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ESI OpenFOAM v. 2.1.1. The present approach not only 
results in valuable findings on the underlying physics 
involved in the problem of interest but also allows us to 
directly compare and validate results that are currently 
obtained by the experimental and computational methods. 
It is believed that similar methodology can be employed 
to rigorously investigate more complex two-phase flow 
regimes in micro-geometries.
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1 Introduction

Fundamental investigations of micro-scale two-phase flow 
dynamics are of great interest to a large variety of applica-
tions ranging from micro-evaporators to micro-biochemical 
reactors (Kreutzer et al. 2005; Waelchli and Rohr 2006; 
Kashid and Agar 2007; Teh et al. 2008; Tung et al. 2009; 
Theberge et al. 2010; Abiev and Lavretsov 2012; Seemann 
et al. 2012). One of the most commonly observed regimes 
in micro-scale two-phase flows concerns transfer of con-
fined bubbles/droplets separated intermittently by a liquid 
phase, which is often referred to as slug or Taylor flow (Tri-
plett et al. 1999). The high rate of heat and mass transfer, 
even at low Reynolds numbers, and the minimum amount 
of working liquid used in the micro-scale, has established 
this flow regime as an optimal operating condition for 
micro-heat exchangers and chemical reactors (Baten and 
Krishna 2004; Ribatski et al. 2006; Wegmann and Rohr 
2006; Kashid et al. 2011).

Micro-scale slug flows often exhibit complex spatiotem-
poral features and interfacial phenomena which render 
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them as challenging problems to both numerical and exper-
imental approaches. Despite the great scientific efforts 
made in the recent decades for characterising this prob-
lem, reports on systematic experimental measurements are 
still very limited in the literature. Therefore, direct com-
parison of such measurements with numerical simulations 
and analytical studies, and thus their validation, is often 
not possible due to several main reasons: (1) Experimen-
tal measurements are usually performed for trains of bub-
bles separated by liquid slugs. Dynamics of such flows are 
strongly dependent on the characteristics of the two-phase 
flow mixer and flow rates of the two fluid phases involved 
(Gu et al. 2011). These measurements naturally lack pre-
cise identification of the flow boundary conditions in the 
carrier liquid phase, which are essential for reproducing 
the problem numerically and creating reliable mechanis-
tic models. Moreover, the available analytical models are 
only valid in the presence of well-defined fully developed 
boundary conditions far behind and in front of the bub-
bles, which is usually not investigated in such experimen-
tal measurements; (2) most of the previous experimental 
studies were dedicated to the measurements of individual 
flow parameters, such as liquid film thickness and/or bub-
ble velocity (Taylor 1961; Chen 1986; Han and Shikazono 
2009). In fact, parametric experimental studies providing 
simultaneous measurements of other important flow param-
eters, such as bubble volume, shape of the phase interface, 
velocity field in the liquid phase and development lengths, 
are largely missing in the literature, mainly due to the limi-
tations of the available experimental techniques. Therefore, 
there exists no experimental data for validating results of 
the corresponding numerical simulations for some of these 
flow parameters; (3) experimental measurements are usu-
ally performed in rectangular micro-channels, whose cross 
sections might considerably vary from a perfect rectangle 
with sharp 90° corners depending on the micro-fabrica-
tion process used for their manufacturing (Qu et al. 2000; 
Gunnasegaran et al. 2010). Moreover, the relative surface 
roughness in micro-channels can potentially modify the 
flow characteristics, especially for flow regimes where 
the thickness of the liquid film decreases significantly and 
becomes of the same order of magnitude (Chen 1986). 
Such effects eventually cause notable discrepancies when 
comparing experimental measurements to the results of 
numerical simulations in perfectly smooth rectangular 
micro-channels; and (4) in order to cover a large range 
of flow parameters in micro-scale slug flows, high spatial 
and temporal resolutions are required. As an example, the 
liquid film thickness surrounding the bubbles at the chan-
nel walls can decrease down to hundreds of nanometres at 
very low velocities, while the frequency of the waves on 
the bubble interface can reach up to few kilohertz at high 
velocities. These features have largely limited the range of 

available numerical and experimental data in the literature 
at such extreme flow conditions. In this light, more com-
prehensive and well-designed experiments are essential, 
not only for understanding of this particular flow regime, 
but also to provide accurate and reliable databases for vali-
dating the available analytical models and numerical simu-
lation results.

Reliable and accurate experimental measurements in 
micro-scale two-phase flows demand highly sensitive instru-
ments to quantify the relatively small quantities of interest 
in the flow in a non-invasive manner. This has largely moti-
vated the application of high resolution non-intrusive optical 
techniques for such measurements in the last decade (Aubin 
et al. 2010; Williams et al. 2010; Khodaparast et al. 2014). 
Although quantitative optical methods can potentially be 
employed to achieve a wealth of knowledge on the dynam-
ics of the flow of interest, they have rarely been used in 
the past for parametric studies in two-phase flows. This is 
mostly due to the fact that quantification of multiple flow 
parameters has often been equated with adding complex and 
expensive instrumentation to the experimental facility in 
the past. Unlike the experimental studies, numerical simu-
lations are more likely to provide simultaneous quantifica-
tion of important flow parameters in two-phase flows. In the 
last decade, the advances made by Eulerian techniques for 
tracking the interface between two immiscible fluids on a 
fixed computational mesh made the numerical simulation 
of flows characterised by large interface deformations pos-
sible. This allowed the computational investigation of many 
micro-channel two-phase flow features, such as bubble for-
mation at co-current (Chen et al. 2009) and T-junction (Qian 
and Lawal 2006) injection arrangements, heat transfer in 
non-evaporating segmented flows (Lakehal et al. 2008; He 
et al. 2010), bubble and fluid dynamics under flow boiling 
conditions (Mukherjee et al. 2011; Li et al. 2007). A com-
prehensive review of numerical methods and applications 
for multiphase flows in micro-fluidics was presented by 
Wörner (2012). However, results of such studies are mainly 
dependent on mathematical models, which are still to be 
validated against reliable and accurate experimental meas-
urements with well-defined necessary initial and boundary 
conditions, especially in complex two-phase flows.

This work reports the results of systematic experimental 
measurements and numerical simulations aimed to character-
ise the dynamics of isolated confined air bubbles in laminar 
fully developed liquid flows within smooth circular channels 
of diameters d = 0.5 mm and d = 1 mm. Water and glyc-
erol are used as the continuous liquid phase, and therefore, 
a large range of flow capillary numbers 10−4 < Ca < 10−1 
and Reynolds numbers 10−3 < Re < 103 are presently cov-
ered. The non-intrusive micro-particle shadow velocimetry 
technique (µPSV) is employed to simultaneously resolve 
the phase interface and the flow dynamics. All experimental 



211Microfluid Nanofluid (2015) 19:209–234 

1 3

quantifications are derived from a single sequence of high-
speed greyscale images captured using a rather simple and 
affordable optical set-up (Khodaparast et al. 2014). Along-
side the experimental measurements, CFD simulations based 
on the volume of fluid (VOF) (Hirt and Nichols 1981) inter-
face capturing method are performed by means of the com-
mercial software ANSYS Fluent v. 14.5, here augmented by 
implementing self-defined functions to improve the accuracy 
of the surface tension force estimation, and the InterFOAM 
solver included in the open-source package ESI OpenFOAM 
v. 2.1.1. Precise experimental measurements of the flow rate 
in the continuous liquid phase and volume of the bubble 
are used as inputs to numerically simulate the flow. While 
ANSYS Fluent has been extensively utilised for the simu-
lation of two-phase flows in narrow channels (Gupta et al. 
2009; Mehdizadeh et al. 2011; Gregorc and Zun 2013; Qian 
and Lawal 2006; Talimi et al. 2012), the literature concern-
ing the use of OpenFOAM is still limited (Hoang et al. 2013; 
Pattamatta et al. 2014; Ghaini et al. 2011). Hence, simula-
tions were presently run by employing both the solvers with 
the aim of comparing their performances and providing fur-
ther validation to OpenFOAM. The combination of the com-
putational and experimental approaches used in the present 
study allows us to fully compare the final results obtained on 
liquid velocity, interface shape and dynamics, bubble veloc-
ity and volume, liquid film thickness and development length 
and highlight the advantages and shortcomings of the differ-
ent applied methods.

The present paper is organised as follows: a brief intro-
duction to the physics of confined bubble flows in micro-
channels and a review of the state of the art is included in 
Sect. 2; descriptions of the current experimental and numer-
ical methods are provided in Sects. 3 and 4, respectively; 
analysis and comparison of the corresponding results are 
presented for a large range of flow parameters for confined 
air bubbles in both low and high viscous liquid flows in 
Sect. 5; finally, the concluding remarks and research find-
ings are summarised in the last section of the paper.

Supplementary data processed from the experimental 
measurements, which may be useful to benchmark compu-
tational codes aimed to simulate two-phase flows in narrow 
channels, are provided in tabular form in Appendix 1.

