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Abstract

We analyze an epidemiological model consisting of a linear chain of three cocircu-

lating in¯uenza A strains that provide hosts exposed to a given strain with partial im-

mune cross-protection against other strains. In the extreme case where infection with the

middle strain prevents further infections from the other two strains, we reduce the model

to a six-dimensional kernel capable of showing self-sustaining oscillations at relatively

high levels of cross-protection. Dimensional reduction has been accomplished by a

transformation of variables that preserves the eigenvalue responsible for the transition

from damped oscillations to limit cycle solutions. Ó 1999 Elsevier Science Inc. All

rights reserved.

Keywords: In¯uenza drift; Multiple strains; Cross-immunity

1. Introduction

The simultaneous circulation of several antigenic variants of the same
pathogen can give rise to complex dynamics, including sustained oscillations
and chaos in disease prevalence when the pathogen confers su�ciently strong
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cross-protection against related strains to recovering hosts [1]. Previous e�orts
to illustrate how periodic dynamics can be sustained in disease systems have
necessarily invoked a complex of factors; in this paper we demonstrate that in a
system with three interacting strains, herd-immunity alone can support sus-
tained oscillations. The simplest such case is the `linear three-strain model', in
which one of the strains is of an intermediate type in the sense that it confers
partial cross-protection to the two other strains while these two strains induce
no reciprocal cross-reaction.

The cocirculation of cross-reacting pathogen types is of interest from both
ecological and evolutionary viewpoints. In a few diseases, such as in¯uenza A
and canine pavovirus, new antigenic variants arise continuously thus a�ecting
signi®cantly the epidemiology of the disease. Other pathogens display antigenic
variation that seems to play no role in the epidemiology of these diseases [2],
though the evolutionary forces that maintain this variation remain important
to study. Our focus in this paper will be on the in¯uenza A virus, which has
been particularly well studied.

In¯uenza A is an RNA virus of the Orthomyxoviridae family [3]. Its per-
sistence in many vertebrate species appears to be linked to its high degree of
genetic plasticity [4,5]. Two processes cause the rapid evolution of the glyco-
protein molecules, hemagglutinin (HA) and neuraminidase (NA), on the sur-
face of the virus: antigenic drift and genetic shift [6,7]. In antigenic drift, point
mutations in HA and NA gradually change the aminoacid composition of
antigenic sites. These mutants or strains are responsible for annual or biennial
epidemics a�ecting tens of millions of people worldwide. In genetic shift, gene
reassortment in the negatively charged segments of the nuclear RNA gives rise
to a new virus subtype with a di�erent set of antibody binding sites (epitopes)
in the HA and NA molecules [8]. This virus shift is responsible for the pan-
demics of 1918 (Spanish ¯u, H1N1 subtype), 1957 (Asian ¯u, H2N2 subtype)
and 1968 (Hong Kong ¯u, H3N2 subtype). Although before the Russian ¯u of
1977 only one subtype was present at any one time, since then both subtypes
H1N1 and H3N2 have been cocirculating worldwide [9,10]. There is still no clear
understanding of why this change has occurred [11±13].

Cross-immunity between di�erent subtypes of in¯uenza A is weak or di�-
cult to detect [14±17]. This is not so with drift variants of the same subtype.
Functionally related strains show partial cross-reaction to the antibodies
produced in the host against a previous virus strain [18±20]. The degree of
cross-reaction between two strains can be identi®ed serologically from hem-
agglutination inhibition with antibodies reacting fully with one of the strains
[21]. Partially cross-reacting strains are functionally related, and zero cross-
reactivity means no cross-protection with the antibodies produced in the host
against a previous virus strain.

Theoretical studies of cross-immunity in disease transmission dynamics are
relatively few. By keeping track of hosts infected with each single strain, one is
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naturally led to consider extensions of the well-known continuous-time SIR
models to describe the outcomes of selection on a group of strains [22,23].
Models incorporating partial cross-immunity between two strains have been
shown to maintain sustained oscillations when age-speci®c mortalities are in-
cluded [24,25], or when disease is transmitted by a vector [26]. These oscilla-
tions become weakly damped without some sort of delay [27,28].

