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Abstract 

Using the ns-2-simulator to experiment with different aspects of 
user- or session-behaviors and network configurations and focus- 
ing on the qualitative aspects of a wavelet-based scaling analysis, 
we present a systematic investigation into how and why variability 
and feedback-control contribute to the intriguing scaling proper- 
ties observed in actual Internet traces (as our benchmark data, we 
use measured Internet traffic from an ISP). We illustrate how vari- 
ability of both user aspects and network environments (i) causes 
self-similar scaling behavior over large time scales, (ii) determines 
a more or less pronounced change in scaling behavior around a 
specific time scale, and (iii) sets the stage for the emergence of sur- 
prisingly rich scaling dynamics over small time scales; i.e., multi- 
fractal scaling. Moreover, our scaling analyses indicate whether or 
not open-loop controls such as UDP or closed-loop controls such 
as TCP impact the local or small-scale behavior of the traffic and 
how they contribute to the observed multifractal nature of measured 
Internet traffic. In fact, our findings suggest an initial physical ex- 
planation for why measured Internet traffic over small time scales 
is highly complex and suggest novel ways for detecting and identi- 
fying, for example, performance bottlenecks. 

This paper focuses on the qualitative aspects of a wavelet-based 
scaling analysis rather than on the quantitative use for which it 
was originally designed. We demonstrate how the presented tech- 
niques can be used for analyzing a wide range of different kinds 
of network-related measurements in ways that were not previously 
feasible. We show that scaling analysis has the ability to extract 
relevant information about the time-scale dynamics of Internet traf- 
fic, thereby, we hope, making these techniques available to a larger 
segment of the networking research community. 

1 Introduction 

This paper provides new insights into the question “What aspects 
of user and network behaviors contribute to what characteristics 
of the dynamics in measured IP traffic?’ by reproducing with a 
number of well-designed and fully-controlled network simulations 
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a variety of scaling phenomena observed in measured ISP traffic. 
In particular, our empirical studies clarify what is meant by state- 
ments of the form “Seif-similar scaling behavior over large time 
scales is mainly caused by user/session characteristics and has lit- 
tle to do with network-specific aspects” (e.g., see [8]; for related 
earlier work, see also [19]). In support of yet another conjec- 
ture that can be found in [8], we also present empirical evidence 
demonstrating that time scales on the order of a “typical” round- 
trip time within the network are directly related to a rather abrupt 
transition from self-similar scaling to a more complex scaling be- 
havior; i.e., multifractal scaling. Finally, through experiments with 
the different components of a full-blown TCP implementation, we 
partly demystify the occurrence of this highly complex scaling be- 
havior of measured Internet traffic over small time scales by re- 
ducing it to and pointing out a plausible explanation in terms of 
previously observed phenomena in the dynamics of TCP-type con- 
gestion control, among them ACK-compression; see for example 
[12, 27, 26, 32, 171, or the more recent study [20]. This empirical 
observation begs for a simple mathematical construction that incor- 
porates the essence of flow control phenomena and leads to multi- 
fractal scaling behavior. Unfortunately, we have not yet succeeded 
in this endeavor and at this stage, referring to the observed fine- 
time scaling behavior of IP traffic as “highly complex” or “multi- 
fractal” makes little difference. However, we believe that aiming 
for an intuitive and rigorous physical explanation in the network- 
ing context of the mathematical concept of multifractals will shed 
new light on features of realistic IP networks that have largely gone 
unnoticed in the past. Succeeding in this endeavor would offer the 
attractive alternative of being able to avoid the notion of multifrac- 
tals all together because the concept could be explained in genuine 
networking terms. 

As a by-product of our empirical investigations into the dynam- 
ics of IP traffic, we present and advertise in this paper a class of 
wavelet-based scaling techniques and illustrate how their ability to 
localize a set of network measurements in time and scale enables 
one to uncover relevant information about the time-scale dynamics 
of network traffic. By doing so, we hope to make these techniques 
more readily available to a larger segment of the networking re- 
search community, thus drawing attention to the potential that these 
techniques have for analyzing network measurements in ways that 
are novel and that had not been feasible previously. In particular, 
we illustrate throughout this paper that these wavelet techniques are 
highly effective in identifying and extracting regular patterns in a 
way that cannot be easily accomplished with Fourier-based tech- 
niques. In combination with the ubiquitous nature of the observed 
scaling properties in network measurements, the wavelets’ natural 
abilities to detect scaling behavior have made wavelet-based anal- 
ysis the method-of-choice for studying various types of network 
measurements and for understanding some of their most useful 
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and relevant characteristics. We show in this paper how to inter- 
pret the results from such a time- and scale-localization approach 
and demonstrate how to relate the findings to underlying network- 
ing configurations and/or predominant user characteristics. To this 
end, we emphasize and exploit primarily the networking context 
in which these techniques are applied and focus less on the math- 
ematical and statistical aspects and features of a time-scale anal- 
ysis (e.g., multifractal formalism, estimation of multifractal spec- 
tra). Consequently, our findings are qualitative rather than quan- 
titative in nature; that is, as far as, for example, self-similar scal- 
ing is concerned, we are mainly interested in using the proposed 
scaling techniques for the purpose of detecting self-similar scaling 
behavior over large time scales, which turns out to be a property 
that is highly robust under a variety of changes in the underlying 
network configuration. Our work relies on a set of measured traf- 
fic traces from an ISP environment and on various traces collected 
from a simulation environment that uses the ns-2-simulator [3] and 
exploits its ability to implement different network configurations. 
The ISP traces serve as benchmarks and are used for reality checks, 
while the ns-2-generated traces allow us to identify the effects that 
different aspects of user/session characteristics or network config- 
urations can have on the dynamics of network traffic. Our analysis 
techniques, the measured IP traffic traces, and the simulation envi- 
ronments are described in detail in Section 2. 

Over the last few years, network-related measurements have be- 
come a rich source for observing interesting and at times surprising 
scaling behaviors; e.g., self-similar scaling [15, 21, 91 and multi- 
fractal scaling [24, 81. Intuitively, the ubiquity with which some 
of these scaling phenomena occur in measurements from today’s 
IP networks is related to the absence of an intrinsic scale wherever 
one looks: link speeds span an ever increasing range of scales (from 
Kbps modem access to Gbps optical fiber connections), as do laten- 
ties (on the order of microseconds for fiber optic links to seconds 
for satellite links), and packetround-trip times. At the same time, in 
today’s Web-dominated Internet, the sizes or durations of sessions, 
number of HTTP requests/responses, TCP connections or IP-flows 
typically span up to six orders of magnitude (e.g., see [5, 29, 91). 
Mathematically, the absence of an intrinsic scale is equivalent to 
high variability and can be captured in a parsimonious manner us- 
ing heavy-tailed (also known as scale-invariant) distributions with 
infinite variance. Thus, one of the main objectives of this paper 
is to present a coherent picture of how this kind of variability of 
user/session- and network-related behaviors impacts the time-scale 
dynamics of network traffic. In particular, we identify in Section 3 
those aspects of packet traffic that are affected by the absence of an 
intrinsic scale for certain user- and network configuration-related 
features; these aspects cover the self-similar scaling property of IP 
traffic over large time scales and the location of the (lower) cutoff 
scale(s) beyond which self-similarity ceases to exist and gives way 
to a richer and more complex scaling structure. In this sense, our 
studies suggest a clean separation between user- or session-related 
aspects and network-related features, at least as far as the physical 
explanations of self-similar and multifractal scaling are concerned. 