2  State of the art

Motion of elongated confined bubbles transferred by fully 
developed Poiseuille liquid flows, as shown schematically 
in Fig. 1, has for a long time been the topic of experi-
mental, analytical and numerical studies (Fairbrother and 
Stubbs 1935; Bretherton 1961; Hyman and Skalak 1972). 
In the absence of significant buoyancy and inertial effects 
(We ≪ 1 and Re ≪ 1), dynamics of such flows is mainly 
ruled by the result of the competition between the viscous 
and surface tension forces. The ratio of these forces defines 
the most important dimensionless number in the so-called 
visco-capillary regime, namely the capillary number:

where µc is the viscosity of the continuous liquid phase, Ud 
is the velocity of the dispersed phase, here the bubble, and 
σ is the surface tension.

At very low capillary numbers, surface tension is natu-
rally expected to play the dominant role in defining the flow 
characteristics. Therefore, bubbles with both a spherical 
nose and rear are expected to fill almost the entire cross sec-
tion of the channel. The liquid film surrounding the bubbles 
at such flow conditions is very thin, and the bubble veloc-
ity is very close to the mean velocity in the continuous liq-
uid phase Ud ≃ Uc. However, as the flow capillary number 
increases, the liquid film becomes thicker and the ratio of 
the bubble to mean liquid flow velocity Ud

∗
=

Ud

Uc

 increases.
Studies by Taylor (1961) and Bretherton (1961) can be con-

sidered as two of the most classic investigations performed on 
the creeping motion of elongated confined bubbles in horizon-
tal channels of small diameters. Based on the assumption that 
the thin liquid film surrounding the bubble is stagnant in the 
visco-capillary regime, Taylor related his experimental meas-
urements of Ud

∗, for nearly inviscid bubbles, to the prediction 
of the dimensionless liquid film thickness δ*, using the follow-
ing relationship (Goldsmith and Mason 1963):

(1)Ca =

µcUd

σ

(2)δ
∗

=

δ

d
= 0.5
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�
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Fig. 1  Schematic of an isolated 
confined bubble transferred by 
axisymmetric fully developed 
Poiseuille flow
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where d is the tube diameter.
More recently, an empirical correlation was fitted to 

Taylor’s experimental measurements by Aussillous and 
Quéré (2000), which has since been referred to as Taylor’s 

law and has been used for benchmarking experimental and 
numerical results:

Bretherton (1961) applied lubrication theory to the creep-
ing flow in the liquid film surrounding a long inviscid bub-
ble in small tubes, in the absence of gravitational and iner-
tial forces. As a result, he found the following simplified 
relationship for the prediction of the liquid film thickness at 
low capillary numbers Ca < 5 × 10−3:

More recently, the effect of inertia on the motion of 
confined elongated bubbles was investigated in a few 
numerical and experimental studies (Aussillous and 
Quéré 2000; Heil 2001; Ryck 2002; Kreutzer et al. 
2005; Han and Shikazono 2009). In general, this effect 
was found to increase the thickness of the liquid film 
around the gas bubbles. Aussillous and Quéré (2000) 
observed that above a threshold capillary number Catr, 
the thickness of the low viscous liquid film is signifi-
cantly higher than the value predicted by Taylor’s law. 
Furthermore, inertial effects were observed to modify 
the shape of the bubbles: increasing the flow Reyn-
olds number at a constant capillary number was found 
to elongate the bubble nose, while flattening the tail of 
the bubble. In the same context, Ryck (2002) derived a 
correction term for Bretherton’s problem to compensate 
for the thickening effect of inertia on the liquid film, 
which was observed in low viscous liquids, by introduc-
ing a new dimensionless parameter F =

Re

Ca
=

ρcσR

µc
2

. This 
correction term was found to be negligible for highly 
viscous liquids, such as glycerol with low values of F 
number, while it could explain the deviation from the 
Taylor’s law observed in the experimental results of 
Aussillous and Quéré (2000) at high Re and F numbers 
(Re ~ 1000, F > 10,000). Similarly, it was shown by 
Heil (2001) that inertia effects become more significant 
in Bretherton’s problem at higher Reynolds numbers 
and lower capillary numbers, which are typical in low 
viscous liquid flows.

Despite the large number of numerical and experimental 
studies dedicated to the hydrodynamics of elongated bub-
bles, most of these investigations were only focused on 
quantifying the bubble to mean flow velocity ratio and the 
film thickness, while other aspects of the flow such as the 
shape of the bubbles, the development length in front and 
at the back of the bubbles, and the onset of the transitions 

(3)δ∗
=

0.67 Ca
2/3

1 + 3.35 Ca
2/3

(4)δ∗
= 0.67 Ca

2/3

to non-axisymmetric and time-dependent flows were usu-
ally overlooked in the literature, especially in the experi-
mental studies due to the limitations in the measurement 
techniques.

Moreover, effect of the bubble size on flow dynamics 
in small channels has been rarely investigated before and 
most of the results reported in the literature are dedicated 
to the dynamics of confined elongated bubbles whose 
volume-equivalent diameter is larger than 1.5 times the 
tube diameter deq > 1.5d. The volume-equivalent diame-
ter of the bubble deq is defined as the diameter of a sphere 
whose volume is equal to that of the non-spherical bub-
ble Vd:

However, liquid flows containing small particles, liquid 
droplets or gas bubbles in small channels are relevant to 
numerous engineering applications. Furthermore, motion 
of deformable bubbles and drops has been often used to 
model the flow of blood cells in small capillaries (Hyman 
and Skalak 1972; Hsu and Secomb 1989; Pozrikidis 
2005).

Hyman and Skalak (1972) numerically studied the 
flow of equally spaced spherical droplets along the 
tube centreline in creeping liquid flows (Re ≪ 1) for 
the range of 0.1 < deq

∗
< 0.8, where deq

∗ is the dimen-
sionless volume-equivalent diameter of the bubble with 
respect to channel diameter. The measurements per-
formed by Ho and Leal (1975) on the motion of small 
neutrally buoyant droplets in creeping liquid flows 
within circular channels still remains as one of the only 
experimental studies directly relevant to the present 
problem of interest. The effect of flow viscosity and 
droplet size on flow characteristics were investigated 
in this study; however, dispersed-to-continuous phase 
viscosity ratios � =

µd

µc
 below 0.19, which is typical of 

gas-liquid flows, and bubble diameters deq smaller than 
0.7d, were not covered in their measurements. They 
observed that the dimensionless velocity of the droplets 
Ud

∗ in the range 0.7 < deq
∗

< 1.1 decreased as the drop-
let diameter increased. Increasing the flow rate of the 
continuous phase was also shown to increase the dimen-
sionless velocity of the droplets. Acceptable agreement 
was achieved between their experimental measurements 
and the numerical results of Hyman and Skalak (1972), 
although the latter seemed to slightly over-predict the 
experimental results. This study was later continued by 
Olbricht and Leal (1982), who investigated the buoy-
ancy effects on droplets of 0.5 < deq

∗
< 0.85 in creeping 

liquid flows. The dimensionless velocity of the droplet 
in the presence of gravitational effects was observed 
to increase when decreasing the droplet size only until 
around deq

∗
= 0.6 − 0.7. A descending trend was then 

(5)deq = (6Vd/π)1/3



213Microfluid Nanofluid (2015) 19:209–234 

1 3

observed in the velocity of the bubble as deq
∗ was further 

reduced. This resulted in the appearance of a maximum 
in the evolution of Ud

∗ versus deq
∗, which was found to 

be more noticeable at lower flow rates.
More recently, numerical studies performed by Mar-

tinez and Udell (1990), Lac and Sherwood (2009) and 
Feng (2010) have focused on the dynamics of deformable 
neutrally buoyant droplets along the axis of a circular 
channel. The effect of the droplet size was investigated 
by Martinez and Udell (1990) for relatively high viscos-
ity ratios λ > 0.1 and capillary numbers Ca > 0.05. In 
general, the following conclusions were obtained: the 
dimensionless velocity of the droplet decreased as its 
size increased until reaching an asymptotic value; the 
droplet shape and velocity were observed to be inde-
pendent of the droplet size for deq

∗
> 1.1, and droplets 

of deq
∗

< 0.5 were found to not be sensitive to the vis-
cosity ratio. Finally, good agreement was obtained ver-
sus the measurements of Ho and Leal (1975), although 
the numerical simulations slightly over-predicted the 
experimental results. As can be observed, there are not 
sufficient reports in the literature for experimental inves-
tigations probing the impact of bubble size on the flow 
dynamics. Moreover, dynamics of small, low viscous 
bubbles was not the topic of studies even in the numeri-
cal investigations.

In view of the lack of such information for characteris-
ing the flows of interest here, a systematic investigation of 
different flow parameters characterising the dynamics of 
nearly inviscid small and elongated air bubbles in low and 

high viscous liquids is performed in the present study. For 
each flow parameter, the effects of bubble size and capil-
lary number (for elongated bubbles) are determined and 
analysed.

3  Experimental technique

3.1  Experimental facility

A relatively simple experimental facility is used for the 
current measurements, see Fig. 2. Tests were performed in 
10-cm-long circular transparent tubes submerged in a liq-
uid bath. Experiments were designed carefully so that the 
refractive indices of the tube wall material, the liquid in the 
medium surrounding the tube and the working liquid were 
approximately identical. Therefore, no optical distortion 
was present in the final images since the tube was observed 
through the flat surface of the fully transparent liquid bath. 
Physical properties of the working fluids at the region of 
interest (ROI) were determined at the average of the tem-
peratures measured at the inlet and outlet of this test sec-
tion. Detailed properties of the working fluids and speci-
fications of the tubes used in the present experiments are 
reported in Table 1. Tube diameters were measured using a 
pre-calibrated 40× microscope objective.

