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Dynamics of initially correlated open quantum systems: Theory and applications
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We show that the dynamics of any open quantum system that is initially correlated with its environment can
be described by a set of d2 (or less) completely positive maps, where d is the dimension of the system. Only one
such map is required for the special case of no initial correlations. The same maps describe the dynamics of any
system-environment state obtained from the initial state by a local operation on the system. The reduction of the
system dynamics to a set of completely positive maps allows known numerical and analytic tools for uncorrelated
initial states to be applied to the general case of initially correlated states, which we exemplify by solving the
qubit dephasing model for such states, and provides a natural approach to quantum Markovianity for this case. We
show that this set of completely positive maps can be experimentally characterized using only local operations
on the system, via a generalization of noise spectroscopy protocols. As further applications, we first consider the
problem of retrodicting the dynamics of an open quantum system which is in an arbitrary state when it becomes
accessible to the experimenter and explore the conditions under which retrodiction is possible. We also introduce
a related one-sided or limited-access tomography protocol for determining an arbitrary bipartite state, evolving
under a sufficiently rich Hamiltonian, via local operations and measurements on just one component. We simulate
this protocol for a physical model of particular relevance to nitrogen-vacancy centers and in particular show how
to reconstruct the density matrix of a set of three qubits, interacting via dipolar coupling and in the presence of
local magnetic fields, by measuring and controlling only one of them.
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I. INTRODUCTION

Understanding, accurately predicting, and controlling the
(average or expected) behavior of quantum systems in realistic
scenarios, i.e., in the presence of noise, is fundamental to the
development of quantum-enhanced cutting-edge technologies
such as quantum computing [1] and quantum metrology [2].
This is the domain of the theory of open quantum systems and
quantum control.

Mathematically, the theory of open quantum systems deals
with the general scenario in which a quantum system S inter-
acts with (typically inaccessible) external degrees of freedom,
dubbed the environment or bath B. The state of the system plus
bath is described by a density matrix ρSB(t ) on a joint Hilbert
space HS ⊗ HB, whose evolution is ruled by a Hamiltonian
H (t ) via the unitary operation U (t ) = T exp[−i

∫ t
0 H (s)ds],

with ρSB(t ) = U (t )ρSB(0)U †(t ). Under these conditions, the
objective is to predict and eventually control the reduced
dynamics of the system in the presence of the inaccessible
bath. That is, one would like to determine

ρS (t ) = TrB[U (t )ρSB(0)U (t )†] (1)

for any t . This is a highly nontrivial problem which can only
be analytically solved in very special scenarios and/or under
strong assumptions such as Gaussianity. Powerful analyti-
cal and numerical methods to solve this problem, generally
approximately, have been devised over the years, including
various flavors of master equation and path-integral methods
[3–5].

In deriving and applying such methods, two strong as-
sumptions are typically made. The first is the so-called fac-
torizable initial-state condition, i.e., ρSB(0) = ρS ⊗ ρB. The
second assumption is one of sufficient dynamical informa-
tion: Noting that the bath is, in general, not fully accessible,
sufficient knowledge about ρB and H (t ) must be assumed to
determine their effect on the system dynamics. In this paper
we will show that, surprisingly, these two assumptions can
both be dispensed with. This allows the evolution of arbitrary
open systems to be characterized using completely positive
maps and quantum sensing protocols and opens the way for
applications such as the tomography of bipartite systems via
measurements on one side only.

A. Summary of results

The factorizable initial-state assumption ρSB(0) = ρS ⊗ ρB

is rather strong, but is useful as it implies that

ρS (t ) = φt (ρS ), (2)

where φt (·) is a completely positive trace-preserving (CPTP)
map. This assumption is ubiquitous in the theory of open
quantum systems and underpins the widespread use of CPTP
maps in quantum information theory [1] and in definitions of
quantum Markovianity [6–8]. In contrast, for initially corre-
lated states it is not possible to describe the system evolution
in this way, other than for an extremely limited class of
initial states [9–23]. Furthermore, calculation methods used
to (even approximately) solve Eq. (1) successfully, in the
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factorizable case, do not typically apply to correlated initial
states (although there are interesting exceptions in certain
special cases [24]).

Our first main result is to show that CPTP maps acting
on states remain a useful tool even for initially correlated
states, with the evolution of a d-dimensional open quantum
system requiring only d2 such maps at most. Moreover, for
a given initial state ρSB, the same set of maps describes the
system evolution for any initial state obtained from ρSB via
a local operation on the system. This is a very large space
of states (typically on the order of d4 dimensions), which
includes all factorizable states τS ⊗ ρB (for arbitrary τS and
ρB := TrS[ρSB]) and in general many others. This result is
based on a natural bath-positive decomposition of correlated
states and allows existing calculation methods for solving
Eq. (1) in the factorizable case to be easily extended to the
arbitrary initial condition scenario. We exemplify this by fully
solving the problem of qubit dephasing [5,25,26] in the case
of arbitrary initial correlations. We stress that the key feature
of our decomposition is that it applies to arbitrary initial
states and is thus constructive and universal, which is in stark
contrast with other decompositions that have been introduced
in the literature (see, for example, Refs. [27,28]) to overcome
the correlated initial-state problem in particular scenarios. We
also demonstrate a direct link between the set of maps and
quantum steering [29], and with the superchannel recently
introduced by Modi that maps local system operations to the
system state at later times [30]. We further explore quantum
Markovianity in the context of initial correlations and define a
notion of computational Markovianity in terms of the Marko-
vian character of the set of the CPTP maps describing the
dynamics. We explore these results in Secs. II and III.

Our second main result is to show that one can remove the
sufficient dynamical information assumption. In the factoriz-
able case, it is known that this assumption can be bypassed
in the sense that, while ρB and H (t ) cannot be directly
measured in general, the necessary information for describing
the system evolution can be indirectly measured. Indeed, this
is the motivation behind a recent push to develop so-called
noise spectroscopy protocols [31–41]. These protocols are
based on the observation that the dynamics of the system
does not require explicit knowledge of H (t ) and ρB, but
rather of the correlations present in the bath. In particular,
writing the joint system-bath Hamiltonian in the interaction
picture with respect to the bath self-Hamiltonian HB as H (t ) =∑

b Wb ⊗ Bb(t ), with {Wb} an operator basis for the system,
the dynamics of the system for a factorizable initial state
ρSB(0) = ρS ⊗ ρB depends only on the bath correlators [3]

〈Bb1 (t1) · · · Bbk (tk )〉 ≡ 〈Tr[Bb1 (t1) · · · Bbk (tk )ρB]〉c, (3)

where 〈·〉c denotes the average over realizations of any (clas-
sical) stochastic processes for Bb(t ). Importantly, if detailed
information about such correlators is available, it is possible
to design control sequences (via optimal control techniques,
for example) capable of executing a desired system operation
with high fidelity [42].

Noise spectroscopy protocols exploit the ability to mea-
sure the response of the quantum system to different control
sequences in the presence of the bath, in order to obtain
the Fourier transforms 〈B̃b1 (ω1) · · · B̃bk (ωk )〉 of the aforemen-

tioned bath correlators. To date, detailed protocols have only
been described for certain noise models, i.e., for H (t ) and
ρB satisfying specific conditions. Nevertheless, the general
methodology behind them allows, in principle, a protocol for
general noise models to be designed. More broadly, protocols
that exploit the ability to measure the response of a quantum
system to its environment, be it classical or quantum, are
the essence of quantum sensing [2] and they range from
the simpler phase or parameter estimation protocols [for a
constant and classical B(t )] to the more ambitious noise
spectroscopy protocols outlined above. Here we will show
how quantum sensing protocols can be seamlessly extended to
the scenario where the system and bath are initially correlated,
thus dispensing with both the factorizable initial state and dy-
namical information assumptions. These results are contained
in Sec. IV.

In Secs. V and VI we give two applications of such
extended quantum sensing protocols. First, in Sec. V, we
show that practical retrodiction of the system state at earlier
times is possible, under mild assumptions on the system-bath
Hamiltonian H (t ). Finally, as detailed in Sec. VI, we develop
a one-sided tomography protocol. Concretely, we show how,
when the bath is finite dimensional and H (t ) is known and
sufficiently nontrivial, it is possible to do tomography on
the joint system-bath state despite having only control and
measurement capabilities on the system. We describe this
in detail for three interacting qubits with dipole-dipole cou-
plings in a magnetic field, of particular relevance to nitrogen-
vacancy (NV) centers [43] and nuclear magnetic resonance
(NMR) [44].

B. Practical motivation

Having briefly outlined the scope of our results, we now
comment on the practical need to study the problem consid-
ered here. This is complementary to the standard motivations
given in the literature [12,13,30], which revolve around the
fundamental question in the theory of open quantum systems:
What is ρS (t ) given an arbitrary initial condition ρSB? It is
also additional to the recent practical uses of correlated initial
states for consistent calculations of condensed-phase reaction
rates [45] and for engineering arbitrary phase decoherence
dynamics [46].

As hinted in the summary of results, characterizing the
dynamics of a quantum system that is initially correlated with
its environment is crucial on our road to the development
of quantum technologies. An idealized textbook quantum
computer can be described by an initial preparation stage,
followed by a unitary gate U , and finalized by a measurement
stage that extracts the result of the computation [1]. With
the realization that operations are never ideal and that the
coupling of quantum systems to a bath induces noise, the
unitary operation stage is then usually replaced by a quantum
channel �U . Standard methods to characterize the error in-
duced by the presence of the bath crucially rely on, among
other conditions, the assumption that �U is a CPTP map
(or a sequence of them). Randomized benchmarking [47],
for example, heavily uses the assumption that a sequence
of noisy unitaries can be modeled by a sequence of CPTP
maps. This clearly constrains the possible set of noise models
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that can be analyzed by the tool as, for example, if noise is
introduced by a quantum bath such an assumption cannot hold
as after even a single unitary the system and bath become en-
tangled. Additionally, error correction and error suppression
techniques [48–51], developed to ensure that �U is as close
as possible to the ideal unitary operation (in an appropriate
sense, e.g., the diamond norm), usually implicitly assume that
the system and bath are initially in a factorizable state. In
particular, noise spectroscopy protocols and the associated
optimal control techniques, which have seen a big push in
recent years [31–41], have been developed in the context of
this assumption. However, this CPTP assumption does not
correspond to the most general scenario [3] and, at the very
least, has to be verified. In summary, pushing quantum system
and noise characterization protocols and methods to predict
or retrodict the evolution of a quantum system beyond the
single CPTP scenario and into the more realistic general
nonfactorizable state setting is the main practical motivation
of this work.

Now an argument might be made that any “good” prepara-
tion procedure should initialize the system-bath interaction in
a factorizable state, potentially rendering the above critique
trivial. However, such an argument does not overcome the
problem when one is trying to understand a sequence of uni-
tary operations in the presence of the bath. After even a single
unitary, the system and bath generally become entangled, and
thus at any given time t > 0 the factorizable initial condition
cannot hold in general.

Further, even at the t = 0 preparation stage, there is a
subtle but important problem with such an argument. To see
this consider perhaps the simplest preparation procedure that
comes to mind, that “naturally” and deterministically outputs
a desired factorizable state of the form |ψ0〉〈ψ0| ⊗ ρB for
an n-qubit system, with, e.g., |ψ0〉 = |+〉⊗n. Starting from a
typically correlated initial state ρSB, one applies a projective
measurement with 2n outcomes on the system and then, based
on the outcome, applies a unitary operation that rotates each
qubit to the desired state. For the ith outcome we will have

ρ
(i)
SB = |ψ0〉〈ψ0| ⊗ trS[(�i ⊗ IB)ρSB]

tr[(�i ⊗ IB)ρSB]
= |ψ0〉〈ψ0| ⊗ ρ

(i)
B ,

where �i is the projector on the state corresponding to the
ith outcome and we have already included the effect of the
rotation in the preparation procedure. The key feature, arising
from the fact that the state before the preparation procedure
is nonfactorizable, is that the evolution of the system after
the preparation procedure will depend on the measurement
outcome, via ρ

(i)
B . This is in stark contrast with the factorizable

initial-state scenario. Further, if we only concern ourselves
with the output of the preparation procedure |ψ0〉〈ψ0| (effec-
tively throwing away information about the measurement out-
come) and attempt to characterize the subsequent system evo-
lution, we find that it effectively evolves under a CPTP map
generated by the bath state ρB = ∑

i tr[(�i ⊗ IB)ρSB]ρ (i)
B =

trS[ρSB]. This is not, however, the correct CPTP map ruling
the evolution of the state after each preparation, thus pointing
to the need to characterize all possible bath states after the
projective measurements or, more generally, to understand in
more detail the structure of the initially correlated state. While
using ρB (and not the ρ

(i)
B ) to predict the evolution of |ψ0〉〈ψ0|

may not be a problem for understanding the gross behavior
of a quantum system, it will be crippling when attempting
to achieve high-fidelity gates via noise spectroscopy methods
and related optimal control methods discussed earlier.