Another major focus of our studies is to highlight the role that 
closed-loop flow control plays in providing a better understanding 
of the observed highly complex scaling behavior of IP traftic over 
small time scales [8]. To this end, we provide in Section 4 empiri- 
cal evidence that TCP-like flow control in a heterogeneous network 
environment gives rise to actual packet Row patterns that exhibit a 
surprisingly rich mathematical stmcture consistent with multifrac- 
tals. In contrast, open-loop controls such as UDP give rise to traffic 
patterns that are essentially smooth (i.e., regular) and lack signif- 
icant local scaling behavior. By experimenting with the various 
components of a full-blown TCP-implementation. we can further 
clarify the contributions of congestion control and reliable transfer 
to the multifractal nature of Internet traffic. In this sense, our find- 

ings offer an initial physical explanation for the observed multifrac- 
tal scaling property of measured IP traffic. In addition, our findings 
relate the observed multifractal scaling to a pronounced cluster- 
ing effect of the packets belonging to individual TCP connections, 
which in turn is caused by the highly bursty dynamics of ACK 
packets (a well-known phenomenon called ACK compression). Our 
findings thus confirm an earlier conjecture made in [8], namely 
that a likely physical explanation for why measured Internet traf- 
fic over small time scales is highly complex will require a more 
detailed understanding of the TCP mechanism in a non-trivial net- 
working environment. Moreover, by relating multifractal scaling to 
the physics of TCP (e.g., slow start, congestion control, retransmis- 
sion, ACK compression), we have gained access to a substantial 
body of knowledge about various aspects of the dynamics of con- 
gestion control mechanisms; for example, see [13. 12, 25, 26, 321 
and the empirical studies of Internet traffic dynamics [ 17, 201. As 
a result, we believe to have set the stage for a physical explana- 
tion and understanding of the multifractal scaling phenomenon of 
measured IP traffic over small time scales that may be as plausible, 
intuitive, appealing and relevant as the one that has recently been 
found for the self-similar scaling (e.g., see [30, 29, 91). This and 
other open problems, together with some practical applications of 
our scaling analysis and some limitations of our study and of the 
underlying network configurations are discussed in Section 5. 

2 Towards a scaling analysis for network measurements 

The special appeal for using wavelet methods for analyzing and un- 
derstanding network-related measurements is that (i) wavelets are 
a natural mathematical tool for detecting, identifying and exploit- 
ing scaling phenomena, and (ii) scaling phenomena appear to be a 
dominant feature in variety of measurements from modem commu- 
nication networks. In this section, we introduce and describe a set 
of wavelet-based scaling analysis techniques and show with a few 
toy examples and measured traffic traces from an ISP environment 
some of their most basic abilities for interpreting scaling-related 
characteristics and deviations. The last subsection contains a de- 
scription of the simulation engine that we use throughout the rest 
of the paper for our empirical studies. 

2.1 Description of scaling analysis techniques 

Consider a time series X,+, k = 0, 1,2, . . ., at the finest level 
of resolution 2-” (or the finest scale n). This might represent the 
number of packets per 1 msec, for example. We coarsen X, by 
averaging (with a slightly unusual normalization factor) over non- 
overlapping blocks of size two 

,v,,-l,k = -$ (&,2k + Xn,Pk+l) 

and obtain the time series X,-l, a coarser resolution picture of the 
original series .Y,. The difference between these two pictures is 

&-1-k = -$ (Xn,lk - %,2k+l). 

We can write the original time series X, as the sum of the “blur- 

rier” series X,- 1 and the difference Dn-1, X, = 2-1/2(Xn-l + 
Dnsl). We can repeat this process (i.e., write X+1 as the sum 
of yet another average X+2 and the difference Dn-2. and iter- 
ate) for as many scales as are present in the original time series 
X, = 2-“12Xo + 2-“12 Do + . . . + 2-‘12Dn-1. We refer to 
the collection of differences DJsk as the discrete (Haar) wavelet 
coeficients d,,k, they make up what is commonly referred to as the 
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discrete wavelet transform, and they may be calculated iteratively 
using Eqns. (l-2)‘. 

We use the wavelet transform of a time series to study both its 
global and local scaling properties. We begin with the global prop- 
erties, by which we mean the statistics of the time series viewed at 
each resolution level or scale, taken as a function of scale. In par- 
ticular, we examine the average energy contained in each scale of 
the trace and examine how that quantity changes as we move from 
coarser to finer scales. The average energy at scale j is the average 
of the sum of the squared wavelet coefficients ]dJ,k12; i.e., 

Ej = k C Idj,k12, 
3 k 

where NJ is the number of coefficients at scale j. To determine the 
global scaling property of the data, we plot log( Ej) as a function of 
scale j, from coarsest to finest scales, and determine qualitatively 
over what range of scales there exists a linear relationship between 
log(E,) and scale j; that is, over what range of time scales there 
exists self-similar scaling (see [l] for more details). In all of the 
figures in this paper, the scale j is on the bottom axis and the corre- 
sponding time (in seconds) is plotted on the top axis for reference. 

The local scaling analysis is slightly more complicated than the 
global analysis in that we wish to gather information about local 
features (e.g., bursts of packets) rather than statistics about the time 
series viewed as a whole at each scale. In particular, we want to 
know how the number of packets in an interval of size E about time 
to is related to the size e of the interval. The “stronger” and more 
concentrated the burst around time to, the less the number of pack- 
ets depends on the size of the interval. The strength of the spike 
around time to or the degree of “local burstiness” can be captured 
mathematically by a (possibly) time-dependent scaling exponent, 
and the goal of a local scaling analysis is to collect characteristic 
information about the strengths and locations of the various scal- 
ing exponents (for a more detailed presentation see, e.g. [8] or [2]). 
To gather the statistics of the local scaling exponents, we again use 
the discrete wavelet transform of the underlying data and define the 
partition function S(q, j) as the sum over the local maxima of the 
(normalized) wavelet coefficients raised to the qth power at each 
scale .i: 

S(q, j) = c 12-3’2d3,klq 

(see [8, 1 l] and the references therein)2. Although we need sev- 
eral additional transformations of the partition function to quan- 
tify rigorously the distribution of scaling exponents, for an intuitive 
picture and the sort of qualitative interpretation of local scaling be- 
havior considered in this paper, we rely upon the graphical features 
of the partition function to detect and assess the local scaling be- 
havior of the data. To that end, our local scaling analysis consists 
of plotting, for each value of q. log S(q, j) as a function of scale 
j (from coarsest to finest) on one graph (throughout the paper, the 
local scaling plots will typically show the curves corresponding to 
q = 0, 2, 4 ,...I 18, 20, with S(0, j) being the straight reference 
line). This way we obtain a family of curves, and determining qual- 
itatively, for a range of the smaller q-values, if there exists a more or 
less linear relationship between log S(q, j) and scale j over a range 
of the finest scales provides information about the nature of local 
scaling. In particular, “interesting” local scaling (i.e., scaling con- 
sistent with multifractal behavior) manifests itself, for a range of 
small-to-medium q’s, in a linear relationship between log S(q, j) 
and scale j that extends over a range of fine time scales, where 

‘We use the Haar wavelets primarily for exposition and we use more general 
wavelets (e.g., compactly supported Daubechies wavelets [6]) for the scaling analysis. 

‘In practice. we slide a window of length five (this parameter cao be varied) over 
the coefficients at each scale, extracting the local maxima. 

i 

Figure 1: Global (top) and local (bottom) scaling analysis for the 
toy examples “pinch” (top) and “fold” (bottom). 

the slope of the linear regime depends in a non-linear fashion on 
q. The essence of multifractal analysis is to determine for a given 
data set how to infer these slopes and whether or not they depend 
in a non-linear manner on q. A linear dependence on q suggests 
a less interesting or “monofractal” local scaling where essentially 
one exponent characterizes the entire scaling behavior (e.g., self- 
similar processes with self-similarity parameter 0 < H < 1). 

