3 Non-Markovian Arrival Times

For non-Markovian and time inhomogeneous arrival rates matters are more complicated,
however a result due to Lipster and Shiryaev [172, 158] is useful for characterising the
waiting time between events. The idea is to make a change of time transformation
t → ρ(t) so that in the new time variable ρ(t) the number of new events Ne(t) =
∆e[0, ρ(t)] arrive as a Poisson process with constant rate 1. This is achieved by relating
the transformed time variable to t as,

ρ(t) = inf
τ≥0

{
τ
∣∣∣
∫ τ

0
re(s)ds = t

}
. (52)

Equation (52) describes an analytic trick; the transformed time progresses slower when
the arrival rate is faster and vice versa in order to treat events as arriving at a uniform
rate.

The first arrival time of a unit rate Poisson process is distributed Z ∼ exp(1) and
therefore the first arrival time for the event e, Te, is the solution to,

∫ Te

0
re(s)ds = Z. (53)

The first arrival time is particularly important in the context of the SIR epidemic,
since an infection event arrives for each individual at most once. Equation (53), applied
to the arrival of infection for an individual, was first described by Sellke [225] for the
purpose of analysing the final size distribution of cases. In this context the set of events
must distinguish between individuals, for example the infection event of each individual
is considered distinct. The random variables Z then have an intuitive interpretation
as a random ‘resistance’ for each individual which is eroded at a rate rI(t). Infection
occurs for the individual at the time point where the resistance is eroded to zero. The
final size analysis has been deepened by Ball for the single population scenario [24] and
also extended to include multi-type epidemics [25, 30]. For a thorough discussion of nu-
merical methods, and potential pitfalls, for solving the resultant final size distributions
see House et al [128]. The major drawback to using result (53) is that ∆T and enext are
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represented implicitly in terms of a set of exp(1) distributed ‘latent’ random variables
[64] rather than given directly. The ease of use of the implicit form will depend on the
model specifics.

4.1.4 The Kolmogorov Equation

The above description of stochastic rates and events naturally leads to the use of simu-
lation methods which need to be performed multiple times to gain an understanding of
the range of dynamics. However, it is possible to generate exact models for the prob-
ability of finding an epidemic in a given state. Consider the dynamics of the indicator
function, 1x(·), which is one if the epidemic is in some state x. The expectation of this
state indicator function gives the time-dependent probability of finding the epidemic in
that configuration; we denote this probability as p(x, t),

E[1x(X(t))] = P(X(t) = x) = p(x, t). (54)

For Markov processes the current epidemic state completely specifies the event arrival
rates. Considering the rate at which X(t) enters and exits the state x gives the complete
set time-dependent state probabilities as the solution to a set of ODEs,

dp(x, t)

dt
=

∑

e∈E

[re(x− e)p(x− e, t)− re(x)p(x, t)] (55)

The equations (55) are variously called the Kolmogorov, Chapman-Kolmogorov or Mas-
ter Equations for the probability of the stochastic epidemic being in state x ∈ S at time
t given some initial distribution p(x, 0) for each possible epidemic state x. The full set of
probabilities for each epidemic state can be represented as a vector p(t). The advantage
of vector notation is that the large set of equations (55) can be given compactly as a
linear evolution equation,

ṗ(t) = Gp(t). (56)

Where the matrix G is called the generator of the stochastic epidemic and encodes
the relevant transition rates of stochastic infection and recovery events. The master
equation (56) can be solved in terms of a matrix exponential,

p(t) = exp(Gt)p(0), t ≥ 0. (57)

The numerical computation of matrix exponentials can be performed by a number of
software packages, including MATLAB, see Figure 23 for an example of the solution for
an SIS-type epidemic. Where accessible the solution (57) can be used to investigate
the stochastic behaviour of epidemics directly [146].

4.2 Simulating Event-based Stochastic Epidemics

Although simple in formulation, equation (56) cannot be used in general due to the ex-
plosion in possible disease configurations as the population size and number of different
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Figure 23: An example of the direct solution to the Kolmogorov equation using MATLAB
exponential matrix solver. For simplicity an SIS epidemic is considered (N = 100, γ = 0.2
(days)−1, R0 = 2). Shading gives the time dependent probability distribution of infecteds
numbers. The solid curve gives the prediction of the related deterministic SIS model. Note
that the infecteds probability distribution is bimodal between the endemic and disease-free states
(probability of disease-free after 50 days is 0.5107).
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population sub-groups becomes large; a phenomenon known as the curse of dimensional-
ity. It is therefore convenient to resort to Monte Carlo techniques for large populations;
that is to simulate realisations of the stochastic epidemic with identical probabilistic
structure as the ‘true’ epidemic. Problems of interest can then be investigated via the
Monte Carlo convergence of independently drawn random samples.

Single Event

Multiple Events
Simulation time-steps

Time

Exact Simulation (FR/GD)

Tau-Leap Simulation

Figure 24: Schematic of exact stochastic simulation versus the approximate Tau-leap method.
For the exact simulation methods, first reaction (FR) and Gillespie direct (GD), the time-steps
are generated by the probabilistic arrival of single events according the epidemic model. FR
simulation is flexible since non-Markovian and time inhomogeneous arrival rates are acceptable
within the simulation framework. GD is significantly more computationally efficient than FR,
but applies only to Markovian stochastic models. For tau-leap simulation time increases by a
fixed amount τ at each time-step, multiple events of each type occur during each ‘Tau-leap’ and
are realised at the end of the time-step according to a Poisson distribution. Here τ is greater than
the typical time-step of the exact simulation and so TL is the most efficient method considered
here, and can include history dependence, but at the cost of exactness.

In this section we investigate techniques for numerically constructing sample epi-
demics. The first algorithm considered will be the First Reaction method (FR) which
focuses on sequentially solving for (enext,∆T ) by directly drawing the ensemble of wait-
ing times for each event {∆Te}e∈E . The simulation progresses by implementing the
soonest next event and time-stepping forward to its arrival time before generating the
following next event. A more popular algorithm for sampling Markov Jump process re-
alisations, Gillespie’s Direct Method (GD) [103], is more efficient than the FR method
but is only applicable when the arrival rates are time homogeneous and Markovian.
Both algorithms are exact to machine precision, in the sense that any random event

54



associated with stochastic epidemic model occurs with identical probability amongst
the epidemic realisations sampled using the numerical scheme.

Both the GD and FR methods have a variable simulation time-step due to the
stochastic variation in waiting times for epidemic events. For large population sizes
the arrival rate of any new event becomes fast, and so the waiting time between events
becomes typically very short. Therefore the computational ‘cost’ of epidemic simulation
over a fixed time horizon, or until a disease-free state is reached, typically increases sig-
nificantly with the size of the population due to many more time-steps being required.
A more computationally efficient, but approximate, epidemic simulation alternative for
large population sizes is the Tau-leap method (TL), also described by Gillespie [104],
which can be thought of as a stochastic equivalent to the basic Euler time-stepping
method for numerically solving ODEs. The main point of difference for the TL al-
gorithm, compared to the GD and FR algorithms, is that the simulation time-step,
or ‘tau-leap’, is a fixed constant τ . By assuming that the arrival rates for events are
constant over the time-step multiple events can be generated as occurring at some
time within the time-step. When τ is greater than the typical time-step of the exact
algorithms the TL method greatly improves the speed at which an epidemic can be
simulated, c.f. [151] for a direct comparison between the numerical efficiency of the TL,
FR and GD methods. For a schematic representation of the points of difference between
the exact simulation methods and the Tau-leap method see figure 24.

4.2.1 Methods for Generating Waiting Times

As we have seen for (piecewise) constant rates the waiting times are exponentially dis-
tributed, however this is not true generally. The most efficient method for generate each
Te can potentially differ from model to model, and indeed from event type to event type.

A common variation from the basic SIR epidemic model is to consider non-exponentially
distributed infectious periods [29], in this case the arrival time of the recovery event for
an individual infected at time tI is TR = tI + T where T is distributed according to the
desired infectious period. At time t, the waiting time until the recovery event is then,

∆TR = TR − t, t ≤ TR. (58)

Other possibilities for calculating this waiting time are to use the Sellke-type construc-
tion (53) directly or to consider a thinned Poisson process for generating arrival events.
It is worth noting that both the time to infection and infectious duration are random
variables that are drawn from their respective distributions independently of the over-
all epidemic dynamics and can therefore be pre-generated before simulation which can
be advantageous for the retrospective comparison of epidemics [64] or for investigating
epidemic spread analytically [24]. On the other hand they must be generated for each
individual which effectively leads to considering each population model as a collection
of N population sub-groups each of size 1.
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4.2.2 Simulation Algorithms

The complexity of the FR method is in the drawing of {∆Te}e∈E , whether using pre-
generate random variables or any other method, algorithmically it is comparatively
simple,
First Reaction Algorithm:

1. Generate the initial epidemic state X(0) from P0 and set time t = 0.

2. For each possible event e ∈ E generate the waiting time ∆Te.

3. Update the current state by implementing the selected event, X(t) → X(t)+enext.

4. Set the new time t → t+∆Tenext .

5. If end conditions have not been met return to 2, else stop.

The Gillespie direct algorithm is appropriate for simulating event arrivals with time
homogeneous Markovian rates, which have exponentially distributed waiting times, and
is justified directly by the properties of the minimum of a set of exponential random
variables. This is an algorithmic description, for the basic stochastic SIR model the
state dependent rates are given by (43) and (44),
Gillespie Direct Algorithm:

1. Generate the initial epidemic state X(0) from P0 and set time t = 0.

2. For each possible event e ∈ E calculate the rate re(X(t)) for the current state and
the total exit rate R =

∑
e
re(X(t)).

3. Randomly select the next event from the set of possible events. The event enext
being chosen with probability renext(X(t))/R.

4. Update the current state by implementing the selected event, X(t) → X(t)+enext.

5. Draw time increment ∆T ∼ exp(R) and set the new time t → t + ∆T . If rand
is a random number between 0 and 1, then the waiting time can be computed as
∆Te = − ln(rand)/R

6. If end conditions have not been met return to 2, else stop.

Both the FR method and the GD method are exact, however for large population sizes
they become numerically inefficient due the very great numbers of random events that
occur in any fixed time interval.

The tau-leap algorithm [104, 105] approximates the number of random events that
arrive in the short time interval [t, t+ τ ] by assuming the arrival rates are constant over
that interval. As we have seen this implies that the number of event arrivals are Poisson
distributed,

∆e[t, t+ τ ] ∼ Poisson(re(t)τ). (59)

Tau-leap Algorithm:
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1. Generate the initial epidemic state X(0) from P0 and set time t = 0 and choose a
time-step parameter τ .

2. For each possible event e ∈ E calculate the rate re(t).

3. Draw the stochastic changes, ∆e[t, t+ τ ] ∼ Poisson(re(t)τ) for each e ∈ E .

4. Set X(t) → X(t) +
∑

e∈E(∆e[t, t+ τ ])e.

5. Enforce population constraints as appropriate, i.e. if Si(t) < 0, then set Si(t) = 0.

6. Increase time t → t+ τ .

7. If end conditions have not been met return to 2, else stop.

4.3 The Large Population Limit

The deterministic models presented in the previous sections have a long and successful
history in predictive modelling of epidemic dynamics. Yet in many respects defining
stochastic dynamics occurring at the level of discrete events seems a more natural start-
ing point for a model of infectious disease dynamics spreading between individuals. In
this section we make explicit the essential connection between models with intrinsic
randomness and the deterministic models used in the majority of this review. We will
demonstrate that deterministic ODE-type dynamics can be thought of as a type of
central limit of the Markovian stochastic epidemic as the population size of the system
N becomes large. This is analogous to classical results from statistical physics and
chemistry such as the principle of mass action or the thermodynamic limit for physical
systems [45]. The implication of this limiting result is that once a disease is established
in a large population then predictions using a deterministic model will be very similar
to those of a stochastic model.