Thus, there are practical motivations to go beyond the ini-
tially factorizable state assumption. The results we described
above, and that we now proceed to explain, are key to doing
so and open the way to generalizations of well-established
protocols, such as randomized benchmarking and noise spec-
troscopy, to the most general setting.

II. BATH-POSITIVE DECOMPOSITIONS

A. General definition

The key to the developments in this paper will be the ability
to decompose an arbitrary initial density matrix as

ρSB(0) =
∑

α

wαQα ⊗ ρα, (4)

where, crucially, each ρα is a valid density matrix of the bath
and {Qα} forms a (possibly overcomplete) basis for operators
on HS . The Qα are not restricted to be positive or trace
orthogonal. Note that in this form all information about the
initial system state

ρS := TrB[ρSB(0)] =
∑

α

wαQα (5)

is condensed into the coefficients {wα}, while information
about correlations also resides in the {ρa}. It should be noted
that this is not the only way of generating a decomposition for
ρSB such that in each term the bath component is a density
operator but, as we will see, the fact that, in addition, the
{Qα} form a fixed operator basis is crucial for our results. We
dub this a bath-positive or B+ decomposition of the density
matrix. To illustrate this, let us consider a finite-dimensional
example.

Example 1: Qubit plus bath. When the system is a qubit,
one can use the completeness of the Pauli sigma basis
{σ0, σx, σy, σz} (with σ0 = 1) to write an arbitrary joint state
ρSB as

ρSB = 1

2

∑
α=0,x,y,z

σα ⊗ trS[(σα ⊗ 1B)ρSB]

=:
1

2

∑
α=0,x,y,z

σα ⊗ ηα

= σ0 − ∑
α=x,y,z σα

2
⊗ η0 +

∑
α=x,y,z

σα

2
⊗ (η0 + ηα )

≡
∑

α=0,x,y,z

wαQα ⊗ ρα,

with weights wα and density operators ρα defined via p0ρ0 =
η0, and pαρα = η0 + ηα for α = x, y, z. Note via the second
line that η0 = trS[ρSB] = ρB, and η0 + ηα = trS{[(σ0 + σα ) ⊗
1B]ρSB} for α = x, y, z, and so ρα is a positive operator as
desired. Similar constructions can be crafted for higher dimen-
sions, using generalized Pauli bases.

A general construction of B+ decompositions is as fol-
lows. First, let {Pα} be any basis set of positive system
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operators. This basis set may be overcomplete and is also
called a frame [52,53]. For such {Pα} one can always construct
a dual basis or dual frame {Qα} such that that any system
operator A acting on HS can be decomposed as

A =
∑

α

Tr[AQα]Pα =
∑

α

Tr[APα]Qα. (6)

In particular, if {Gj} is an orthonormal basis set of Hermitian
operators on HS , with Tr[GjGk] = δ jk , then a suitable dual
frame is specified by (see Appendix A)

Qα =
∑

β

MαβPβ, M = T(T�T)−2T�, (7)

where T is the (typically nonsquare) matrix with coefficients
Tα j := Tr[PαGj]. It is important to highlight that while we fo-
cus on finite-dimensional systems in this paper, the above con-
struction also applies to infinite-dimensional Hilbert spaces
under a mild condition on {Pα} (see Appendix A).

From the above, it immediately follows that any joint state
ρSB on HS ⊗ HB has a corresponding B+ decomposition

ρSB =
∑

α

Qα ⊗ TrS[(Pα ⊗ 1B)ρSB] ≡
∑

α

wαQα ⊗ ρα, (8)

where the weights wα and the bath density operators ρα are
implicitly defined via

wαρα = TrS[(Pα ⊗ 1B)ρSB] (9)

(with ρα arbitrary when the right-hand side vanishes). Note
that taking the trace of Eq. (9) over the bath yields

wα = TrS[PαρS]. (10)

For the special scenario of a factorizable state one has that
ρα = Tr[(Pα⊗1)ρS⊗ρB]

TrS[PαρS] = ρB for all α, as expected.

B. Canonical B+ decompositions

Of particular interest are frames {Pα} for which the basis
elements Pα are linearly independent, i.e., with precisely d2

basis elements for the case of a d-dimensional system Hilbert
space, as in Example 1 above. Since the expansion of any
operator in such a basis is unique, the dual frame is also
unique, and taking A = Qβ in Eq. (6) implies the biorthog-
onality property

Tr[PαQβ] = δαβ. (11)

Linear independence further implies that the matrix T in
Eq. (7) is invertible, yielding M = (T�T)−1 for the matrix
connecting the frame with its dual.

If, additionally, the basis elements {Pα} form a positive-
operator-valued measure (POVM) on HS , i.e.,

∑
Pα = 1S ,

then from Eq. (10) the weights {wα} have a simple inter-
pretation as the probability distribution corresponding to a
measurement of {Pα} on the system, with

wα � 0,
∑

α

wα = 1. (12)

Further, ρα corresponds to the conditional state of the bath
for measurement outcome α. Note also that, since the POVM
elements form a basis set, the POVM is informationally

complete, i.e., the statistics of the measurement are sufficient
to reconstruct the initial system density operator via Eq. (5).

Thus, the B+ decompositions corresponding to informa-
tionally complete POVMs have a simple operational interpre-
tation and will be referred to as canonical B+ decompositions.
Such canonical decompositions can be obtained from any
complete set of system tomography observables, as shown in
Appendix B. An example based on a symmetric information-
ally complete (SIC) POVM is given below and generalized in
Appendix B.

Example 2: Canonical decomposition of qubit plus bath.
Consider the qubit SIC POVM {Pα = 1

4 (1 + m(α) · σ )}, de-
fined via the unit Bloch vectors [54]

m(0) = {0, 0, 1},

m(1) =
{

2
√

2

3
, 0,−1

3

}
,

m(2) =
{

−
√

2

3
,

√
2

3
,−1

3

}
,

m(3) =
{

−
√

2

3
,−

√
2

3
,−1

3

}
.

These Bloch vectors form a regular tetrahedron, and the
POVM elements satisfy Tr[PαPα′ ] = δα,α′

6 + 1
12 . The dual

frame is then given by {Qα = 1
2 (1 + 3m(α) · σ )}.

C. Connection with steering

The bath states ρα appearing in a B+ decomposition, as per
Eq. (4), are closely connected to the steering properties of the
initial state ρSB(0). In particular, if one measures some POVM
{Em} on the system, it follows from Eqs. (8) and (9) that
the bath is steered to the state ρ ′

m = ∑
α wα (Tr[EmQα]/pm)ρα

for measurement outcome m, which occurs with probability
pm = ∑

α wαTr[EmQα]. Hence, the steered bath states are
linear combinations of the ρα , implying that the span of the
set of steered states lies in the span of the ρα in the B+
decomposition.

Note that if the Hilbert space of the system is d dimen-
sional, then choosing a canonical B+ decomposition as per
Sec. II B above yields at most d2 different ρα . Hence, the set
of steered bath states must lie in a linear subspace of at most
d2 − 1 dimensions (applying the constraint that they must be
normalized). If one considers the set of steered bath states
for state ρSB(t ), i.e., as a function of time, then this linear
subspace will in general also evolve over time.

III. DYNAMICS OF OPEN QUANTUM SYSTEMS
WITH ARBITRARY INITIAL CONDITIONS

A. A set of CPTP maps describes the reduced dynamics

Bath-positive decompositions have immediate conse-
quences for representing the dynamics of open quantum sys-
tems, for the general scenario of initially correlated system-
bath states. Given an arbitrary state at initial time, the reduced
dynamics of the system at a time t follows from Eqs. (1)
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and (4) as

ρS (t ) =
∑

α

wαTrB[U (t )(Qα ⊗ ρα )U (t )†]

=
∑

α

wαφ
(α)
t (Qα ), (13)

where

φ
(α)
t (·) := TrB[U (t )(· ⊗ ρα )U (t )†] (14)

is a CPTP map acting on HS . Hence, in the general scenario,
the system state evolution is described via a set of CPTP maps
{φ(α)

t }, each weighted by wα , and acting on the corresponding
element Qα of the basis.

The canonical construction of B+ decompositions in
Sec. II B implies that d2 CPTP maps are sufficient to describe
the dynamics of a d-dimensional open quantum system. We
point out that while the maximum number of maps required
is a consequence of the linearity of the Liouville equation, it
is by no means trivial to guarantee that the maps are CPTP,
as our decomposition does. Moreover, fewer maps can be
sufficient in special cases. Indeed, in the factorizable case one
has ρSB(0) = ∑

α wαQα ⊗ ρB from Eq. (5), yielding a fixed
map φ

(α)
t ≡ φt for each α, as expected from Eq. (2).

On the other hand, d2 maps are in fact necessary for
some initial system-bath states and interactions. For example,
consider a pure entangled initial state ρSB(0) = |�〉〈�| hav-
ing Schmidt rank d , i.e., |�〉 = ∑d

s=1 as|s〉|χs〉 with as > 0
and 〈s|s′〉 = 〈χs|χs′ 〉 = δss′ . For any B+ decomposition as in
Eq. (4), the basis elements Qα can always be expanded relative
to a basis {Gj} of d2 linearly independent operators satisfying
Tr[GjGk] = δ jk , i.e., Qα = ∑

j T̃α jG j for some real matrix
T̃ (see also Appendix A). Hence, evaluating Jj := trS[(Gj ⊗
1B)ρSB(0)] via Eq. (4) yields

Jj =
∑
s,s′

a∗
s as′ 〈s|Gj |s′〉|φs′ 〉〈φs| =

∑
α

wαT̃α jρα.

It follows from the first equality that
∑

c jJj = 0 if and only if∑
j c jG j = 0. Hence, since the Gj are linearly independent,

the Jj also form a set of d2 linearly independent operators.
However, from the second equality the Jj are themselves
linear combinations of the ρα . Thus, there must be no fewer
than d2 linearly independent ρα in the B+ decomposition (and
hence, when expanding in terms of a canonical B+ decom-
position, there are exactly d2 such ρα). Correspondingly, it
follows from Eq. (14) that there will typically be no fewer than
d2 linearly independent maps φ

(α)
t , provided the system-bath

interaction is sufficiently nontrivial. Equivalently, in the ab-
sence of assumptions on the Hamiltonian ruling the evolution,
d2 linearly independent ρα will lead to d2 linearly independent
maps φ(α)(·). For example, if U (t ) corresponds to the SWAP

operation at some time t , i.e., U (t )(X ⊗ Y )U (t )† = Y ⊗ X ,
for arbitrary X and Y , then φ

(α)
t (·) = Tr[·]ρα , and so the maps

have precisely the same degree of linear independence as the
ρα that generate them.

Finally, we note there are also initial states for which fewer
than d2 CPTP maps, but more than one such map, are needed
to describe the system dynamics. As a first example, the
argument of the preceding paragraph may be easily extended

to show that a pure initial system-bath state with Schmidt rank
r requires no more than r2 linearly independent CPTP maps.
A second example is provided by zero-discord initial states,
for which [55]

ρSB(0) =
d∑

α=1

wα|ψα〉〈ψα| ⊗ ρα, (15)

where the |ψα〉 are mutually orthogonal. Noting that this
already has the form of a B+ decomposition as per Eq. (4),
it immediately follows that at most d independent dynamical
maps are required to describe the evolution of zero-discord
states. It is worth highlighting that for this very special case
the dynamics for any choice of coefficients wα summing to 1,
i.e., for a (d − 1)-dimensional space of states, is described by
a single CPTP map, as shown in Ref. [12]. However, as will be
shown in Sec. III D, the d maps from the B+ decomposition
describe the dynamics of a much larger space of initial states,
having 2d (d − 1) dimensions [obtained from ρSB(0) via local
operations on the system]. Finally, we point out that a similar
decomposition of zero-discord states has been considered by
Breuer, but with the roles of system and bath reversed [24].

B. Prediction and retrodiction in the presence
of initial correlations

The most direct uses of the B+ decomposition come from
its applicability to extend techniques used to calculate the
predicted dynamics of a quantum system under the factoriz-
able initial-state assumption, such as various master equation
methods [56–63], path-integral methods [64–67], and other
techniques [3,5]. Recall that, in virtue of our decomposition,
each of the maps φ

(α)
t in Eq. (14) is CPTP, since it originates

from an initially uncorrelated operator ρ
(α)
SB := Qα ⊗ ρα . Typ-

ically, methods to compute the reduced dynamics only rely on
the fact that TrS[ρ (α)

SB ] is a valid density matrix but crucially
make no stipulation about TrB[ρ (α)

SB ]. In such cases, obtaining
ρS (t ) is straightforward by applying such methods to each
term in the decomposition and composing the outcomes as
per Eq. (13). The example of qubit dephasing is discussed
in Sec. III C below. Other methods, which require TrB[ρ (α)

SB ]
to satisfy particular properties, such as purity, can also be
accommodated (see [8] for examples of Monte Carlo wave-
function simulations as we might call pure state techniques,
both Markovian and non-Markovian). For example, the Qα

can always be expanded as a (not necessarily positive) linear
combination of projectors corresponding to pure states. It
becomes then again a matter of solving each term in the ex-
pansion and combining the outcomes in the appropriate way.