2.2 Detecting and identifying scaling behavior 

Rather than focusing on the quantitative aspects of self-similarity 
estimation using wavelet-based techniques (as, for example, em- 
phasized in [l]), we suggest a more qualitative usage of the above- 
mentioned scaling techniques. To this end, we show with simple 
toy examples how, by manipulating certain aspects of a time se- 
ries, the global scaling behavior can be changed in quite drastic 
ways. Starting with an exactly self-similar trace, we modify the 
wavelet coefficients at a fixed scale, e.g., scale j = 12, by adding 
to each coefficient at that scale a fixed multiple of maxk{ ldj,kl}. 
The global scaling plot for the resulting toy example time series 
“pinch” is given in Figure 1 (top) and shows a pronounced “spike” 
at scale 12. “Dips” can be introduced in a similar way, and by 
explicitly manipulating the wavelet coefficients over a range of dif- 
ferent scales, the “spikes” and “dips” can be made wider or nar- 
rower. Clearly, data that exhibit such features will give rise to intri- 
cate global scaling plots, and blindly applying quantitative methods 
(e.g., wavelet-based estimation of the self-similarity parameter) in 
these situations can easily lead to wrong conclusions. 

To demonstrate how certain features in the data can have an 
impact on the local scaling analysis, we begin with a time series 
derived from a conservative cascade with fixed generator W (we 
take W to be a truncated normal on [0, l] with mean l/2 and vari- 
ance 0.01; for details, see [8, 11, 231). From this sequence, we 
construct the toy example time series “fold” by targeting a selected 
range of scales and replacing the wavelet coefficients at those scales 
by appropriately chosen fixed (possibly scale-dependent) quanti- 
ties. From the corresponding local scaling plot shown in Figure 1 
(bottom) we see that adding in this way periodic components at the 
specified scales causes a pronounced dip, while removing selec- 
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tively variability by inserting smaller coefficients gives rise to the 
apparent “folding over;” that is, the structure function plots become 
negative for some scales, indicating that the corresponding wavelet 
coefficients have become very small. As in the case of the global 
scaling analysis, even a qualitative assessment of multifractality of 
a data set with such distinguished features becomes a non-trivial 
task and requires extreme care. 

While these examples are simplifications of real-life situations, 
they do highlight the effects that adding certain types of local pe- 
riodicities can have on the scaling behavior of data. Moreover, 
note that such disturbances often cannot be easily identified using 
Fourier-type transforms of actual data, but they can be detected by 
extracting the wavelet coefficients at the desired scale(s). However, 
with these toy examples, such periodicities are readily apparent in 
the Fourier spectrum. 

2.3 Measured Internet traffic dynamics 

Next we illustrate the global and local scaling analysis techniques 
described earlier with two data sets of measured IP traffic from an 
ISP environment (see Appendix for a detailed description of the 
data). The results serve mainly as benchmarks and reality checks 
for our simulation work described in the rest of the paper. How- 
ever, they also show that even though the measurements were taken 
about one year apart, their statistical characteristics as far as the 
global and local scaling are concerned are quite similar. This ob- 
servation supports earlier conjectures about self-similar large time 
scaling and multifractal scaling over small time scales representing 
two invariants for Internet traffic; that is, characteristics of the dy- 
namic nature of IP packet traffic that are robust under a wide range 
of possible networking- and application-related changes. 

On the one hand, the right plot in Figure 6 which depicts the 
global scaling behaviors for DIALS and DIAL2 shows that both data 
sets exhibit very similar global scaling behavior (i.e., self-similar 
scaling over time scales larger than a few hundreds of milliseconds 
- look for approximately linear behavior on the left half of the plot, 
for scales I-10; emergence of a different regime for scales 1 l-18). 
On the other hand, looking at the right plot in Figure 7 which shows 
the local scaling analysis for DIAL2 measured at the 1 msec scale, 
we observe non-trivial local scaling behavior over small time scales 
(i.e., over time scales on the order of a few hundred milliseconds 
and below) which, upon further investigations, can be shown lo be 
consistent with multifractal scaling (look for approximately linear 
behavior of the partition function plots for scales 15-19 or, by “cut- 
ting across the spike” at scale 14, for scales 12-19). Similar results 
(not shown here) apply for the data set DIAL I. 

Finally, to hint at things to come, we show in Figure 2 the re- 
sults of a local scaling analysis for three subsets of the trace DIALS. 

The subsets represent traffic that is transmitted between three dif- 
ferent networks and the ISP clients and can be obtained using IP- 
header-information. (Two IP addresses are considered to belong to 
the same network if they have the same high-order 16 bit 1P ad- 
dresses.) NETS turns out to consist mostly of traffic between the 
ISP clients and the ISP web servers, NET2 is traffic between the 
ISP and major news servers, and NET3 consists mainly of realau- 
dio UDP traffic. The observed differences in the corresponding 
local scaling plots are telling. There is a folding-over in the local 
scaling behavior, similar in nature to the toy example “fold” shown 
at the bottom of Figure 1, and it becomes more pronounced as we 
move from NET1 to NET2: There is more R’IT variability in NET2 
than in NETS because packets have to travel across ISP boundaries, 
and the traffic patterns show higher regularities (i.e., small wavelet 
coefficients, and hence small values of log S(q, j)) over a substan- 
tially wider range of the medium time scales. In contrast, the local 
scaling plot for NET3 shows trivial structure: Much in the spirit of 
realaudio LJDP, packets are essentially sent at constant rate, with a 

periodicity on the order of about 40 msec (i.e., all partition func- 
tions coincide roughly at scale j = 15, they are all roughly linear, 
and their slopes are approximately linear in q). These observations 
give an indication that local scaling analysis is capable of perform- 
ing “detective” work in identifying and explaining which aspects of 
network behavior contribute to what features observed in the mea- 
sured traces. 

2.4 Using ns-2 to replicate realistic IP traffic dynamics 

The simulation engine used throughout this study is ns-2 (Network 
Simulator version 2) [3 1. This discrete event simulator provides a 
rich library of modules such as different flavors of TCP, scheduling 
algorithms, routing mechanism, and trace collection support. 

Using the measured ISP traces as benchmarks and road map 
for the experimental studies described below, our choices of net- 
work topologies and types of clients are basically determined by at- 
tempting to replicate a reasonably realistic ISP environment. Since 
roughly 60-80% of all packets and bytes measured in our ISP envi- 
ronment are Web-traffic, our primary user is a consumer accessing 
the network through an ISP via a modem bank to browse the Web. 
To accurately simulate H’lTP transfers, we extend the existing ns-2 
HTTP modules to accommodate for the variability that is inherent 
in the Web. 

In a typical H’lTP 1 .O transaction, a web client sends a request 
to the Web server for a web object after establishing a TCP connec- 
tion. The server responds with a reply header (sometimes attaching 
data) and then continues to send data. However, the original ns-2 
TCP connection module failed to send the connection set-up and 
tear-down packets. In fact, the TCP connection modules allow the 
transfer of data in only one direction. To circumvent this prob- 
lem, we emulated the exchange of the HTTP header information 
with two ns-2 TCP connections that have the same “port” num- 
bers which facilitates object identification3. During a Web session 
a user usually requests several Web pages and each page may con- 
tain several web objects (e.g. jpg images or au files). To capture 
this hierarchical structure and its inherent variability, we allow for 
different probability distributions for the following user/session at- 
tributes: inter-session time, pages per session, inter-page time, ob- 
jects per page, inter-object time, and object size (in KB). For each 
of these distributions, we can choose from the many built-in dis- 
tributions (such as constant, uniform, exponential, Pareto, etc.) or 
we may define our own. Details about the parameters required for 
these distributions and used in our studies can be found in the Ap- 
pendix. We base our choice of distributions (including the specific 
parameters) on the work surrounding SURGE [4], a Web workload 
generator designed to generate realistic Web traffic patterns, and 
upon [7, 181. Note that we simulate HlTP without pipelining and 
without persistent connections. 

The protocol stack, network topology (including delays and 
bandwidths), and the sequence of Web requests define a simula- 
tion. Since TCP Reno and HTTP 1.0 [28] are assumed to be the 
predominant protocols in the ISP environment at hand, we emulate 
them in our simulations. We vary the number of sessions from 100 
(low load scenarios) to 300 or 400 for high load scenarios. Each 
session consists of a fixed number (300) of Web pages. This en- 
sures that for almost all simulations all sessions are active for the 
duration of the simulation (4200 seconds). We discard an initial 
segment of each simulation run during which we randomly activate 
all sessions. 