A pressure pump was used for generating non-oscillat-
ing flow of liquid into the tube, while single air bubbles 
were injected through a T-junction located 15 cm upstream 
of the tube inlet to ensure fully developed flow at the region 

pressure pump

continuous phase
Temp. 2

balance

flow meter

LED

condenser

high speed
  camera

refractive index matching pool

 tube

dispersed phase

Temp. 1

Region of interest

Fig. 2  Schematic of the experimental facility used in the current study
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of interest. This assumption was further investigated in the 
post-processing step by examining the spatial and tempo-
ral stability in the velocity of both the continuous and the 
dispersed phases. A micro-flow meter and a digital bal-
ance, collecting the liquid from the channel outlet, were 
employed for estimating the bulk flow rate of the continu-
ous phase (Fig. 2). However, more accurate and reliable 
local flow rate measurements were performed by integrat-
ing the experimental velocimetry results over the tube cross 
section; see Khodaparast et al. (2014) for more details.

3.2  Optical set-up

The micro-particle shadow velocimetry µPSV technique 
(Khodaparast et al. 2013) was applied here for simultane-
ous interface detection and velocimetry. To this end, the 
liquid phase was seeded with colourless spherical polysty-
rene particles of 1.5 µm diameter. The fully transparent test 
section described before was set above a low-power LED 
light source of wavelength 530 nm and maximum power 
475 mW. In order to enhance the light efficiency of the opti-
cal set-up, the LED light source was collimated and then 
passed through the microscope condenser which focused 
the light with the appropriate conical angle onto the ROI 
(Khodaparast et al. 2013). The plane of interest, here cen-
tre-plane of the tube, was isolated in the illuminated vol-
ume of the fluid by a Nikon 20×, NA = 0.45 objective, fac-
ing the test section from the top. As will be discussed later, 
for air–water flows at very low capillary numbers, higher 
optical magnifications were achieved using the Nikon 40×, 
NA = 0.6 objective in order to obtain an acceptable resolu-
tion within the very thin liquid film forming around the air 
bubbles. The magnified images of the flow of interest on 
the centre-plane of the tube were finally recorded by a Pho-
tron FASTCAM SA3 high-speed camera which possesses a 
1024 × 1024 sensitive array of 17 × 17 µm2 pixels. Frame 
rates up to 10 kHz and exposure times down to 5 µs were 
set for the experimental tests according to the flow veloc-
ity, such that the illumination power was always kept at the 
minimum necessary value.

3.3  Post-processing and velocimetry methods

Simultaneous quantification of important flow parameters, 
namely the flow rates of the continuous and the dispersed 

phases, shape and volume of the bubble, thickness and 
dynamics of the liquid film surrounding the bubble, and the 
development lengths in front and at the back of the bub-
ble, was achieved applying the following post-processing 
methods:

• Phase interface The significant difference between the 
refractive indices of the continuous and the dispersed 
phase, here liquid and gas, respectively, results in a high 
contrast gradient level at the phase interface in the shad-
owgraphy images. Thanks to this feature, a Canny edge 
detector (Canny 1986) was applied to the raw µPSV 
images recorded presently in order to detect the phase 
interface. In this context, the local gradients were cal-
culated, the non-maximum gradient values were filtered 
out, and the final results were thresholded.

• Bubble volume This parameter was determined by cal-
culating the volume created by rotating the detected 
bubble interface around the centreline of the tube, con-
sidering the axisymmetric flow assumption. Consider-
ing one pixel error in defining the bubble interface, the 
relative error in measurements of bubble volume ranged 
from 3 to 1 % for small spherical and elongated bub-
bles, respectively.

• Velocities The velocity of the bubble is measured using 
the time strip method by plotting the evolution of the 
greyscale image intensity in time, on the tube centreline, 
and relating the slope of this strip to the bubble velocity. 
This resulted in less than 0.5 % error in the correspond-
ing results. The velocity field in the continuous liquid 
phase seeded with tracer particles is measured by apply-
ing the well-known cross-correlation technique using 
the free PIV software package JPIV (JPIV 2013). Less 
than 2 % of relative error was obtained when compar-
ing the result of the cross-correlated µPSV images with 
known velocity fields (Khodaparast et al. 2013).

• Development length In order to quantify this param-
eter, the local velocity in the liquid phase is measured 
continuously using the cross-correlation technique at a 
fixed point located on the tube centreline. If this point 
is located adequately far from the bubbles nose, it can 
be observed that the fully developed local velocity at 
the tube centreline is modified as the bubble gets suffi-
ciently close to the measurement point. Once the bubble 
leaves this point and its tail gradually gets far enough 

Table 1  Specifications of the tubes and the working fluids used in the experiments. n and µ represent refractive index and fluid viscosity, 
respectively

Tube material d (µm) Continuous phase Dispersed phase

FEP, n = 1.33 514, 962 Water, nc = 1.33, µc = 0.88 mPa·s Air, nd = 1, µd = 0.019 mPa·s

Fused silica, n = 1.47 494 Glycerol, nc = 1.47, µc = 550 mPa·s Air, nd = 1, µd = 0.019 mPa·s
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from the measurement location, the magnitude of this 
local velocity changes back to the fully developed value 
at the corresponding flow rate. Presently, the distance 
between the bubble tip (or the rear end) and the location 
where the relative difference between two successive 
liquid velocity vectors becomes less than 5 %, is con-
sidered as the development length in front Xn (or at the 
back Xt) of the bubble. The uncertainty in defining this 
parameter from the experimental measurements can be 
up to 30 %, especially at higher liquid-phase velocities.

• Flow rate For the axisymmetric steady-state laminar 
liquid phase, the volumetric flow rate was calculated by 
integrating the fully developed experimentally meas-
ured centre-plane velocity profile across the circular 
cross section of the tube (Khodaparast et al. 2013). This 
resulted in reliable instantaneous flow rate measure-
ments with better than 5 % of accuracy.

• Film thickness Film thickness measurements were per-
formed based on the information obtained on the exact 
location of the tube wall and the phase interface in the 
previous steps. The optical magnification in the experi-
mental tests was chosen carefully so that the relative 
errors in measurement of this parameter never exceeded 
10 %.

• For more detailed presentation of the current flow loop, 
optical set-up and the post-processing methods, and 
their application to a similar two-phase flow regime, 
please refer to Khodaparast et al. (2014).

4  Numerical method

4.1  Governing equations

The VOF algorithm belongs to the class of the single-fluid 
multiphase methods, as the phases are treated as a single 
fluid whose properties change abruptly across the interface. 
A unique velocity and pressure field are shared among the 
phases, such that a single set of flow equations is written 
and solved throughout the flow domain. A colour function 
is defined to identify each phase on a discretised domain: 
the volume fraction α. It represents the ratio of the cell vol-
ume occupied by the primary phase, and therefore, it is 1 
if the cell is filled with the primary phase, 0 if filled with 
the secondary phase and 0 < α < 1 for an interfacial cell 
with both phases inside. Every fluid property is mapped on 
the computational mesh as the average of the primary and 
secondary phases’ specific properties, weighted by the local 
volume fraction value, e.g. density ρ and viscosity µ:

(6)ρ = ρ2 + (ρ1 − ρ2)α

(7)µ = µ2 + (µ1 − µ2)α

where α denotes the volume fraction value in the cell, and the 
subscripts 1 and 2 refer to the primary and secondary phases.

Different methodologies for updating the volume frac-
tion field are adopted within ANSYS Fluent and the 
InterFOAM solver of OpenFOAM, a brief description 
is provided in Sect. 4.2. The single-fluid continuity and 
momentum equations for an incompressible flow and New-
tonian fluid take the following form:

where u is the fluid velocity vector, p is the pressure, g indi-
cates the gravity acceleration vector, and Fσ is the surface 
tension force. The latter is formulated as a body force by 
means of the continuum surface force (CSF) method pro-
posed by Brackbill et al. (1992):

where the surface tension coefficient σ is considered con-
stant here, and κ is the local interface curvature. The den-
sity correction term ρ/ρ̂, with ρ̂ = (ρ1 + ρ2)/2, biases 
the force toward the fluid with higher density to prevent 
unphysical accelerations in the region occupied by the 
lighter fluid. The interface curvature is not available explic-
itly in interface capturing frameworks such as the VOF 
algorithm, but it has to be reconstructed according to the 
local values of the volume fraction in proximity of the 
interface. The different methodologies presently adopted 
are described in Sect. 4.3.