It should be highlighted that being able to predict the
dynamics of a system using methods developed for CPTP
maps is not the only interesting aspect. In fact, a similar
argument can be used to retrodict the dynamics of the system,
i.e., to estimate the density matrix of the system in the past,
by computing φ

(α)
−t . Interesting questions, such as when were

the system and bath in a factorizable state (if ever), can in
principle be addressed. Obviously, retrodicting the dynamics
of a state can also be done when the state is factorizable at time
t = 0; however, doing so in that case is somewhat artificial.
Being able to do so for an arbitrary state at t = 0, as we can
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now, is certainly more natural. This is not merely an academic
question requiring perfect knowledge of the system and bath.
We will argue later in Sec. IV that, under certain conditions,
knowledge of φ

(α)
t>0 allows us to infer φ

(α)
t<0 and thus gives us

the practical ability to retrodict the state of the system.

C. Example: Qubit dephasing for arbitrary initial correlations

As mentioned in Sec. III B, B+ decompositions allow
one to immediately extend techniques used for solving the
factorizable case to the general case. We demonstrate the
power of this method here by showing how it may be used
to fully solve an important model of quantum decoherence:
qubit dephasing. In particular, we will show how B+ decom-
positions allow the seamless extension of solutions devised for
the factorizable case [5,25,26] to the general nonfactorizable
case.

The pure dephasing of a qubit coupled to a bosonic bath is
described by the Hamiltonian [5]

H = 1

2
εσz +

∑
j

ω jb
†
jb j +

∑
j

g jσz(b j + b†
j ). (16)

Here ε is the qubit energy gap between eigenstates of σz; b j

and b†
j are bath-mode annihilation and creation operators, with

corresponding frequencies ω j and coupling strengths g j to
the qubit; and units are such that h̄ ≡ 1. This Hamiltonian
provides a well-known energy-conserving model for qubit
noise and decoherence, and the exact evolution of the qubit for
the case of an initially uncorrelated thermal bath is textbook
material [5]. More generally, the qubit evolution has been
solved for all factorizable initial states [25] (and extended
to multiple qubits [26]). In contrast, the nonfactorizable case
has been addressed explicitly for only a small set of initially
correlated states [68] and only implicitly for arbitrary initial
states via the derivation of formal homogeneous and inhomo-
geneous master equations [69].

For a factorizable initial state ρS ⊗ ρB, the diagonal ele-
ments of the qubit density operator with respect to the σz basis
are found to be constant in time [5,25,26], i.e.,

〈0|ρS (t )|0〉 = 〈0|ρS|0〉, 〈1|ρS (t )|1〉 = 〈1|ρS|1〉, (17)

while the off-diagonal terms evolve in the interaction picture
as per Eqs. (4.9)–(4.13) of [25], with

〈0|ρS (t )|1〉 = 〈0|ρS (t )|1〉TrB[ρBD(ξt )]. (18)

Here ξt = (ξ1(t ), ξ2(t ), . . .), with

ξ j (t ) := 2g j
1 − eiω j t

ω j
, (19)

and D(ξ) = exp(
∑

j ξ jb
†
j − ξ ∗

j b j ) denotes the multimode
Glauber displacement operator. Note that the scaling factor
TrB[ρBD(ξt )] in Eq. (18) is the characteristic function corre-
sponding to the Wigner function of the initial bath state ρB

[70,71], and hence this equation may be rewritten as

〈0|ρS (t )|1〉 = 〈0|ρS (t )|1〉χρB (ξt ). (20)

The important case of Gaussian bath states, including coher-
ent, squeezed, and thermal states, is characterized by χρB (ξ)

being a Gaussian function of ξ [71], and thus qubit dephasing
is particularly simple for such bath states [5,25,26].

The qubit evolution for the general case of a correlated
initial state ρSB is now easily determined by the method of
B+ decompositions. First, choose any convenient B+ decom-
position

ρSB =
∑

α

wαQα ⊗ ρα (21)

as per Eq. (4), e.g., as per either Example 1 or 2 in Sec. II.
Second, let χρα

(ξ) denote the Wigner characteristic function
of the bath state ρα in this decomposition. Defining Qα (t ) :=
φ

(α)
t (Qα ), it follows immediately from Eqs. (14), (17), and

(20) that

〈0|Qα (t )|0〉 = 〈0|Qα|0〉, 〈1|Qα (t )|1〉 = 〈1|Qα|1〉, (22)

〈0|Qα (t )|1〉 = 〈0|Qα|1〉χρα
(ξt ). (23)

Finally, substituting these results into ρS (t ) = ∑
α wαQα (t ) as

per Eq. (13), the general qubit evolution is given by

〈0|ρS (t )|0〉 = 〈0|ρS|0〉, 〈1|ρS (t )|1〉 = 〈1|ρS|1〉, (24)

and

〈0|ρS (t )|1〉 =
∑

α

wα〈0|Qα|1〉χρα
(ξt ), (25)

generalizing Eqs. (17) and (20) for the uncorrelated case.
Note that the diagonal elements are constant for the general
case, similarly to the uncorrelated case, while the off-diagonal
elements are a weighted sum of the Wigner characteristic
functions of the bath states ρα .

The above example shows that using B+ decompositions
provides a straightforward mechanism for turning the problem
of correlated initial states into the problem of factorizable
initial states, hence allowing the general case to be solved via
known methods for the factorizable case. Applications of B+
decompositions going beyond known methods for factorizable
states will be discussed in Secs. V and VI.

Finally, it is worth remarking that, in analogy to the fac-
torizable case, Eq. (25) is particularly simple for Gaussian
B+ decompositions, in which the bath states ρα are Gaussian
states. Such Gaussian B+ decompositions are expected to
provide useful approximations for the qubit evolution in the
case that ρSB is close to the product of the initial system state
with a Gaussian bath state, such as a thermal bath state. In
this case, measurement of a POVM {Pα} as per Example 2
in Sec. II B will typically extract little information about the
bath state, so the corresponding bath state ρα in Eq. (9) will
remain close to a Gaussian state, and hence can be well
approximated by a Gaussian state having the same mean and
covariance properties as ρα . This is a worthwhile topic for
future investigation.

D. Extended applicability under local system operations

As remarked in the Introduction, the use of a single CPTP
map or quantum channel, to describe open-system evolution,
is restricted to a very small class of initial system-bath states
[12–23]. For example, for a d-dimensional system, the dy-
namical map φt in Eq. (2) for an uncorrelated bath state ρB
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only applies to the evolution of a (d2 − 1)-dimensional space
of factorizable initial states, of the form ρS ⊗ ρB.

Here we demonstrate that, in contrast, the set of dynamical
maps {φ(α)

t } in Eq. (14) may be applied to the evolution of
a much larger space of initial states, having up to d4 − 1
dimensions. This space corresponds to precisely those states
that can be prepared from ρSB(0) via local operations (in-
cluding measurements) on the system. Thus, while up to d2

CPTP maps may be needed for describing dynamics of an ini-
tially correlated state, they have the corresponding predictive
advantage of describing the evolution of up to a (d4 − 1)-
dimensional space of operationally related initial states. For
the qubit dephasing example in Sec. III C, this corresponds
to being able to use the same four characteristic functions
χρα

(ξ) to solve for the evolution of a 15-dimensional space
of initially correlated states. In contrast, in the uncorrelated
case the single CPTP map φt only provides the solution for a
three-dimensional space of initial states.

In particular, let R be a completely positive CP linear
map acting on the system, corresponding to some operation.
It may be trace decreasing, in which case it corresponds to
a measurement, also called a selective or filtering operation.
For example, Rψ (X ) := |ψ〉〈ψ |X |ψ〉〈ψ | describes an ideal
projective measurement that projects ρS onto ket |ψ〉 with
probability pψ = 〈ψ |ρs|ψ〉. More generally, a system map R
acting on the system-bath state ρSB will prepare it in a state
ρR

SB with probability pR, defined implicitly via

pRρR
SB := (R ⊗ IB)(ρSB). (26)

Here IB denotes the identity map on the bath. The class of
system-bath states that can be prepared in this way, with
pR > 0, will be denoted by SρSB . Note that this class includes
all factorizable states τ ⊗ ρB as a special subclass, where
ρB = TrS[ρSB], since such states are generated by the cor-
responding local replacement operations Rτ (X ) := τ TrS[X ].
Factorizable states are in fact the only states that can be
prepared from a factorizable initial state ρSB = ρS ⊗ ρB, via
local system operations. More typically, however, SρSB con-
tains many further states, as shown in more detail below.

We now show that the set of dynamical maps {φ(α)
t } in

Eq. (14) determines the system evolution not only for the
initial state ρSB(0), but for the entire class of states in SρSB (0).

Theorem 1. The system dynamics for each member of
the class of initial states SρSB (0), obtained from ρSB(0) by
performing local operations on the system, is determined by
the single set of dynamical maps {φ(α)

t } defined in Eq. (14).
Proof. Note first from Eq. (4) that

pRρR
SB(0) =

∑
α

wαR(Qα ) ⊗ ρα =
∑
α,α′

wαRαα′Qα′ ⊗ ρα,

(27)

where
∑

α′ Rαα′Qα′ is any expansion of the system operator
R(Qα ) with respect to basis {Qα} (from Eq. (6) we may take
Rαα′ = Tr[R(Qα )Pα′ ]). Taking the trace over the bath yields
pR = ∑

α wαTr[R(Qα )], and hence the subsequent system
evolution is determined by the maps {φ(α)

t } via

ρR
S (t ) := TrB

[
ρR

SB(0)
] =

∑
α,α′ wαRαα′φ

(α)
t (Qα′ )∑

α wαTr[R(Qα )]
, (28)

as required. Note that in the special case where no operation
is performed, i.e., R = IS , Eq. (28) reduces to Eq. (13) for
ρS (t ). �

To determine the size of SρSB (0), note that the set of local
system operations {R} has d4 real degrees of freedom for the
case of a d-dimensional system. Hence, noting the constraint
Tr[ρR

SB] = 1, the set of initial states SρSB prepared from a given
state ρSB via such local operations spans at most (d4 − 1)
dimensions. The maximum is reached, for example, for any
pure initial state ρSB(0) = |�〉〈�| having Schmidt rank d (see
Sec. III A), noting that the mapping R → (R ⊗ IB)(|�〉〈�|)
is linear and 1:1 for such states.

As a further example, note for the zero-discord ini-
tial state in Eq. (15) that the local operation R(X ) =∑

α |φα〉〈ψα|X |ψα〉〈φα| maps the d orthogonal system states
ψα to d arbitrary system states |φα〉. Hence, since a pure
state is described up to normalization and a global phase
by 2d − 2 parameters, it follows that the set of initial states
SρSB = {∑d

α=1 wα|φα〉〈φα| ⊗ ρα} has 2d (d − 1) dimensions,
with its evolution described by d CPTP maps.

E. Relation to superchannels, process tensors,
and process tomography

In Ref. [30] Modi suggested representing the evolution
of an open quantum system by a superchannel Ct which
maps the set of trace-preserving local system operations to
the state of the system at time t (see also [72,73] for very
interesting generalizations of this approach). Thus, in our
notation, ρR

S (t ) = Ct (R), where R is now restricted to be a
CPTP map, i.e., with pR = 1. It immediately follows from
Eq. (28) that this superchannel can be explicitly represented
in terms of the CPTP maps {φ(α)

t }, via

ρR
S (t ) = Ct (R) =

∑
α,α′

wαRαα′φ
(α)
t (Qα′ ). (29)

Thus, B+ decompositions lead to corresponding decomposi-
tions of the superchannel (with simple operational interpre-
tations in the case of canonical B+ decompositions). The su-
perchannel description of open quantum system dynamics and
its generalizations are a powerful tool. However, an advantage
of using a representation of system dynamics based on the
{φ(α)

t }, rather than dealing directly with the superchannel,
is that the problem of determining the system evolution is
reduced to the consideration of CPTP maps acting directly on
system operators, for which many tools exist [3–5] (see also
Secs. III A and III B). Further, the equivalence in Eq. (29) im-
plies that methods developed in the context of superchannels
can be directly translated into the familiar language of CPTP
system maps via the judicious application of our results.