As far as choosing a network topology is concerned, we are 
again motivated by the ISP environment where we obtained our 
measurements. To find out how various attributes of network topol- 
ogy and web request sequence affect the traffic characteristics, we 

%e latest releases of nr-2 support two-way TCP with detailed connection estab- 
lishment and teardown. 
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Figure 2: Local scaling analysis plots for three subsets of trace DIALS: NET1 (left, ISP Web server traffic), NET2 (middle, traffic to news 
server ), NET3 (right, realaudio UDP traffic). 

experiment with a set of network topologies. We concentrate on 
simulation environments that consist of a set of clients connected 
to an access network which in turn provides connectivity to a set of 
servers, in effect creating a “dumbbell.” We map each user session 
to a single client node (either home computer connected via slow 
speed modems or office workstation connected via switched Ether- 
net), referred to as MODEM NODES or HIGH-SPEED NODES respec- 
tively. This means that the simplest architecture is one where a set 
of client nodes is connected to an access node that is connected to a 
single Web server Figure 3 (top). To understand the impact of con- 
gestion on the middle link, we split it into two separate links that 
can have different delays and bandwidths. If no bottleneck is intro- 
duced we refer to the topology as CAPBELL (unlimited capacity). If 
the link labeled A in the top plot in Figure 3 has lower capacity than 
the link labeled B, we refer to the topology as SINGLEBELL. To in- 
crease the variability of the delays and/or bandwidths to different 
servers, we expand the single servers into a set of servers as shown 
in the bottom plot in Figure 3 and refer to the topology as FLEX- 

BELL. To experiment with cross traffic, a set of clients and servers 
can be added to either the link labeled A in Figure 3 (bottom) or the 
links labeled B and C. This topology is called CROSSBELL. To en- 
sure that the modem clients are not the bottleneck links, the buffers 
in the queues on those links are configured to have sufficient space. 

3 On the role of variability 

In this section we explore the role variability in its many forms 
plays in determining the scaling properties of network traffic. We 
divide the types of variability into two main categories: user- or 
session-centered variability (e.g., sizes of Web sessions or sizes of 
HTTP data transfers, number of requests per session) and network- 
related variability (including delays, bandwidths, and topology). To 
understand the scaling behavior observed in the measured data, we 
hold all but one of the above forms of variability fixed and explore 
the effects of the remaining element of variability. In doing so, 
we sometimes simulate artificially simple networks; nevertheless, 
we are able to find clear “fingerprints” in the measurements that 
are caused by the different aspects of variability. We start with 
user/session variability and its effects on the scaling properties of 
the time series of packet counts. Then we examine how network 
variability impacts the scaling behavior of traffic. 

3.1 User- and session-related variability 

One of the least complex forms of variability is that of the users 
and their sessions. It is expressed in terms of the distributions of 
the number of objects per page, the number of packets per object, 
the interarrival times of pages, etc. By high user variability, we 

mean that at least one of the “workload-specific”distributions (i.e., 
number of objects per page or number of packets per object) must 
be chosen from the class of heavy-tailed distributions with infinite 
variance (e.g., Pareto-type tail behavior), while low user variability 
reflects the fact that all these distributions are either exponential or 
trivial (i.e., constant). 

We use the CAPBELL configuration with its essentially unlim- 
ited bandwidth constraints and with 1 msec link delays to illustrate 
the difference between how low user variability and high user vari- 
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FLEXBELL (bottom); Mb=Mbps, Kb=Kbps, ms=millisecond. 

305 



- Exponential 1 
- Pareto 1 

Figure 4: Impact of user variability on global scaling analysis: low 
user variability (CAPBELL,~~~ HIGH-SPEED NODES, EXPONEN- 
TIAL 1); high user variability (CAPBELL, HIGH-SPEED NODES, 
PARETO 1). 

ability contribute to the dynamics of the measured traffic. We con- 
sider the environment with high-speed access nodes and perform a 
global scaling analysis of the time series representing the number 
of packets per 1 msec recorded at link A. The results are shown 
in Figure 44. While the low user variability simulation yields a 
trivial global scaling plot (i.e., horizontal line, consistent with the 
absence of long-range dependence), the high user variability setting 
gives rise to a pronounced global scaling behavior over large time 
scales; that is, the packet counts exhibit long-range dependenceand 
the traffic is asymptotically self-similar. Of course, these empirical 
results are in full agreement with the rigorous physical explana- 
tion of the self-similar scaling of network traffic over large time 
scales in terms of the infinite variance or high-variability property 
of user session sizes (for details, e.g. see [21, 93). In this sense, 
global scaling plots such as the ones shown in Figure 4 (see also 
below for global scaling plots where we explicitly change a vari- 
ety of network-related features, without any significant effect on 
the large time scaling behavior) illustrate what is meant by saying 
that “self-similar scaling over large time scales is primarily caused 
by user/session characteristics and has little to do with network- 
specific aspects” [8] (for earlier related findings, see [ 191). 

3.2 Network-related variability: Delays 

In the above discussion of the results of our global scaling analy- 
sis, we focused solely on the large time scale features and checked 
whether or not there exists a more or less linear relationship in Fig- 
ure 4, and if so, whether or not the slope is zero or strictly neg- 
ative. In particular, we ignored two ofher prominent features in 
those global scaling plots: an apparent departure. from linearity at 
some more or less pronounced medium-to-small time scale, and 
the emergence of some structure other than self-similarity below 
that scale. In this subsection, we identify a variability aspect that is 
not user- or session-related but network-specific and that is primar- 
ily responsible for the observed departure from self-similar scal- 
ing at some specific time scale. The question about what structure 
emerges when considering time scales below (i.e., to the right of) 
that specific time scale will be discussed later in this section. 

Using the same high-access CAPBELL configuration as before, 
the only network-related aspect that we change is link delay, which 
of course impacts the round-trip time (RTT) behavior of the pack- 
ets sent over the network. More specifically, we consider CAPBELL 
with a low link delay of z = 1 msec (resulting in a packet RlT of 
24 msec) and compare it with a high link delay of z = 640 msec 

%e convention used throughout the paper is to indicate the simulation environ- 
ment associated with each plot by given the triple (CONFIGURATION, LOAD, WORK- 

LOADSCENARIO); for WORKLOADSCENARIO refertoAppendixA.2. 