4.2  The volume fraction equation

Within the VOF method, the volume fraction field is trans-
ported as a passive scalar by the flow field, and hence, the 
interface location is in principle evolved by solving the fol-
lowing conservation equation:

When integrated in a finite-volume discretisation frame-
work, the convective term of Eq. 11 involves the interpo-
lation of the volume fraction on the computational cell 
faces. A suitable interpolation scheme needs to preserve 
the fundamental properties of the volume fraction, i.e. 
boundedness (between 0 and 1) and sharpness. However, 
low-order upwind schemes preserve boundedness but tend 
to smear the interface as the simulation evolves with time, 
while high-order schemes are less diffusive but generate 
unbounded oscillations of the volume fraction field.

(8)∇ · u = 0

(9)

∂(ρu)

∂t
+ ∇ · (ρu · u) = −∇p + ∇ ·

[

µ

(

∇u + ∇uT

)]

+ ρg + Fσ

(10)Fσ =
ρ

ρ̂
σκ∇α

(11)
∂α

∂t

+ ∇ · (αu) = 0
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A classical remedy to this issue has been to interpret 
the convective term of Eq. 11 as a balance of the primary 
phase volume fluxes across the faces of the computational 
cell and hence to geometrically compute these fluxes after 
an approximation of the local interface profile has been 
reconstructed. To this purpose, ANSYS Fluent implements 
the Youngs (1982) Piecewise Linear Interface Calculation 
(PLIC) algorithm which is the solver option presently used.

A different approach was studied by Weller (2008) and 
consists of manipulating the volume fraction equation by 
adding an artificial compressive term to counteract the 
effect of numerical diffusion. This methodology is imple-
mented within the presently used InterFOAM solver for 
OpenFOAM under the name of Multidimensional Univer-
sal Limiter with Explicit Solution (MULES) algorithm. 
The VOF equation is modified as follows:

where the second term is the standard convective term 
while the third one operates the interface compression. 
The compressive term is built in such a way that, due to the 
presence of the multiplying factor α(1 − α), it is nonzero 
only for cells cut by the interface. The artificial compres-
sion velocity Ur is given by:

where S is the cell boundary face normal vector and 
φ = u · S is the volume flux across the cell face. Cγ is the 
coefficient that tunes the interface compression. A value 
of 0 defines no compression, while higher values ensure a 
sharp interface. However, high values for Cγ are discour-
aged because, as the volume fraction field becomes steeper, 
the computation of the interface topology becomes less 
accurate. The results of validation benchmarks conducted 
by Deshpande et al. (2012) and Hoang et al. (2013) sug-
gested the value of 1 to be the best trade-off solution and 
is thus adopted to perform the simulations presented in this 
paper.

4.3  Curvature calculation algorithm

By default, ANSYS Fluent (version 14 and earlier) and 
OpenFOAM evaluate the interface unit normal vector and 
curvature by differentiating volume fractions, according to 
the following formulation originally proposed by Brackbill 
et al. (1992):

However, such an approach is known to have poor accu-
racy because the volume fraction changes abruptly across 

(12)
∂α

∂t

+ ∇ · (αu) + ∇ · (α(1 − α)Ur) = 0

(13)Ur = min

[

Cγ

|φ|

|S|
,

(

|φ|

|S|

)

max

]

· n

(14)n =
∇α

|∇α|
and κ = −∇ · n = −∇ ·

∇α

|∇α|

the interface, and standard finite-difference schemes do not 
converge when applied to highly discontinuous functions. 
The consequence is the generation and growth of unphysical 
velocities, known as spurious velocities or parasitic currents 
(Lafaurie et al. 1994), especially in low capillary number 
flows, such as those which are of concern in this work.

To overcome this issue, a Height Function (HF) algo-
rithm (Cummins et al. 2005) and a Laplacian Filter tech-
nique (Lafaurie et al. 1994) were introduced here within 
ANSYS Fluent by means of self-defined external func-
tions. The HF algorithm is based on the local integration of 
the volume fraction field to obtain a discrete field of local 
heights of the interface above a reference axis. First- and 
second-order derivatives of the heights are discretised by 
means of central finite-difference schemes, which ensure 
a computed curvature that exhibits a second-order conver-
gence rate with respect to the mesh refinement. Details of 
the present implementation and the results of several vali-
dation benchmarks are illustrated in Magnini et al. (2013) 
and Magnini (2012). However, the use of the HF algorithm 
is restricted to uniform computational grids. Therefore, its 
application is presently limited to flows characterised by 
liquid film thicknesses down to about 0.025d in order to 
adequately solve the flow within the liquid film surround-
ing the confined bubble without making the computational 
run prohibitively costly.

For thinner films, non-uniform grids with local refine-
ment at the channel wall were utilised, in order to capture 
the film dynamics with a reasonable computational cost. 
With this mesh configuration, the interface topology is 
reconstructed by differentiating a smoothed version of the 
volume fraction field, which can be promptly obtained by 
using the following Laplacian filter:

where Nf is the number of boundary faces of the computa-
tional cell, Sf is the area of the cell face and αf is the value 
of the volume fraction interpolated at the face centre. The 
application of this filter can be repeated as many times as 
desired to get a smoother field, although Lafaurie et al. 
(1994) and Hoang et al. (2013) did not detect any signifi-
cant improvement in curvature calculation for using more 
than two cycles. Then, the interface normal vector and the 
curvature are calculated by applying Eq. 14 to the smoothed 
volume fraction field. A preliminary benchmark test, con-
sisting of a transient simulation of a two-dimensional invis-
cid static droplet in the absence of external forces, showed 
that the present implementation of the Laplacian filter tech-
nique reduced the maximum magnitude of the spurious 
velocities by a factor of 2 with respect to ANSYS Fluent’s 
default method based on unsmoothed volume fractions.

(15)α̃ =

∑Nf

i=1
αf Sf

∑Nf

i=1
Sf
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4.4  Numerical set-up

Both ANSYS Fluent and OpenFOAM discretise the gov-
erning equations based on a finite-volume discretisation 
in a co-located grid arrangement. Table 2 presents a list of 
the chosen solvers options adopted for the discretisation 
of the various terms appearing in the flow equations. The 
Pressure Implicit Splitting of Operators (PISO) algorithm, 
based on the work of Issa (1985), was chosen for ANSYS 
Fluent since it converged faster than the other options 
available, while it is the only option available for time-
dependent two-phase flow simulations in OpenFOAM. The 
default number of corrector steps for the PISO algorithm 
was maintained for both solvers. Within ANSYS Fluent, 
the PRESTO (PRessure STaggering Option) option, which 
solves the pressure correction equation for a staggered con-
trol volume, was adopted as it exhibited a lower magnitude 
of the spurious velocity fields compared with the other 
choices available. A variable time step was chosen for the 
time-marching of the solution, and its value is calculated 
by the solver according to a maximum Courant number 
of Co = 0.25. OpenFOAM includes several solution algo-
rithms which can be selected independently for each equa-
tion. A much faster convergence of the pressure equation 
was observed when the Geometric–Algebraic Multigrid 
(GAMG) preconditioner was employed for the solution, 
and by selecting to perform two grid coarsening/refin-
ing levels at a time. The convergence criterion is based on 
the values of the absolute normalised residuals of the flow 
equations solution, and the threshold values are indicated in 
Table 2.

The flow domain of the numerical simulations is a hori-
zontal circular channel which is modelled as a 2D axisym-
metric domain, and thus, gravity effects are not included 
in the momentum equation. Structured orthogonal uniform 
and non-uniform computational meshes are employed to 
discretise the flow domain as presented in Sect. 4.5. As ini-
tial condition, a gas bubble is patched at the upstream of the 
channel. A fully developed parabolic velocity profile with a 
liquid-only flow and a zero-gradient condition for the pres-
sure are imposed at the channel inlet. At the channel wall, 
a no-slip boundary condition is specified. At the channel 
outlet, a zero-gradient velocity condition along with a con-
stant value for the pressure is set. Bubble initial volume and 
liquid inlet flow rate for each simulation run are obtained 
from the experimental measurements.

4.5  Computational mesh

Structured orthogonal uniform computational grids com-
prised of square cells are used to discretise the flow domain 
when modelling working conditions characterised by 
δ/d > 0.025, with δ being the thickness of the liquid film 
trapped between the bubble and the channel wall as meas-
ured in the experiments. The sizes of the mesh elements 
range from d/60 to d/200 so that at least five grid cells exist 
in the liquid film in the radial direction for all the flow con-
ditions, as suggested by Gupta et al. (2009).