In a previous paper [29] we analyzed an epidemiological model of in¯uenza
A drift that included life-long partial cross-protection among neighboring
strains. When strains are placed on a one-dimensional lattice with periodic
boundary conditions and partial cross-protection to nearest neighbors, it is
found that at relatively high levels of cross-protection sustained oscillations are
possible only if the number of cocirculating strains exceeds three. In this paper
we show that it is also possible to have a Hopf bifurcation to a periodic so-
lution even when only three strains, in a linear chain con®guration, are co-
circulating. Therefore, the presence of oscillations does not rely on the cyclic
nature of the immunity structure as in [29], but may occur when immunity is
organized linearly, mimicking the immunity structure that arises under anti-
genic drift.

It has recently been shown that the evolutionary tree of the hemagglutinin
gene has the shape of a cactus tree with the main trunk of surviving genes
evolving signi®cantly faster than the short lateral branches of non-surviving
genes [30]. To some this is a sign of positive Darwinian evolution [31,32], while
others take a more cautionary view [33]. In this paper we study the dynamics of
virus drift for the surviving lineage when the total virus population is divided in
subgroups with varying degrees of cross-protection among strains.

In the ®rst part we outline the linear three-strain model, using an index set
notation to describe population subgroups with a particular history of infec-
tion. In the second part we study a submodel that exhibits sustained oscilla-
tions. This submodel has the property that individuals infected with the middle
strain are immune to further infections by the other two symmetrical strains.
By taking advantage of the remaining symmetry imposed on this submodel we
further reduce it to a six-dimensional system. This is so far the simplest system
we have been able to ®nd that has self-sustaining oscillations.

2. The linear three strain model

The easiest way to convey the structure of the model is to start with an index
set notation as described in [29]. Let K � f1; 2; 3g be the set of three strains and
J be a subset of K. De®ne SJ as the number of susceptible hosts who have
previously been infected with strains in J ; S0 as the completely susceptible class,
I i

0 as the number of ®rst time infectives carrying strain i, and I i
J as the number

of infectives currently carrying strain i but previously infected with strains in J .
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We impose i 62 J to account for life-long immunity after a host has been in-
fected with a given strain. The dynamics of infection for the completely sus-
ceptible and ®rst time infectious classes are given as follows:

_S0 � bÿ lS0 ÿ
P
i2K

KiS0;

_I i
0 � KiS0 ÿ �l� m�I i

0; i 2 K:

First time susceptibles are introduced at a constant rate b, die at a constant rate
l, and are removed by infected individuals with a force of infection
Ki � bi

P
J�Kni I i

J . The transmission coe�cient bi measures the infectivity of
strain i, and changes in most cases from strain to strain. The coe�cient m is the
recovery rate of infectives, which we assume to be the same for all classes. The
equations for SJ and I i

J are

_SJ �
X
j2J

mIj
Jnj ÿ lSJ ÿ

X
i62J

ri
JK

iSJ for J � K; J 6� é;

_I i
J � ri

JK
iSJ ÿ �l� m�I i

J for J � K n i; J 6� é:

The ¯ow into the class SJ consists of all infectives who are recovering from
strain j 2 J and who are already immune to all other strains in J . The notation
J n j represents the set J with strain j removed. Cross-immunity reduces the
susceptibility of individuals who are immune to the strains in J to infection by
strain i; i 62 J , by a factor ri

J . In the three-strain model we will study, there are
twelve I variables and eight S variables.

The total population N satis®es the equation

_N � bÿ lN :

To avoid the complications of an expanding population we impose b � lN �,
where N � is the constant total population at equilibrium. This is a relatively
good approximation as long as we keep the time scale of observation small
compared to the time scale of global population change. Dividing every
equation by N � gives us the evolution of each class as a fraction of N �. We
represent these fractions using the same notation as for subgroups.

The model outlined above can be written in non-dimensional form by de-
®ning the time scale in units of the global recovery time �m� l�ÿ1

of infectives.
Using the rescaled mortality e � l=�l� m� and transmission ri � biN

�=�l� m�
coe�cients, and evaluating the time derivative in the re-scaled time
t0 � �m� l�t, we can rewrite the model as

_S0 � e�1ÿ S0� ÿ
P
i2K

KiS0;

_SJ �
P
j2J
�1ÿ e�Ij

Jnj ÿ eSJ ÿ
P
i62J

ri
JK

iSJ ;

_I i
0 � KiS0 ÿ I i

0;

_I i
J � ri

JK
iSJ ÿ I i

J ;