For example, while it is possible to experimentally deter-
mine the superchannel Ct at a given time t , in terms of a basis
set of CPTP maps {R( j)} [74], this is equivalent to experi-
mentally determining the maps φ

(α)
t (·) at time t . In particular,

applying the basis map R( j) on the system at time 0 and
evolving to time t allows the ρR( j)

S (t ) to be tomographically
reconstructed [75,76]. Repeating this procedure for each basis
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map, Eq. (29) then yields the set of linear equations

ρR( j)

S (t ) =
∑

α,α′,β

R( j)
αα′F

(α)
α′β (t )Qβ, (30)

where F (α)
α′β (t ) := wαTr[φ(α)

t (Qα′ )Pβ], and Eq. (6) has been

used with A = φ
(α)
t (Qα′ ). Choosing a canonical B+ decom-

position for convenience, so that the Qβ are linearly indepen-
dent, as are the representations R( j)

αα′ of the basis maps, this
determines F (α)

α′β (t ) uniquely. The dynamical map φ
(α)
t can be

determined via its action on the basis operators {Qα},
φ

(α)
t (Qα′ ) = (wα )−1

∑
β

F (α)
α′β (t )Qβ (31)

[recall that wα is determined by the initial state ρS (0)]. A
different approach is taken in Sec. IV, where a generalized
quantum sensing protocol is introduced to effectively estimate
the φ

(α)
t for a continuous range of times t , rather than at a

single time.
Superchannels can be generalized to the scenario where

multiple local operations are applied at times ti of the evolu-
tion R(i)

ti . This is achieved using the so-called process tensor,
introduced in Refs. [30,72,73,77], which is a completely
positive supermap taking the local operations R(i)

ti to a state
ρS (T ). It is also possible to generalize our formalism in this
direction. Applying N + 1 local operations, each followed by
a system-bath unitary U (i), one has

ρS (T ) = TrB
[
U (N ) · (

R(N )
tN

( · · · (U (0)

· (
R(0)

t0 · (ρSB(0)) · · · ))))]
=

∑
�β, �β ′

wβ0 R(0)
β0,β

′
0
R(1)

β1,β
′
1
· · · R(N )

βN ,β ′
N

× Tr
[
Pβ1φ

(β0 )
0

(
Qβ ′

0

)]

× Tr
[
Pβ2φ

(β1 )
1

(
Qβ ′

1

)] · · · Tr
[
PβN+1φ

(βN )
N

(
Qβ ′

N

)]
QβN+1 ,

where U · X = UXU †, TrB[U (i)Qα ⊗ ραU (i)†] = φ
(α)
i (Qα ),

and we have used the observation that

U (i)(Qα ⊗ ρα′ )U (i)† =
∑

γ

Tr
[
Pγ φ

(α′ )
i (Qα )

]
Qγ ⊗ ρ ′

γ ,

where ρ ′
γ = TrS{(Pγ ⊗ IB)[U (i)(Qα ⊗ ρα′ )U (i)†]}. The above

expression shows that, in direct analogy to the process tensor,
one can write the final state ρS (T ) as a function of the
components R(i)

β,β ′ which fully determine R(i), while all the
information about the dynamics of an initial state is stored
in the pβ0 and the components { f i,βi

βi+1,β
′
i
≡ Tr[Pβi+1φ

(βi )
i (Qβ ′

i
)]}

uniquely determining the CPTP maps φ
βi
i . As in the scenario

of the single operation, and much in the same way that
is done for process tensors, by cycling over an appropriate
set of operations R(i) it is possible to recover the strings
{ f N,βN

βN+1,β
′
N
· · · f 0,β0

β1,β
′
0
} and thus reconstruct the full expression for

ρS (T ).

F. Computational Markovianity

The notion of Markovian, i.e., memoryless, dynamics for
an open quantum system has been the object of intense study
and is at the heart of many common methods to describe open

quantum systems [4,5]. Many popular definitions of quantum
Markovianity, such as decreasing state distinguishability [78]
and divisibility [79], are written in terms of a dynamical map
describing the evolution of the system. Thus, these definitions
implicitly assume the factorizable initial-state condition. In-
deed, it might be argued that the evolution of a system initially
correlated with its environment is necessarily non-Markovian,
as a “memory” of the initial system state could be propagated
via these correlations.

However, our observation is that even though the evolution
of the system state ρS (t ) will in general depend on the initial
joint state ρSB(0), the dynamics itself can be memoryless,
in the sense that in Eq. (13) the evolution induced by the
system-bath unitary dynamics and each of the ρα can be
memoryless (or Markovian) according to one or more of the
definitions used for initially factorizable states [6–8]. In such
a case, any memory of the initial state is only encoded in the
initial weights {wα} in Eq. (5). In particular, none of the maps
φ

(α)
t describing the dynamics has any such memory. Thus,

Markovian methods can be used to calculate ρS (t ) in this case,
by solving up to d2 parallel Markovian dynamical equations.
This motivates the following definition.

Definition 1: Computational Markovianity. Let M[H (t ),
ρB] be some definition or criterion of Markovianity, for the
evolution of a system induced by system-bath Hamiltonian
H (t ) and an initially uncorrelated bath state ρB. We then say
that the corresponding evolution for an initially correlated
system-bath state ρSB is computationally Markovian, relative
to this definition or criterion, if and only if there exists a B+
decomposition of ρSB such that M[H (t ), ρα] holds for all α

with wα �= 0.
We stress that, as well as allowing a generalization of the

many different notions of Markovianity in the literature [6–8]
to the nonfactorizable scenario, our definition of computa-
tional Markovianity has mainly a practical motivation: The
dynamics of an initially correlated system is computationally
Markovian if and only if it can be faithfully calculated by
using Markovian methods.

Note that the definition of computational Markovianity
applies not only to cases where M(H (t ), ρB) can be formu-
lated solely in terms of the dynamical map [6,7], but also to
cases where M(H (t ), ρB) depends explicitly on properties of
H (t ) and/or ρB, e.g., for definitions corresponding to quantum
white noise or the quantum regression formula [8]. The above
definition implies, as should be expected, that if computa-
tional Markovianity holds for some pair (H (t ), ρSB), then it
also holds for any pair (H (t ), ρR

SB), where ρR
SB is obtained

from ρSB via a local system operation R as per Eq. (26). In
particular, replacing Qα by R(Qα ) yields a B+ decomposition
of ρR

SB having the same {wα} and {ρα}. It would be of interest
to explore computational Markovianity for the Gaussian B+
decompositions discussed in Sec. III C for qubit dephasing
and compare with corresponding results for the factorizable
case [80,81].

While it is relatively easy to check whether a given B+
decomposition of the initial state is Markovian relative to
a given definition M(H (t ), ρB), it is harder to determine
whether the evolution is computationally Markovian for a
given ρSB(0). That is because determining this potentially
involves searching the space of B+ decompositions. In
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Appendix C we provide a protocol that requires a fixed num-
ber of measurements (necessary to characterize the evolution
relative to one B+ decomposition) and does the search via
classical processing.

In some cases, the question of computational Markovianity
for the evolution is no more difficult than the question for a
fixed B+ decomposition. A prime example of this situation is
verifying computational Markovianity for the criterion which
associates the complete failure of dynamical decoupling (DD)
with Markovian dynamics [8]. In this scenario, if there exists a
frame such that the evolution induced by H (t ), ρα , is invariant
under the action of DD pulses, then in this frame all the
φ

(α)
t (·) resulting from any such evolutions are invariant under

DD. Now, in a different frame, the associated maps φ′(α)
t (·)

are necessarily linear combinations of the original frame, i.e.,
φ′α

t (·) = ∑
β Cβ,αφα

t (·). Hence, invariance of the φ
(α)
t (·) nec-

essarily implies invariance of the φ′(α)
t (·), i.e., the evolution

induced by the maps associated with any B+ decomposition is
automatically also invariant. Thus computational Markovian-
ity, in the sense of the DD criterion, is satisfied in one frame
if and only if it is satisfied in every frame.

IV. COMPLETING THE PICTURE: EXTENDED
QUANTUM SENSING PROTOCOLS FOR

ARBITRARY INITIAL CONDITIONS

In recent years [31–39], bath correlations have been rec-
ognized as the key to bypassing the sufficient dynamical
information condition in Sec. I and to achieve high-fidelity
operations, when the bath cannot be directly accessed. Thus,
noise spectroscopy protocols of varying generality have been
developed. Their limitations come either in terms of restric-
tions to mathematically amenable noise models or in terms
of the the detail and quality of information that can be ob-
tained about the bath correlations [31–39]. While a complete
solution, i.e., capable of reconstructing the bath correlations
to arbitrary order with minimal assumptions on the noise
model, is the objective of current efforts, this principle applies
more generally: A quantum system can be used to extract
information about the bath it interacts with. Indeed, the use
of quantum probes to extract information in this way is the
purview of general quantum sensing protocols (QSPs), re-
cently reviewed in [2], of which noise spectroscopy is perhaps
the most ambitious example. Existing sensing protocols have
so far been studied in the factorizable regime and can be
formally defined as follows.

Definition 2: Quantum sensing protocols. Let the dynamics
of a quantum probe S and a probed system B be ruled by the
Hamiltonian H (t ) = ∑

b Vb ⊗ Bb(t ), and let the initial state be
of the form ρSB(t = 0) = ρS ⊗ ρB. A quantum sensing proto-
col consists of a set of (possibly adaptively chosen) (i) initial
system states {ημ}, (ii) system control Hamiltonians Hβ (t ),
(iii) system observables {Oγ }, and (iv) a classical processing
routine Sense. The routine Sense takes as inputs the expec-
tation values Eημ,Hβ ,Oγ ,ρB = Tr[U (β )(ημ ⊗ ρB)U (β )†

Oγ ], with
U (β ) the evolution generated by H (t ) + Hβ (t ) from t = 0 to
a time t = T that may depend on the choice of Hβ (t ). Its
output OUT is some desired information about parameter(s)
of the bath or probed system. We will say that the protocol is

restricted when, given H (t ), assumptions on ρB are needed for
Sense to be well defined, i.e., to give accurate reconstructions
in principle, and generic when ρB can be arbitrary.

The above definition of QSPs should be understood to
include the scenario when the quantity to be sensed is classical
in nature, i.e., the probe couples to a stochastic parameter
one wants to characterize. In this case, the quantum average
with respect to the state of the bath, 〈·〉 = Tr[·ρB], is replaced
by the classical mean, e.g., averaging over realizations of the
stochastic process. This broad definition encompasses various
well-known applications [2]. On one side of the spectrum, tra-
ditional phase estimation protocols [82] can be seen as sensing
routines for estimating a constant process B(t ) = B0. At the
other end, general noise spectroscopy protocols represent the
most ambitious version of sensing as it seeks to characterize
the dominant correlation functions 〈Bb1 (ω1) · · · Bbk (ωk )〉k�K ,
for some finite K , of an arbitrary noise process Bb1 (ω1), where
Bj (ω) denotes the Fourier transform of Bj (t ).

While extremely useful, and indeed one of the cornerstones
of quantum technologies, a limitation of current quantum
sensing protocols is their reliance on the initially factorizable
condition. In many scenarios this can be a reasonable assump-
tion, but it is by no means guaranteed that a probe and the
probed system are initially uncorrelated. This is particularly
true in the context of noise spectroscopy protocols and their
application to high-fidelity control. Moreover, it may be, for
example, that the information of interest is encoded in the
initial correlations. In Sec. VI we provide an example where
we showcase the importance of extending quantum sensing
(particularly quantum noise spectroscopy) protocols to arbi-
trary initial conditions. Thus, it is of general interest to extend
QSPs to arbitrary initial conditions. Let us see how it can
be done.

Theorem 2. Any QSP defined in the ρSB = ρS ⊗ ρB sce-
nario can be extended to the correlated initial condition sce-
nario, i.e., ρSB �= ρS ⊗ ρB, by adding the ability to perform
system-only CP operations at t = 0. We will call such a
protocol an extended QSP.

Proof. We need to show that, for any given arbitrary initial
state ρSB(0), observable Oγ , and control Hamiltonian Hβ (t ),
it is possible to obtain the expectation value Eημ,Hβ ,Oγ ,ρα

for
any desired ημ and all ρα in a B+ decomposition ρSB(0) =∑

α wαQα ⊗ ρα of the initial state, despite not having access
to an initial state of the form ημ ⊗ ρα . If this can be done, then
the QSP is directly applicable to each of the ρα associated
with the B+ decomposition for the basis {Pα} and also (via
linearity) to any ρ ′

α resulting from a different decomposi-
tion associated with a different set {P′

α}. The output of an
extended generic QSP (GQSP) is then the information OUT
for every α, e.g., a functional of 〈Bb1 (ω1) · · · Bbk (ωk )〉α =
Tr[Bb1 (ω1) · · · Bbk (ωk )ρα]. For a restricted quantum sensing
protocol (RQSP), the corresponding extended protocol re-
quires that each of the ρα satisfies the conditions of the RQSP.