Kurtz established conditions for Markovian dynamical process (say X(t)) with a
state space of natural numbers with some size parameter N , to convergence to a de-
terministic processes in density or scaled form x(t) = X(t)/N as the size parameter
becomes large (N → ∞). This is a variety of central limit result for Markov processes
[164, 165], which has now been further generalised (c.f. [139] theorem 17.15). For the
stochastic epidemics considered here the criterion for convergence are that for each event
e ∈ E we can find an O(1) function fe, called the parameter function for e such that,

re(X(t)) = Nfe(x(t)), e ∈ E . (60)

This is effectively a criterion that none of the event occurrence rates for the stochastic
process are faster than O(N), however identifying the appropriate parameter function is
also important for assessing the appropriate limiting ODE for a given stochastic model.
If (60) is satisfied for some set of parameter functions then, as N → ∞, the deterministic
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Figure 25: A comparison of the dynamics of infecteds population density between three
realisations of the basic SIR epidemic model (β = 2, γ = 1) and the deterministic SIR
model. As the population size N grows convergence of the stochastic model onto the
deterministic model is evident.
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dynamics for the scaled variables x(t) is,

ẋ(t) =
∑

e∈E

efe(x(t)), (61)

x(0) = lim
N→∞

X(0)

N
. (62)

The type of convergence is uniform on compacts in probability. This is a particularly
strong statement; it is not simply that the expectation of the stochastic model converges
to the deterministic limiting dynamics, but that nearly every realisation of the process
converges in density (figure 25).

When N is large but stochastic dynamics are still considered important, it is often
most convenient to use a diffusion process approximation. The stochastic density process
x(t) with parameter functions {fe}e∈E is very ‘close’ [165] to the diffusion process,
written as an Itô form stochastic differential equation [141],

dx(t) =
∑

e∈E

efe(x(t))dt+
∑

e∈E

e

√
fe(x(t))

N
dBe(t) (63)

Where {Be(·)}e∈E are a set of independent standard Brownian motions, one for each
event type.

Hence, for the basic stochastic SIR model the diffusion approximation can be ex-
pressed as:

ds(t) = −βs(t)i(t)dt−
√

βs(t)i(t)

N
dBI(t), (64)

di(t) = [βs(t)i(t)− γi(t)]dt+

√
βs(t)i(t)

N
dBI(t)−

√
γi(t)

N
dBR(t). (65)

where s(t) = S(t)/N , i(i) = I(t)/N , and stochasticity is captured by the indepen-
dent standard Brownian motions BI(·) and BR(·). The details of Kurtz’s approach to
assessing the deterministic limit of stochastic processes heavily involves the use of Mar-
tingale theory, for an alternative approach based on taylor expansions of the Chapman-
Kolmogorov equation for the epidemic process see Van Kampen [245] or Diekmann,
Heesterbeek and Britton [74]. Note that while the Markovian event-driven model leads
to the Kolmogorov Equations for the probabilistic behaviour of the complete system
(see section 4.1.4), so the diffusion approximation model leads to Fokker-Plank equa-
tions [243].

4.4 Early Extinction and Infectious Generations

A major departure for the theory of the stochastic epidemics compared to their de-
terministic counterparts is the threshold phenomenon for successful invasion must be
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reinterpreted as the probability of a ‘large outbreak’. For stochastic models there are
fluctuations in the number of infecteds, and since any disease-free epidemic state is a
trapping point for the dynamics (in the absence of an external re-introduction mecha-
nism), there will be a chance that the introduction of a small number of infecteds will
fail to cause a significant sized epidemic. This is not a feature of the deterministic SIR
model, where the numbers of infected individuals always increases when R0 > N/S(t).
This risk of early extinction leads to a bimodal or U-shape [135] distribution of epidemic
final sizes for the stochastic SIR model. In this section we concentrate on calculating
the probability of a small epidemic occurring despite a small number of infected indi-
viduals being introduced to a large naive population; that is outbreaks that contribute
to left-hand of the ‘U’ (Figure 26).
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Figure 26: The characteristic U-shape of epidemic size distribution (from 100,000 replicate
simulations) for the basic stochastic SIR model (N=100, R0 = 2) with a single initial infected.
In the large N limit with generational dynamics branching process theory gives the probability
of an epidemic being a member of the ‘left side’ of the U-shaped distribution.

4.4.1 Branching Processes and Early Extinction

For populations of finite size N without the possibility of disease reintroduction from
some external source the epidemic ceases in finite time as it eventually reaches a state
where no infected individuals remain. For SIR-type epidemics each individual that
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was infected at some point during the epidemic outbreak is called a case. If ZN (∞)
denotes the final number of cases for a population of size N then the probability of a
‘true epidemic’ or ’major epidemic’ [23] is said to be,

P( lim
N→∞

ZN (∞) = ∞). (66)

This is best interpreted as a probability that a non-zero fraction of a large population
becoming infected (i.e. a significant epidemic occurring) with the other option being
that an effectively zero fraction of a large population becomes infected, which is called
an early extinction of the epidemic.

In this setting the N → ∞ limit is analytically convenient as the effects of suscepti-
ble depletion are ignorable during the early epidemic, such that there is no competition
between infected individuals and hence all chains of transmission can be treated inde-
pendently. Early in the epidemic, each infected individual recruits new cases from the
total susceptible population according to a Poisson process with rate β; the probability
of contacting an individual who has already been infected asymptoting to zero. Infected
individuals continue recruiting over the duration of their infectiousness, which lasts a
random period T . The new cases generated by an infected host are called the offspring,
O, of the infected, and the distribution of the number of offspring for each infected is
called the offspring distribution, denoted

PO(k) = P(O = k). (67)

Since time is no longer an explicit factor; the epidemic dynamics are given as the number
of infected in each generation. This type of process is called a branching process [120].
In the large N limit the offspring distribution of each infected become independent, and
identically distributed, therefore it is sufficient to consider epidemics seeded by a single
infected (I0 = 1). Early extinction probabilities for I0 > 1 can be calculated using the
multiplication of independent probabilities.

The probability of early extinction can be analysed using the probability generating
function (PGF) of the random number of offspring O (GO(z)) defined as,

GO(z) =
∑

k

P(O = k)zk, z ∈ [0, 1]. (68)

A classical result from branching process theory is that the probability of early extinc-
tion, Pext, is given by the following intercept condition [120] ,

Pext = min{z ∈ [0, 1]|GO(z) = z}. (69)

This methodology allows us to compute extinction probabilities for a wide spectrum of
model formulations.
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Figure 27: Simulated realisations of the basic stochastic SIR model (β = 2, γ = 1, Gillespie
Direct simulation method) with an epidemic seed of a single individual I0 = 1 and increasing
population size N , an early extinction for the finite N simulations is defined as a final number
of cases ZN < 0.01N . Branching process theory predicts an early extinction probability of 0.5
(dashed line), this is approached in the large N limit so that for N > 1000 the theoretical and
numerical results become indistinguishable.

For the basic Markov SIR model with infectious durations that are exponentially
distributed (T ∼ exp(γ)), a more direct argument can be applied. Let p be the proba-
bility that the next event for any given infectious individual is to recruit (with rate β)
rather than recover (with rate γ); this is given by considering competing waiting times,

p = P(TI < TR) =
β

β + γ
. (70)

Therefore, considering a single infected case, either the individual recovers, there are
no cases and hence the infection goes extinct with probability 1, or the individual
generates a new case and we need to consider the extinction probability given two
infected individuals. Given the independence of the chains of transmission from these
two infected hosts, the probability of total extinction is simply the product of each chain
going extinct. Hence

Pext = (1− p)× 1 + p× P 2
ext (71)

Two solutions to this equation exist, Pext = 1 or Pext = γ/β = 1/R0, with the latter
being relevant when R0 > 1. Numerical simulations of the basic stochastic SIR model
reveal that this theoretical value is generally an over-estimate for finite N (as offspring
are no-longer independent and compete for susceptibles) but converges as N becomes
large (figure 27).
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4.4.2 Early Extinction for Multi-Compartmental Models

The choice of distribution for the infectious duration T has an important, but complex,
effect on the dynamics of stochastic epidemics [62]. Since the assumption of exponential
distributed T is often not supported by epidemiological data (e.g. [208]), other distri-
butions need to be considered, with the use of multiple infected compartments being
the most common (see section 2.4). Such models are commonly referred to as multi-
compartment models. Here we will consider generalising the single infectious duration
to M sub-period durations, {Ti}Mi=1 so that,

T =

M∑

i=1

Ti. (72)

This is most compactly described as the SI(1) . . . I(M)R compartmental epidemic model.

As an illustration of the usefulness of the result (69) we consider a stochastic model
with Poisson process transmission events and T given by (72) where the multi-stage
infectious periods are distributed identically and independently, Ti ∼ exp(Mγ). In this
case the infectious duration T is distributed according to an Erlang distribution; a
special case of the gamma distribution [174], with exponentially distributed infectious
durations (M = 1) and constant infectious durations (M = ∞) treated as special cases.
Moreover, since the expected duration within each of the M infectious compartment is
1/Mγ the value of R0 is invariant to the choice of M .

The total number of offspring, O, is the sum of offspring in each stage, therefore the
M -stage offspring distribution has the PGF:

GO(z;M) =
( pM
1− (1− pM )z

)M
, pM =

Mγ

β +Mγ
(73)

The threshold for the probability of a significant outbreak being non-zero is R0 = 1
which is independent of the choice of M . If R0 > 1 the early extinction probability is
strongly affected by the choice of infectious duration distribution with early extinction
more likely in models with fewer compartments (Figure 28).

4.5 The Interplay between Stochasticity and Demography

There are two predominant mechanisms whereby SIR-type diseases can establish them-
selves for long durations in a population and avoid epidemic cessation due to the de-
pletion of potential new hosts. Firstly, by recruiting new individuals born into the
susceptible class and secondly, by external infectious pressure or imports of new in-
fectious individuals. For deterministic epidemic models with demography (births and
deaths) the persistence of an epidemic is characterised by the existence of endemic sta-
ble equilibrium points for the disease dynamics. For stochastic models this picture is

63



Figure 28: The graphical construction for the intercept criterion (69). Solid lines give
the offspring PGFs for the stochastic epidemic with M infectious compartments ranging
from geometric (M = 1) though negative binomial (M = 3) to Poisson (M = ∞). The
minimum intercept (filled circles) with the unit gradient line gives the early extinction
probability, Pext. Graphical considerations and the convexity of GO give that Pext < 1
⇐⇒ G′

O(1;n) > 1.
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complicated by both fluctuations about any potential endemic equilibrium and the real-
isation that for (ergodic) stochastic models a disease-free trapping state will be reached
eventually, albeit potentially after a very long duration. In this section we will discuss,
with reference to the basic stochastic SIR model with demography, two phenomena
that have been observed in real epidemic time series data: stochastic resonance and
stochastic fadeout or repeated extinction-decolonisation events.

To include demography for the basic SIR model we introduce a birth event eB
and death events for the susceptible, infected and removed individuals, eDS , eDI , eDR.
Following equation (1) in Section (2.1) we assume new birth events arrive at constant
rate BN∗, whereas the rate of death events are respectively dS, dI and dR. By letting
B = d the initial population size N(0) = S(0) + I(0) + R(0) converges rapidly to a
fluctuating process about its equilibrium size, N∗.

E[N(t)] = N∗ + (N(0)−N∗)e−Bt.

With the simplest solution being to set the initial population size to N∗.