�1�
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where Ki � ri
P

J�Kni I i
J is the re-scaled force of infection for strain i. Because

the total population is constant, the fraction of the population that is immune
to all strains, SK , can be removed from the set of essential variables. This
subclass can be found from Eq. (1) as

SK � 1ÿ e
e

X
j2K

Ij
Knj:

With a large number of potentially distinct coe�cients in the model, the
analysis of bifurcation regimes becomes di�cult. To focus on a `linear' situa-
tion as outlined in the introduction, we assume that strains 1 and 3 confer no
reciprocal cross-immunity, i.e., that r1

3 � r3
1 � 1, that they confer the same

immunity to strain 2, r2
1 � r2

3 � r < 1, and that no additional protection arises
from having been exposed to both strains, r2

13 � r. To simplify the analysis we
assume that strain 2 induces full protection against strains 1 and 3, i.e.,
r1

2 � r3
2 � r3

12 � r1
23 � 0. Furthermore, we assume that strains 1 and 3 have the

same transmission coe�cient, r1 � r3. These assumptions preserve the sym-
metry of the model. Fig. 1 depicts a sketch of the model.

The basic transmission constants ri measure the average number of sec-
ondary infections caused by a single infected host in a susceptible population.
Experimental values of ri for propagating in¯uenza A strains range from 2 to 6
[34]. When mortality is independent of age, l is the inverse of the life expec-
tancy of an average individual � (70 years)ÿ1. Therefore, in most cases the

Fig. 1. Dynamics of infection. The numbers between arrows refer to susceptible classes SJ . Black

dots refer to infectious classes I i
J , i being the index of the new strain appearing at the end of the

arrow. There is cross-immunity factor r to infection with strain 2 in hosts previously infected with

strains 1, 3 or both, while hosts previously infected with strain 2 are immune to strains 1 and 3.
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observed value of e is of the order of 0:0001 when the recovery time mÿ1 ranges
from 2 to 6 days.

3. Dimensional reduction and steady states

The condition ri
2 � 0 implies that individuals previously infected with strain

2 are immune to further infections by strains 1 and 3. A consequence of this
restriction is the elimination of the variables I1

2 ; I
3
2 ; I

1
23 and I3

12 from the model
since there is no ¯ow into any of these classes. Furthermore, the susceptible
subgroups S2; S12; S23 are removable in the following sense. As the arrows in
Fig. 1 indicate, they become terminal classes no longer involved in the disease
transmission dynamics. The steady state values of the removable SJ can be
obtained from the second equation of system (1)

SJ �
P

j2J�1ÿ e�Ij
Jnj

e�Pi62J ri
JK

i :

It is easy to verify that the Jacobian matrix for the linearization at any steady
state has only negative non-vanishing terms along the diagonal for the four S
variables mentioned above. Furthermore, as their steady states do not appear
in the remaining equations, their omission will not alter conclusions about
stability. Finally, we observe that all I2

J -variables a�ect the transmission dy-
namics in the same way and that the ¯ow out of these variables is always into
terminal classes. Thus we need only keep track of

K2 � r2�I2
0 � I2

1 � I2
3 � I2

13�: �2�

There are nine equations remaining in the model.
We now take advantage of the signi®cant degree of symmetry between

strains 1 and 3 (refer to Fig. 1). Strains 1 and 3 interact only through `viral
interference', i.e., they interact only because simultaneous infections with two
strains are impossible. The e�ect of viral interference is of the order of the
duration of infection O�e� and consequently, one strain can prevent the other
from invading only if K1 � O�e2� or K3 � O�e2�. For details see [22]. This
observation suggests that equilibria where only strains 1 or 3 are present will be
unstable except near bifurcations where K1 � K3 � 0. Similarly, the dynamic
equations for K1 and K3 show that if strains 1 and 3 are both present at
equilibrium, they must occur with the same prevalence. In Appendix A we
prove this result. Here we neglect such details of viral interference and focus on
sums and di�erences of variables associated with the two strains. Thus, we
de®ne a new set of variables,
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S� � S1 � S3; I�0 � I1
0 � I3

0 ;

I�1 � I1
3 � I3

1 ; K� � r1�I�0 � I�1 �
�3�

while leaving the variables S0; S13 and K2 unchanged. In these plus±minus
variables the system simpli®es to