Concretely, suppose that at t = 0 the preparation stage
outputs a state ρSB(0). Since the basis Qα is known, doing
tomography on the system state provides us with the {wα} via
Eq. (10). Then, one can apply a local, i.e., system-only, op-
eration R( j) : Qα → ∑

α′ R( j)
α,α′Qα′ before the evolution takes

place, as in Sec. III D. In this way, for a choice of control
Hamiltonian Hβ (t ) and of observable Oγ , at the end of the
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experiment the expectation value

Tr
[
Oγ ρ

( j)
S (T )

] =
∑

α

wαTr{OγU (β )[R( j)(Qα ) ⊗ ρα]U (β )†}

=
∑
α,α′

wαR( j)
α,α′EQα′ ,Hβ ,Oγ ,ρα

, (32)

with ρ
( j)
S = tr[(R( j) ⊗ IB)(ρSB)], can be calculated from mea-

surable quantities. Notice that for a given R( j), this is a linear
function of the variables EQα′ ,Hβ ,Oγ ,ρα

, with known coefficients

wαR( j)
α,α′ . For fixed Oγ and Hβ (t ), it is then possible to con-

struct, using an argument similar to the one in Sec. III E, a
suitable set of {R( j)} such that the {Tr[Oγ ρ

( j)
S ]} form an in-

vertible linear set of equations from which all the EQα′ ,Hβ ,Oγ ,ρα

can be obtained. Notice that access to arbitrary R( j) can be
achieved via the use of an ancillary system and joint evolution
and measurements (see, for example, Ref. [83]).

It follows, since {Qα} is a basis set, that one can calculate
Eημ,Hβ ,Oγ ,ρα

for an arbitrary ημ. Therefore, by repeating the
above process for the appropriate set of observables and
control Hamiltonians, one can effectively apply the QSP to
each ρα independently, despite never preparing an initial state
of the form ρS ⊗ ρα as per the theorem. �

In terms of noise spectroscopy and the dynamics of
open quantum systems in the presence of initial correlations,
this implies that it is in principle possible to reconstruct
{〈Bb1 (ω1) · · · Bbk (ωk )〉α} for every ρα . Thus it is possible,
given an arbitrary initial state, to calculate each of the φ

(α)
t (·)

ruling the dynamics, from measurable quantities. Moreover,
we highlight that, in virtue of Theorem 1, characterizing the
correlators ruling the dynamics of a state ρSB, and thus the
corresponding set of CPTP maps, implies that one has direct
access to the correlators describing the dynamics of any state
related to ρSB by a system-only operation.

V. APPLICATION: PRACTICAL RETRODICTION
OF SYSTEM DYNAMICS

Interestingly, being able to solve the dynamics of an ar-
bitrary initial state makes meaningful the question of retro-
dicting the dynamics of a system (see also Sec. III B). That
is, imagine that at time T0 � 0 a preparation procedure is
executed on the system and bath, resulting in a state ρSB(T0).
Then the system and bath evolve under a Hamiltonian H (t ) =
HS + HSB + HB from t = T0 to t = 0, at which point we are
given access and are allowed to apply controls and to measure
the system. We assume at this point that HS is known. As dis-
cussed above, we can use tomography and noise spectroscopy
tools to learn about the leading bath correlators within a
time interval t ∈ [0, T ], which will eventually lead to the
capacity to predict and control its expected dynamics within
the interval with high accuracy. However, can we specify the
state of a system at times t = T− � 0 and in particular the
state resulting from the measurement or preparation procedure
at time T0? That is what we mean by retrodiction.

The possibility of such retrodiction has been previously
considered using a master equation approach, for factorizable
states at t = 0, under a strong Markovian assumption [84].
Here we show how retrodiction may be achieved under much

weaker conditions and in particular without assumptions of
the system and bath state being factorizable at any time or of
Markovianity.

To proceed, note first that the retrodicted state ρS (T−) that
we seek, i.e., the system density operator we would have
measured if we had done tomography at time t = T− � 0, is
given by

ρS (T−) = TrB[U (T−)ρSB(0)U †(T−)] =
∑

α

pαφ
(α)
T− (Qα ),

(33)

where ρSB(0) = ∑
α pαQα ⊗ ρα is any B+ decomposition of

ρSB(0) and

φ
(α)
T− (·) := TrB[U (T−)(· ⊗ ρα )U (T−)†], (34)

and the backward time evolution operator U (T−) :=
{T exp[−i

∫ 0
T−

H (s)ds]}† is the inverse of the forward time
evolution operator that takes the system and bath from T− to 0.
Note that U (T−) is unitary by definition, implying that φ

(α)
T− is

a CPTP map for T− < 0, similarly to the case of forward time
evolution. Thus Eqs. (33) and (34) formally extend Eqs. (13)
and (14) to backward time evolution.

Now, just as for the case of forward evolution in Sec. IV
(see also [38,58,85,86]), the map φ

(α)
T− is a functional of the

correlation functions 〈Bb1 (t1) · · · Bbk (tk )〉α , but with ti � 0.
This can be seen, for example, by expanding Eq. (34) using
the Dyson series, as is later done explicitly in Sec. VI B 2.
In principle, directly accessing these correlation functions
requires measuring at times t < 0, which is forbidden in our
scenario. However, this can be overcome if knowledge about
〈Bb1 (t1) · · · Bbk (tk )〉α with ti � 0 is available and certain mild
conditions are satisfied. Let us see how in more detail.

As described in Sec. IV, knowledge about 〈Bb1 (t1) · · ·
Bbk (tk )〉α , for ti ∈ [0, T ], can be accessed via noise spec-
troscopy protocols that use control and measurements
in this interval. Mathematically, these protocols lead
to estimates f̃ +

�b,α (ω1, . . . , ωk ) of the Fourier transforms
〈Bb1 (ω1) · · · Bbk (ωk )〉α of the correlation functions. Thus, the
inverse Fourier transform

f +
�b,α (t1, . . . , tk ) ≡ F−1

�ω,�t
[

f̃ +
�b,α (ω1, . . . , ωk )

]
(35)

reliably estimates 〈Bb1 (t1) · · · Bbk (tk )〉α for times 0 < ti < T .
The crux of the matter is that knowledge of the correlators

of Bb(t ) for times t ∈ [0, T ], as captured by the estimate
f +
�b,α

(t1, . . . , tk ), does not generally guarantee knowledge of
the correlators of Bb(t ) for t < 0. For example, HB(t ) could
be very different for negative times and we would never see
the effect of this if we only have access to the system at
times t � 0. Thus we are interested in the conditions under
which it is possible to extrapolate the values of the relevant
correlators 〈Bb1 (t1) · · · Bbk (tk )〉α to negative times, allowing us
to compute the necessary quantities in Eqs. (33) and (34) and
thus successfully retrodict the state of the system.

Mathematically, this is possible if the correlation func-
tions 〈Bb1 (t1) · · · Bbk (tk )〉α are sufficiently smooth functions of
the ti so that the relevant correlator information acquired at
positive times can be safely extrapolated to negative times.
This abstract condition imposes constraints on how Ba(t ) and
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its correlators can change in time and, as hinted earlier, is
generally not satisfied. It is however a relatively mild assump-
tion, requiring only that the relevant frequencies underlying
the system evolution at past times fall within the range of
frequencies accessed at later times. Furthermore, it holds in
at least two natural settings, which we now describe.

(i) Retrodiction for a quantum bath. Consider first a quan-
tum bath whose evolution is ruled by a constant bath Hamil-
tonian HB and which couples to the system via the same op-
erators {Bb} over the range [T0, T ] (a very natural condition).
In this case, one has that Bb(t ) = eiHBt Bbe−iHBt ∀ t ∈ [T0, T ],
which is typically a smooth operator function of t . It is always
smooth, with lower and upper frequency cutoffs, in the case
of a finite-dimensional bath Hilbert space. Say the estimators
f̃ +
�b,α (ω1, . . . , ωk ) obtained via noise spectroscopy accurately

sample all relevant frequencies (within the aforementioned
cutoffs) of the correlators 〈Bb1 (t1) · · · Bbk (tk )〉α during the
interval [T0, T ]. Then it follows that f +

�b,α (t1, . . . , tk ) can be ex-
trapolated to times t ∈ [T0, 0] via Eq. (35), i.e., the smoothness
of Bb(t ) for t ∈ [T0, T ] guarantees that f +

�b,α (t1, . . . , tk ) is also
a good estimate for 〈Bb1 (t1) · · · Bbk (tk )〉α when ti ∈ [T0, 0]. It
would then be possible to retrodict ρS (t ) for any t ∈ [T0, T ].
One could also consider using alternative extrapolations of
the correlators to negative times, e.g., via a Taylor series
expansion instead of a Fourier expansion.

(ii) Retrodiction for a classical bath. In this case Bb(t )
corresponds to a classical stochastic process, i.e., a classi-
cal bath. This differs from the above in the sense that it
cannot be simulated by a constant bounded Hamiltonian.
Retrodiction is still possible, however, if one demands that
the stochastic process is stationary. To show this, note first
that any set of times t1, t2, . . . , tk ∈ [0, T ] can always be
trivially relabeled, via some permutation P, by s j := tP( j) such
that 0 � s1 � s2 � · · · � sk � T . Further, recalling that the
noise is classical, one has [Bb(t ), Bb′ (t ′)] = 0 ∀ b, b′, t, t ′, and
hence 〈Bb1 (t1) · · · Bbk (tk )〉α = 〈BbP(1) (s1) · · · BbP(k) (tk )〉α . More-
over, since the noise is stationary, the correlators can only
depend on relative time differences. Hence, all future correla-
tors, directly accessible via system control and measurement
during [0, T ], are of the form〈

Bb1 (t1) · · · Bbk (tk )
〉
α

= f�b,α (�1,�2, . . . ,�k−1), (36)

with � j := s j+1 − s j � 0.
Now, in contrast, for retrodiction in the interval [−T, 0]

we require knowledge of past correlators of the form
〈Bb′

1
(t ′

1) · · · Bb′
k
(t ′

k )〉α with t ′
j � 0. These times can similarly be

reordered, via some permutation P′, by s′
j := t ′

P′( j) such that
s′

1 � s′
2 � · · · � s′

k � 0. Stationarity then yields〈
Bb′

1
(t ′

1) · · · Bb′
k
(t ′

k )
〉
α

= f�b′,α (�′
1,�

′
2, . . . ,�

′
k−1), (37)

with �′
j := s′

j+1 − s′
j � 0. However, the right-hand side may

be recognized as being equal to a future correlator, as per
Eq. (36), i.e., all past correlators for the interval [−T, 0] can be
obtained from the directly accessible future correlators for the
interval [0, T ]. Thus, we can successfully retrodict as far as we
can successfully predict and in particular whenever |T0| � T .
Note that for the quantum case, where [Bb(t ), Bb′ (t ′)] �= 0 in
general, the above argument does not hold.

These results can be generalized in several ways. On one
hand, one can bypass the assumption that the constant HS

before and after t = 0 has to be known, by considering a
sufficiently powerful noise spectroscopy protocol. Noting that
HS + HSB = ∑

gασα + ∑
σα ⊗ Bα (t ) ≡ ∑

σα ⊗ B̃α (t ), it is
in principle possible to obtain all the necessary information,
i.e., HS and the leading Bα (t ) correlators, from the B̃α (t )
correlators obtained from noise spectroscopy. On the other
hand, when a known system-only control H (past)

ctrl (t ) has been
applied at t < 0 our retrodictive power remains unchanged,
since the correlators containing information about how the
bath couples to the system remain unchanged.

In summary, retrodiction of the system state ρ(T−), for T−
in the range [T0, 0], is possible whenever the relevant correla-
tors 〈Bb1 (t1) · · · Bbk (tk )〉α can be obtained for ti in this range.
This is possible for sufficiently time-homogeneous quantum
baths and for stationary classical noise processes. It would
be of interest to test this approach experimentally, via the
tools of noise spectroscopy. For example, one could attempt
to retrodict a factorizable initial system state prepared at time
T0 < 0 from measurements made during a time interval [0, T ].
Another avenue which could be explored is to extend our
protocols to the prediction of the dynamics for t > T , when
measurements are only available in t ∈ [0, T ].

VI. APPLICATION: LIMITED-ACCESS TOMOGRAPHY

We finish our exposition by introducing a one-sided or
limited-access tomography (LAT) protocol, in which informa-
tion about a joint state is recovered by measuring only one of
its subsystems, i.e., the probe subsystem, and by exploiting
the information provided by its evolution under a known and
partially controllable Hamiltonian, using the power of the B+
decomposition. It is a quantum sensing protocol that falls in
the generic category in Definition 2, i.e., when applied to
factorizable initial states it does not require any particular
structure for the bath state in order to be successful. The
expert reader will recognize that it is related to existing
protocols (see, for example, Refs. [87,88]), but is strictly more
powerful as it requires fewer assumptions to be executed while
providing more information. We further note that, recently,
Liu et al. suggested a protocol [89] similar in spirit to ours,
but that is restricted to the initially factorizable scenario. Thus,
our LAT protocol is of strong interest in its own right and a
good platform to demonstrate the value of some of the tools
we have developed and discussed in the previous sections.