For modelling external imports of infection one possibility is to include a migration
rate of infectious individuals from outside the population into the infected sub-group.
However here we prefer to model external imports as due to some interaction (for
example due to commuting between populations) between susceptibles and an external
reservoir of infection. This acts as an additional term in the arrival rates of infection
events through an import rate factor ξ,

rI(t) =
β

N
S(t)I(t) → S(t)

N

(
βI(t) + ξ

√
N
)
. (74)

Here we have assumed that the import rate per individual scales with the square-root
of the population size (

√
N), which appears to be a generic feature of human diseases

[35]. In the following examples we will use event-based stochastic models for the epi-
demic dynamics. However analysis will be performed using the diffusion approximation
described in section 4.3. This approach gives good results due to the large population
sizes that will be considered.

A limitation of treating birth and deaths independently is that the state space for the
epidemic technically becomes infinite due there being a possibility (albeit vanishingly
small) of finding any population size. This inhibits an analysis based on solving the
Kolmogorov matrix equation (56) directly such as in [146]. Solutions to the infinite state
space problem in the literature include using a large N truncation [60] and constraining
demographic effects to be “one in, one out” and thereby fixing N [5].

4.5.1 Stochastic Amplification

For deterministic dynamics the effect of perturbations can be analysed via linearisation
around the endemic equilibrium (see section EARLIER). For the SIR model with
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demography this reveals complex valued eigenvalues indicating that the approach to
equilibrium will be oscillatory with a decaying amplitude governed by the real parts of
the eigenvalues and frequency governed by the imaginary parts.
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Figure 29: An SIR epidemic with demography amongst a population of equilibrium size N∗ =
105 (β = 1.175, γ = 0.077, B = d = 5.5 × 10−5, ξ = 3.16 × 10−3 all rates given in (days)−1).
Left : A realisation of the epidemic simulated (Tau-leap method τ = 0.05 days) over a 100
year time window. Thick solid curve is the solution to the related deterministic model over the
same period. Note that the stochastic realisation sustains substantial oscillations despite the
absence of temporal forcing whereas oscillations for the deterministic model are damped over
time. Right: Power spectral density spectrum for the numbers of infecteds with empirical mean
removed (I(t)− Ī) averaged over 1000 independent realisations. The spectrum reveals that the
fluctuations about mean infecteds burden are dominated by persistent oscillations with a period
of ∼ 2.44 years, in good agreement with the theoretical prediction of Alonso et al [5].

As we have seen in section 4.3 the stochastic dynamics of the epidemic for large
N are well approximated by a diffusion process. The Brownian motion drivers of the
diffusion dynamics continuously excite perturbations at each frequency and therefore
the potential exists for resonant mode interactions between the Brownian noise source
and the natural frequency of the approach to equilibrium predicted from the stabil-
ity analysis. This causes sustained oscillations with a typical dominant frequency that
are not predicted by related deterministic models (figure 29). In un-vaccinated pop-
ulations, persistence of regular and irregular oscillatory dynamics have been observed
for many childhood diseases [210, 109, 42]. Classically, oscillatory dynamics have been
understood through the paradigm of deterministic dynamics with temporal forcing [80],
however stochastically induced resonant oscillations may also play a role [217, 168, 5].

These resonant interactions have been analytically investigated using multi-scale
analysis [168] and via a perturbative expansion in powers of O(N−1/2) [5] which can
be justified using a Van Kampen expansion of the Kolmogorov equation for the epi-
demic process, c.f. [245] for more details. The outline of the perturbative expan-
sion analysis is to expand the density variables around their deterministic equilibrium,
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x(t) = x∗+∆x(t)+O(N−1), where ∆x(t) represents the leading order correction due to
stochasticity. By including the expansion into the equations for the s and i densities and
including Brownian motion terms as in section 4.3 we generate the following Langevin
equation:

d

dt
(∆x(t)) = A(x∗)∆x(t) + η(t) +O(N−1). (75)

This is linear in the perturbation dynamics up to a correction of sizeO(N−1), Where η(t)
is a vector of Langevin white noise [245] with a cross-correlation structure determined
by the expansion and A(x∗) is the Jacobian matrix evaluated at the fixed point x∗.
Using Fourier transforms we find that the spectral power of frequency ω takes the form:

P (ω) =
α+Bω2

[(ω2 − Ω2
0)

2 + Γ2ω2]
. (76)

Where the unknown parameters (α, B, Ω and Γ) can be found via the van Kampen ex-
pansion with appropriate time re-scaling, see Alonso et al [5] for details. This approach
is only capable of predicting the dominant mode of fluctuation, whereas numerical in-
vestigation reveals additional peaks in the power spectral density (figure 29).

4.5.2 Stochastic Fade-out

The lack of persistence or the existence of fade-outs of disease in a population has been
of interest to modellers since Bartlett [34, 35, 36] due to the wealth of time series data
available, the connection between fade-out extinction and control, and the opportunity
to gain testable insight into successful modelling approaches for epidemic models. Of
particular importance is the concept of the Critical Community Size (CCS), that is
a population size above which stochastically driven extinction is not observed at the
time scales relevant to human diseases and policy (i.e. centuries). For measles, extinc-
tions (or fade-outs) can be observed from time series data available in England and
Wales, USA and various isolated island communities, these demonstrate a remarkably
consistent CCS estimate of between 3× 105 − 5× 105 [37]. Investigating the dynamical
mechanisms that generate the CCS has been an important area of study for theoretical
epidemiologists since it was noted that relatively simple seasonally forced stochastic
SEIR models greatly over-estimated the observed CCS value [52]. Modifications to the
basic model in order to correct this over-estimation have included adding age structure,
spatial structure and non-exponential infectious durations [50, 152, 145]. The measure
of disease persistence can also be controversial, if failed invasions are included (implicitly
or explicitly) then Erlang distributed infectious periods with a large number of com-
partments can imply a lower rate of epidemic extinction analogous to the results shown
in section 4.4 [152, 145]. On the other hand if statistics for an initial transient period
are disregarded multi-compartmental infectious periods can be shown to destabilise an
endemic disease and lead to higher rate of fade-out under certain circumstances [174].
In either case more realistic infectious durations are essential for matching stochastic
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Figure 30: Fade-out statistics estimated from 1000 independent simulation replicates for a SIR
epidemic with demography (β = 1, γ = 0.2, B = d = 3.4 × 10−5 all rates given in (days)−1)
generated using the tau-leap method (τ = 0.0584 days). Left: Average time to extinction with
no external imports as N∗ increases. Initial condition was given by (to nearest integer) the
endemic equilibrium state x∗ of the related deterministic model. The dashed line gives the
exponential scaling α of the time to extinction E[Text] ∼ eαN . Right: The average number
of extinction events per year as N∗ increases, calculated using 100 year time window with an
import rate ξ = 1.36× 10−4 (days)−1. The exponential scaling is given as a black dashed line.

epidemic models to data [62].

The various complex factors required to quantitatively compare stochastic numerical
experimentation to real extinction data mitigate against analytic results. However, it is
possible to establish at least approximate scaling arguments for the time to extinction
in the simplest case when there are no external imports. We again assume that the
diffusion approximation to the epidemic dynamics is a good one. Then analysing the
time to extinction, Text, is equivalent to analysing the first exit time problem of a
diffusion with a small noise parameter, which has been extensively studied, classically
by Freidlin and Wentzell [98, 214]. The key result is that the probability that the exit
time is before any give time t obeys a large deviation principle (LDP) [166, 238],

P(Text < t) ∼ e−N∗V (x,t), t ≥ 0. (77)

Where V (x, t) is the O(1) rate function for the LDP that depends on the initial state
x and the time t [96]. Repeated simulation, with identical initial condition, shows that
E[Text] ∼ eαN

∗
provides a good approximation for large N∗ (figure 30). The presence of

external imports greatly complicates any analysis since for low import rates the epidemic
might spend a considerable time in the disease-free state, which through demographic
turnover leads to an increase in the susceptible percentage of the population and there-
fore different epidemic conditions upon each successful reseeding. However, numerical
investigation shows that the exponential scaling of average extinction events observed
per year remains robust (figure 30).
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5 Spatial Heterogeneity and Epidemic Dynamics

Spatial structure and the spatial location of hosts or host populations are often crucial to
the spread of a wide variety of pathogens, such as Foot-and-Mouth transmitted between
farm-based commercial livestock [147, 90] or Sudden Oak Death spreading amongst and
between woodlands [216, 94]. The reason spatial effects are so important is simply that
transmission is generally a localised process, with greater risk of an infectious pathogen
spreading between individuals that have frequent contact. In some cases frequent con-
tact is associated with individuals abiding in close proximity, for example for diseases
of plants spread by airborne fungal dispersal. In other scenarios frequent contact is due
to the movement of individuals between population centres, this is the usual modelling
paradigm for diseases affecting humans.

As with heterogeneity between individuals (section 3) it is often convenient when
constructing a spatial epidemic model to divide the total population into a set of sub-
groups. However for spatial epidemic models the motivation for sub-dividing the pop-
ulation is different from the previously considered scenarios. Rather than capturing
the epidemiological variation between individuals the spatial epidemic model attempts
to incorporate the effect of population aggregations such as towns, villages, farms or
spatially proximate plants. It is typical for the frequency of transmission within each
sub-group of a spatial model to be more intense than any cross sub-group interaction,
due to the localised nature of transmission. The dynamical implications of a spatial
division of the population compared to standard spatially homogeneous models has
been repeatedly emphasised in the literature of theoretical population ecology, whether
under the guise of island biogeography [176] or the metapopulation paradigm [170, 118].
The close analogy between these ecological investigations and epidemiology has become
increasingly commented upon with the growth of models investigating joint host and
parasite spatial population dynamics (e.g. [121]). Moreover, the ecological insight into
metapopulation persistence has been increasingly seen as important to understanding
the persistence of diseases such as measles [108, 144].

In this section we review some of the key dynamical features of epidemic models with
spatial heterogeneity. We present these features as falling into broadly two categories,
the explicitly spatial features that depend heavily upon the spatial positioning of the host
populations and the implicitly spatial features that are due simply to the subdivision
of the population. Often to capture these features requires specific model formulations,
and often an individual-level stochastic approach to the dynamics. The discussion of
implicit features will extend our previous investigation into stochastic epidemic fade-
out (section 4.5.2) to a multi-population model where the inter-play between global and
local extinctions becomes important. Also the important model generalisation of the
stochastic SIR model to include household structure will be presented in some detail.
Explicitly spatial features we will discuss include spatio-temporal invasion dynamics for
PDE, lattice-based and spatially explicit metapopulation models. For spatially explicit
models the dynamic and spatial variation in epidemic risk depends crucially on the
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seeding location of the epidemic and often is characterised by a travelling leading ‘edge’.

5.1 Metapopulation Dynamics of Diseases

The key assumption behind a metapopulation model of population dynamics is that
the entire habitable space can be described in terms of a set of discrete patches within
which population members mix homogeneously but between which interactions occur
at some other rate.

5.1.1 Classical Metapopulations

Classically, the between-patch interactions are treated as occurring on a significantly
slower time scale than the within-patch dynamics. Consequently, a species successfully
invading an unoccupied patch rapidly reaches its equilibrium population size at the local
carrying capacity of the patch before any further invasion events are likely to have oc-
curred [170]. On the fast time scale the within-patch population dynamics post-invasion
are therefore effectively independent of other patch dynamics due to the infrequency
of interactions. This assumption of time-scale separation leads to a description of the
dynamics at the patch level as either ‘occupied’ or ‘unoccupied’. A metapopulation
model of this kind is commonly referred to as a Levins-type metapopulation [149].