- Link delay: z = 640m 
- Link delay: z = 1 ms 

Scale j 

Figure 5: Impact of delay variability on global scaling: short de- 
lays (CAPBELL, 400 HIGH-SPEED NODES, PARETO 1); long de- 

~~~~(CAPBELL,HIGH-SPEEDNODES,PARETO 1). 

(i.e., RTT= 1.3 set). In both situations, we collect the time series 
of number of packets per 1 msec at link labeled A and compute 
the global scaling plots shown in Figure 5. Notice that the time 
scale where self-similar scaling breaks down is the smallest scale 
(scale 10 = 2.0 seconds) that is larger than the data packet R’IT in 
the respective networks5. Moreover, the type of breakdown of self- 
similar scaling (i.e., a pronounced “dip” at time scale 10) matches 
that of the toy example presented in Section 2.2, for the simple rea- 
son that the RIIT behavior in this network configuration identifies a 
distinct and significant periodic component in the traffic. Also note 
that the additional dips at finer time scales can be attributed to the 
presence of periodic components caused by, for example, the time 
it takes for an ACK packet to travel to a client and the TCP packet 
released by the server to get to the monitored link, or for a TCP data 
packet to travel to a client and the corresponding ACK to return to 
the monitored link. 

3.3 Network-related variability: Congestion I 

We have seen that the CAPBELL environment imposes a rigid R’lT 
behavior that has essentially the same effect on the global scal- 
ing plot as manipulating the wavelet coefficients at the time scale 
corresponding to the packet R’IT in the network to introduce a 
pronounced periodic component in the resulting packet trace (see 
Section 2.2). To illustrate the effect of adding variability to the 
RTT’ behavior, we use the high-access SINGLEBELL configuration 
which is identical to the above CAPBELL environment except that 
the capacity on the middle link A has been decreased to y = 2.5 
Mbps. Keeping the same number of user sessions, we introduce in 
this way a single bottleneck and create congestion (resulting in a 
loss rate of 3.85%). The resulting global scaling plot (not shown 
here) differs in three ways from the global scaling plot for the cor- 
responding CAPBELL scenario. First the self-similar scaling breaks 
down earlier (i.e., coarser scale) than in the non-bottleneck sce- 
nario; second, the transition from self-similar scaling is smoother 
(i.e., pronounced dips essentially disappear, or are “smoothed out” 
over a range of time scales) than in the non-congestedenvironment; 
and third, the energy in the trace is substantially smaller at each 
scale than in the CAPBELL configuration (i.e., smaller wavelet co- 

efficients throughout, resulting in a scaling plot that lies below its 
counterpart, except for the finest scale). The first two observations 
are a result of the higher variability in R’IT due to the presence 
of congestion, while the third feature simply reflects a decrease of 
variability in the overall trace (i.e., filling up the link leaves little 

‘Note that if 2-j- 1 < m < Z-j, the break down will occur at scale j because 
there every wavelet coefficient includes at least one packet from the added periodic 
component (and hence, these coefficients are less variable than those at scale j - 1. 
some of which do not include packets from the added periodic component). 
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Figure 6: Impact of network bottleneck and load on global scaling; left (FLEXBELL, 400 HIGH-SPEED NODES, PARETO 1) generating losses 
of 0.46%; middle (FLEXBELL, 400 MODEM NODES, PARETO 2) generating a loss rate of 6.4%; right (global scaling plots for measured 
Internet traces DIAL1 and DIAL2, for comparison). 

Figure 7: Local scaling analysis: left (FLEXBELL, 400 HIGH-SPEED NODES, PARETO 2); middle (FLEXBELL, 400 MODEM NODES, PARETO 
2); right (local scaling plot for measured IP traffic trace DIAL2, for comparison). 

room for even modest traffic fluctuations). 
Another way to drive a network into congestion thus introduc- 

ing more variability to the R’lT behavior is by adding load. To this 
end, we consider the SINGLEBELL configuration with low-speed 
modem clients and run the simulation with 100 user sessions (low 
load) and 400 user sessions (high load), respectively. Simply by 
comparing the observed loss rates (i.e., 0.002% in the low load sce- 
nario, 8.72% in the high load scenario), we see that the 100 user 
case is essentially congestion-free while the 400 user case experi- 
ences significant congestion. The resulting global scaling plots are 
essentially the same as before, with one noticeable exception. The 
energy in the congested trace over the fine time scales is apprecia- 
bly larger than in the non-congested case. This is a first indication 
that the more congested the link is (i.e., the more packets are lost) 
the larger the wavelet coefficients at time scales below the “typical” 
R’IT will be. We will return to this issue shortly. 

Finally, to add yet another component to RTT variability, we 
run the FLEXBELL configuration to identify the effect that the pres- 
ence of different bottleneck links (possibly with different delays) 
within one and the same network has on the dynamics of the traf- 
fic. In Figure 6 we display the results of our global scaling analysis 
for the 400 nodes high-speed access case (left plot) and for the 400 
nodes modem access case (middle plot). In each case, we show the 
global scaling plots for the aggregate traffic and for the traffic mea- 
sured over 45 Mbps and 0.5 Mbps bottleneck links, respectively; 
i.e., over the links to nodes labelled 1 and 4 in the bottom plot of 
Figure 3, respectively. As we can see, the global scaling of the ag- 
gregate traffic is to a large degree determined by that of the “big” 
pipe (i.e., 45 Mbps link) and that the global scaling plot for the 
highly congested 0.5 Mbps link shows many of the features that we 
discussed earlier in this section in conjunction with congestion. 

Note that the global scaling plot in Figure 6 (middle) of the 
aggregate traffic obtained from running the FLEXBELL configura- 
tion supporting 400 modem clients agrees reasonably well (slightly 
less energy, though, and a more pronounced dip at scales 12-13) 
with the global scaling plots for the measured IP traces DIAL 1 and 
DIAL2 shown in the right plot of Figure 6. Recall that this match 
has been achieved without explicitly modeling any specific aspects 
of the underlying traces. Instead, we have relied exclusively on 
the physical understanding of the impacts that certain aspects of 
user/session- and network-related variability have on the scaling 
behavior of network traffic. By accounting qualitatively for the dif- 
ferent aspects as well as for the proper “shades” of variability, we 
have done away with conventional statistical inference approaches 
and have nevertheless succeeded in roughly matching the second- 
order properties of the measured traces. Next we address the ques- 
tion whether we can do even better. 

3.4 Network-related variability: Congestion II 

In the previous subsection, we alluded to the observation that on 
a congested link, there seems to be in general more energy in the 
packet fluctuations at time scales below the the “typical” R’IT as 
compared to a non- or low-congested link. We argued that this fea- 
ture is due to the fact that the underlying TCP protocol is faced 
with more losses when there is congestion, which in turn causes 
the packet density fluctuations to exhibit more “interesting” local 
burstiness structure than when there is little congestion. In view of 
recent findings reported in [8], this local burstiness structure can be 
observed in its clearest form at the level of individual TCP connec- 
tions where it has been shown to conform to multifractal scaling. 
At the aggregate level, multifractal scaling has been observed in a 
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number of measured Internet traces (e.g., see [24, 16,8]), 
Given this empirical connection with multifractal scaling be- 

havior over fine time scales, our aim in this subsection is to pro- 
vide initial insights into and a first physical understanding for what 
aspects of variability contribute to what features of the fine time 
scale behaviorof network traffic. Because we have shown that user- 
or session-related variability is almost exclusively responsible for 
how IP traffic behaves over large time scales but has no apprecia- 
ble impact on the dynamics of network traffic over fine time scales, 
we consider in the following network-related aspects of variability 
such as delay, bottleneck links, loads, etc. To start with, Figure 7 
shows the results of our local scaling analysis for the FLEXBELL 
configurations with 400 high-speed access clients (left) and 400 
modem users (middle), respectively (these are the same configura- 
tions for which the global scaling plots are shown in Figure 6). To 
compare, the right plot in Figure 7 depicts the results of our local 
scaling analysis for the measured IP trace DIAL2. Thus, while we 
have seen that the global scaling of the FLEXBELL configuration 
with modem clients qualitatively fits that of the measured IP traces, 
the corresponding structure functions in Figure 7 show some ob- 
vious differences. Most prominently, we observe in the measured 
trace a pronounced dip around scales on the order of 1 set, remi- 
niscent of the toy examples discussed in Section 2.2. Also note that 
across the medium to small time scales in the local scaling plot of 
the IP trace DIAL2 (right plot), the variability in the packet density 
fluctuations is consistently higher than in the corresponding plots 
on the left in Figure 7 (e.g., compare the values of the correspond- 
ing log S(q, j)-functions for scales 12 and larger). 