A computational grid with a uniform coarse mesh in 
the core of the domain and a radially refined mesh in the 
near-wall region is used when δ/d < 0.025. Gupta et al. 
(2009) and Hoang et al. (2013) modelled confined bubble 

Table 2  Details of the discretisation schemes adopted to set up the numerical solvers

TVD Total variation diminishing scheme (Leer 1979),  MUSCL Monotonic Upstream-centred Scheme for Conservation Laws (Leer 1979), CDS 
Central finite-difference scheme, PISO Pressure Implicit Splitting of Operators (Issa 1985), AMG Algebraic Multigrid, PBiCG Preconditioned 
Bi-Conjugate Gradient, PCG Preconditioned Conjugate Gradient,  DILU Diagonal Incomplete LU,  GAMG Geometric–Algebraic Multigrid

ANSYS Fluent OpenFOAM’s InterFOAM

∂/∂t α: first-order explicit α, (ρu): first-order implicit

(ρu): first-order implicit MULES: first-order explicit

∇· (αu): PLIC (αu): second-order Van Leer TVD

(ρu · u): third-order MUSCL (ρu · u): second- order TVD (limitedlinearV)

(α(1 − α)Ur): MULES

∇
2 u: second-order CDS u: second-order CDS

Gradient Green–Gauss node based Green–Gauss linear

p − v coupling PISO (two corrections) PISO (three corrections)

Solver Gauss–Seidel with AMG u: PBiCG + DILU

p: PCG + GAMG

Convergence u: Resid. <10−6 u: Resid. <10−6

Criterion Continuity: Resid. <10−6 p: Resid. <10−7
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flows in micro-channels by adopting computational grids 
which included a near-wall refined region overlapping 
with the lubricating film. However, in the present study, 
such a configuration would lead to computationally 
expensive grids due to the very thin liquid films occur-
ring under the working conditions investigated in this 
work, with δ down to less than d/100. Therefore, mesh 
grids with the graded mesh region extended beyond the 
zone occupied by the lubricating film were also taken into 
consideration.

A grid convergence analysis was performed to select the 
optimal computational mesh. This involved the simulation 
of the confined flow of an air bubble within a d = 514 µm 
channel, with a water inflow characterised by an average 
velocity of 0.242 m/s. These working conditions were 
tested experimentally and yielded a terminal velocity of 
the bubble of 0.261 m/s, corresponding to Ca = 0.0029 
and Re = 150, and a liquid film thickness of δ/d = 0.0138. 
Many different grids were tested against this benchmark 
case. Table 3 reports the main parameters identifying four 
representative mesh configurations, where href  defines the 
thickness of the refined grid region near the wall, Ncells, R 
identifies the number of cells discretising the flow domain 
in the radial direction (core − near-wall regions) and ARmax 
represents the maximum aspect ratio of the cells. As the 
mesh elements are gradually refined, while approaching 
the channel wall, the maximum aspect ratio is achieved 
for the computational cell next to the channel wall. Evol 
defines the error in the initial volume of the bubble, com-
puted as (VCFD − Vexp)/Vexp, while Ncells, lf indicates the 
minimum number of cells discretising the liquid film in the 
radial direction when the flow is steady state. Mesh grids 
1–3 present the same thickness of the refined grid region 
near the wall, which extends beyond the flow domain occu-
pied by the lubricating film and the bubble interface, and a 
similar cell maximum aspect ratio, but different levels of 
mesh refinement. Grid 4 is made of square mesh cells of 
size d/200, while the layer of cells next to the wall, where 
the liquid film is expected to be located, is divided into six 
gradually refined smaller cells similar to the grid arrange-
ment adopted by Hoang et al. (2013). All the mesh grids 
tested here gave approximately the same terminal bubble 

shape, velocity and thickness of the liquid film. No relevant 
differences were observed between the results obtained by 
OpenFOAM and ANSYS Fluent. In particular, the devia-
tions between experimental and numerical bubble velocity 
and liquid film thickness were within the error bands of the 
present experimental measurements. However, grid 1 was 
discarded because it was not sufficient to solve the flow in 
the liquid film for the lowest capillary numbers tested in 
this work, and because of the relatively large error in the 
numerical initialisation of the bubble volume. As grids 
3 and 4 did not improve significantly the results obtained 
with the coarser grid 2, the latter was the computational 
mesh presently selected to model flows characterised by 
thin liquid films (δ/d < 0.025).

5  Results and discussion

Quantitative findings of the present experimental meas-
urements and numerical simulations for confined isolated 
air bubbles in liquid flows are presented in this section for 
both air–water and air–glycerol flows. The high viscosity 
of glycerol allows achieving relatively high capillary num-
bers at very low Reynolds numbers (Re ≪ 1), while for 
air–water flows even at low capillary numbers (Ca ~ 10−2), 
impact of significant inertia could be observed and inves-
tigated in the flow. The bubble shape, buoyancy effects, 
bubble velocity, liquid film thickness and flow development 
length in front of the nose and behind the tail of the bub-
ble are quantified and analysed separately for each case. 
For each parameter, results of two different analyses are 
presented: (1) For small bubbles (deq < d), effect of the 
volume-equivalent diameter of the bubble deq on the quan-
tity of interest is investigated at constant capillary numbers. 
(2) For elongated bubbles (deq > 1.5d), where deq has no 
significant effect on the flow dynamics, the effect of cap-
illary number on the flow characteristics is quantified and 
discussed.

For air–water flows, results are presented at relatively 
low capillary numbers Ca < 0.025 mainly due to the fact 
that the axisymmetric and steady-state assumptions were 
no longer valid at higher capillary numbers. However, 
steady-state axisymmetric air–glycerol flows were investi-
gated up to Ca ≃ 0.2.

The flow direction in all the results presented in this sec-
tion is from left to right. The flow capillary number Ca is 
based on the velocity of the elongated confined bubbles. 
For small bubbles, Ca is based on the velocity of an elon-
gated bubble transferred by the continuous liquid phase 
flowing at an identical flow rate.

The flow parameters characterising the flow conditions 
and results for 22 selected experimental runs are reported 
in tabular form in Appendix 1.

Table 3  Parameters characterising the non-uniform computational 
meshes studied to model flows with a thin liquid film surrounding the 
bubble

Grid href/R Ncells, R ARmax Evol (%) Ncells, lf

1 0.05 20 − 6 33.9 4.6 4

2 0.05 40 − 10 28.4 −0.43 7

3 0.05 80 − 18 25.8 −0.44 14

4 0.01 99 − 6 60.9 5.5 × 10−3 7
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5.1  Bubble shape

5.1.1  Effect of bubble size

The restricting walls of the channels are known to modify 
the interface of a deformable bubble and modify the drag 
coefficient, when compared to the motion of deformable 
bubbles in unconfined uniform liquid flows (Clift et al. 
1978). In the absence of inertial effects, the deformation of 
gas bubbles in liquid flows is a function of the flow capil-
lary number Ca and the volume-equivalent diameter of the 
bubble deq (Martinez and Udell 1990). However, at very 
low capillary numbers, bubble dynamics is mainly domi-
nated by surface tension, and thus, only small deviations 
from spherical shape are expected even for relatively large 
bubbles, deq

∗
≃ 1; that is, the bubble size is expected to 

have no significant effect on the shape of the phase inter-
face in this flow regime. On the contrary, at higher capil-
lary numbers, even very small bubbles experience notable 
deformations due to the effect of viscous forces.

The effect of bubble volume on its shape was studied 
quantitatively for the present experimental results by meas-
uring the diameter of the fitted circular curve to the front 
and the back of the image of the bubble on the centre-plane 
of the tube. For gas bubbles in motion in fully developed 
Poiseuille flows, the curvature at the nose of the bub-
ble is expected to be higher than that at the back of bub-
ble (Martinez and Udell 1990). This effect is confirmed 
by Fig. 3a, which plots the dimensionless bubble nose and 
rear diameters, dnose

∗
=

dnose

d
 and dtail

∗
=

dtail

d
, as a function 

of the bubble volume-equivalent diameter for air–glycerol 
flows. As can be seen, bubbles are no longer spherical for 
deq

∗
> 0.5, and this effect is amplified at larger capillary 

numbers. A similar trend is observed for air–water flows 

at Ca ∼ 10
−3, where small but noticeable deformations are 

already observed at about deq
∗

> 0.7, see Fig. 3b. How-
ever, as the flow capillary number is further reduced (on the 
order of Ca ∼ 10

−4), viscous effects on the bubble profile 
become negligible and thus bubbles tend to maintain their 
spherical shape even up until their equivalent diameters 
approach the channel diameter.

For deq
∗

> 1.5, no significant change in the curvatures 
of the nose and the tail of the bubbles was observed for the 
range of parameters studied here. In general, larger capil-
lary numbers make the bubble nose more slender and the 
bubble tail flatter, and this will be investigated in more 
details in the following section. It is worth mentioning 
that at deq

∗
≃ 1 an interesting pattern can be seen in all the 

presented results, especially at lower capillary numbers: 
the diameter of bubble nose and tail reaches a maximum 
before dropping to a constant asymptotic value in the con-
fined elongated bubble regime. This corresponds to a mini-
mum value of the bubble velocity as will be shown later in 
Sect. 5.3. Such an effect, reported here experimentally for 
the first time, was also observed in the results of the numer-
ical simulations performed by Martinez and Udell (1990) 
and Lac and Sherwood (2009).

For air–water flows with higher bubble velocities, Ca 
> 0.01 and Re = 500, inertial effects were observed to be 
no longer negligible. Such effects resulted in distinct non-
axisymmetric and time-dependent flow patterns, which are 
shown in Fig. 4. Although precise quantification of the cur-
vatures at the nose and tail of the bubbles was not possible 
at these flow conditions due the transient effects, bubbles’ 
interfaces were found to form a bell-shape profile with 
their nose more elongated in the direction of the flow, when 
compared to creeping flows of small bubbles at similar cap-
illary numbers.