By making the same time-scale separation assumption for disease invasion into a
host population that is segregated into a metapopulation of inhabited patches we can
generate analogous Levins-type invasion dynamics. Each inhabited patch can be de-
scribed as containing either a susceptible population (S) where pathogen invasion is
possible, an exposed population (E) within which the pathogen is established and fur-
ther invasions do not alter the dynamics but also where infectious exports from the
population are insignificant, an infectious population (I) where infectious exports ac-
tively recruit populations in susceptible patches and also a resistant (R) population
which has reached herd-immunity either through the natural population dynamics of
the disease or through some control policy such as the widespread vaccination of indi-
viduals abiding at the patch. As such we have substituted the SEIR compartmental
description of individuals to one that approximates the state of discrete populations
inhabiting patches.

A practical advantage to Levins-type models is that the presence or absence of a
disease from a given population is often available information. More complex epidemic
models which explicitly include disease dynamics within the host patches will generally
require high quality data for effective parametrisation, which might not be obtainable.
As such the methods have been used to great success in wildlife populations where data
are often limited [228]. Statistical inference methods for imputing model parameters
for individual based epidemic models, including the Levins-type metapopulation model,
have been widely discussed and are comparatively straight forward to implement, al-
though potentially computationally intensive [101, 72].
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5.1.2 Individual Movement and Metapopulation Coupling

For some diseases within-population transmission due to homogeneous mixing is well
founded and well understood and there is sufficient high quality data for parametrisa-
tion, as is the case for measles in the UK. In this scenario it becomes more desirable
to explicitly include both the within patch transmission dynamics and between patch
coupling within the same model framework. The exact modelling approach depends on
the mechanism by which the disease is spread between different population sub-groups.
In general, the model formulation follows that of any heterogeneous population:

dSi

dt = Bi − λiSi − diSi
dIi
dt = λiS − γiIi − diIi

dRi

dt = γiIi − diRi

where λi =
∑

j βijIj/Nj

(78)

where the transmission matrix β must be related to the interaction between sub-
populations.

For infectious diseases of humans the natural mechanism for the introduction of a
pathogen into a naive sub-population is via infectious commuters spending a period
of time in the sub-group [150]. Therefore, the necessary ingredients for a mechanistic
model of the spread of human diseases between populations (cities, towns, villages etc)
should include temporary demographic movements as well as disease dynamics. The
commuting individuals couple the local epidemic dynamics of the various sub-groups.
Assuming that each person has a permanent home population, we write the number of
people whose home location is the jth area but are temporarily located in the ith area
as Nij(t), with similar notation for the number of susceptibles, Sij(t), and infecteds,
Iij(t). Individual movement can then be modelled using matrices of rates for leaving
the home location j and commuting to the location i (lij) and the rate of return, (rij)
(Figure 31):

dNii

dt = −
∑

j ljiNii(t) +
∑

j rjiNji(t)
dNij

dt = lijNjj(t) − rijNij(t)
(79)

Here Nij can either be a continuous scale population for deterministic dynamics, or the
model can be modified to account for stochastic dynamics. Generation of new infecteds
from Sij group can be modelled as frequency dependent transmission between all people
currently in the jth location. Hence, for the basic SIR model the force of infection on
susceptibles in the Sij group is,

λij(t) = β

∑
j Iij(t)∑
j Nij(t)

. (80)

Due to its mechanistic nature the commuter model can be parametrised using any cen-
sus data that includes commuting data. For example the UK 1991 census data has
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been so used for predicting the spread of influenza-type infections [70]. The mechanistic
model can also serve as a comparison to more complex time series based models [109].
Commuter models have also been used to assess global level control measures, such as
the role movement restriction on the global air travel network can play in reducing the
potential impact of pandemic influenza [125, 65]. The predictions of such commuter
models are pessimistic about the potential success of movement restrictions; 99% of
movements need to be prevented in order to delay epidemic spread by just a few weeks
[125], although this delay could provide critical time to muster a concerted public-health
response.

Figure 31: A schematic of the two area commuter model. The permanent population of each
area are divided between those in their ‘home’ area and those temporarily visiting the other
area. Epidemic spread occurs between individuals located in each area.

The full commuter model can be simplified by assuming that all commuter move-
ments are rapid. Rather than accounting directly for the location of each individual it
is possible to treat each infectious individual, indexed only by their home area, as con-
tributing to force of infection in each other area [150]. As an illustration of modelling
using the rapid movement assumption we consider two sub-populations of equal size
and demographic characteristics. The rapid commuter approximation implies that the
force of infection on susceptibles in population i (λi) is,

λi(t) =
β

N

(
(1− ρ)Ii(t) + ρIj(t)

)
, i, j = 1, 2. (81)

Where the coupling parameter ρ is connected to the full commuter model through the
relation, ρ = 2q(1 − q) where q = lij/(rji + lij) is proportion of time each individual
spends away from their home area [150]. The coupled metapopulation dynamics implied
by the rapid commuter approximation gives the force of infection at a spatial location
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as a weighted sum over the entire infectious population. This can also be good approxi-
mation when the underlying coupling mechanism is permanent immigration rather than
temporary commuting such as for the population growth and dispersal model of Kot et
al [161]. If there are n identically sized sub-populations and inter-commuting between
them is equal the generalised force of infection is,

λi(t) =
β

N

(
(1− nρ)Ii(t) + ρ

n∑

j=1

Ij(t)
)
, i = 1, . . . , n. (82)

The coupling ranges ρ ∈ [0, 1/n] where the maximum value corresponds to commuters
spending equal time between their home location and the other locations. Because all
population sizes are identical, and movements rapid, R0 is invariant to the value of the
coupling parameter.

Introducing stochastic dynamics into epidemic models of a single population can lead
to important effects such as stochastically driven failure of disease to persist [37, 152]
and the possibility of resonant interaction between demographic and epidemiological
forces [5] (see sections 4.4.1 and 4.5). For spatial metapopulation models this picture
is further complicated by the coupling between the sub-groups. If the metapopulation
sub-groups are uncoupled then they can be treated as independent single populations.
On the other hand if the sub-group dynamics are strongly coupled such that the dynam-
ics are tightly correlated (i.e. synchronous [173]), then the metapopulation dynamics
are effectively equivalent to those of a large single population. Interesting dynamics for
stochastic spatial models lie in the intermediate coupling regime [50].

For a metapopulation encompassing two coupled identical populations we model a
disease outbreak within the stochastic SIR framework including births and deaths. The
epidemic is permanently sustained by external infectious imports. For this model the
temporal correlation between the numbers of infecteds in the two populations, C12, has
been shown to take a particular approximate functional form [150],

C12 =
〈(I1(t)− 〈I1〉)(I2(t)− 〈I2〉)〉

σ(I1)σ(I2)
≈ ρ

ξ + ρ
. (83)

Where 〈·〉 denotes an average over time and ξ > 0 is fitted from simulation. As the cou-
pling between the two sub-populations increases the temporal correlation between their
infected numbers saturates to unity. This indicates that the dynamics of infected num-
bers are highly synchronised when the populations are strongly coupled (Figure 32).
A important feature of metapopulation epidemic models is that they imply that the
persistence of a disease at the local sub-population level and and the global metapop-
ulation level are undergoing different pressures [144]. At the sub-population level low
levels of coupling decreases the frequency of epidemic rescue from chance extinctions
due to infectious pressure from the other sub-populations. On the other hand, at the
global level stronger coupling doesn’t automatically imply a significantly lower rate of
global extinction. Each sub-population is more tightly synchronised when coupling is
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Figure 32: Synchrony and persistence for coupled metapopulation model with demography.
The epidemiological parameters were γ = 0.2 (days)−1, R0 = 10, births and deaths occurred at
rate B = d = 5×10−5, external infectious import rate was chosen as the standard 5.5×10−5

√
Ni

(see Bartlett [34]). For the examples time averages and time proportions were calculated from
a 3000 year simulation run with an initial 100 years discarded as burn-in. Left: 2 population
sub-groups each of size Ni = 106. The temporal correlation, or synchrony, of the numbers of
infecteds as a function of the coupling parameter ρ. Good agreement was found to a sigmoidal
fit of the form C = ρ/(ξ + ρ). Right: 10 population sub-groups each with population size
Ni = 3× 104 and equal commuting force of infection (82) with R0 = 12.5 (other parameters as
before). The average (over sub-groups) proportion of time each local sub-group spends disease
free (solid curve) is monotonically decreasing with coupling as rescue events reduce the frequency
of stochastic fade-out, however the global persistence, measured by yearly frequency of global
disease extinction, is nearly invariant to increased coupling (mean is dashed line). This is due
to greater synchrony; local extinction events are less common but more strongly correlated with
other local extinctions.
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stronger, implying that low infection burden in one sub-population is likely to be repli-
cated across the metapopulation. Therefore for strongly coupled sub-populations local
disease fade-out can become less frequent but more strongly correlated with global ex-
tinction, see Figure 32 for a concrete example of this effect for a 10 sub-population
meta-population.

5.1.3 Household Dynamics

An epidemiologically important special case of the metapopulation model is the house-
hold model of disease, which attempts to account for the greater transmission of in-
fection between cohabiting humans compared to casual contacts made with the global
population. From a metapopulation point of view a household model consists of a large
number of small population sub-groups (local population sizes of less than 10) each
of which represent a human cohabitation group or household. For infectious diseases
of humans the household model can represent the ideal trade-off between capturing
epidemiological details that are missed by classical epidemic models whilst retaining a
degree of tractability in analysis [24, 26], parametrisation [97] and control design [127].
The within household transmission is overlaid by homogeneous transmission within the
entire population, thus the household model can be thought of as a combination of
a simple network cluster (the household) and the classical homogeneous transmission
epidemic models. As such the force of infection in household i is generally expressed as:

λi = β̂(Ni)Ii(t) + α

∑
j Ij(t)∑
j Nj

where β̂ and α capture within and between household transmission. It is generally as-
sumed that between household transmission is frequency dependent, while the strength
of within-household transmission may be a function of household size [128]. Gener-
ally, household models are formulated as stochastic since each household contains a
small number of individuals. We continue this trend and take a particular form for the
stochastic arrival rate of a transmission event within a household of size Ni,

rI(t) = β
Ii(t)

Ni − 1
+ α

I(t)

N
. (84)

Where I(t) and N refer to the total number of infected individuals and the total popu-
lation size respectively, and a simple frequency-dependent mixing assumption has been
made for within-household transmission. Other disease events such as recovery or wan-
ing immunity are left unchanged.

Two key determinants of early pathogen invasion dynamics are the basic reproduc-
tive number R0 and the early exponential growth rate r such that I(t) ≈ I(0) exp(rt).
For the basic SIR model with exp(γ) distributed infectious periods these can be de-
rived as R0 = β/γ and r = β − γ. Naturally it is of interest to determine comparable
values for the same basic SIR model but with incorporated household structure. It is
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common and analytically simpler to consider the household reproductive number R∗

[27], defined as the expected number of households infected in a naive population by an
average infected household. Importantly, R∗ is also a threshold quantity; an epidemic
cannot grow and infect a significant number of households if R∗ ≤ 1 [28].