_S0 � e�1ÿ S0� ÿ S0�K� � K2�;
_S� � ÿ eS� � �1ÿ e�I�0 ÿ 1

2
�S�K� ÿ S�K

ÿ� ÿ rS�K
2; �4a�

_S13 � ÿ eS13 � �1ÿ e�I�1 ÿ rS13K
2

and

_I�0 � ÿI�0 � S0K
�; �4b�

_K� � ÿK� � r1S0K
� � 1

2
r1�S�K� ÿ S�K

ÿ�; �4c�

_K2 � ÿK2 � r2�S0 � rS� � rS13�K2; �4d�
where I�1 is determined by the equation K� � r1�I�0 � I�1 �. By symmetry, all
minus variables vanish at symmetric steady states and the linearization de-
composes the system into two invariant subspaces: a six-dimensional subspace
for the plus variables, S0, S13, and K2, and a three-dimensional space for the
minus variables. In Appendix A we show that the origin ± i.e. Kÿ � 0, etc. ± is
always asymptotically stable in the minus subspace. Next, by generalizing the
results from the theory of epidemics in structured populations, one can express
equilibrium values of the state variables as functions of K� and K2. Equilibria
are now determined as the non-negative solutions to the steady state conditions
on K� and K2, cf. Eqs. (4c) and (4d). Furthermore, one can show that the
stability of the boundary equilibria are determined by the invasion conditions
for the strains not present. For details see [29].

There are four types of steady states of Eqs. (4a)±(4d). We proceed to
discuss each type separately.

3.1. Disease free equilibrium

In this case the total population belongs to the susceptible group S0, and the
equilibrium state O0 is given by

O0 : S0 � 1:

We check the stability of this state O0 by studying under which conditions any
of the strains can invade S0. The appropriate variables to consider are the
forces of infection K� � K1 � K3 and K2. They obey the following equations
near the disease free equilibrium,
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_K� � K��ÿ1� r1�; _K2 � K2�ÿ1� r2�:
Thus the state O0 is only stable if both r1 and r2 remain below 1.

3.2. Strain 2 alone

Provided r2 > 1, the steady state O2 involving only strain 2 is given as

O2 : S0 � 1

r2

; S2 � 1

�
ÿ 1

r2

�
�1ÿ e�; I2

0 � e 1

�
ÿ 1

r2

�
;

while all other variables vanish. To ®nd the stability of O2 to invasion by
strains 1 and 3 we observe that since either strain can invade, the most ap-
propriate variable to consider is the force of infection K�. An equation for K�

can be found directly from (4c),

_K� � r1�S0 � 1
2
S��K� ÿ K�: �5�

When S0 and S� are evaluated at O2 the previous expression simpli®es to

_K� � r1

r2

�
ÿ 1

�
K�:

Therefore, we observe that strains 1 and 3 cannot invade if r1 < r2; the equi-
librium O2 is only stable above the line

L2 : r2 � r1:

3.3. Coexistence of strains 1 and 3 alone

A second (symmetric) boundary equilibrium O13 is given by

O13 : S0 � 1

2r1 ÿ 1
�O�e�; S� � 2�r1 ÿ 1�

r1�2r1 ÿ 1� �O�e�;

S13 � 2�r1 ÿ 1�2
r1�2r1 ÿ 1� �O�e�;

I�0 �
2e�r1 ÿ 1�

2r1 ÿ 1
�O�e2�; I�1 �

2e�r1 ÿ 1�2
r1�2r1 ÿ 1� �O�e2�; K2 � 0:

We now analyze the stability of this steady state to invasion by strain 2. The
dynamics of strain 2 is determined by (4d) and we ®nd that O13 can be invaded
only if

r2�S0 � rS� � rS13� > 1;

where all variables are evaluated at O13. This condition yields the bifurcation
curve
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L13 : r2 � 2r1 ÿ 1

1� 2r�r1 ÿ 1�
for e� 1. Only below this boundary curve is the steady state O13 stable. The
condition for a common area where both stable steady states O2 and O13 co-
exist is given by dr2=dr1 > 1, or equivalently, by r < 1=2r1 (refer to Fig. 2). The
stability of the two-strain steady state for systems equivalent to this one has
already been analyzed [22,24,27].