(a) (b)

Fig. 3  Experimental influence of bubble size on the dimensionless diameter of the fitted circular curve to the nose and the back of the bubbles: 
 a for air–glycerol flow in the d = 494 µm tube, and b for air–water flow in the d = 514 µm tube
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Furthermore, the detected interfaces by the present 
experimental and numerical approaches are directly com-
pared in Fig. 5. The excellent agreement achieved for these 
measurements not only demonstrates the reliability of the 
numerical framework adopted here, but also proves that the 
experimental method is reasonably non-invasive and ade-
quately accurate. The interfaces achieved by the numerical 
simulations performed by OpenFOAM are not included in 
Fig. 5 since the results were very close to those obtained 
via ANSYS Fluent. As can be seen, noticeable deforma-
tions on the phase interface were observed in air–glycerol 
flows at Ca = 0.05 as the bubble volume increases, while 
the curvature at the nose and the tail of the air bubbles 
in water flows remains almost unchanged as the bubble 
grows in size. Numerical results for small air bubbles of 
deq

∗
< 0.8 in water flows are not presented here due to the 

severe effects of numerical errors. As a matter of fact, such 
small capillary numbers (on the order of 10−4) represent 

a limit for interface capturing numerical methods due to 
the appearance of strong unphysical flows at the gas–liq-
uid interface (so-called spurious velocities as introduced in 
Sect. 4.3), especially when decreasing the bubble size for a 
given computational mesh.

5.1.2  Effect of capillary number

For elongated bubbles at very low capillary numbers, due 
to the dominating effect of surface tension, the nose and 
the tail of the bubbles resemble closely hemispheres with 
diameters close to that of the tube. Therefore, the dimen-
sionless diameter of the fitted spheres to the nose and the 
tail of the bubble, dnose

∗ and dtail
∗, are very close to unity. 

As observed in the previous section, the curvature at the 
nose of the bubble is expected to be higher than that at the 
back due to the streamwise pressure gradient, and thus as 
the flow velocity and this pressure gradient increase, this 

Fig. 4  Time-dependent flow patterns observed experimentally for 
small air bubbles in water flows in the d = 514 µm tube at a Ca = 
0.011 and Re = 527, and b Ca = 0.023 and Re = 1065. Images from 

top to bottom for both cases are 2 × 10−4 s apart in time. The flow 
Reynolds number is based on the bubble velocity and tube diameter
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difference is expected to be enhanced, consequently making 
the bubble nose more elongated and the bubble tail flatter 
(Martinez and Udell 1990). The diameter of the fitted cir-
cular curve to the nose and tail of confined elongated bub-
bles was measured in the present study for air–water and 
air–glycerol flows for deq

∗
> 1.5, and the results are com-

pared to those achieved numerically by Martinez and Udell 

(1989) and Giavedoni and Saita (1999) for creeping flows. 
As can be seen in Fig. 6a, measurements in air–glycerol 
flows agree favourably with those obtained in the axisym-
metric numerical studies by Martinez and Udell (1989) and 
Giavedoni and Saita (1999) for creeping flow conditions. 
However, the non-negligible effects of inertia in air–water 
flows were noted to significantly modify the shape of the 
bubbles and consequently leading to discrepancies in the 
reported results. This is to say that the curvature at the nose 
of the bubble is higher and the tail of the bubble is flatter 
compared to the creeping flow at the same capillary number 
when inertia effects are not negligible, see Fig. 6b.

It should be noted that precise determination of the cur-
vature at the nose and the tail of the air bubbles in water 
flows at Ca > 0.015 was not possible due to the onset of 
non-axisymmetric and transient effects in the flow. Non-
axisymmetric patterns are identified as oblique capillary 
waves appearing at the bubble interface in proximity of its 
tail and a bubble nose which is shifted with respect to the 
tube centreline, as can be observed in Fig. 7; instead, time-
dependent effects appear as the flapping of the bubble tail 
as it is evident in Fig. 8 for air–water flows.

Comparison of the interfaces captured by the current 
experimental and numerical approaches for elongated 
air bubbles in glycerol and water flows at different capil-
lary numbers is presented in Figs. 9 and 10, respectively. 
Excellent agreement was achieved for air–glycerol flows 
which remained axisymmetric and steady state for the 
entire range of capillary numbers studied here, especially 
between the experimental and numerical results obtained 
by ANSYS Fluent, see Fig. 9. For air–water flows, experi-
mental measurements and axisymmetric numerical simu-
lation results agree approvingly at low capillary numbers, 
while slight discrepancies were observed for flows at Ca 
> 0.01 (Figs. 10d, e), due to the following reasons: (1) 
Time-dependent features appear at the interface, especially 
at the back of the bubbles in this regime, and therefore, it 

0 0.2 0.4 0.6 0.8 1 1.2
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x [mm]

r 
[m

m
]

0 0.2 0.4 0.6 0.8 1 1.2
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x [mm]

r 
[m

m
]

(b)

(a)

Fig. 5  Comparison of the experimental (blue, top) and numerical 
(red, bottom) results for a air–glycerol flow in the d = 494 µm tube 
at Ca = 0.05: deq

∗ = 0.354, 0.513, 0.677, 0.747, 0.813, 1.047 and 
1.189, and b air–water flows in the d = 514 µm tube at Ca = 0.0007: 
deq

∗
= 0.789, 0.852, 0.946, 1.016 and 1.386. The bubble profile given 

by the numerical simulations is depicted as the α = 0.5 iso-contour 
(colour figure online)

Fig. 6  Effect of capillary 
number on the dimensionless 
diameter of the fitted circular 
curve to the nose and the tail of 
the bubbles: a for air–glycerol 
flows in the d = 494 µm tube,  
b for air–water flows in the  
d = 514 µm tube

(a) (b)
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is no longer straightforward to obtain experimental and 
numerical interfaces which correspond to the exact same 
position of the bubble back, see Figs. 10d, e; (2) rela-
tively large errors occur in calculating the bubble volume 
from experimental visualisation by assuming an axisym-
metric interface profile in this flow regime, since the rear 
end of the bubble and the interface exhibit oscillations and 
non-axisymmetric profiles; (3) the non-axisymmetric flow 
features which were observed in the experimental visu-
alisation results are not modelled in the numerical simula-
tions. Besides these sources of errors, it can be observed 
that in general, the numerical simulations performed by 
OpenFOAM resulted in narrower bubbles compared to the 
results of ANSYS Fluent simulations and the experimental 
measurements. This can be ascribed to larger errors in the 
surface tension force calculation, as no improved meth-
odology for the calculation of the interface curvature was 
presently implemented in OpenFOAM.

5.2  Buoyancy effect

The focal plane of the microscope objective in the pre-
sent experimental measurements was always fixed on 
the centre-plane of the tube. Therefore, as long as the 
axes of symmetry of the bubbles of interest were aligned 
with the tube centreline, their widest horizontal sec-
tions appeared in-focus in the captured shadowgraphy 
images. This created a sharp phase interface in the final 
images for such bubbles, see Fig. 11. However, in the 
presence of non-negligible buoyancy effects, the bub-
bles are elevated with respect to the focal plane of the 
microscope objective, here the tube centre-plane, and 
therefore the widest horizontal sections of such bubbles 
appeared as out-of-focus shadow patterns in the images, 
see Fig. 12. This effect was used in the present study to 
distinguish the flow regimes in which buoyancy effects 
was relatively significant. It should be noted that such 
effects were not investigated in the present axisymmetric 
numerical simulations.

Bubble images presented in Figs. 11 and 12 were 
captured by the 20× objective with numerical aperture 
NA = 0.45, whose focal depth was estimated to be around 
5 µm by the correlation proposed by Inoue and Spring 
(1997). This estimation was currently further verified by 
imaging large spherical particles of diameters 90 and 45 
µm using the same objective. As can be seen in Fig. 13, 
clear out-of-focus patterns were observed for particles cen-
tred farther than 6 µm from the focal plane of the objective. 
Moreover, the visibility depth of the 20× objective was 
investigated for such large particles that fairly resemble 
the small bubbles studied in this section. It was found that 
large particles elevated even up to 0.2d with respect to the 
focal plane of the objective could be clearly captured in the 
images. Obviously, the largest horizontal sections of such 

(a)

(b)

Fig. 7  Effect of inertia on the bubble shape and the interface dynam-
ics: a air–glycerol flow in the d = 494 µm tube at Ca = 0.024, Re = 
0.0027, and b air–water flow in the d = 514 µm tube at Ca = 0.023, 
Re = 1065

(c)(b)(a)

Fig. 8  Transient effects at the rear end of the air bubble moving in the d = 514 µm diameter capillary filled with water at Ca = 0.023 and Re = 
1065. Images from left to right are 10−4 s apart in time. Re number is based on the bubble velocity
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particles were no longer in-focus, but still the diameter of 
its out-of-focus shadow corresponding to this section was 
observed to be sufficiently close to that of the actual par-
ticle diameter. This optical feature allowed us not only to 
distinguish the regimes with significant buoyancy effect, 
but also to estimate the volume of the elevated bubbles in 
such flows.