If the number of households H is very large and the size of each household Ni is
insignificant compared to the size of the population (Ni ≪ N) then the probability
that an infectious individual in the initially infected household recruits more than one
individual from any naive household is effectively zero. Therefore during the early
dynamics we can safely ignore the possibility multiple import events into a household.
In the limit H → ∞ and assuming all households are of equal size (n), the household
reproductive number is the total secondary transmissions originating from an infected
household,

R∗ =
α

γ
E[Zh]. (85)

Where Zh is the final number of individuals infected in the seed household where there
is a solitary initial infected and no external infectious pressure. As noted by Ross et al
[219] equation (85) is equivalent to the time integral formulation,

R∗ = E

[ ∫ ∞

0
αIh(t)dt

∣∣∣Sh(0) = n− 1, Ih(0) = 1
]
. (86)

There exists a considerable literature devoted to solving expressions of the type (86),
which can be viewed as an uncontrolled version of a cost integral familiar from stochas-
tic optimal control [96] and Markov decision processes [213]. Alternatively, Kolmogorov
equations become feasible given that there are only (n+1)(n+2)/2 possible configura-
tions for a household of size n. Methods based on Selke constructions are also practical
[24]. House et al provide a comprehensive review and comparison of the methodologies
for calculating final size distributions [127].

R∗ provides a useful analogue to the classic R0 in that it acts as a threshold param-
eter. However, for model parameterisation calculating the real-time exponential growth
rate could be more important since it is amongst the quantities available from public
health data during the early invasive stage of an epidemic outbreak. Ball et al [27] have
demonstrated that the real-time exponential growth rate for households (r∗) is given by
the unique positive solution to

1 = E

[ ∫ ∞

0
αIh(t)e

−r∗tdt
∣∣∣Sh(0) = n− 1, Ih(0) = 1

]
. (87)

Finding the unique r∗ is therefore reduced to a root finding exercise [219]. Equation
(87) was derived from a branching process approximation and therefore applies only at
the early stages of an epidemic.
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quantities increasing monotonically with β estimating the real-time (exponential) growth rate
from public health data also gives an estimate for R∗ and the within household transmission
rate.
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In this discussion we have restricted ourselves to considering populations segregated
into equally sized households, clearly this is a simplification of reality and neglects the
differing role that large and small households can play in an epidemic outbreak. A larger
household will generally imply more infected individuals once invaded by an infectious
pathogen than a smaller household, therefore the larger invaded household will generally
contribute greater infectious pressure. It is important to take into account that a larger
household is also relatively more likely to be invaded than a smaller invaded household.
At the total population level the fraction of all households of a given size n is typically
described by a size distribution

P(Randomly chosen household size = n) = pn. (88)

During the early epidemic phase (i.e. when the branching process approximation is
valid) the probability that an individual infected via a global contact is a member of a
size n household is given by the size biased probability p̃n,

p̃n =
npn∑
k≥0 kpk

. (89)

To calculate R∗ and r∗ for a population of heterogeneous households requires calculating
quantities for each household size n and taking a size biased average [43].

The varying importance of household size to epidemic spread can be considered
though the contribution of a given household size to R∗. It is clear that larger house-
holds provide a larger target for infection and therefore are more likely to be infected in
the early epidemic, however the degree to which the household amplifies the infection
depends on the assumptions about within household transmission. For a household
model with density dependent transmission; that is that the within household trans-
mission rate is βIh(t) rather than βIh(t)/(Nh − 1), Ball et al [27] have demonstrated
that the smallest number of successful prophylactic vaccinations required for R∗ ≤ 1 is
obtained by following an equalising strategy. The equalising strategy aims to leave all
households with the same number of susceptibles before an outbreak, which effectively
biases vaccine deployment to larger households. It is still unclear how these theoretical
insights translate into practical control advise, when either there is insufficient vaccine
to obtain R∗ = 1 or when within household transmission is frequency (rather than
density) dependent.

5.2 Spatial Positioning and Invasion Dynamics

The metapopulation ideal used in the previous section becomes unworkable when there
is no natural means of partitioning the population, when potential hosts are dispersed
fairly evenly over a geographic area any subdivision of the space is inherently arbitrary
and continuous space models with dynamics given in terms of reaction-diffusion or
integro-differential equations are more natural [201]. These dynamical formulations
are generally deterministic, predicting continuous valued population densities across
continuous space. An common alternative is to consider stochastic lattice based models
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[215]. These models represent a hybrid between the discrete population sub-groups of a
metapopulation model and the continuous space of reaction-diffusion systems. Finally,
even when the underlying assumptions for a metapopulation model hold the rate of
transmission between separate spatial units might well depend strongly on their relative
spatial position [147, 89] in which case proximity becomes a significant risk factor and
a useful method of targeting controls [236].

5.2.1 Reaction-Diffusion Epidemic Models

Capturing the movements of individuals is the key factor in the spatial transmission of
infection. Reaction-diffusion models assume that individuals follow a Brownian random
walk, which is often a reasonable approximation for dispersing animal populations [209].
In the absence of some attractive potential, a Brownian random walker describes a
continuous path through space. Having observed the location of the random walker at
some time t the change in location by future time t +∆t will be Gaussian distributed
with zero mean. In this section we will only consider random walkers on the 2-D
plane, where the position change in the two spatial dimensions over a period length
∆t are independent. The probability density of the location of the random walker,
p(x, t) x ∈ R

2 t ≥ 0, evolves from its initial density according to the Fokker-Planck
equation [158],

∂p

∂t
=

D

2
∇2p. (90)

Where D is the diffusion coefficient and ∇2 is the Laplacian operator in two dimensions.
It is possible to overlay epidemic models onto this random walker model, as done in

the classic modelling work for the spatial spread of rabies [201] and bubonic plague
[207]. For example we could model each random walker as having a disease state
from the SIR compartment model and disease state dependent diffusion coefficients
(DS , DI , DR). The local densities for the population in each disease state are then
given as S(x, t), I(x, t), R(x, t). Epidemic transmission occurs locally, with the local
reaction terms due to individual recovery rate γ and a force of infection given by the
local frequency dependent form.

λ(x, t) = β
I(x, t)

N(x, t)
,

N(x, t) = S(x, t) + I(x, t) +R(x, t), (91)

x ∈ R
2, t ≥ 0.

The spatial dynamics of this epidemic model are given by the non-linear reaction-
diffusion partial differential equation (we refer the reader to Evans [87] for analytic
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Figure 34: A reaction-diffusion epidemic amongst animals. Infected animals become rabid and
walk randomly with coefficient DI = 0.1 km2/day. The disease dynamics are characterised by
a recovery rate γ = 0.2 (day)−1 and a basic reproductive number R0 = 5. Analysis suggests
that the asymptotic wave-speed is c = 0.4 km/day, the leading edge of the epidemic is predicted
to be 16 km from the initial focus after 40 days. Left: Snapshot of spatial distribution of
infected animal density after 40 days, solved numerically using a discretisation ∆x = 0.25 km
and ∆t = 0.01 days. Right: Profile of numerical solution after 40 days demonstrating excellent
agreement with the asymptotic invasion velocity prediction.

details on these types of modelling equations),

∂S

∂t
= −λS +

DS

2
∇2S,

∂I

∂t
= λS − γI +

DI

2
∇2I, (92)

∂R

∂t
= γI +

DR

2
∇2R.

The invasion dynamics of reaction-diffusion epidemics starting from infection at a single
spatial location are characterised by a front of peak infection expanding isotropically
away from the focal point. This is due to the epidemic front expanding preferentially
into areas of greater local susceptible density. The emergence of an invasive travelling
wave of infecteds raises some important epidemiological considerations, in particular
the question of how rapidly the peak infectious front is travelling which has clear im-
plications for the design of spatially targeted control measures. The formation of a
moving epidemic front is not just a feature of reaction-diffusion models but is common
to many epidemic models in continuous space, however the asymptotic velocity is easier
to calculate analytically for reaction-diffusion models.

Since the underlying space and the movement of the random walkers are spatially
isotropic we assume that the solution to the reaction-diffusion PDE can be written in
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travelling wave form, in a combined time and space variable z = r − ct,

S(x, t) = Ŝ(z), I(x, t) = Î(z), R(x, t) = R̂(z), (93)

where r = |x| is the distance from the initial point of infection, treated as the origin, and
c is a wave speed. Introducing (93) into the reaction-diffusion dynamics gives the large
radius (r ≫ 1) expression for the travelling wave structure of the infected population,

DI

2
Î ′′(z) + cÎ ′(z) + β

Ŝ(z)

N̂(z)
Î(z)− γÎ(z) = 0. (94)

Where we have neglect a term proportional to 1/r due to the large radius approx-
imation. At the leading invasion edge of the travelling wave profile the population is
naive (Ŝ(z) ≈ N̂(z)). There will be a stable large radius travelling wave profile for
the infected density whenever the characteristic equation of (94) has real roots, i.e.
(DI/2)s

2+ cs+(R0−1)γ = 0, has a real solution. Since the invasion dynamics initially
accelerate into the naive population the leading edge behaviour is asymptotically gov-
erned by the lowest wave velocity where (94) can predict a wavelike solution. Assuming
R0 > 1 the asymptotic wave-speed is therefore given by

c =
√
2DI(R0 − 1)γ. (95)

Although the asymptotic invasion speed is analytically accessible the full epidemic
dynamics PDE does not admit an explicit solution; as is typical for non-linear dynamics
over a wide variety of types of evolution. The efficient numerical solution of PDE
models is a highly active area of research [240]. We give an example of a reaction-
diffusion epidemic amongst animals where only the infected animals diffuse, with the
remaining population static (Figure 34). This follows the rabies model of Murray et
al [201] where healthy foxes are territorial and remain stationary, whereas rabid foxes
wander randomly occasionally transmitting to healthy foxes. Although for simplicity we
do not use a parametrisation and population structure entirely appropriate for rabies
modelling.

5.2.2 Kernel-based Spatial Epidemic Models

The underlying assumptions behind the reaction-diffusion spatial epidemic model were
that the host-to-host transmission range is very short and that the mixing of individ-
uals could be described by their diffusive random walk. These assumptions make the
reaction-diffusion paradigm appropriate for modelling diseases of wild animals. How-
ever diseases of stationary individuals, e.g. plant-life, are usually better described by
long range transmission, for example by the wind-borne spore dispersal for fungal dis-
eases [59]. Long-range dispersal of infectious pressure might also be a better modelling
assumption for livestock-based epidemics where farms are fixed locations in the envi-
ronment [147, 89, 197].
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For transmission due to long-range mechanisms like spore dispersal we potentially
have epidemiological interaction between a large proportion of the population, however
the host-to-host transmission rate will typically decrease with the distance between the
infectious and susceptible organisms. The dependence between spatial separation and
transmission rate is usually specified by a transmission kernel K, which governs the
force of infection λ(x, t) experienced by the spatial point x due to the entire spatial
distribution of infected hosts,

λ(x, t) = β

∫
I(y, t)K(x− y)dy. (96)

Equation (96) is the most basic form for a kernel-based force of infection expression, β
sets the intrinsic transmission rate and K(·) encodes the effect of the spatial separation
between a susceptible host at x and the infectious hosts at y. The force of infection
form (96) is appropriate for both individual based models with stochastic dynamics [51]
and for deterministic continuous population density models where the hosts are dis-
tributed uniformly across space [77]. Non-uniform spatial dispersal of host may require
the inclusion of a local density N(x, t) depending on the nature of transmission and
interaction.

It is common to assume that the transmission kernel is invariant under translations
and rotations; that is that no particular location is preferential for infection and there
is no particular preferential direction of transmission. Therefore the kernel is only a
function of separation distance K(x) = K(r).

When the long range transmission rate decays rapidly, i.e. K(r) → 0 at least expo-
nentially quickly as r → ∞, then kernel-based stochastic transmission models predict
that a pathogen invading into a large homogeneously dispersed host population spreads
wave-like and obtains an asymptotic invasion velocity c that can be calculated analyt-
ically (see either [77, 76] for details). The invasion dynamics, from a spatial spread
point of view, are essentially similar for both kernel-based and diffusion-based dispersal
models. By contrast when K(r) decays more slowly than exponentially with r it is
possible for the pathogen to spread at an ever increasing velocity [161]. In this case the
invasion dynamics cannot be summarised as a moving invasion front [191], simulation
studies suggest that the invasion jumps forward generating new local foci [226] which
reflects occasional dispersal which is very long range compared to ‘typical’ dispersal.