3.4. All strains present

We now proceed to discuss the existence and stability of internal equilibria
in the case 1=2ÿ r > 0. Solving for SJ by using the equilibrium condition in
(4a)±(4d) we ®nd

1 � r1�S0 � 1
2
S��; �6a�

1 � r2�S0 � rS� � rS13�; �6b�

Fig. 2. Bifurcation diagram of model (1) for equilibria that are symmetric in strains 1 and 3. The

curves L2; L13 and LS refer to bifurcations at O2, O13, and the saddle-node bifurcation discussed in

Section 3.4 The phase portraits are 2-D representations of the dynamics of infection where the

horizontal axis refer to K� and the vertical axis to K2. In the phase portraits a ®lled circle indicates a

stable equilibrium while an open circle indicates an unstable equilibrium. The system undergoes a

Hopf bifurcation on the curve LH. On curve LG the limit cycle disappears in a saddle-node bifur-

cation. The complete bifurcation diagram has regions with negative equilibrium states. Our dia-

gram shows only the biologically meaningful equilibria. The continuation of the line LS for r1 < rc

is not shown as in this regime K2 is negative. Parameter values used in the diagram: e � 10ÿ2 and

r � 0:1.
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where the SJ s are functions of K� and K2. These two equations can be reduced
to a quadratic equation in say K2. It is not hard to see that this equation has
two roots only when r2 lies below the line

LS : r2 � r1

1=2� ������������������
r�1ÿ r�p : �7�

The two bifurcation curves LS and L13 meet tangentially at r1 � rc where

rc � 1

2
� 1

2

�����������
1

r
ÿ 1

r
:

Fig. 2 shows the locations of all non-trivial equilibria and in Appendix B we
provide details of these calculations. The small size of the parameter region in
which periodic solutions occur, seems most likely to be related to the small
number of strains (there are no sustained oscillations in the two-strain model)

Fig. 3. Phase portraits of the 20-dimensional model (1) projected on the rescaled forces of infection

�K�;K2�. The open and closed circles represent unstable and stable equilibria, respectively. At

r1 � 5 the equilibrium OH undergoes a Hopf bifurcation at r2 � 5:41 creating a stable limit cycle. At

r2 � 5:42 the limit cycle is fully developed and at r2 � 5:45±5.46 we observe the disappearance of

limit cycle when it meets the stable manifold of the internal equilibrium OS tangentially. Parameter

values used in the diagram: e � 0:01, r � 0:1 and r1 � 5.
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and to the constraints imposed by the speci®c symmetric interactions in the
model. The limit cycle region expands considerably when four or more strains
are con®gured in a closed chain with periodic boundary conditions [29].

Numerical computation of the spectrum of the linearization, via the Q-R
algorithm [35], shows that the branch of roots OS that changes sign at the O2

boundary curve �r1 � r2� is always unstable. The other branch of roots OH is
stable near the O13 boundary curve, but as r2 is increased beyond the curve L13

it undergoes a Hopf bifurcation to a stable limit cycle along a curve LH. Nu-
merical solutions of the dynamical model also suggest that the limit cycle
disappears in a global bifurcation that seems to involve a saddle connection
bifurcation at OS ; see Fig. 3 for a numerical solution of the transition in the

Fig. 4. Oscillations in the six-dimensional kernel consisting of S0; S�; S13; I�0 ; I
�
1 and I2 � K2=r2.

Parameter values used in the simulation are r1 � r2 � 2 and r � 0:3.
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reduced space �K�;K2�. The dynamical picture described above has been found
to be consistent with the bifurcation diagram obtained from a standard con-
tinuation-bifurcation software [36]. Additional details of a similar computation
can be found in [29].

Although the separation of the dynamics into subspaces associated with the
minus- and plus-variables holds only in the linearization of endemic equilibria,
we have found numerically that in the limit, the minus sign variables always
vanish. The essential dynamics of the model are therefore determined by the
six-dimensional kernel associated with the plus-variables. The (1, 3)-symmetry,
however, appears to be particular to the present model. Ferguson et al. [37]
reports that such symmetry may break down in multi-strain models with
similar structure.