In air–glycerol flows, due to the relatively large viscous 
forces, the role of the gravitational force was observed to 

be fairly negligible for the range of flow parameters studied 
here. Sample shadowgraphy images of air bubbles in glyc-
erol flows at Ca = 0.05 are presented in Fig. 11, where a 
very sharp and clear interface between the phases can be 
detected. It should be noted that such bubbles could still 
be slightly elevated with respect to the centre-plane of 
the tube, within the finite focal depth of the microscope 
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Fig. 9  Comparison of the experimental (blue) and numerical (red: 
ANSYS Fluent, green: OpenFOAM) interfaces for air–glycerol flows 
in the d = 494 µm tube: a Ca = 0.008, b Ca = 0.052, c Ca = 0.075, 
d Ca = 0.098, and e Ca = 0.163 (colour figure online)
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Fig. 10  Comparison of the experimental (blue) and numerical (red: 
ANSYS Fluent, green: OpenFOAM) interfaces for air–water flows in 
the d = 514 µm tube: a Ca = 0.003, b Ca = 0.008, c Ca = 0.0098,  
d Ca = 0.015 and e Ca = 0.023 (colour figure online)
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objective. Gravitational effects were, however, found to 
be more significant in air–water flows, where clear out-
of focus effects were noticed for relatively small bubbles, 
especially at lower velocities, as can be observed in Fig. 12. 
For the same bubble size, the ratio of buoyancy-to-viscous 
forces is around 500 times larger in air–water flows due to 
the smaller viscosity of the carrier liquid. Buoyancy effects 
were found to significantly influence the bubble to mean 
flow velocity ratio for deq < d, which will be addressed in 
Sect. 5.3.

5.3  Bubble velocity

Effect of bubble size on its velocity is discussed in this 
section. Considering a fully developed Poiseuille velocity 
profile in the circular channel of interest, under no-slip and 
no-through boundary conditions, the velocity of the liq-
uid phase increases from zero at the tube wall to a maxi-
mum value on the tube centreline that is two times of the 
mean velocity of the liquid Uc. In such a flow condition, 
confined elongated bubbles are expected to be transported 

Fig. 11  Bubble shapes under negligible gravity effects for air–glycerol flows in the d = 494 µm tube at Ca = 0.05 for different dimensionless 
volume-equivalent diameters, deq

∗: a 0.06, b 0.21, c 0.35, d 0.46, e 0.51, f 0.67, g 0.76, h 0.81, i 0.96, j 1.04, k 1.18
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at velocities close to the mean velocity of the continuous 
phase Uc. This assumption is, however, not entirely valid, 
especially at higher velocities, where a considerably thick 
annular liquid film is formed around the bubbles, causing 
the bubbles to move at slightly higher velocities than Uc. As 
the volume of the bubble decreases and its volume-equiva-
lent diameter deq becomes smaller than the tube diameter, 
the velocity of the bubbles Ud is expected to increase, com-
pared to that of the confined elongated bubble regime, pro-
vided that gravity effects are negligible. This is obviously 
due to the fact that smaller bubbles are transferred by the 
central stream of the liquid in the tube, which moves at 

higher velocities (Martinez and Udell 1990). However, in 
the presence of non-negligible gravity effects, such bubbles 
are elevated with respect to the centreline of the tube. As 
a consequence, their velocity is lower compared to that of 
a similar bubble moving in axisymmetric flow conditions 
because the local velocity of the carrier liquid is lower. This 
effect is expected to become relatively less notable when 
the bubble volume is significantly reduced, deq

∗
≃ 0.2, and 

buoyancy effects are not significant anymore. In fact, very 
small bubbles are expected to behave very similar to small 
non-deformable solid particles in that they stay spherical 
and follow the local velocity of the liquid (Hetsroni et al. 

Fig. 12  Bubble shapes under gravity effects for air–water flows in the d = 514 µm at Ca = 0.007 for different dimensionless volume-equivalent 
diameters, deq

∗: a 0.07, b 0.21, c 0.33, d 0.46, e 0.58, f 0.65, g 0.74, h 0.82, i 0.91, j 1.03, k 1.13
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1970; Hyman and Skalak 1972). Considering that grav-
ity effects can be neglected due the small volumes of such 
bubbles, they are expected to be centred on the tube centre-
line, and therefore reaching the maximum velocity (2Uc) in 
the fully developed Poiseuille profile in a circular channel. 
Effect of the dimensionless volume-equivalent diameter of 
the bubble deq

∗ on the bubble velocity was investigated both 
experimentally and numerically in the present study. Direct 
comparison of the present measurements with the reported 
results in the literature is not possible since deformable 
bubbles with low gas-to-liquid viscosity ratio (λ ~ 0) were 
not covered in previous studies, see Ho and Leal (1975); 
Martinez and Udell (1990); Lac and Sherwood (2009).

For air–glycerol flows, experimental measurements as 
well as numerical results obtained with ANSYS Fluent 
and OpenFOAM suggest that the bubble velocity is inde-
pendent of its size when deq

∗
> 1.1, see Fig. 14. In such 

a condition, the bubble velocity predicted by both numeri-
cal solvers is within the error band of the value measured 
in the experiments. As was predicted before, a minimum in 
the dimensionless bubble velocity Ud

∗ was found around 
deq

∗
≃ 1, in both the experimental and numerical data. This 

is believed to be associated with the evolution of the bub-
ble shape, where a maximum in the bubble nose diameter 
was found at around deq

∗
≃ 1, see Fig. 3. For deq < d, the 

bubble velocity increases as its diameter is reduced for the 
reason mentioned earlier. However, the numerical model 
predicts a steeper rise in the velocity with respect to what 
was found experimentally. The largest deviation between 
the numerical and experimental results, although less than 
10 %, occurs within the range 0.2 < deq

∗
< 0.7. This dis-

crepancy is ascribed to small but nonzero gravity effects 
present in the experimental measurements. It is worth 
mentioning that gravity effects not only shift the bubble 
upward with respect to the channel axis, thus motivating its 

lower velocity than that given by the axisymmetric model, 
but they also increase experimental errors in the measure-
ment of bubble volume-equivalent diameter. As a reference, 
Fig. 14 also includes the analytical solution for the bub-
ble velocity obtained by Hyman and Skalak (1972) for the 
axisymmetric creeping flow of spherical bubbles with very 
low and high viscosity ratios (λ = 0 and 1).

Similar to air–glycerol flows, both experiments and 
simulations indicate that the bubble velocity is inde-
pendent of its size when deq

∗
> 1.1 for air–water flows. 

In this flow regime characterised by elongated bubbles, 
the predictions of the bubble velocity given by the CFD 
results are in excellent agreement with the experiments 

(a)

z = 0 z = +6 z = +12 z = +18 z = +24z = -6z = -12z = -18z = -24

z = 0 z = +3 z = +6 z = +9 z = +12z = -3z = -6z = +9z = -12

(b)

Fig. 13  Particle shadow images of large spherical polystyrene parti-
cles of diameters: a 90 µm, b 45 µm. The images were taken at iden-
tical illumination power with the 20× objective from particles resting 

on a microscope slide submerged in water. z represents the distance 
between the focal plane of the objective and the particle centres in 
micrometres

Fig. 14  Effect of bubble size on the dimensionless velocity of the 
bubble in air–glycerol flows in the d = 494 µm tube at Ca = 0.05. 
The capillary number is calculated based on the velocity of the elon-
gated bubbles
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for both ANSYS Fluent and OpenFOAM, see Fig. 15. 
A local minimum in the bubble velocity trend is still 
detected at about deq

∗
≃ 1. For deq

∗
< 1, the bubble 

velocity increases with respect to the value attained for 
elongated bubbles as expected. However, for deq

∗
< 0.9, 

the numerical and experimental trends differ substan-
tially due to the relatively more significant gravitational 
effects present in air–water flows than those observed for 
air–glycerol flows, resulting from the relatively smaller 
viscous forces. In the experimental measurements, the 
bubble velocity reaches a maximum and then drops as 
the bubbles are reduced in size, down to values which 
are less than the mean velocity of the liquid phase Uc 
when deq

∗
< 0.6. This observation confirms the predic-

tions associated with the significant buoyancy effects and 
elevation of the small bubbles with respect to the tube 
centreline. Moreover, this finding is in excellent agree-
ment with experimental measurements of Olbricht and 
Leal (1982). The axisymmetric model presently used 
in numerical simulations cannot capture this trend, and 
therefore, the predicted bubble velocity shows a mono-
tonic trend as the bubble diameter is decreased.

Figure 15 presents the comparison of the experimental 
and numerical bubble velocity results for air–water flows in 
tubes of diameters d = 514  and 962 µm. The tube diam-
eter was found to have a negligible effect on the results 
provided that the capillary number is constant. This is not 
surprising because the capillary number of the flow is still 
small enough (Ca ~ 10−4–10−3) such that viscous and sur-
face tension effects alone dominate this flow regime. How-
ever, bubbles’ velocities are dropping slightly more rap-
idly in the presence of significant gravitational effects for 

deq
∗

< 0.9 in the d = 962 µm tube confirming that buoy-
ancy effects are more enhanced in the wider channel.