We start by describing the general setting of our problem,
namely, a collection of qubits, evolving under a sufficiently
rich Hamiltonian such that we can only measure one of them,
i.e., the probe subsystem. We show that measuring the probe
qubit at different times can yield information not only about
the initial state of the probe ρS but also about the joint initial
state ρSB, where the remaining qubits play the role of a bath
or environment relative to the probe’s evolution. We describe
how to do this by first introducing a LAT protocol for initially
uncorrelated states ρSB = ρS ⊗ ρB (to determine the unknown
initial bath state ρB) and then extend this protocol to arbitrary
initial states ρSB using the methods developed earlier in the
paper. We further show how control on the probe qubit can be
used to ensure that even in potentially pathological situations,
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e.g., when the probe qubit couples very weakly to some of the
subsystems in the bath but not to the rest, the quality of our
estimation of ρSB is not significantly affected. We conclude by
presenting the results of numerically simulating the protocol
in a physically relevant model.

A. Basic setup

We consider a first probe qubit interacting with a second
d-dimensional bath (composed of one or many quantum sys-
tems), via a generic known Hamiltonian of the form

Hnat =
∑

a = 0, x, y, z
b = 0, . . . , d2 − 1

ga,b σa ⊗ Wb = HS + HSB + HB. (38)

Here {Wb} is a basis for the linear operators acting on the
bath Hilbert space HB (with W0 = 1B) and Hnat denotes the
uncontrolled natural Hamiltonian of the probe and its bath.
During a given experiment, we will allow the possibility of
(i) adding fast control on the probe qubit, i.e., Hctrl,1(t ) =∑

ha(t )σa, and (ii) performing a tomographically complete
set of measurements on the probe. In this way, the Hamilto-
nian in the interaction picture with respect to Hctrl,1(t ) + HB

can be rewritten as

H̃ (t ) =
∑
a,b

ya,b(t )σb ⊗ Ba(t ), (39)

where Ba = ∑
b ga,bWb and

Ba(t ) = Uframe(t )†BaUframe(t ),

ya,b(t ) = Tr[Uframe(t )†σaUframe(t )σb]/2,

with Uframe(t ) = T (exp{−i
∫ t

0 ds[Hctrl,1(s)+HB]}). The above
implies that, in the Fourier domain, one can then write

Ba(ω) =
∑
b,c

ga,bhb,c(ω, �g0,·)Wc,

where �g0,· = {g0,1, . . . , g0,d2−1}. The function hb,c(ω, �g0,·) can
be calculated directly from the above equations and crucially
can be written as

h(r)
b,c(ω, �g0,·) =

∑
s=±1

C(b,c)
s (�g0,·) δ(ω + s�r ),

where �r is an effective resonance frequency that can be
exactly or numerically calculated and C(b,c)

s (�g0,·) is a com-
putable coefficient. We say that the operator Ba(ω) is res-
onant at frequencies {s�r}. In the case of a single-qubit
bath, for example, the resonance frequency takes the form

�r ≡ 2
√∑

l=x,y,z(g0,l )2.

B. Factorizable initial states

In order to facilitate the presentation, we start our discus-
sion of the protocol by first considering the standard factoriz-
able state scenario. We assume that at time t = 0, where we
start the analysis of our problem or we are given control, the
system and bath are in a state of the form ρ = ρS ⊗ ρB, with
ρB arbitrary, perhaps as a result of an appropriate preparation
operation, e.g., a projective measurement on the system, per-
formed at t = 0.

The objective of the LAT protocol in this scenario is
to estimate the state ρB of the bath system, by measuring
only the probe qubit, in the presence of a known interaction
[given by Eq. (38)]. Information about the probe qubit state
is assumed to be available via standard tomography at t = 0.
Following the notation of the previous sections, operationally
the GQSP is defined by the set of initial states {ημ} =
{ σ0±σx

2 ,
σ0±σy

2 ,
σ0±σz

2 }, the observables {Oγ } = {σx, σy, σz}, and
a set of control Hamiltonians {Hβ}, which we will describe in
more detail later.

To see how the protocol works and to understand the role
control plays, it will be convenient to work in the interaction
picture with respect to the control Hamiltonian and the purely
bath Hamiltonian, as described earlier. The expectation values
of interest can be written as

Eημ,Oγ ,Hβ ,ρB = Tr[U (β )(ημ ⊗ ρB)U (β )†
Oγ ]

= TrS[TrB(OγU (β )†
OγU (β )ρB)ημOγ ]

=
∑
a,b

V γ ,β

a,b Tr[WbρB]Tr[σaημOγ ], (40)

where the coefficients

V γ ,β

a,b = Tr[OγU (β )†
OγU (β )(σa ⊗ Wb)]/2d

and Tr[σaημOγ ] can be, in principle, exactly or numerically
calculated for any choice of the control knobs ημ, Oγ , and
Hβ . Notice that, for any such choice, the expression for
Eημ,Oγ ,Hβ ,ρB is simply an equation with known coefficients and
unknown variables {Tr[WbρB]}. This is the working principle
behind the protocol: By cycling over an appropriately chosen
set of control knobs one can generate a solvable linear system
of equations from which the Tr[WbρB], with nonzero coeffi-
cient Kb = ∑

a V γ ,β

a,b Tr[σaημOγ ] for at least one choice of Oγ ,
ημ, and Hβ , can be extracted.

For a given Hnat it may not be possible to find a set
of control parameters such that all the Tr[WbρB] are repre-
sented, e.g., a pathological Hamiltonian of the form Hnat =
gσz ⊗ σz + Jσz. A sufficient condition to guarantee, up to
a change of basis, that all the expectation values are rep-
resented in Eq. (40) is that the Lie algebra of {Bb}, i.e.,
{Bb1 , [Bb1 , Bb2 ], [[Bb1 , Bb2 ], Bb3 ], . . .}, spans the whole opera-
tor basis for HB. Henceforth we assume we are dealing with
an Hnat in this category. A physically relevant example of such
a Hamiltonian for a composite system of N qubits is

H (N )
nat =

∑
a = x, y, z

i, j = 1, . . . , N

g(i, j)
a,a σ (i)

a ⊗ σ ( j)
a +

∑
i=1,...,N

Jiσ
(i)
z , (41)

where the g and J are generic, i.e., they have no symmetries
that would make Hnat unitarily equivalent to a pathological
Hamiltonian analogous to the one described earlier. Here
{σ (i)

b } is the bth Pauli matrix acting on the ith qubit, and
qubit 1 is identified with the probe. This type of Hamiltonian,
corresponding to a set of qubits coupled via a dipole-dipole
interaction in the presence of a magnetic field, is ubiquitous
in physics and, as noted in the Introduction, is particularly
relevant to NV centers [43] and NMR [44].
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1. Role of control

Control allows us to achieve the desired goal by (i) ensur-
ing that the system of equations includes all the variables of
interest, (ii) providing a mechanism to generate sufficiently
many equations to guarantee the solvability of the system
of equations, and (iii) giving us the ability to build a well-
conditioned system.

In order to show how this is done, we turn to a perturbative
analysis. While this path is not strictly necessary if we restrict
ourselves to piecewise control (for which all unitaries can be
exactly calculated), it is convenient to work in this language
for generality, i.e., when an exact closed-form expression
for the expectation values in the presence of time-dependent
control cannot be obtained, and to facilitate some of the
arguments. Moreover, we choose it because our long-term
plan is to integrate the LAT protocol within a suite of system
characterization tools, which includes noise spectroscopy, that
generally require perturbative expansions and the so-called
filter function formalism [31,33,36,37,90].

2. Perturbative expansion interlude

Using an adequate perturbative expansion (here we use the
well-known Dyson series [85], but cumulantlike expansions
are also possible [38,58,86]), we can write the relevant expec-
tation values (see Sec. IV) as

Eημ,Oγ ,Hβ ,ρB = TrS
{[

1 + D(β )
1 (ρB, T )

+ D(β )
2 (ρB, T ) + · · · ]ημOγ

}
, (42)

where the Dyson terms are defined in the usual way [5], but
with respect to the redefined Hamiltonian [38]

H ′(t ) =
{−Oγ H̃ (T − s)Oγ for T � t > 0

H̃ (s + T ) for 0 � t � −T,

with H̃ (t ) given by Eq. (39). In this way one finds, for
example, that

D(β )
1 = −ig

∫ T

0
dt〈H̃ (t ) − Oγ H̃ (t )Oγ 〉,

D(β )
2 = −g2

∫ T

0
dt1

∫ t1

0
dt2〈Oγ H̃ (t2)H̃ (t1)Oγ + H̃ (t1)H̃ (t2)

− Oγ H̃ (t1)Oγ H̃ (t2) − Oγ H̃ (t2)Oγ H̃ (t1)〉.
Moving to the frequency domain, the Dyson terms can

be rewritten in terms of the purely control-dependent filter
functions

F (k)

�a,�b (ω1, . . . , ωk, t ) =
∫ t

0
d>�s[k]

k∏
j=1

yaj ,b j (s j )e
is jω j ,

where we have used
∫ t

0 d>�s[k] to denote the ordered integra-
tion, i.e., s1 � s2 � · · · � sk , and the Fourier transforms of
the moments

M (k,r)
�a (�ω) ≡ 〈

B(r)
a1

(ω1) · · · B(r)
ak

(ωk )
〉

such that, for example,

D(β )
1 = −ig

2π

∫ ∞

−∞
dω

∑
a

F (1)
a,b (ω, T )(σa − Oγ σaOγ )M (1,r)

a (ω).

More generally, each Dyson term will be typically written as
a linear combination of convolutions of the form

Ik =
∫

d �ω F (k)

�a,�b (�ω, T )M (k,r)
�a (�ω). (43)

This is typical of noise spectroscopy protocols and, indeed,
finding ways to reliably deconvolute such integrals is one of
the main roadblocks when designing them for general baths.
This is where the knowledge of the structure of the bath of
our problem, i.e., its finite-dimensional character, becomes
important. The key thing to observe is that when working in
the Fourier domain, each moment can be written as

M (k,r)
�a (�ω) =

∑
u

∑
�a,�b,�c

⎛
⎝∏

j

ga j ,b jC
(s j )
b j ,c j

(�g)δ(ω j + s j�r )

⎞
⎠

× Tr
[
σc1 · · · σck σu

]
2

〈Wu〉. (44)

3. Control as a tool to generate a well-conditioned system

Having briefly introduced the relevant details about the
perturbative expansion, we are now ready to show that, aided
by control, we can extract the desired information from mea-
surements on the probe qubit only.

The first role that control plays is to allow us to generate
multiple linearly independent equations, which ultimately
allow us to build a solvable linear system via Eq. (40). From
the perturbative point of view, fast control on the probe means
that the filter functions can be changed or, equivalently, that
the coefficients V γ ,β

a,b in Eq. (40) can be further manipulated
while keeping Oγ and ην constant. This is enough then to be
able to, at least in principle, extract the desired {Tr[WbρB]}. In
practice, however, where operations are imperfect it may not
be enough: One has to also ensure that the system of equations
is as well conditioned as possible.

To illustrate why a well-conditioned system is important,
i.e., that the inferred values of 〈Wb〉 are robust to fluctuations
in Eρ,Oγ ,Hβ ,ρB , consider a simple Hamiltonian of the form

H̃ (t ) =
∑
j=1,2

y3, j (t )g jσz ⊗ Bj (t ),

with B1(t ) = σz and B2(t ) = cos[�t] σx + sin[�t] σy, i.e.,
B1(ω) is resonant at ω = 0 while B2(ω) is resonant with
ω = ±�, and y3, j (t ) is the switching function resulting from
applying a sequence of σx pulses. The problem stems from
the fact that if, for example, g1 � g2, under free evolution
the effect on the probe of the term proportional to g2 is
negligible compared to the other one. In broad terms, this
implies that the values of Tr[σxρB] or Tr[σyρB] can only be
accurately recovered if the fluctuations in Eημ,Oγ ,Hβ ,ρB , due to
experimental errors, for example, are much smaller than the
typical value of terms involving Tr[σxρB]. This is not ideal as
it may lead to bad estimates. Control can be used to combat
this problem.