5.3 Case Study. Infectious Diseases of Farmed Livestock: Spatially

Explicit Metapopulations

In previous sections we have found the metapopulation approach to be a useful paradigm
for spatial epidemic dynamics when the population can be segregated into groups deter-
mined by their location. Between sub-group transmission is usually considered to occur
at a significantly lower rate compared to within group transmission, but otherwise is
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essentially arbitrary. In this section we marry the explicit distance dependence of kernel
models with the fundamental metapopulation assumption that the population is segre-
gated into a discrete set of local sub-groups, to produce a highly adaptable framework.
The cost of this model flexibility is analytic intractability and we resort to simulation.

We focus on an infectious disease invading a spatially explicit Levins-type metapop-
ulation using locally targeted vaccination as a control measure. This has proved to be
a be a very successful modelling framework for the spread of Foot-and-mouth (FMD)
amongst commercial livestock [147, 89, 197] as well as other diseases of livestock such
as bluetongue virus [231]; implicit in the model is the assumption that the within-farm
dynamics are sufficiently rapid that each can be treated as susceptible, exposed, infec-
tious or removed (see section 5.1.1). For FMD there is a wealth of detailed historical
data generated by the 2001 outbreak in the UK. This has allowed extensive retrospective
analysis of the predictive power of spatially explicit modelling of FMD spread in the UK
[237], statistical investigations of best parameter imputation [229, 72] and retrospective
impact assessment of the proactive culling control measures used during the outbreak
[234].

Our aim is to introduce the major model features required for FMD epidemic mod-
elling and demonstrate that for a simplified model of FMD-like spread there exists
an optimal radius around confirmed infected premises (IPs) within which vaccination
should be targeted; this essentially recreates the result of Tildesley et al [236] albeit
for a simplified FMD model. We closely follow the kernel-based transmission model
used during the 2001 epidemic [147]. Farms, labelled i = 1, . . . , N , are treated as point
locations located respectively at {xi ∈ R

2}Ni=1. Each farm has an epidemic status as
either susceptible to disease (S), exposed (E), cryptically infectious (I) or removed (R);
in this context removal denotes either that the farm livestock were culled once infection
was detected or successfully vaccinated. The essential goal of this simulation study is
to investigate the optimal distribution of vaccine so as to minimise numbers of total
number of farms who have their livestock culled.

The force of infection on the susceptible farm i is given by the kernel-based trans-
mission expression,

λi(t) = σi
∑

j∈inf. farms(t)

τjK(|xi − xj |), t = 0, 1, 2, . . . . (97)

Where σi gives the susceptibility of farm i and τj the transmission rate from farm j. For
accurate modelling of FMD these factors depend upon the numbers and species of the
livestock at each farm [147], however for the simplified model presented here we assume
homogeneity such that σi = 1 and τj = β for all farms. The kernel transmission model
reflects the spatially localised nature of FMD transmission after a ban on livestock
movement has been imposed, before any movement ban it is possible that the disease
can be spread through farm-to-farm livestock relocations and hence a network approach
might better reflect the outbreak dynamics [157, 247]. Moreover, the FMD kernel used
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by both Keeling et al and Tildesley et al was directly estimated from veterinarian
reports; for simplicity we use a Gaussian shaped kernel.
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Figure 35: Results from a simplified Foot-and-Mouth like outbreak amongst N = 104 farms
dispersed randomly over a 100 × 100 km area. Stochastic dynamics are given by Keeling-type
daily transition probabilities [147]. Transmission is governed by a Gaussian shaped transmission
kernel (width L = 3 km) with epidemiological parameters exposure multiplier β = 0.6, rate of
becoming cryptically infectious α = 0.25, and detection rate γ = 0.2 and dangerous contact
scaling parameter F = 6. Farms with confirmed infection (IPs) and their dangerous contacts
(DCs) are removed (quarantined and culled) within one day, other farms within the vaccination
radius are vaccinated at a maximum number of 50 per day. The epidemic is initialised from a
cryptically infectious farm at the centre of the space and its 9 nearest neighbours exposed to the
disease. Left: The effect of vaccination radius on average epidemic outbreak (1000 simulation
replicates with cubic spline smoothing). A clear trade-off exists between protecting farms ahead
of disease spread and targeting more locally to detected IPs with a minimum in number of culled
farms at a vaccination radius at 5.42 km. Dots show individual simulations. The inset shows
the essential dichotomy in severity between the success and failure of early control effort. Right:
Average duration of the epidemic with vaccination radius. Dots show individual simulations.

The dynamics are treated as stochastic and occur on a daily time scale; that is that
any event that occurs during a day only effect the rate of future events on the next day.
Therefore, the probability of the susceptible farm i becoming exposed on day i is,

P(Farm i becomes exposed on day t) = 1− e−λi(t). (98)

Once exposed the new IP farm becomes actively, but cryptically, infectious with a daily
probability given by the rate α > 0. Clinical signs of infection in the livestock are sub-
sequently detected on the infectious farms with rate γ > 0, and the presence of infection
is realised. These detected IPs are promptly culled within 1 day, in agreement with the
peak culling efficacy observed during the 2001 outbreak. Vaccination is deployed at all
non-removed farms (although is only effective on susceptible farms) within a pre-defined
vaccination radius, rV of a detected IP up to a daily maximum capacity of deployment;
priority is given to farms in the order that they were identified for vaccination. For the
simple model considered here vaccine is treated as giving 100% immediate protection
whenever deployed to a susceptible farm.
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Upon detecting an IP it was standard practice for veterinarian assessment of dan-
gerous contact (DC) between the IP and other farms to be performed, this was based
upon such factors as recent vehicle movement between the premises etc. In this way, po-
tentially infected farms were hoped to be identified before they could become infectious
and generate subsequent cases. For the simple FMD model given here, the probability
that a (non-removed) farm j is a dangerous contact of a newly detected IP i is again
defined in terms of the transmission kernel,

P(Farm j is a DC of farm i) = 1− e−FσiτjK(|xi−xj |). (99)

DC farms are also promptly culled (within 2 days). The scaling parameter F should in
principle be fitted from field data in order to reflect observed ratios of IP culls to DC
culls. Given that transmission is a local process, additional culling of farms contiguous
to an IP could be implemented [147]; we do not include this extra complication in our
simplified model although there is evidence to suggest its effectiveness [234].

Clearly there is a significant trade-off between targeting vaccination locally to each
IP and thereby protecting the farms most at risk and targeting more widely in order
to get ahead of epidemic spread. Therefore one might expect a global minimum in
the expected numbers of farms culled as a function of vaccination radius, which has
been observed for the full model with more realistic vaccination assumptions and is a
robust conclusion from simulation results of our simplified model (Figure 35). However,
if the policy decision is to minimise the epidemic duration (and hence costs on the
economic) rather than minimise the number of farms affected, it might be preferable
to increase the vaccination radius. Whether it is possible to gain analytic insight into
the complex dependency of the optimal vaccination radius upon factors such as the
maximum vaccination capacity [236], the spatial clustering of potential host farms [233]
or underlying epidemiological parameters remains an open question. At the moment we
are restricted to multiple stochastic simulations if we wish to include a degree of realism
within our models.

5.4 Networks

Networks provide a highly informative way to characterise (spatial and/or social) inter-
actions, where due to a realisation of some underlying process there are a limited number
of interactions per pairs of individuals. As such networks are ideal for describing the
spread of human infections (although they have been used in many other contexts), as
humans tend to have a relatively low number of close-contact social interactions through
which infection can spread, in comparison to population sizes. In fact there are strong
links between networks and epidemiology; a network of interactions defines the possible
transmission routes an epidemic can take, while the path taken by an epidemic natu-
rally defines a network. It is therefore unsurprising that epidemiological applications
of network theory abound [159, 251, 171, 85, 22, 69], with examples from theoretical
physics, statistical mechanics and probability theory forming a theoretical backbone
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[205, 2, 49, 202, 113].

However the interplay between social contacts and transmission networks is not
straightforward and within the same population multiple transmission networks may
exist; different infectious diseases are associated with different network structures de-
pending on the mode of transmission and characteristics of the pathogen. For example,
highly contagious diseases that are spread by aerosol transmission will have a very
dense transmission network with many contacts between individuals and a high degree
of clustering. In contast, diseases that require extremely close intimate contact, such as
sexually transmitted diseases, will have a much sparser transmission network. In recent
years, transmission networks have become a powerful and popular tool for investigating
the spread of infection through a given population. An individual (or collection of indi-
viduals) in the population is represented as a node in the network, and a contact that
could allow the transmission of infection between two individuals (for example sexual
contact) is represented by a link or edge between the two nodes. These edges can be
directed, meaning that infection can only be spread along the connection in one direc-
tion; an example of such directed transmission comes from the movement of hosts from
one location to another, with the location acting as a node [22, 246]. However, in the
vast majority of contexts, a contact between two individuals could allow infection to
be passed in either direction, depending only on the infection status of the individuals
involved. In this section we generally restrict our attention to such undirected networks.

For a population of size N , the undirected network of contacts through which a
disease can spread can be represented by an adjacency matrix G ∈ {0, 1}N2

,

Gij =

{
1 if i and j are connected
0 otherwise

(100)

For undirected networks where infection can pass in either direction along a link, the
adjacency matrix is symmetric. In principle the values in G could be extended to real
values and represent the strength of connection between nodes. However, due to a lack
of quantitative data such weighted networks are rarely used in practical settings, hence
we generally assume that G is a binary variable.

From this matrix we can formulate a model for an SIR-type infection for the dy-
namics of node i,

dSi

dt = λiSi
dIi
dt = λiSi − γI

dRi

dt = γIi

λi =
∑

j τGijIj/Nj .

(101)

Hence in this simple deterministic model, the adjacency matrix plays the same role as
the who acquires infection from whom matrix in heterogeneous populations (equation
13) or the transmission kernel is spatial models (equations (78), (97)); obviously to
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recapture these previous models we need to allow the connections between nodes to
have a specified strength [69]. The above model therefore provides a representation
of transmission between multiple large populations such that their internal dynamics
can be treated as approximately deterministic. However, in the vast majority of cases
network models are treated stochastically (see section 4) with each node representing a
single individual that is either susceptible infected or recovered.

One advantage with networks is the speed with which they can be simulated. For
spatial models (equation (97)), the force of infection acting on each individual (or sub-
population) must be calculated by summing over all infected units and weighting by
the appropriate kernel. In contrast, in network-based models there are generally only a
small number of contacts and hence only a small number of potential sources of infection
that need to be considered. The combination of this refinement with efficient stochastic
simulation methods (see section 4.2.2) makes networks an ideal choice for large-scale
simulation of infectious disease spread [85, 246], especially for infections with limited
routes of transmission.

5.4.1 Network properties

Given that the network prescribes the epidemiological interaction, describing the under-
lying network structure in terms of a few basic properties can give important insights
into the types of epidemic dynamics that could be expected. There is an ever growing
number of network properties in the literature, but here we outline five that are key to
the spread of infectious diseases. The first three of these are local properties that depend
on the structure of the network around each individual, the last two are global proper-
ties that depend on the entire network and can be highly sensitive to its wider structure.

Degree distribution The number of connections that a node has is known as its
degree. Assuming an undirected network, the degree of node i is calculates as:

ki =
∑

j

Gij

This number gives an intuitive understanding of an individual’s risk of acquiring an
infection as well as their potential to cause further cases. Taken over the entire popu-
lation these degrees form a distribution of probabilities; the degree distribution, P (k),
gives the probability that a randomly selected node has degree k. However, the degree
of a node is not the only predictor of risk, the degree of their connected nodes and their
position within the overall network also play important roles [100].