A numerical solution of the 6-D subsystem is shown in Fig. 4. The simu-
lations have been done with e � 0:01 and r1 � r2 � 2 to demonstrate the size
and phase of oscillations. In a more realistic situation we would have
e � 0:0001 for a life expectancy of �70 years and m � 120/year for a recovery
time of �3 days. This latter scenario would give us for r � 0:3, an oscillation
period of �10,000 time units instead of the �500 time units shown in Fig. 4. In
real time t � t0=�l� m�, the 10,000 units is equivalent to a period of approxi-
mately 80 years. The period decreases roughly by a factor of two if the r's are
increased to r1 � r2 � 5.

4. Discussion

The problem of periodic oscillations in in¯uenza dynamics has long at-
tracted theoretical interest. Previous explanations have relied on aspects of age
structure and cross-immunity relations among di�erent strains. Recently, it has
been shown that in a non-age-structured population with four circulating
strains obeying a cross-immunity structure with strong symmetry properties,
sustained oscillations can be maintained [29]. In this paper, we demonstrate
that the oscillations can also be sustained with as few as three strains.

A robust feature of complex adaptive systems is that they become self-or-
ganized hierarchically into tightly-interacting clusters of elements that in turn
interact only weakly with elements in other clusters [38,39]. In¯uenza is no
exception, as strains become organized into quasispecies and subtypes that
exhibit strong cross-reactivity within these clusters, and weak cross-reactivity
among them [1,29]. The investigations of this paper, focusing on intermediate
levels of cross-reactivity, may be viewed as most appropriate for describing the
interactions among clusters of strains that represent a level between the strain
and the subtype ± in the simplest case, a subtype may be viewed as being or-
ganized say into three interacting clusters of strains. The investigations of this
paper show that, generically, one might expect to see the period waxing and
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waning of these clusters on the order of the life span of humans, 40±80 years. In
practice, such ¯uctuations might lead to fade-outs of strain clusters at local
levels, but the central point is that the loss of herd immunity on these scales
determine the time scale for reemergence due to shift. With this interpretation,
the predictions of the model are consistent with observed time scales of re-
emergence, although alternative explanations are certainly possible.

The model where the intermediate strain induces complete immunity is not
the only con®guration in the linear chain that admits sustained oscillations. A
second model, this time characterized by assuming that individuals become
immune to infections by the middle strain once they have been infected by one
of the two symmetrical strains, can also display limit cycle oscillations. Yet the
minimal system capable of describing this behavior appears to be nine-
dimensional.

An essential ingredient to produce sustained oscillations seems to be the
presence of multiple steady states for some combination of parameter values.
This structure di�ers from that of interacting viruses with complete cross-
immunity following SIR-type dynamics. Here the stability of the boundary
equilibria is linked so that no more than one equilibrium is stable for any set of
parameter values, thus leading to a `competitive exclusion principle' [40].
Including partial cross-immunity in the dynamics of virus propagation may
therefore be of central importance when studying virus polymorphism.

The bifurcation structure in the present model is quite similar to that of [29].
In particular, the presence of sustained oscillations that disappear through a
global bifurcation is a common feature. The challenge remains to elucidate
further this bifurcation, especially the complicated transition that takes place
where the bifurcation curves meet tangentially in Fig. 2. The diagram in Fig. 2
seems to suggest the presence of a co-dimension two bifurcation involving a
double zero-eigenvalue, but the size of the model in combination with the small
parameter e has excluded a detailed numerical veri®cation.

Although the linear model has the same basic patterns as does the four-
strain model of [29], the analysis is di�erent. Clearly, the formal analysis of
such a high-dimensional system remains di�cult, but examination of the ex-
treme case ri

2 � 0 illustrates the main aspects of cross-immunity in disease
transmission. Focusing on the case ri

2� 0, corresponding to a cross-immunity
structure where the intermediate strain 2 confers complete immunity to the
other two strains, we were able to reduce the model to a nine-dimensional
system. By `folding' subclasses into plus±minus variables we managed to
identify a six-dimensional subspace in which sustained oscillations occur. The
basic idea of this approach may be applied to other systems of strains con-
ferring cross-immunity. For example, in the four-strain system of [29] one can
reduce the original 48-dimensional system to one with 20 variables. In doing so
we must ensure consistency if the index structure in I i

J with those in SJ . In the
folded model the new variables are,
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fS0; S1�; S2�; S13; S24; S��; S123�; S124�g;
and the complementary set of 12 infectious groups. We de®ne,

S1� � S1 � S3; S2� � S2 � S4; S�� �
X

i;j

Sij ÿ S13 ÿ S24;

S123� � S123 � S134 and S124� � S124 � S142:

The remaining variables are easy to write. The classes S1�S2� and S3�S4� have
been folded, but S13�S24� are left undisturbed. Failure to do so will eliminate
the strong interaction 1->3�r � 1� and the system will not be able to exhibit a
Hopf bifurcation. It appears, at least numerically, that the eigenvalue spec-
trum of the 20 variable system is a subset of the spectrum of the full model.
Yet this reduction does not yield a su�ciently simple model that will permit
us to study the parameter dependence of oscillations past the supercritical
Hopf bifurcation. The same comments apply to all other higher order
models.