The idea is to use a control sequence that is resonant
with a bath operator in order to enhance its contribution. In
order to see how this works it is convenient to gain insight
from the perturbative approach based on the filter function
formalism. Since g1 � g2 and F (1)

3,1 (ω, T ) = F (1)
3,2 (ω, T ), one
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expects that ‖g1
∫

dω F (1)
3,1 (ω, T )Tr[B1(ω)ρB]‖ � ‖g2

∫
dω

F (1)
3,2 (ω, T )Tr[B2(ω)ρB]‖, i.e., that the term proportional to

g1 is dominant. That is, unless the filters have a specific
structure, the contribution of Tr[σxρB] and Tr[σyρB] to the
probe dynamics will be overshadowed by the Tr[σzρB] contri-
bution. However, by noticing that B1(ω) ∝ δ(ω) and B2(ω) ∝
δ(ω ± �), i.e., the different bath operators have different res-
onance frequencies, we can drastically modify this situation.
Indeed, if one chooses a decoupling sequence of cancellation
order δ �= 0, then one has that F (1)

3,1 (ω = 0, T ) = 0 and that,

in general, F (1)
3,1 (ω = �, T ) �= 0, i.e., the generally dominant

contribution proportional to g1 can be suppressed. But one can
take this a step further, one can simultaneously ensure that the
contribution of the term proportional to g2 is large. By using
a decoupling sequence composed of basic sequence of length
Tc repeated M � 1 times, one gets that∥∥∥∥g2

∫
dω F (1)

2 (ω, MTc)Tr[B2(ω)ρB]

∥∥∥∥
=

∥∥∥∥g2

∫
dω

1 − eiMωTc

1 − eiωTc
F (1)

3,2 (ω, Tc)Tr[B2(ω)ρB]

∥∥∥∥. (45)

One can verify that the 1−eiMωTc

1−eiωTc factor plays the role of a
window function (both its real and imaginary parts) that grows
with M around ω = k2π/Tc for k = 0, 1, . . . while suppress-
ing other frequencies. The width of this window decreases
with M while its height grows with M. Thus, by repeating
a dynamical decoupling sequence with Tc = 2π/� we can
enhance the contributions of bath operators which are reso-
nant with the control sequence, i.e., ω = k2π/Tc = k�, while
suppressing the rest. In other words, for an appropriate choice
of control one can then make the contribution proportional g2

term be the dominant one. Thus, by adding the equations to
the ones using free evolution, for example, one can avoid the
ill-conditioned system that would result from the described
Hamiltonian.

The situation can be more complicated for a general Hamil-
tonian, e.g., one may need to hit multiple resonances, but the
same principle applies: Using a control sequence that matches
the resonance frequency of the different bath operators (in-
duced by the bath only part of the Hamiltonian) can suppress
or enhance the relative effect of different Hamiltonian terms
on the probe dynamics.

C. Extension to arbitrary initial states

If the initial state of system plus bath ρSB is allowed to be
correlated, then we can use the recipe for extending a QSP in
Theorem 2 of Sec. IV, to generalize the above limited-access
tomography protocol to determine ρSB, via local operations
and measurements on the system only. As before, we first
notice that, by using a B+ decomposition for the initially
unknown state ρSB = ∑

wαQα ⊗ ρα , experimentally we have
access to

∑
α wαEQα,σz,Hβ ,ηα

. As discussed in the proof of
Theorem 2, by using our freedom to apply an operation at time
t = 0 we can generate a system of equations from which the
individual wα and EQα,σz,Hβ ,ρα

can be obtained. An example of
a suitable set of local operations, when the probe subsystem
corresponds to a single qubit, is the following [74]. Consider

the probe states {|sa, σa〉} for sa = ± and a = x, y, z, where
|±, σa〉 is the ± eigenstate of the σa operator. Then the set
of CPTP maps {Rsa,σa;sb,σb}, with Rsa,σa;sb,σb corresponding
to a projection onto |sa, σa〉〈sa, σa| followed by the unitary
rotation that takes |sa, σa〉 to |sb, σb〉, is enough to allow the
recovery of the EQα′ ,σz,Hβ ,ρα

.
Because the Qα in the B+ decomposition form a basis set,

one can then calculate

Eημ,σz,Hβ ,ρα
=

∑
α′

Tr[ημPα′ ]EQα′ ,σz,Hβ ,ρα

for any ημ. From this, as in the initially factorizable
case, we can obtain the value for the quantities anal-
ogous to the {Ik} in Eq. (43), but with ρB → ρα , i.e.,
with the moments Tr[Ba1 (ω1) · · · Bak (ωk )ρB] replaced by
Tr[Ba1 (ω1) · · · Bak (ωk )ρα]. In turn, this implies that by using
our ability to control the probe system we can access the
Tr[σaρα] for all a and α. Finally, in order to reconstruct the
density matrix at t = 0, we note that

Tr[(σa ⊗ σa′ )ρSB(t = 0)] =
∑

α

wαTr[σaQα]Tr[σa′ρα].

Since the Tr[σaQα] can be calculated and the described pro-
tocol gives us access to the wα and the Tr[σa′ρα], we have all
the information necessary to do tomography in the initially
correlated joint state, as claimed.

D. Illustrative example

In order to illustrate the protocol described in this section
and deploy all the tools discussed, we consider the scenario of
a probe qubit (i = 1) coupled to two bath qubits (i = 2, 3) via
a Hamiltonian of the form of Eq. (41),

H (3)
nat =

∑
a = x, y, z

i �= j = 1, 2, 3

g(i, j)
a,a σ (i)

a ⊗ σ ( j)
a +

∑
i=1,2,3

Jiσ
(i)
z , (46)

working in units where J1 = 0, J2 = 1, J3 = 3, g(1,2)
a,a =

1 = g(2,3)
a,a , and g(1,3)

a,a = 1/100, i.e., the probe qubit couples
much more strongly to one of the bath qubits than to the
other. We consider, as an example, the situation where at
t = 0 the three-qubit system is initialized in state |�〉 =
|001〉+|010〉+|100〉√

3
and the preparation procedure consists of a

σz measurement made on the probe qubit, yielding the state
ρSB = 2

3 |0〉〈0| ⊗ |φ+〉〈φ+| + 1
3 |1〉〈1| ⊗ |00〉〈00|, with |φ+〉 =

|01〉+|10〉√
2

. The state is then allowed to evolve until t = T1, at
which point one is given control over the probe qubit and can
execute a LAT protocol.

The ingredients of the protocol are as follows. As local
maps at time t = T1, we choose the {Rsa,σa;sb,σb} described in
the preceding section. As measurements on the probe qubit
we choose the complete set of Pauli operators {σa} for a =
x, y, z. Finally, as fast control on the probe qubit, we choose
concatenated DD sequences of cancellation order δ = 2, i.e.,
Carr-Purcell-Meiboom-Gill sequences [91,92], of cycle time
Tc repeated M times. The cycle times are chosen to enhance
or suppress the different bath operators and thus we build
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sequences that match the resonance frequencies given by

{�r} = {√
(gx,x + gy,y + gz,z )2 + (J2 − J3)2

±
√

(gx,x − gy,y + gz,z )2 + (J2 + J3)2
}

� {7.303 18, 1.632 17}.
To further suppress the contribution of different terms in
the Hamiltonian in a given experiment, we also cycle over
sequences that use different types of pulses, i.e., σx, σy, and
σz. Note that a sequence composed of σα pulses suppresses the
contribution of terms that anticommute with it, so by cycling
over the different types of sequences we alternatively suppress
the contribution of some terms in the Hamiltonian relative to
others. Once we have generated the necessary equations, we
implement a naive routine to obtain the estimates of Tr[WaρB].
We first use an unconstrained least-squares algorithm in or-
der to solve the system of equations and obtain estimates
{Tr[Waρα]|estimate}. To obtain a physical system-bath state, we
initially use these estimates to build the operator ρ̃SB, which
may not be positive, and finally pick the closest positive
operator [93] ρ̄SB as our true estimate.1

For simplicity in the analysis we only introduce additive
errors in the final measurements and we do so by each time
picking a small correction from a Gaussian distribution of
mean μ = 0 and variance σ 2 = 1/10 and averaging over 100
realizations. Under these assumptions, we find that estimation
error of the three-qubit state ρSB induced by the measurement
error can be of the same order as the one we would find if we
were to to do single-qubit tomography on the probe, provided
the control is adequately chosen. In our example, the quality
of the control is given by how narrow the window induced
by the 1−eiMωTc

1−eiωTc prefactor in Eq. (45) is, i.e., if the different
resonance frequencies were closer to each other one would
need to choose a narrower window.

For example, in a sample run of the protocol, using only
sequences composed of σx pulses repeated M = 10 times but
using only one resonant frequency, we find that the fidelity
between the estimated state and the actual ρSB(T1) to be
FSB(T1) = 0.8207, while the fidelity of the estimated ρS (T1)
and the actual state would be FS (T1) = 0.9991 if we were
to do just tomography of the probe using the same sort of
noisy single-qubit measurements. Notice that it makes sense
to compare these two scenarios as they both use single-qubit
measurements on the probe qubit. It would seem from the
above numbers that there is a cost incurred for inferring
the three-qubit state from measurements on the probe qubit
only. However, as discussed earlier, control can overcome this
problem.

In contrast, when we use both resonant frequencies (still
in the M = 10 regime), we find that FSB(T1) = 0.9865, in
agreement with the expected better conditioning of the system
induced by control. If we further use the system generated by

1We recognize that the data processing inequality implies this
routine is not optimal and other processing options are possible,
e.g., as in Ref. [94], but it is not our objective here to optimize the
protocol.

a full set of decoupling sequences cycling over all axes, using
both resonant frequencies, and M = 50 repetitions, one finds
that FSB(T1) = 0.9952. That is, the better designed the control
is the better conditioned the resulting system of equations is.
It should be pointed out that the type of control, i.e., repetition
of a base sequence, we have proposed here is perhaps the
simplest way of addressing the issue and is by no means
unique. Other options, such as using a different set of base
sequences and a fixed but large number of repetitions as in
Refs. [36,37] or even more advanced forms of filter design as
in Refs. [40,41] may yield better results, but ultimately the
ideal choice will be determined by the control capabilities
available to the experimenter. Here our interest was to show
that LAT protocols are possible.

The information obtained from the LAT protocol allows
us also to illustrate our point in Sec. V on the retrodiction
of the probe dynamics. In the simple scenario in which the
Hamiltonian is fully known, the information about ρSB(T1)
allows us to reconstruct not only ρS (0) but the whole initial
system-bath state ρSB(0). Notice that, since the fidelity is in-
variant under unitary operations, FSB(0) = FSB(T1). It should
be pointed out, however, that this property, of the quality of
the estimate of ρS (0) being independent of the value T1, is
not a feature to be expected in more general quantum sensing
protocols, which yield information about only the leading bath
correlators and depend on the convergence of the perturbation
expansion.

VII. CONCLUSION

In this paper we have studied the dynamics of an open
quantum system in the general scenario where ρSB(0) �= ρS ⊗
ρB. By introducing a universal decomposition for an arbitrary
state ρSB, we showed that techniques previously developed
and well studied within the factorizable initial-state context,
e.g., mathematical objects (such as CPTP maps), calculational
methods to approximate the dynamics of an open quantum
system (such as master equations), definitions of Markovian
evolution, and protocols to sense an environment by measur-
ing the response of an open quantum system (such as noise
spectroscopy protocols), can all be seamlessly extended to the
general scenario in which initial system-bath correlations are
present. Moreover, we fully solved the qubit dephasing model
as an indicative example.

We have further applied our methods to present a limited-
access tomography protocol which provides a way of per-
forming tomography on a multipartite system, evolving under
a sufficiently rich and known Hamiltonian, via measuring
and controlling only a probe subsystem. Another interesting
application of our results is the possibility of retrodicting
the dynamics of a quantum system undergoing stationary
noise, from measurements performed in the future. That is,
we show that if an experimenter receives a state at time t = 0,
which is potentially entangled with its environment, then it
is possible reconstruct the density operator of the system at
an earlier time, e.g., the output system state of a preparation
procedure at t = T0 < 0, by exploiting information gathered
from measurements performed at times t > 0.

We expect that the results presented here will provide a
direct way to extend existing open quantum system tools
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to the nonfactorizable initial system and bath state scenario
and facilitate the generalization of results in that context. For
example, it should be possible to analyze quantum thermo-
dynamics and heat transport problems in the scenario where
the system and the reservoir(s) start in a correlated state.
Similarly, from the point of view of quantum sensing, we
expect that our results will open the way for protocols in
which the degrees of freedom of interest are encoded in
initially correlated system-bath states. For example, consider a
qubit lattice of which one can only access a set of sites, which
is in the ground state of its Hamiltonian. With the results
presented here, it would be possible then to “sense” properties
that are encoded in the correlations between the subsystems,
e.g., to characterize area laws [95].