Degree correlations In general, real networks are correlated with respect to degree
such that the probability that a node has degree k depends on the degree of the neigh-
bours of that node, k′. This is captured by the conditional probability P (k′|k). A

87



straightforward measurement to characterise degree correlations is the average near-
est neighbour degree distribution, knn(k), which measures the average degree of nodes
connected to a node of degree k. Each node i in the network has an average nearest
neighbour degree given by

knn,i =
1

ki

∑

j

Gijkj (102)

The average nearest neighbour degree distribution can then be calculated by working
out the average of knn for all nodes of a given degree k. This is related to the conditional
probability P (k′|k) since

knn(k) =
∑

k′

k′P (k′|k) (103)

The average nearest neighbour degree distribution provides a measure of the assortativ-
ity of the network (see section 3.6.3). When knn(k) is increasing with k the network is
considered to be assortative and high degree nodes tend to be connected to others with
high degree. Strong correlations were shown to exist in sexual networks [171] and in
other social networks, such as collaborations of networks of mathematicians, film actors
and business people [204].

Clustering In social networks it is reasonable to assume that any two of your friends
are likely to know one another. This is known as clustering and is a property that has
been widely observed. Given a network, a qualitative measure of the level of clustering
is given by the clustering coefficient and is defined as the ratio of triangles to all triples
in the network [143]:

φ =
trace(G3)

||G2|| − trace(G2)
(104)

Clustering is known to have substantial and conflicting epidemiological consequences.
The presence of triangles within the network means that there is intensified competi-
tion between infected individuals for new susceptible hosts, which will slow epidemic
spread. However, this is somewhat tempered by the fact that neighbouring susceptibles
can be reached by multiple short-length paths. Understanding how these two factors
effect dynamics and control at a local and population scale is an active area of research
[131]. It should be noted that the household models explored in section 5.1.3, provide
an example of extreme clustering as ever member of a household has connections to
every other member.

Components For infectious disease transmission, the most important global feature
of a network is the presence of connected components – groups of nodes such that any
node in the group can be reached from any other node in the group by following edges
in the network. These connected components define the limit of disease spread in the
network. (Note for directed networks, the definition of connected components becomes
more involved [49].) A network has a Giant Component if a single component contains
the majority of nodes in the network, so that most nodes are reachable from each other;
in terms of infection this means that a highly infectious disease could reach the majority
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of the population. However, studies have shown that networks of sexual contacts are
general made up of relatively small components. A study in Manitoba, Canada [255]
found that a network of 4544 individuals consisted of 1503 components of size 2 to 82.
Only 23 components had 19 or more persons and there were two types of component;
‘linear components’, where assortative mixing was present and all individuals had be-
tween 1 and 4 partners, and ‘radial components’, characterised by disassortative mixing
with one highly central node. This obviously raises the question of how infections spread
through entire populations; the answer is that the Manitoba study (and most studies
of contact networks) focus on connections made in a fixed time window, the dynamic
nature of sexual (and other) networks which are continually evolving helps to explain
how entire populations are interconnected.

Path lengths A path between two nodes in a network (or more precisely in a connected
component of a network) is a series of steps following edges in the network to get from
one node to the other. The shortest path length between two nodes (i and j) is the
path with the fewest number of steps and we denote this as dij . The diameter of the
network is defined as the longest shortest path length between any two pairs of nodes,
maxij dij . Clearly, the average path length and diameter of the network will have a
significant effect on the speed with which an infectious disease can reach all parts of the
population. Average path length is affected by other network measures, with increased
average degree and increased variance of the degree distribution leading to shorter path
lengths, while increased clustering generally leads to an increase path lengths.

5.5 Network Types

While simulation of network models is relatively straightforward, determining the ap-
propriate structure for a network is highly complex. Two approaches dominate the
literature, creation of synthetic networks based on a prescribed set of often simple rules
or the use of data to describe network connections.

5.5.1 Synthetic networks

Random and Configuration networks The most fundamental and widely studied
random graph model is known as the Erdös-Rényi random graph [83]. The network
consists of N nodes and between each distinct pair of nodes an edge is present with
probability p, independent of all other edges. Therefore the mean degree is c = (N−1)p.
The degree distribution pk can be calculated by considering a node being connected to
exactly k other nodes. Given that there are

(
N−1
k

)
ways to choose the k nodes to

connect, the degree distribution is given by,

pk =

(
N − 1

k

)
pk(1− p)N−1−k =

(
N − 1

k

)
(

c

N − 1
)k(

N − 1− c

N − 1
)N−1−k
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In the limit of large N

pk =
(N − 1)k

k!
(

c

N − 1
)ke−c = e−c c

k

k!

which is the Poisson distribution.

An alternative random network formulation is the configuration model [192]. Here
the degree ki of each node is set initially (generally picked from given distribution)
creating multiple unconnected nodes with ki stubs. These stubs are then connected
at random, and in a large population the chance of self-connection or multiple con-
nections between two nodes becomes vanishing small. This can be compared to the
proportionate or random mixing assumption of section 3.6.3. Hence the configuration
algorithm allows us to produce networks with arbitrary degree distributions, although
with little or no clustering; it is closely related to the random mixing assumptions used
for earlier models of heterogeneous risk in sexually transmitted infections (section 3.6.3).

Lattices and Small World networks In keeping with other work in this section (see
section 5.2) it is natural to assume that individuals have a spatial location and form
contacts relative to that location. A simplified network that models this assumption
is the lattice network, where nodes are placed on a regular grid and edges are present
between adjacent individuals. Lattices possess high clustering (in terms of many short
loops, although no triangles are present), two neighbours of a node are also likely to be
neighbours of each other, and long path lengths, it takes many steps to move between
two randomly chosen individuals. These features have a profound effect on the spread
of an infectious disease [119, 21]. The high clustering has a strongly saturating effect,
reducing the number of susceptible contacts each infected individual has. This slows
down the transmission of infection, compared to the configuration models, as infection
generally spreads in a wave-like manner.

Many observed social networks have been found to have what is called the ‘small
world’ property. Such networks are characterised by short path lengths, it takes few
steps to move between two randomly chosen individuals, and high clustering, two neigh-
bours of a node are also likely to be neighbours of each other. Small world networks can
be constructed from a regular lattice network by either randomly selecting two edges in
the lattice and swapping their ends, thus preserving the degree of each node [252], or
randomly selecting two nodes and connecting them [206]. These random edges provide
long range links which can allow an infection to jump to a new part of the network
which may have a higher density of susceptible individuals. However, the transmission
of infection will remain predominantly localised if long range links are rare and satura-
tion effects are observed [222]. Several authors have studied how local clustering and
long range contact influences the spread of infectious disease and vaccination strategies
[249, 27, 154, 54].
Scale free Studies of sexual networks [171] have found that the degree distributions
are highly heterogeneous. This can be modelled by a class of networks known as scale
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free networks, where most nodes have a small number of edges but a significant number
of nodes have a large number of edges. These types of network can be formulated as
configuration models from a given heterogeneous degree, however often they are formed
by a dynamic process in which new nodes are sequentially added to the network [32].
In these models new nodes preferentially connect to existing nodes in the network that
already have a high number of contacts. This corresponds to the idea that individuals
want to be friends with the most popular people. It should be noted that different
methods of generating these scale-free networks are likely to lead to different higher-
order structures within the network.

Epidemics that spread across a truly scale free networks lack a critical threshold in
transmissibility of the infectious pathogen below which a significant outbreak cannot
occur [212]. This is due to the possibility of arbitrarily highly connected nodes acting
as epidemic amplifiers even when the rate of transmission along any edge is extremely
slow (figure 36). On the other hand the existence of very highly connected nodes guides
intervention based upon knowledge of network topology. It has been found that scale
free networks are very sensitive to the strategic removal of nodes [3, 126]. It is only
necessary to remove a small number of the highly connected nodes to break the network
into separate components, provided the mixing in the network is not assortative [204].
This insight could be very useful for designing control strategies, where selective target-
ing of control measures to dramatically impact of the potential for an infection to spread.

5.5.2 Realistic networks

Obtaining data on network connections that are epidemiologically relevant is a time-
consuming and intrusive process. For sexually transmitted infections this requires ask-
ing individuals some highly personal information, although this information has been
successfully gathered [255, 138, 171] and is often routinely collected as part of control
measures. For social contacts, which can lead to the spread of airborne infections, simi-
lar personal issues can also arise although there is the added difficulty of trying to recall
all the people we met over a given period.

Several approaches have been utilised to gather network data. Snowball sampling
[107] uses the network structure of the population by getting individuals to name all
their contacts, who are then traced and the process is repeated. However, there are
problems with this approach: the data will form a single connected component and so
large parts of the network could be missed; it may be difficult to get people to disclose
sensitive information; respondents recall might not be perfect; it can be difficult to
trace all contacts; and the sample will be biased towards individuals that like to make
themselves known. Effectively snowball sampling is an adaptation of contact tracing,
where links from all individuals (not just infected ones) are traced.

Another way to obtain information about the structure of the network is through
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Figure 36: Examples of stochastic SIR-type simulations on three network types: Erdös-Rényi
networks with Poisson distributed degree, Homogeneous networks where all nodes have equal
degree, and Scale free networks where the degree distribution follows a heavy-tailed power law.
In all three networks the mean degree is 3, the rate of transmission across a link is τ = 1.5, the
recovery rate γ = 1, while the population is ten thousand nodes; therefore all differences are due
to heterogeneity in network degree. The Erdös-Rényi outbreak agrees with standard mean-field
stochastic epidemic models, from which it is clear that network structure can either promote or
retard transmission.
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the use of contact surveys [198, 71]. Contact surveys provide detailed local network
(egocentric) data that can in principle be used to infer the larger network structure of
the population. The data typically consists of information on a number of individuals
(egos) and their contacts. The egos can then be connected in a similar way to generat-
ing a configuration network [193] to produce a realistic network for use in simulations.
Alternatively, the egocentric data can be used to construct the who-acquires-infection-
from-whom matrices for modelling purposes [198, 218].

A third way to obtain the transmission network is to use movement data, for example
airline data [133, 114] or livestock movement data [190]. These data sources have the
advantage that they are automatically collected in bulk, but the disadvantage that the
network links sub-populations or groups of hosts rather than being a network between
individuals. In addition, while it is clear that movements are often a primary mean of
transmission, especially between livestock farms [102] alternative routes of transmission
exist that are not captured by the movement network.

5.6 Exact results for particular networks

Many network properties are highly sensitive to the exact structure of the network, such
that the presence/absence of one connection can dramatically change the values of any
given property. It is therefore not surprising that a general relationship between the
network configuration and the associated epidemic dynamics is still illusive. Therefore,
there is considerable interest in trying to determine a low-dimensional set of network
properties that provide quantitative or even qualitative understanding of the epidemic
dynamics [148, 186, 17]. However, in the vast majority of cases we are constrained to
having exact results for some specific network structures which provide general intuition.