To identify which aspect of variability inherent in the FLEX- 
BELL configuration is primarily responsible for the observed dif- 
ferences in the local scaling plots, we go back to the SINGLEBELL 
environment with its single 2.5 Mbps bottleneck link and corre- 
sponding delay of z = 640 msec. We find that using both a low 
load and a high load scenario, we are able to replicate the pro- 
nounced dips in the low load scenario around time scales related to 
the “typical” R’IT. At the same time, for the congested high load 
scenario, we observe a much wider dip due to an increased R’IT 
variability. Moreover, the whole dip moves to the left; i.e., the 
packets experience in general longer Rl’Ts, and the variability in 
the packet density fluctuations over time scales associated with the 
wide dip are diminished. 

Using this understanding, we can now perform a local scaling 
analysis of the traffic from the FLEXBELL environment on a per- 
server basis; i.e.. for each of the four servers, we record the packets 
coming from or destined for this server. Packets from the result- 
ing traces go over the same bottleneck link and experience more 
or less the same amount of congestion. The local scaling plots for 
two of the four different traces corresponding to the four differ- 
ent servers are given in Figure 8 and show some familiar features. 
The 45 Mbps link (top plot) provides essentially unlimited capac- 
ity in this modem environment and the previous observation about 
a pronounced RTT behavior applies directly (a similar observation 
holds for the 1.2 Mbps link). In contrast, the 0.5 Mbps link (bot- 
tom plot) is highly congested, hence shows a significantly wider 
dip which is, in addition, located further to the left of, for example, 
the corresponding 0.8 Mbps-link dip; also, the variability in the 
packet counts over time scales associated with this wide dip is sig- 
nificantly smaller than in the 0.8Mbps case implying the presence 
of a highly regular traffic pattern over those time scales caused by 
a close-to full pipe. Putting it all together, we have that the local 
scaling plot of the full trace combines the different effects seen at 
the different bottleneck links. While the variability due to differ- 
ent RlTs reflects itself through a relatively smooth (as compared 
to very pronounced) dip, bottleneck-related variability shows up in 
terms of an appreciable amount of variability in the packet density 
fluctuations over time scales on the order of the location of the dip. 

Figure 8: Impact of network load on local scaling - separating traf- 
fic according to servers. Top: Server 1 with 45 Mbps link; bottom: 
Server 4 with 0.5 Mbps link); (FLEXBELL, 400 MODEM NODES, 
PARETO 2). 

However, compared to the local scaling plot of the measured trace 
DIAL2 (right plot in Figure 7), the corresponding local scaling anal- 
ysis of the FLEXBELL configuration with 400 modem users shown 
in Figure 7 (middle plot) falls short of matching at least qualita- 
tively the high variability in the packet density fluctuations across 
the medium to small time scales in the measured traffic as seen 
through the local scaling plots. Even the FLEXBELL configuration 
with the 400 high-speed access clients fails to match this variability 
over the small time scales (see left plot in Figure 7). This problem 
remains even if we add yet another aspect of variability; i.e., we 
replace the FLEXBELL with the CROSSBELL configuration, thereby 
introducing two-way or cross-traffic (not shown here). 

To get a better understanding for how this mismatch in local 
scaling behavior can occur and to point out a possible approach 
for tackling this problem, we consider once again the FLEXBELL 
configuration with the 400 modem clients and focus on the traffic 
that traverses the 1.2Mbps link associated with server 2. We per- 
form a local scaling analysis of the resulting trace and of its two 
components consisting, respectively, only of TCP data packets and 
only of the ACKs. The results are given in Figure 9 and comparing 
the left and middle plots shows that any non-trivial packet density 
fluctuations on this link are almost exclusively due to non-trivial 
fluctuations in the time series of ACK counts. In fact, over small 
to medium time scales, the wavelet coefficients associated with the 
time series of number of TCP data packets per msec (and hence 
the values of the structure function) are extremely small (see right 
plot in Figure 9), implying an essentially regular stream of TCP 
packets when viewed over those time scales. This should come 
as no surprise, though, since a close-to-saturated link is not likely 
to see significant traffic fluctuations. Thus, in order to increase 
the variability of the packet density fluctuations over the small to 
medium time scales of the aggregate traffic, one has to allow for 
significant fluctuations not only in the ACKs but also in the TCP 
data packet streams. To accomplish this task, a basic understanding 
of the interactions between the dynamics of ACK packet and TCP 
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Figure 9: Local scaling analysis for traffic to and from server 2: all packets (left), ACK only (middle), TCP data only (right); (FLEXBELL, 

400 MODEM NODES, PARETO 2). 

data packet streams in a not-too-simplistic networking environment 
is needed. Thus, to gain insight into the dynamics of measured IP 
traffic, it is not sufficient to understand how the various aspects of 
user- and network-related variability impacts the traffic. It also re- 
quires knowing (at least qualitatively) which features of what pro- 
tocols contribute to what aspects of measured network traffic. In 
the context of today’s Internet and in view of the findings reported 
earlier in this paper, this means gaining insight into what features of 
TCP impact what aspects of the multifractal scaling behavior over 
small time scales. 

4 On the impact of feedback control 

Intuitively, the results of the previous section show that there is 
more to IP traffic dynamics than understanding the different aspects 
and shades of user- and network-related variability. More formally, 
our task is to explore how flow control impacts the local scaling 
behavior of measured IP traffic; i.e., the empirically observed mul- 
tifractal structure over small time scales. In networking terminol- 
ogy, the objective of this section is to gain insight into the effects 
that the different components of a full-blown TCP implementation 
have on the nature of the local burstiness or clustering of packets of 
measured IP traffic. To this end, we follow a similar approach as in 
Section 3 and report on a set of ns-2-based experiments using the 
FLEXBELL configuration with the 400 modem users, where we sys- 
tematically manipulate the various components of TCI? Although 
this scenario leads to appreciable loss rates on the order of 6%. we 
have observed similar results as the ones described below in lower 
load scenarios. Note that the results of our local scaling analysis 
for the scenario that uses “genuine” TCP is shown in the right plot 
in Figure 7. 

4.1 Open-loop or UDP-like controls 

To start our investigation of the impact of flow control on the local 
scaling behavior of IP traffic, we consider the extreme case of no 
flow control. In particular, we use UDP which injects packets into 
the network at a constant rate without feedback. More precisely, 
our modem clients use TCP to send a request to the Web server re- 
liably in order to receive data; once the session is established, the 
server uses UDP to transmit the data. We investigate two scenarios 
which differ by how fast the Web servers are permitted to inject data 
into the network; in the first case, the server can send a packet every 
100 milliseconds, in the second case every 10 milliseconds. The re- 
sults of the local scaling analysis for the second case are depicted in 
the top plot in Figure 10. As expected, we observe some dipping ef- 
fect because of the periodic nature with which UDP injects packets 
into the network. Because of significant loss rates in both settings 

(24.5% in the 100 msec case and 69.86% in the 10 msec case), the 
locations of the dips do not exactly coincide with the periodicities 
of 100 and 10 msec, respectively, but occur at some slightly larger 
time scale. In addition, the local scaling behavior over time scales 
14-19 is approximately linear, with a slope that can be shown to 
be roughly linear in q. Similar results hold for other network con- 
figurations and load scenarios, which we take as strong indication 
that open-loop flow controls such as UDP have little impact on the 
observed fine-time scaling behavior of measuredInternet traffic. In 
the case of large-time scaling behavior, similar findings have been 
reported in [ 191. 

4.2 Closed-loop control: Stop and Wait 

Moving from UDP that does not adjust its sending rate in the face 
of network congestion to a closed-loop control with some UDP-like 
flavor, we can proceed in two ways. In this subsection we consider 
a version of TCP that has the retransmission component enabled 
(i.e., reliable transfer) but uses a modification of TCP’s congestion 
control algorithm where the window size is set to a fixed value, 
namely window=1 . Compared to a full-blown TCP implementa- 
tion, limiting the window size means more work when transmitting 
data, especially when the load is non-trivial (as is the case here). 
The losses are lower than for full TCP, simply because with a win- 
dow size of 1 the source can generally not take advantage of the 
available bandwidth. The local scaling behavior of the resulting 
trace is depicted in the middle plot in Figure 10 and shows a clear 
dip around time scales on the order of the expected RTT, which in 