The model developed in this paper o�ers a static view of mutation. The
initial space of strains once de®ned is closed to further changes. It does not
allow for drift mutation to generate new strains to displace old ones [41]. A
way out of this constraint is to assume a one-dimensional continuum of
strains where infection with a given strain x (characterized by its position on
the line) confers immunity to all other strains before x. Drift mutation, the
driving process to avoid host immunity, is incorporated into the model as a
di�usion process. Preliminary results indicate that such a continuous view of
mutation allows for the existence of stable travelling waves [42] moving at a
constant velocity. Ideally, one would like to combine the stochasticity of drift
mutation with the dynamics of a group of strains, viewed as a quasispecies
[43], to understand how cross-immunity shapes the coevolution of host and
virus.
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Appendix A. Excluding endemic (1, 3)-asymmetric equilibria

We ®rst show that any equilibrium where strains 1 and 3 are both present
must be symmetric in the two strains. To see this, ®rst observe that the equi-
librium conditions for Ki; i � 1; 3 yield
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0 � Ki�r1�S0 � Sj� ÿ 1�; i � 1; 3; j � 3; 1:

Since by assumption Ki 6� 0, this gives S1 � S3, or Sÿ � 0.
The equation for _Sÿ � 0 now simpli®es to

0 � �1ÿ e�Iÿ0 � 1
2
S�K

ÿ � ��1ÿ e�S0 � 1
2
S��Kÿ;

where we have used the equilibrium condition Iÿ0 � S0K
ÿ. Therefore, we con-

clude that Kÿ � 0.

A.1. Stability of the minus system fSÿ; Iÿ0 ;Kÿg

The minus system obtained from Eqs. (4a)±(4c) is a linear system with co-
e�cients dependent on the plus variables evaluated at an interior steady state.
To prove the stability of this subspace we analyze the Jacobian matrix

M �
ÿeÿ K�

2
ÿ rK2 1ÿ e S�

2

0 ÿ 1 S0

ÿ r1K
�

2
0 ÿ 1� r1S0 � r1S�

2

0B@
1CA:

If we de®ne A � e� K�=2� rK2 > 0 and use Eq. (6a) in the third diagonal
term, M simpli®es to

M �
ÿA 1ÿ e S�

2

0 ÿ 1 S0

ÿ r1K
�

2
0 0

0B@
1CA:

The characteristic equation for M has the form

P �K� � K3 ÿ Tr�M�K2 � aKÿ det�M�
with coe�cients

Tr�M� � ÿ Aÿ 1 < 0

a � A� r1S�
K�

4
> 0

det�M� � ÿ 1
2
r1K

��S0�1ÿ e� � 1
2
S��

� ÿ1
4
r1S��2A� K�� < 0;

since according to (4a) the steady state value of S� is

S� � �1ÿ e�I�0
e� K�=2� rK2

� �1ÿ e�S0K
�

A
:

The Routh±Hurwitz criteria for all eigenvalues of M to have negative real parts
require that

Tr�M� < 0; det�M� < 0; det�M� ÿ Tr�M�a > 0:
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We need only show that the last condition is satis®ed. A simple calculation
reveals that

det�M� ÿ Tr�M�a � A�A� 1� 1
4
r1S�K

� ÿ 1
2
r1S��

� A�A� r1S0 � 1
4
r1S�K

�� > 0;

where we have used the equilibrium condition (6a) in the last line.