5.6.1 Basic Reproductive Ratio

For large networks that can be formed from the configuration model [192] (including
the Erdös-Rényi random graph [83]), the basic reproductive ratio can be explicitly
calculated, in the limit that the network size tend to infinity [76]. In the early stages
of an epidemic, the chance of an individual being infected is proportional to its degree.
Given the random nature of the network, nodes with higher degree have a proportionally
higher force of infection as each inward connection carries the same risk of transmission.
For an infected individual of degree k, there are a potential k − 1 contacts that it can
infect, given that one of its contacts must have been its source of infection. For each of
these contacts, the probability of transmission along an connections is τ/(τ + γ) – that
is the chance of transmitting before recovery. Taking the average of all these quantities
gives:

R0 =
τ

τ + γ

mean(k(k − 1))

mean(k)
=

τ

τ + γ

[
mean(k) +

var(k)

mean(k)
− 1

]

where the mean(k) in the denominator is a normalising factor and ensures that the
probability of the infected individual being degree k sums to one. From this formula-
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tion it is clear that network structure has three main influences on early transmission
dynamics: the mean degree is clearly central to the amount of onwards transmission;
in addition variation about this mean also acts to increase transmission; finally the dis-
crete structure of the network reduces transmission as one of the node’s contacts must
be its source of infection. The balance of these two conflicting influences (variation and
the discrete number of contacts) determines how network structure will modify early
dynamics. For networks with homogeneous degree (no variation) the removal of one
contact can dramatically slow transmission [143]; in contrast for scale-free networks the
variance in degree distribution dominates and R0 can be infinite for all non-zero trans-
mission rates (figure 36).

Through a more involved eigenvalue approach, similar calculations can be made
when the network has degree correlations but is otherwise random with no additional
structure [31]; this clearly mimics the risk-structured analysis of [75] with degree playing
the role of risk structure. For more general networks, the calculation of R0 is complicated
by the presence of multiple short loops such that potential chains of transmission overlap
and interfere. In such cases we must rely on numerical simulation methods that account
for the definition of R0 [131].

5.6.2 Correspondence to mean-field models

For the Erdös-Rényi random graph [83], where the degree distribution is Poisson (with
mean c), there exists a exact dynamic match to standard (mean-field) stochastic epi-
demic models (of the type explained section 4) as the number of nodes becomes large
[33, 73]. In the standard stochastic models, the number of new infections per infected
node is Poisson with degree β/γ which gives a exact match to the Erdös-Rényi random
graph where the average number of new infections is Poisson with degree τc/(τ + γ).
More over because of the random nature of the network depletion of susceptibles has an
uncorrelated impact of each connection, so the match holds throughout the dynamics.

5.6.3 Final Epidemic Size

When dealing with configuration networks with fixed homogeneous degree k, branching
process theory allows us to determine the final epidemic size [73]:

R∞ = 1−
(
1− τ

τ + γ

[
1− (1−R∞)

k−1

k

])k

Clearly this has many parallels with the standard form from [155], and tends to this
standard result when as k → ∞ but R0 is kept finite.

5.6.4 Percolation Theory

Without doubt, percolation theory has had a huge impact on our understanding of po-
tential dynamics and in particular the final size of epidemics on networks [205, 203].
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In particular, percolation theory tells us about the probability of retaining a large con-
nected component when each link in the network is deleted with probability 1−p [112].
There is therefore an intuitive link to epidemic models where p is considered as the
probability of transmission across a link. Unfortunately there is a mis-match between
the assumptions underlying percolation and epidemic models. In percolation models the
probabilities associated with links are independent and this is crucial to many of the
results. In epidemic models the probabilities of transmission from a node are frequently
correlated as they will all depend on how long the node remains infected. Therefore
only when all infected individuals remain infectious for a fixed period of time due the
percolation theory results hold, although they provide an important bench-mark for
spread on networks.

Unfortunately, very few exact results are known in the epidemiologically interesting
case where networks are highly clustered, such that short loops are common. In these
cases we generally rely on simulation results or approximations [148, 131]. Here the
key questions are not simply how clustering changes the main epidemic features for
constant parameter values, but how one epidemic feature varies as other features are
held constant (as if fitted to observable data).

5.6.5 Approximating network dynamics

Mean-field random mixing models do not allow for higher order features of the trans-
mission network, such as loops, correlations between cases and localised depletion of
susceptibles. These features can have a significant impact on the dynamics of the
disease spread. A natural extension of the earlier models is therefore to consider part-
nerships in the network (and the state of the two nodes involved) as the fundamental
variables [163, 143, 78].We will refer to these models as pair-wise models.

Pair-wise models offer a compromise between the random-mixing model and the
explicit modelling the network in its entirety. We will illustrate the methodology with
an SIS model as appropriate for sexually transmitted infections and assuming an equal
degree k for all nodes; however it is straight forward to extend to more complex trans-
mission and also to further stratify the susceptible and infectious classes in to different
species/groups [78]. Denoting [S] and [I] as the number of susceptible and infectious
individuals in the population, respectively, the SIS disease process can be represented
by the following exact but unclosed differential equations

d[S]

dt
= −τ [SI] + g[I] (105)

d[I]

dt
= τ [SI]− g[I]

This model is exact, but to close the system, knowledge of [SI], the number of partner-
ships between susceptible and infectious individuals, is required.
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First order Closing at the first order ignores pair level correlations and assumes that
the number of pairs of a certain type is given by the independent product of the two
constituent nodes:

[AB] ≈ k[A][B]

N
(106)

Substituting this approximation into the unclosed system 105 recovers the standard
mean-field SIS equations derived in section 2.1, with β = kτ .

Closing at second order A better approximation to the epidemic behaviour on a net-
work can be made by considering the time evolution of pairs. The number of susceptible-
susceptible, susceptible-infectious and infectious-infectious pairs in the population can
change due to infection within the pair, infection from outside the pair or recovery. This
is captured by the following set of differential equations

d[SS]

dt
= −2τ [SSI] + 2g[SI]

d[SI]

dt
= τ([SSI]− [ISI]− [SI]) + g([II]− [SI]) (107)

d[SS]

dt
= 2τ([ISI] + [SI])− 2g[II]

Where [ABC] denotes three connected individuals with disease status A, B and
C respectively. If we assume that the network is unclustered, such that there are no
connections between A and C, then it is possible to close the system by approximating
triples as two independent pairs that share a common node, leading to,

[ABC] ≈ k − 1

k

[AB][BC]

[B]
(108)

Although this triple approximation breaks down for the SIS model due to the strong
correlations that develop between the ends of a triple that are not captured in this ap-
proximation, for the SIR model this triple approximation allows an exact formulation
of the dynamics of infection [132]. Pairwise models closed at second order, have been
used successfully in a number of situations, from the evolution of pathogen virulence
[54], to the spread and control of sexually transmitted infections [91, 79], to the local
spread of livestock infections [90].

In principle equations can be formulated for triples, with closure then requires to ap-
proximate the number of four-node states, however the complexity is close to overwhelm-
ing [129]. For example, with triples there are only two types that need consideration
(triangles and open triples) however four nodes can be in six different interconnected
configurations. Although the resulting triplewise equations equal or outperform the
pairwise models in all situations considered [129], it is not clear that the increase in
accuracy merits the additional effort.
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More recently versions of these pairwise approximations have been produced that
naturally account for degree heterogeneity at the cost of restricting attention to models
of the SIR-type formulation [248, 189, 188]. Following the notation of [189], for a
configuration type network the epidemic dynamics are captured by the equation:

dθ

dt
= −βθ + β

φ′(θ)

φ′(1)
+ γ(1− θ) (109)

where θ captures the total force of infection across an average link, and φ is the prob-
ability generating function of the degree distribution (φ(x) =

∑
k P (k)xk). Using this

single variable θ the level of susceptibles over time can be determined:

S(t) = φ(θ(t))

and hence I(t) can be found from the rate of change of S. This novel formulation allows
for explicit calculation of many quantities of interest, such as early growth rates and
final epidemic sizes [188], but is constrained to SIR models.

6 Future Challenges

We hope this review has illustrated the wealth of problems and solutions that have
been developed in the quantitative study of epidemiology. While much of this work is
motivated by practical issues of public health, there are also a number of theoretical
questions that are both scientifically interesting, but also would have wider impact. Here
we outline a few future challenges in the hope that it generates thoughts and discussion.

Basic models. For even the simplest models there are still many unsolved problems;
a large number reflect our lack of quantitative understanding of the basic biology but
other are of a more technical nature. As an example of the former, it is still unclear the
exact impact of vaccines in terms of the reduction in susceptibility and onward trans-
mission that they afford, consequently it is unclear what could and should be measured
to ascertain the levels of control offered by a vaccine. As an example of the latter, we
hypothesised in section 2.4 that dividing the exposed and infectious class into two or
three sub-compartments was generally viewed as sufficient, yet there is no clear under-
standing of how this division should be optimally achieved or parameterised to match
available data. Finally, there is the question of how the wealth of new bio-medical
data, including genetic and immunological measurements, should be incorporated into
epidemiological modelling.

Heterogeneous populations. When the population is subdivided, there naturally
arises the question of how the who acquires infection from whom matrix should be pa-
rameterised. When only endemic prevalences are available, then it is clear that there
are more degrees of freedom than data and hence there is some flexibility in how pa-
rameters are assigned; however if we can observe fluctuations away from this endemic
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state then are there methods of calculating all the terms in the matrix? There is also
the question of how many classes should a population be split into, for some such as
age-structure there are obvious groups while for others the available data may set the ap-
propriate scales, however in general a population can always be sub-divided along ever
finer heterogeneities. When we consider the specific case studies of HIV and vector-
borne diseases there are also the obvious practical issues of whether models can inform
about key points in the transmission mechanisms where interventions will have max-
imum benefit, in particular the optimal targeting of control measures across multiple
risk groups.

Stochastic Transmission. Stochastic dynamics differ from their deterministic coun-
terparts in terms of the variability in epidemic outcome and the risks of stochastic
extinction; both of these would merit further investigation. We have already seen how a
sudden start to a vaccination programmes can give rise to the ’honeymoon effect’ with
large oscillations; are there ways in which vaccination programmes should be designed
to maximise this effect and the risk of subsequent stochastic extinction, hence leading to
elimination of infection. Much of section 4 was focused toward understanding stochastic
epidemics without the need for extensive simulations, this ideas can obviously be ex-
tended far further. There are clear questions as how large a population can be that will
allow Kolmorgorov equations to be numerically integrated, and the type of additional
understanding that can be derived from these machine precision models. There is also
the issue over when the large-population size diffusion approximations are appropriate,
and whether these can provide a meaningful assessment of the degree of variability we
should expect to observe.

Spatial Heterogeneity. The modelling of spatial epidemics is a relatively new field,
and so there are a host of open questions. In the ever expanding field of networks, there
are fundamental questions about the types of network structure that most reliably cap-
ture human social and sexual networks, and how the strength and dynamic nature of
these connections should be incorporated. In addition, demographic processes of birth
and death are largely ignored in network models, how to include these without changing
the underlying network structure is another open question. When discussion foot-and-
mouth disease we showed through simulation that there was an optimal ring-size for
vaccination, but as yet there have been few attempts to consider the optimal spatial
deployment of resources in a general context. Finally, while pair-wise models provide
a reliable and efficient means of approximating SIR-type infection on simple networks,
these methods need extending to more complex network structures and SIS-type dy-
namics.

Model sufficiency. One overriding question that covers all aspects of epidemiological
modelling is that of model sufficiency; how do we know which aspect of model structure
we need to include in our formulation to generate accurate and reliable predictions.
Clearly we are limited by computational resources, data, biological information and
ultimately enthusiasm for generating ever more complex models. However the question
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remains, how do we know that our models are fit for purpose, are there guiding rules
for when different types of heterogeneity are likely to play pivotal roles.

Capturing observed behaviour. One of the ultimate tests of any mathematical
model is how well it captures the observed behaviour. In many scientific fields the is the
possibility of matching models to experiments, where conditions are tightly controlled.
In epidemiology this is rarely the case, there are often many confounding factors and the
observed behaviour is seldom an accurate reflection of reality. Therefore there is a vital
need for refined statistical techniques that can cope with noisy transmission processes,
a low and possibly variable reporting rate of infection, and still allow for parameter
inference.
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