In the arena of noise spectroscopy, the tools developed here
will allow the characterization of bath correlations irrespec-
tive of initial conditions. These tools also allow significant
extensions of other noise characterization protocols. For ex-
ample, they in principle allow randomized benchmarking to
be extended beyond the assumption that all noisy unitaries are
represented by CPTP maps. Within the context of randomized
benchmarking, this assumption has hitherto imposed a very
strong constraint on the possible correlations that can be
generated between the system and bath during their joint evo-
lution, and thus on the noise mechanism capable of generating
such correlations.

This capability will become more and more important as
theoretical and experimental efforts push towards the higher-
quality system characterization [96] needed to achieve error
rates significantly below threshold.
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APPENDIX A: CONSTRUCTING B+ DECOMPOSITIONS

The construction of general and canonical B+ decomposi-
tions in Sec. II relies on finding a dual frame or dual basis {Qα}
of system operators, for a given frame or basis {Pα} of positive
operators. The general theory of frames on vector spaces is
well established [52] and has found applications in quantum
tomography (see, for example, Ref. [53] for a comprehensive
review). Indeed, if one has POVMs {E (1)

r }, {E (2)
s }, . . . , which

form a tomographically complete set, then one can take {Pα}
to be the concatenated set {. . . , E (1)

r , . . . , E (2)
s , . . . }. Here we

give the details needed for general B+ decompositions, with
canonical B+ decompositions discussed in Appendix B.

As a convenient reference set, let {Gj} be some orthonor-
mal basis set of Hermitian operators acting on the Hilbert

space HS of the system so that

Tr[GjGk] = δ jk, G†
j = Gj . (A1)

It is convenient to represent this basis by a vector operator
G, with the jth component given by Gj . For the case of a
d-dimensional Hilbert space G has d2 components. It follows
from Eq. (A1) that any operator A can be written as

A =
∑

j

Tr[AGj]Gj = Tr[AG�]G. (A2)

An arbitrary (and possibly overcomplete) basis set or frame
{Pα} is similarly represented by a vector operator P, which
for the case of a d-dimensional Hilbert space has at least d2

components. It can be uniquely expressed in terms of the basis
set {Gj}, using Eq. (A1), as

P = T G, T := Tr[PG�]. (A3)

Note that T is a real matrix and will be nonsquare when {Pα}
is overcomplete.

To construct a dual frame {Qα} satisfying Eq. (6), i.e.,
A = ∑

α Tr[AQα]Pα = ∑
α Tr[APα]Qα , represented by vector

operator Q, note first that we similarly must have

Q = T̃G, T̃ := Tr[QG�] (A4)

for some real matrix T̃ having the same dimensions as T.
Substituting this into Eq. (6) and using Eq. (A2) then gives

Tr[AG�]G = Tr[AP�]Q = Tr[AG�](T�T̃)G.

Since A is arbitrary and has a unique expansion with respect to
G, it follows that T�T̃ is equal to the d2 × d2 identity matrix
(with d ≡ ∞ for an infinite-dimensional Hilbert space). This
is easily checked to have the solution

T̃ = T(T�T)−1 (A5)

when the inverse exists (which it typically does, as discussed
below). Equation (7) then follows via

MP = T(T�T)−2T�P = T(T�T)−1G = T̃G = Q.

For an overcomplete basis {Pα} there is in fact an infinite set
of solutions for M, each with a corresponding dual frame [52],
reflecting the fact that the decomposition of a state in such a
basis is not unique.

Finally, it may be shown the inverse of T�T always exists
for a finite Hilbert space and also exists for an infinite-
dimensional Hilbert space under a mild frame condition on
{Pα}. In particular, noting

(T�T) jk =
∑

α

Tr[PαGj]Tr[PαGk] = v( j) · v(k),

with v( j) := Tr[PGj], it follows that T�T is a Gram matrix
with respect to the vectors {v( j)}. Hence, this matrix is strictly
positive if and only if the v( j) are linearly independent. How-
ever, linear independence is guaranteed, since

∑
j c jv

( j) =
Tr[P

∑
j c jG j] and so can vanish only if c j = 0 for all j (since

the Pα form a basis and the Gj are linearly independent).
Hence,

T�T > 0. (A6)
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It follows immediately that the inverse in Eq. (A5) exists for
a d-dimensional Hilbert space with finite d . Further, for an
infinite Hilbert space, the inverse exists if the eigenvalues of
the Gram matrix are bounded above and below, i.e, if there are
finite constants a, b > 0 such that

a � T�T � b. (A7)

Whether this condition is satisfied depends on the particular
frame {Pα}, as can be seen explicitly by multiplying on the
right by the vector Tr[AG] and on the left by the transpose
Tr[AG�], and using Eqs. (A1)–(A3), to rewrite it as the
equivalent frame condition [52]

a �
∑

α

Tr[APα]2 � b (A8)

for all Hermitian operators A satisfying Tr[A2] = 1.

APPENDIX B: CONSTRUCTING CANONICAL
B+ DECOMPOSITIONS

A canonical B+ decomposition requires the Pα to (i) be
linearly independent and (ii) sum to the unit operator. Condi-
tion (i) implies that the mapping (A3) between the two basis
sets is one to one, from which it immediately follows that T is
invertible and G = T −1P. It then follows from Eqs. (A3) and
(A4) that there is a unique dual basis, given by

T̃ = (T�)−1, Q = T̃G = T̃T−1P = (TT�)−1P, (B1)

as noted in Sec. II B. We remark that the biorthogonality
relation (11) can alternatively be written in matrix form, as
Tr[PQ�] = Id2 . It is also worth noting that while the dual basis
elements cannot all be positive in general [97], the second
condition implies that they all must have unit trace:

Tr[Qβ] =
∑

α

Tr[PαQβ] =
∑

α

δαβ = 1. (B2)

Note that condition (ii), which requires {Pα} to be a POVM,
is a relatively minor restriction, as a suitable POVM can be
constructed from any linearly independent basis set of positive
operators {P′

α} (which may in turn be constructed from a suit-
able subset of a tomographically complete set of operators). In
particular, for any such linearly independent basis set, define
P′ := ∑

α P′
α . This operator is not only positive but is strictly

positive, i.e., P′ > 0. To see this, suppose there is some state
|ψ〉 such that P′|ψ〉=0. Hence 〈ψ |P′|ψ〉=∑

α〈ψ |P′
α|ψ〉 = 0.

However, each term in the sum is non-negative, implying
〈ψ |P′

α|ψ〉 = 0. Equation (6) then gives

|ψ〉〈ψ | =
∑

α

Q′
αTr[P′

α|ψ〉〈ψ |] =
∑

α

Q′
α〈ψ |P′

α|ψ〉 = 0,

and thus |ψ〉 = 0, i.e., P > 0 as claimed. Finally, defining

Pα := (P′)−1/2P′
α (P′)−1/2 (B3)

gives an informationally complete POVM {Pα} as required.
Equation (B1) for the dual basis may be bypassed for

the case of SIC POVMs [54], for which the high degree
of symmetry allows the {Qα} to be evaluated explicitly. In
particular, a POVM {Pα} with d2 linearly independent op-
erators is defined to be a general SIC POVM if and only
if Tr[P2

α ] = const and Tr[PαPβ] = const for all α �= β [98].

Defining a = Tr[P2
α ], the corresponding dual basis is then

given by

Qα = d

ad3 − 1
[(d2 − 1)Pα − (1 − ad )1S], (B4)

as may be verified by direct calculation [98]. This generalizes
Example 2 of the main text, which corresponds to the case
d = 2 and a = 1/4.

APPENDIX C: SEARCHING FOR COMPUTATIONAL
MARKOVIANITY

We discuss here how one would search for a frame in which
the evolution is computationally Markovian, as per Defini-
tion 1 of Sec. III F. We distinguish between two types of def-
initions M[H (t ), ρB] of Markovianity for the case of initially
uncorrelated states: those which require explicit knowledge
of H (t ) and ρB and those that only require knowledge of
the dynamical map φt (·) induced by the natural dynamics
and possibly by appropriate interventions. For the first type
of definition, verifying computational Markovianity in the
nonfactorizable case is then a matter of finding an appropriate
frame, with ρSB = ∑

wαQα ⊗ ρα , such that {H (t ), ρα} gives
rise to a corresponding Markovian evolution, i.e., such that
M[H (t ), ρα] is satisfied if wα > 0. The second class, on
which the following discussion will concentrate, is perhaps
more interesting as it includes the definitions that can be in
principle experimentally verified. We now describe how one
would proceed in this case.

Let us first note that, in the factorizable case, verifying that
H (t ) and ρB satisfy some Markovian definition or criterion
M[H (t ), ρB] requires (i) evolving ρS ⊗ ρB with H (t ) [plus
possibly an appropriate set of interventions on the system (or
even on the bath if experimentally accessible)] for various
times t and system states ρS and (ii) using some sort of
classical processing to verify that the set of dynamical maps
associated with such evolutions, say φt ;i, satisfies a math-
ematical condition specified by M[H (t ), ρB]. For example,
for the case of Markovianity defined via the divisibility of
the evolution between two times t > t ′ > 0 [79], one has to
(i) generate φt and φt ′ in Eq. (2), e.g., via evolving ρS ⊗ ρB

for some basis set of system states {ρS}, and (ii) verify that
they satisfy the condition φt = �t,t ′ ◦ φt ′ for some CPTP map
�t,t ′ . If, on the other hand, we are interested in characterizing
Markovianity in terms of the failure of DD, one has to (i) cal-
culate or characterize the dynamical maps φ

(DD)
t (·) resulting

from evolving under HSB(t ) + H (DD)
S (t ), where H (DD)

S (t ) is the
control Hamiltonian implementing a dynamical decoupling
sequence, and (ii) verify that φ

(DD)
t (·) = φt (·) for all DD

sequences. For the purposes of the upcoming discussion, let us
label the set of routines that generate the required evolutions
by EM and the classical processing algorithm that verifies
M[H (t ), ρB] by CM.

Let us now consider the dynamics of an initially non-
factorizable state. If a system is computationally Markovian
according to Definition 1, relative to some M[H (t ), ρ], then
there must exist a B+ decomposition of the form ρSB =∑

a w̃aQ̃a ⊗ ρ̃a, corresponding to some basis of positive oper-
ators {P̃α} such that each pair {H (t ), ρ̃α} satisfies M[H (t ), ρ̃α]
for w̃α �= 0. Notice that the Q̃α need not result from a
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canonical decomposition and thus there can be more than d2

of them. Now imagine that the experimenter has a preferred
B+ composition corresponding to some basis {Pα}. The asso-
ciated B+ decomposition

ρSB =
∑

α

wαQα ⊗ ρα

induces the (experimentally accessible, as discussed earlier)
bath states ρα and CP maps φ

(α)
t . Thus, for each routine

in EM, which would give us the evolution of • ⊗ ρB and
associated set of CPTP maps {φt ;i} in the factorizable case,
we can now obtain the evolution of • ⊗ ρα for each α and the
associated maps {φ(α)

t ;i }. So, in principle, one can verify if the
preferred decomposition is in fact a decomposition in which
the dynamics is computationally Markovian, by applying CM
to each M[H (t ), ρα].

One can take this a step further and search for the B+
decomposition in which the dynamics is computationally
Markovian, by additional classical processing. Imagine one
has already run EM with the preferred basis and thus has
access to the evolution of • ⊗ ρα for every α, and thus all the
maps {φ(α)

t ;i } sufficient to verify M[H (t ), ρα] for all α. It fol-
lows that the two decompositions, one induced by the decom-
position in which the evolution is computationally Markovian
and the other by the preferred decomposition, are related via
w̃aρ̃a = ∑

α Tr[P̃aQα]wαρα and thus the corresponding sets of

maps satisfy

w̃aφ̃
(a)
t ;i =

∑
α

Tr[P̃aQα]wαφ
(α)
t ;i .

This suggests then that one can search for a set of pos-
itive operators {P′

a}, or equivalently a set of coefficients
κa,α = Tr[P′

aQα], such that the maps

w′
aφ

′(a)
t ;i =

∑
α

κa,αwαφ
(α)
t ;i

are such that {φ′(a)
t ;i } (i) satisfy the mathematical con-

straints associated with M[Ut , ρ
′
a], where ρ ′

a = TrS[(Pa ⊗
IB)ρSB] for all a, and (ii) lead to consistent evolutions, i.e.,∑

a w′
aφ

′(a)
t ;i (ρS ) = ∑

a waφ
(a)
t ;i (ρS ). If one can find such a set

{P′
a} or the set of coefficients κa,α , or even show that it exists,

one says that the evolution is computationally Markovian (in
particular with respect to the B+ decomposition associated
with {P′

a} = {P̃a}). Thus, computational Markovianity can in
principle be experimentally verified.

We stress that the search for the {P′
a} is purely numerical

and that one only has to run EM once in order to get the
wαφ

(α)
t ;i , i.e., the additional cost of verifying computational

Markovianity is classical processing. We expect the search to
be a hard problem in general but, as we pointed out in the main
text, it can also be trivial, depending on M[H (t ), ρB].
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