this case is about 1 second. More importantly, when compared to 
the top plot, we observe the emergence of non-trivial local scaling 
behavior over the smaller time scales, which can be shown to be 
consistent with multifractal scaling (i.e., the partition functions are 
approximately linear for scales 13-19, with slopes that change in 
a non-linear fashion as q changes from small to medium to large. 
Thus, even a very bare-bones implementation of TCP’s window- 
ing mechanism causes complex local clustering of packets, which 
demonstrates the importance of closed-loop flow control for under- 
standing local scaling behavior in measured Internet traffic. 

4.3 Closed-loop controls and reliable transfer 

Instead of modifying, as we have just done, TCP’s congestion con- 
trol algorithm and keeping the retransmission feature of TCP in- 
tact, we can also consider a version of TCP where we keep the full 
congestion control component intact but where we disable TCP’s 
retransmission feature. If this version of TCP detects a loss, e.g., 
by receiving multiple ACKs or by timeout, it will adjust its con- 
gestion window but will assume that the packet has been delivered 
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successfully. In this sense, this version of TCP can “move on” 
even if a lot of the packets are dropped, while “genuine” TCP will 
have to deal with the losses. The resulting local scaling behavior 
is similar to the one obtained in the previous subsection, with the 
exception that the variability in the packet density fluctuations is 
somewhat reduced when we permit the full range of window sizes 
as compared to when we set the window size to 1. Intuitively, re- 
duced variability means that TCP with its genuine congestion con- 
trol algorithm has to work “less hard” as compared to TCP with the 
“broken” window=1 algorithm. Moreover, we also observe a much 
more pronounced dip around scales 1 l-12 than for the full TCP or 
the window=1 version. What makes this dip so pronounced in the 
present case is the fact that this version of TCP is not required to 
wait for the retransmitted packets so the impact of the timeouts is 
not as severe as in the full TCP case. Instead it will just advance 
its window. As a result, there is significantly less variability in the 
RIT behavior for this version of TCP as compared to, for example, 
full TCP with its timeouts and rules about waiting for the ACKs of 
the retransmitted packets. 

4.4 Closed-loop controls and TCP-type congestion avoid- 

ance 

Finally, we consider a version of TCP that is the more aggressive 
than the window=1 case. While the window=1 version of TCP is 
network-friendly it does not work very efficiently (cannot in gen- 
eral fill the pipe), by setting window= 10 and leaving everything else 
the same as in the window=1 case (in particular, we do have retrans- 
mission in place), we deal with an aggressive version of TCP that 
can burst many back-to-back packets into the network and avoids 
many aspects of slow start and congestion avoidance. In fact, set- 
ting the congestion window size to 10 allows this version of TCP 
to send up to 10 packets, a full window, back to back before it has 
to receive any acknowledgments, thereby potentially swamping the 
network. In effect, in a relatively uncongested environment, ACK 
clocking is now done for the transmission of a whole window in- 
stead of on a packet-by-packet basis. The impact of using a version 
of TCP that eliminates a major component of TCP flow control, can 
be seen in the bottom plot in Figure 10. As expected, the ability to 
send back-to-back packets creates local scaling behavior over small 
time scales that is distinctly different from all the other versions of 
TCP or, for that case, UDP. A precise reasoning for why this ver- 
sion of TCP generates such distinctive local scaling needs however 
further investigations, 

4.5 Putting the pieces together, not quite(!) 

By experimenting with various versions of full TCP, we provide 
initial empirical evidence that in a reasonably heterogeneous net- 
work environment, TCP-like flow control (with or without retrans- 
mission, with fixed but small window size or with the “real” dy- 
namic windowing mechanism) is a major reason for the emergence 
of complex local scaling phenomena (i.e., multifractal scaling) in 
measured IP traffic over fine time scales. This observation suggests 
that to gain a physical or networking-related understanding of the 
mathematical concept of multifractals, it is necessary to gain in- 
sight into the intricate interactions between the ACK packets and 
TCP data packets within one and the same connection in a hetero- 
geneous network environment and across the different connections 
that share a common link in that same environment. 

To illustrate that the ACK/ICP data packet interactions may be 
related to the complex local scaling phenomenon that can be math- 
ematically described using multifractals, we return to the example 
of Figure 9, where we looked at the ACK-only and TCP data-only 
traffic associated with server 2 in the FLEXBELL configuration with 
400 modem clients. Here, we slightly modify this setup by mov- 

Figure 10: Impact of feedback control on local scaling: UDP with 
interpacket spacing of 10 msec (top, loss rate: 63.86%); TCP with 
window size fixed to 1 (middle, loss rate: 5.63%); TCP with flow 
control disabled, i.e., fixed window size of 10 (bottom, loss rate: 
10.38%). (FLEXBELL,~OOMODEMNODES,PARETO~). 

ing to a version of the CROSSBELL configuration that is identical to 
the 400 modem FLEXBELL environment, except that we introduce 
cross-traffic on links labeled B and C in Figure 3 that specifically 
interferes with the ACK packet stream on the 0.9 and 0.6 Mbps 
links. The resulting local scaling plots for link B (0.9 Mbps) are 
shown in Figure 11, left plot for the time series of total number 
of packets per 1 msec, middle plot for ACK-only time series and 
right plot for the trace consisting of TCP data-only packets. Due 
to the presence of cross-traffic that interferes with the ACKs on the 
link connecting server 2 to the rest of the network, the local scal- 
ing plot for the ACKs looks more “interesting” (i.e., shows higher 
variability on the medium to small scales) than the corresponding 
local scaling plot for the ACK-only trace in Figure 9 which does 
not see any interfering cross traffic. Consequently, because ACK 
packets trigger TCP packets, the characteristics of the spacing of 
the TCP packets changes as well. This observation of a more in- 
teresting local burstiness of packet clustering behavior in the pres- 
ence of cross-traffic as compared to a one-way traffic environment 
is known as ACK-compression phenomenon and agrees with tind- 
ings reported, for example, in [26, 32, 171. A more recent study 
[20] found ACK compression to be fairly common in measured IP 
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Figure 11: Impact of ACK compression on local scaling - traffic to and from server 2 according to its protocol components. From left: all 
packets,ACKsonly,andTCPdataonly; (CROSSBELL,~OOMODEMNODES,PARETO~). 

traffic traces but concluded that it has no real effect on network 
performance. Without contradicting this latter conclusion, we con- 
tribute here to the existing literature on ACK-compression by sug- 
gesting that the ACK-compression phenomenon may be directly 
related to the observed highly complex scaling behavior of mea- 
sured IP traffic over fine time scales and hence may be a potential 
candidate for explaining and understanding multifractality in terms 
of observed networking-related mechanisms. Rather than having a 
direct impact on performance, such an explanation could point to- 
ward properties of actual IP networks that have not been considered 
in the past and may in turn lead to an improved understanding of 
the dynamics of IP networks. 

While our conjecture does not do much at this stage to demys- 
tify either the ACK-compression or the multifractal scaling phe- 
nomenon, it is interesting to note that the intuition behind both 
features (i.e., complex “clustering” and “burstiness,” respectively) 
agrees - at least heuristically - with the visual appearance of the 
time series of ACK’s resulting from a purely one-way traffic sce- 
nario or from a scenario where cross-traffic is present. In fact, there 
is in general an appreciable difference between the two time series 
and little disagreement about their visual effects; namely that the 
one-way traffic time series is “less bursty” (or, depending on one’s 
background, “shows less ACK-compression” or “exhibits a less in- 
teresting multifractal behavior”) than the two-way traffic time se- 
ries. Further investigation into the one-way delay times of ACK 
packets from individual connections confirms that ACK compres- 
sion is indeed taking place. 

We conclude this section with a reminder and warning about re- 
placing the empirically validated hierarchical and variable session 
structure employed in our simulations by simpler versions which in 
essence equate a session with an infinite file transfer. While such 
simplifications are often convenient for analytical studies of TCP 
dynamics (e.g., see [14] and references therein), they lead in gen- 
eral to very different behaviors of the resulting traffic, especially 
in a reasonably heterogeneous network environment. To illustrate, 
Figure 12 shows the local scaling analysis at link B for the FLEX- 
BELL configuration under two comparable load scenarios. In one 
case (top plot), the clients exert high variability in terms of their ses- 
sion structure (in the sense discussed in Section 3.1); in the other 
case (bottom plot), the clients exhibit no variability; that is, sessions 