Appendix B. Boundary curve for symmetric internal equilibria

The equilibrium values for the susceptible and infectious classes can be
found through (4a)±(4c),

I�0 � S0K
�; I�1 �

1

2
S�K

�; S0 � e

e� K� � K2
;

S� � �1ÿ e�K�S0

e� 1
2
K� � rK2

; S13 � �1ÿ e�K�S�
2�e� rK2� :

�B:1�

To lowest order in e we approximate 1ÿ e � 1 in (B.1) and scale
K� � ex and K2 � ey. Next, these values are substituted into the equilibrium
Eqs. (6a) and (6b) giving

�1� x� y��1� x
2
� ry� � r1�1� x� ry�

�1� ry��1� x� y� � r2�1� rx� ry�: �B:2�
From the second equation of (B.2) we solve for x

x � �1� ry��1ÿ r2 � y�
ÿ1� rr2 ÿ ry

and substitute this expression into the ®rst equation. In the variable u � r2 ÿ y
we ®nd a quadratic equation

r1ru2 � ��1
2
ÿ r�r2 ÿ r1�u� 1

2
r2 � 0;

which has two positive real roots for

r1 > r2�12�
������������������
r�1ÿ r�

p
� and r1 > rc; �B:3�

while for r1 < rc; y is negative.
Our computations so far show that below the saddle-node bifurcation line

LS as de®ned in Eq. (7), there exists two branches of �K�;K2�-equilibrium
values. As discussed in the main text, we may identify the equilibria with these
values. In this sense, the equilibrium values are given implicitly by the equa-
tions
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F � S0�K�;K2� � 1

2
S��K�;K2� ÿ 1

r1

� 0;

G � S0�K�;K2� � rS��K�;K2� � rS13�K�;K2� ÿ 1

r2

� 0: �B:4�

To study the bifurcation at L2 on Fig. 2 we treat r1 as the bifurcation parameter
(note that increasing r1 corresponds to moving diagonally to the right and
down on the ®gure). At L2 the boundary equilibrium O2 : �0;K�� satis®es G � 0
due to the equilibrium condition and F � 0 as

S0�K�;K2� � 1

2
S��K�;K2� ÿ 1

r1

evaluated at O2 is
1

r2

ÿ 1

r1

� 0:

Therefore, �0;K�� lies on one branch of equilibria and conversely, if the point
�0;K� with K > 0 satis®es F � G � 0, then that point lies on L2. We shall refer
to this branch as OS�r1� � �K�S ;K2

S�, and let r� denote the value for which
OS�r�� � �0;K��.

Since the boundary equilibrium O2 is independent of r1, we observe through
Eq. (5) that O2 changes stability at r1 � r� and that it is unstable for r1 > r�. To
see that the internal equilibrium OS is positive for r1 < r�, it su�ces to show
that

dK�S
dr1

����
�0;K��

< 0: �B:5�

The derivative can be determined by implicit di�erentiation of F � 0 and G � 0
with respect to r1. If we write these equations as

F1�K�;K2� � 1

r1

and G1�K�;K2� � 1

r2

;

respectively, then elimination of dK2
S=dr1 from these equations yields

D
dK�S
dr1

� ÿ oG1

oK2

1

r2
1

;

where

D � oF1

oK�
oG1

oK2
ÿ oF1

oK2

oG1

oK�
:

A simple computation shows that oG1=oK2 < 0 for all non-negative �K�;K2�
and that D < 0 on L2. Thus we conclude that condition (B.5) holds. Since
K�S �r1� and K2

S�r1� are C1-functions we can in fact conclude that D�OS� < 0 in
the region between LS and L2 and hence that K�S �r1� is decreasing.

The analysis of the bifurcation at L13 can be carried out in a similar way.
However, the transversality condition corresponding to (B.5) is slightly more
involved. Here it is most convenient to consider r2 as the bifurcation parameter
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and divide the discussion into two cases depending on the magnitude of r1. For
r1 > rc, we consider the branch of equilibria for which OH�r#� � �K#; 0�. The
transversal crossing of OH and O13 is determined by the value of dK2

H=dr2 at O13

and we ®nd

D
dK2

H

dr2

� ÿ oF1

oK�
1

r2
2

:

A rather long and tedious calculation shows that oF1=oK� < 0 and
oF1=oK2 < 0 on L13, whereas oG1=oK� > 0 and oG1=oK2 < 0 on L13. As
D�OH� > 0 we conclude that dK2

H=dr2 > 0. For r1 < rc, the computations
proceed along the same line except that in this case, D�OH� < 0 so that
dK2

H=dr2 < 0.
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