are infinite file transfers. Despite keeping all other components of 
the network environment constant, the differences in the local scal- 
ing behavior between the two resulting traffic traces are extreme 
and so is their global scaling behavior (not shown here). This ex- 
ample should serve as a reminder that mathematically convenient 
models do not necessarily reflect reality and should undergo more 
scrutiny, especially if the differences are as drastic as observed 
here. 

5 Conclusions and outlook 

By presenting a set of wavelet-based scaling techniques for ana- 
lyzing and understanding network-related measurements, we have 
identified in this paper various user- and network-related aspects 
and the effects that they have on the dynamics of measured IP traf- 
fic. In other words, we have illustrated how these analysis tech- 
niques can be used for detecting and identifying “fingerprints” in 
measured IP traffic traces that provide relevant information about 
user- and network-specific behaviors. In particular, we have gained 
new insights into how various aspects of user- and network-related 
variability contribute to the observed scaling phenomena (e.g., self- 
similar scaling over large time scales, multifractal scaling over small 
time scales) in measured Internet traffic. On the one hand, we have 
shown how and why self-similar scaling over large time scales is 
almost exclusively due to user-related variability and is essentially 
oblivious to underlying, network-specific aspects. On the other 
hand, we have also explained how and why multifractal scaling 

Figure 12: impact of infinite sources on local scaling: top (FLEX- 
BELL,~~OMODEMNODES,PARETO~);~~~~~~(FLEXBELL,~OO 
MODEMNODES,CONSTANT). 
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over small time scales cannot be soleiy explained in terms of the 
various aspects of network-related variability, but is impacted in 
a major way by the presence of TCP-like flow control algorithms 
which give rise to a surprisingly rich burstiness or clustering struc- 
ture over small time scales of IP packets as they traverse the Inter- 
net. 

Potential practical applications of this “detective” aspect of our 
work are numerous. To illustrate this, consider the local scaling 
analysis of the traces associated with the three networks shown in 
Figure 2 in Section 2.3. By isolating the traffic that is destined to 
the same part of the Internet and by applying scaling analysis to 
the resulting time series, one can gain insight into the performance 
of the paths between the measurement point and the network. For 
example, by comparing the left ahd middle plots, we can conclude 
that the expected performance when going to the second network 
is substantially worse as compared to the first network - TCP is 
likely to see more congestion which in turn shows up in the lo- 
cal scaling plot as a pronounced “folding” effect. The folding in 
the middle plot also indicates that somewhere along the path to 
and from this network, there is a bottleneck link of fairly limited 
capacity. A real-time implementation of this feature of the “finger- 
printing” capability would have the advantage of using purely pas- 
sive measurements for uncovering aspects of Internet performance 
that are of current interest. Such an implementation also begs for 
a full-blown exploitation of the local scaling analysis techniques; 
that is, providing the capability of localizing in time “interesting” 
features in a set of network-related measurements. Another poten- 
tial application that is motivated by Figure 2 in Section 2.3 is us- 
ing local scaling analysis techniques for detecting and identifying 
non-TCP-friendly connections. However, the feasibility and actual 
implementation of this idea remains an open problem. 

On a different note, the detective nature of our investigations 
also has an impact on the problem related to simulation of “realis- 
tic” Internet scenarios. The challenges associated with simulating 
Internet-like environments are clearly spelled out in [22] but our 
empirical work points towards an approach that does away with 
traditional simulation modeling and coincides with a number of ar- 
guments put forward in [22]. In particular, we have demonstrated 
in this paper that by relying almost exclusively on the physical 
or networking-related understanding of the impacts of the various 
user- and network-related aspects of variability and of such basic 
concepts as closed-loop flow control, it appears to be possible to 
end up with a full-blown networking environment that is in the 
right “ball park” when compared to real networks. Note that this 
has been achieved by replacing traditional statistical inference and 
estimation methodologies by a qualitative understanding of which 
aspects impact the different scaling phenomenaassociated with net- 
works, but much work is left to achieve this goal and to feel com- 
fortable with the proposed method. 

Clearly, exploring the parameter space relevant to our empiri- 
cal approach is non-trivial and at times overwhelming. While the 
present work explores some dimensions of this space (e.g., user 
variability, network-related variability), others remain untouchedor 
sufficiently obscure. For example, we have not yet systematically 
explored issues related to traffic synchronization (see for example 
[3 1, IO]). Although we have observed a significant amount of syn- 
chronization effects in simulations that assume infinite sources (see 
Section 4.5), very little of this phenomenonseems to show up when 
assuming our hierarchical and variable session structure for web 
users or when analyzing measured traces from our ISP environ- 
ment. We conjecture that this lack of observed synchronization is 
due to the realistic variability structure of a typical web session. 
This conjecture is supported by our findings that in our simulation 
environments, we are typically able to reproduce the self-similar 
property of observed flow arrivals and the infinite variance or high- 
variability of the flows’ sizes or durations. Another dimension of 

the parameter space that has been left unexplored but appears to 
play a crucial role in advancing our understanding of the spatio- 
temporal dynamics of IP networks is the impact or “fingerprint” 
of network topology-related variability. Also, while we conjec- 
ture that our findings are generic and not TCP-specific, the prob- 
lem remains open as well. Finally, one of the most intriguing open 
issues that remains is how precisely TCP-like congestion control 
algorithms give rise to multifractal scaling. While we have ob- 
taincd initial empirical evidence that seems to relate multifractal 
scaling of 1P traffic with phenomena such as ACK-compression, a 
mathematical rigorous and intuitively appealing construction and 
explanation that makes sense in the networking context still eludes 

us. However, the experimental studies using different versions of 
closed-loop TCP-like or open-loop LJDP-like controls shed some 
light on how one may want to proceed. 
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Appendix 

A.1 Detailed description of user/session attributes 

The following provides a detailed description of the user/session 
attributes for which one has to specify a probability distribution: 

Inter-session time: Time between sessions from different users 

Pages per session: Number of Web pages accessed within a ses- 
sion by the same user. 

Inter-page time: Time between consecutive pages downloaded 
by the same user. We experienced with two different vari- 
ances of inter-page times. In one case, the inter-page time is 
the time between when the page download was initiate and 
when the next page download is initiated. In the second case, 
the download of the current Web page has to complete (in- 
cluding the download of all of the inlined object) before the 
intcrpage time is applied. For each download of a Web page 
the user picks one of the available Web server at random. 

Objects per page: Number of inlined objects within a Web page. 
All inlined objects are retrieved from the same Web server as 
the original Web page. 

Inter-object time: Time between requests to the inlined objects. 

Object size: Size of an object in KB (equals number of packets 
required to transfer the object). 

A.2 Probability distributions for user/session attributes 

Name inter-page objs. per page inter-object obj. size 

PARETOI Pareto Pareto Pareto Pareto 
mean 50 mean 4 mean 0.5 mean 12 
shape 2 shape 1.2 shape 1.5 shape 1.2 

PARETO Pareto Pareto Pareto Pareto 
mean 10 mean 3 mean 0.5 mean 12 
shape 2 shape I .5 shape 1.5 shape 1.2 

Exr 1 Pareto Constant - Exp 
mean 25 1 12 
shape 2 

EXP~ EXP Constant - Exp 
mean 10 1 12 

CONSTANT Constant Conslant - Constant 
mean 10 1 1000000 

A.3 Description of the data sets: 

Throughout this paper WC use the following high-quality data sets 
(i.e., packet drops reported by tcpdtcmp were negligible and other 
causes for drops have been identified to be negligible as well; high 
time stamp accuracy of about IO-100 psec). The trace DIAL1 was 
gathered from an FDDI ring (with typical utilization levels of 5- 
10%) that connects about 420 modems to the rest of the Internet. 
Although we collect every packet seen on the FDDI ring on July 
22, 1997 between 22:00 and 23:00, DIAL 1 contains (bidirectional) 
modem user traJic only. This amounts to 2,752,779 packets. This 
is the same dataset that has been used in a previous study [8] of 
the multifractal scaling behavior of Internet traffic. A second trace 
DIAL2 was collected in the same location as DIALS, on January 
21, 1998 again between 22:00 and 23:00, and contains 2,882,859 
packets. 
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