In addition, the effect of bubble size on the velocity of 
the bubbles at different capillary numbers was experimen-
tally studied for tubes of diameters d = 514 and 962 µm 
and air–water flows, with the results presented in Fig. 16. 
The dimensionless bubble volume-equivalent diameter of 
deq

∗
≈ 1.1 still represents the threshold beyond which the 

bubble velocity becomes independent of its size. In this 
elongated bubble regime, the bubble velocity increases 
while increasing the capillary number, in agreement with 
the Bretherton’s law (Bretherton 1961). The magnitude of 
the maximum bubble velocity, detected at about deq

∗
∼ 0.9 

for all the cases considered here, increases with the capil-
lary number. This is due to the fact that gravity effects are 
relatively less significant at higher capillary numbers. For 
air–water flows in the d = 514 µm tube at Ca = 0.007, 
where very small bubbles could also be captured in the 
experimental tests, it was observed that for deq

∗
< 0.4, the 

gravity effect becomes once again less noticeable due to the 
small volume of the bubbles, see Fig. 16a. Eventually, bub-
bles of deq

∗
< 0.2 experience only negligible gravitational 

effects and thus were found to follow closely the local 
velocity of the liquid on the tube centreline.

With regard to the effect of flow capillary number on 
the velocity of elongated bubbles, Fig. 16 suggests that the 
dimensionless bubble velocity Ud

∗ increases with Ca. How-
ever, since the velocity ratio in this regime is tightly linked 
to the liquid film thickness, a more thorough analysis of the 
effects of the flow capillary number on the bubble dimen-
sionless velocity and the film thickness is outlined in the 
following section.
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Fig. 15  Effect of bubble size on the dimensionless velocity of the bubble in air–water flows: a d = 514 µm, Ca = 7 × 10−4, b d = 962 µm,  
Ca = 9 × 10−4
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5.4  Film thickness

The thickness of the liquid film surrounding the confined 
elongated bubbles at the tube wall δ is quantified and ana-
lysed in this section. The range of the fluid and flow param-
eters covered in the present measurements of air–glycerol 
flows are very well in accordance with the conditions 
defining the visco-capillary regime: (1) the viscosity of 
the carrier liquid is relatively high so that moderate cap-
illary numbers are achieved at very low flow velocities, 
and therefore, inertial effects are negligible (Re, We ≪ 1);  
(2) the viscosity ratio between the phases is very low 
� =

µd

µc
= 3 × 10

−5 and, (3) the tube diameter is small, d = 
494 µm, and thus gravitational effects can be neglected for 

confined elongated bubbles. Therefore, the film thickness is 
expected to depend only on the flow capillary number.

The experimental measurements of film thickness for 
air–glycerol flows were performed using the Nikon 20× 
objective resulting in less than 10 % error in the measure-
ments at the lowest capillary number Ca = 8 × 10−3. Fig-
ure 17a presents the comparison between the present exper-
imental and numerical film thickness measurements for 
air–glycerol flows. Results of both approaches were found 
to follow precisely Taylor’s law. Furthermore, the validity 
of the stagnant liquid film assumption used in experimental 
measurements of Fairbrother and Stubbs (1935) and Tay-
lor (1961) was investigated using the measurements of the 
film thickness and bubble to mean flow velocity ratio. As 

(a) (b)
Ca = 0.0007

Ca = 0.007

U
d
*
 [

-]

0.8

1.0

1.2

1.4

1.6

1.8

2.0

d*
eq [-]

Ca = 0.0002

Ca = 0.0004

Ca = 0.0009

U
d
*
 [

-]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

d*
eq [-]

0 0.5 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5
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was discussed earlier, it was assumed in these studies that 
the liquid in the film surrounding the bubble is nearly sta-
tionary, and thus, bubble to mean flow velocity ratio alone 
can be used to predict the dimensionless film thickness 
using Eq. 2. In the present study, the difference between 
the direct measurement of the glycerol film thickness by 
means of interface detection and those achieved using 
Eq. 2 were always less than 1.5 µm for the experimental 
measurements, which is negligible considering the small-
est resolvable length in these experiments to be 1.28 µm, 
and including also the errors in determination of the bubble 
and the mean flow velocities. This assumption was further 
verified directly using the results of the current numerical 
simulations, where the local velocity of the liquid within 
the film was found to be always less than 100 times smaller 
than that of the bubble, at the highest capillary number 
presented in Fig. 17a. Therefore, the stagnant liquid film 
assumption is concluded to be valid for air–glycerol flows 
in the range of capillary numbers presented here.

For air–water flows, at very low capillary numbers Ca 
< 10−3, even the highest available optical magnification in 
our experimental set-up (using the 40× microscope objec-
tive), which provided a spatial resolution of 0.65 µm per 
pixel on the image plane, was not sufficient to capture 
precisely the film thickness in the 514 µm diameter tube. 
Therefore, experiments for this range were performed in a 
962 µm diameter tube to achieve a more acceptable relative 
accuracy in the measurements. Even so, for the extreme 
cases presented in Fig. 17b (Ca < 3 × 10−3), the errors in 
the experimental measurements can be up to 30 %, while 
for higher capillary numbers, in the 514 µm diameter tube, 
the measurements accuracy was always better than 10 %. 
It should be noted that direct experimental measurements 
of film thickness for this range of flow capillary numbers 
have not been reported in the literature previously. For Ca 
< 0.01, good agreement was achieved between the results 
of both numerical simulations and the experimental meas-
urements, and the previously reported results based on the 
creeping flow condition and stagnant liquid film assump-
tion. However, at higher capillary numbers, the present 
measurements in air–water flows showed systematic devi-
ation from Taylor’s law at around Ca > 9 × 10−3. Above 
this threshold in the capillary number Catr ≃ 9 × 10

−3, the 
water film in the current experimental and numerical meas-
urements was observed to be thicker compared to the con-
ventional predictions, see Fig. 17b. The reason behind this 
phenomenon is that inertial effects are significant in gas–
liquid flows with a low viscous liquid phase even at rela-
tively low capillary numbers. In fact, for air–water flows at 
Ca > 0.01, the Reynolds and Weber numbers of the flow are 
larger than unity: We =

ρUd
2
d

σ
> 5 and Re =

Ucd

ν
> 500.  

Therefore, bubble shape, liquid film thickness and inter-
face dynamics are expected to differ significantly compared 

to the air–glycerol flows at the same capillary numbers, 
as was presented in Fig. 7. For this range of flow capil-
lary numbers Ca > 0.01, present experimental measure-
ments and numerical simulation results of ANSYS Fluent 
were in excellent quantitative agreement with the experi-
mental results of Han and Shikazono (2009) for air–water 
flows in a d = 0.5 mm tube, while the film thickness cal-
culated numerically using OpenFOAM was relatively 
larger. Although clear non-axisymmetric patterns were 
observed in the present experimental results at Ca > 0.015, 
the axisymmetric numerical studies were found to quali-
tatively capture the wave dynamics on the interface. The 
dimensionless number introduced by Aussillous and Quéré 
(2000) and Ryck (2002), F =

Re

Ca
=

ρσR

µc
2
, was calculated to 

be around 45500 for the present air–water flows in the d = 
514 µm capillary tube. Therefore, the existence of a thresh-
old capillary number observed in our study is in agreement 
with their conclusion claiming that for low viscous liquids 
and high F numbers, significant inertial effects and subse-
quent deviation from the Taylor’s law are expected. Fur-
thermore, according to the study of Aussillous and Quéré 
(2000), for air–water flows in the d = 514 µm capillary 
tube, the threshold capillary number is predicted to be 
approximately Catr = 0.015, which is close to the thresh-
old capillary number Catr ≃ 9 × 10

−3 found in the present 
study.

It is worth mentioning that even for bubbles three times 
longer than the tube diameter, identification of a region 
along the interface with uniform film thickness was not 
possible at the largest capillary numbers in air–water flows. 
Therefore, determination of a single value for the film 
thickness becomes a subjective task which leads to dis-
crepancies when comparing the results at high capillary 
numbers. The same observation was also reported before 
by Edvinsson and Irandoust (1996). In this study, the film 
thickness presented in Fig. 17b is defined as an average 
value in the region far from the nose of the bubble for both 
numerical and experimental results. In these flow con-
ditions, the noses of the air bubbles were observed to be 
more elongated, and the water film thickness was found to 
decrease gradually from the nose to the tail of the bubble 
until it reached the wavy section close to the rear end of 
the bubble. To the aim of investigating whether a flat region 
between the nose and the wavy zone at the tail of the bub-
ble would be achieved above a certain threshold in the bub-
ble length, a series of numerical simulations were presently 
performed using ANSYS Fluent for air bubbles of differ-
ent lengths in water flows at Ca = 0.015. The results of 
these tests showed that a flat liquid film region was found 
for bubbles at least five times longer than the tube diam-
eter. Moreover, comparing the interfaces of very long air 
bubbles in water and glycerol flows at the same capillary 
number Ca = 0.015, it was observed that the film thickness 
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was larger in water even at the back of the bubble, where a 
region with a minimum thickness was found.

The range of applicability of Eq. 2 in defining the film 
thickness in air–water flows and the stagnant liquid film 
assumption was investigated for air–water flow, using 
numerical results obtained with ANSYS Fluent. Experi-
mental measurements were not used for this test, since the 
velocity in the continuous liquid phase was beyond the 
limitations of our velocimetry technique and thus could 

not be resolved accurately. As presented in Fig. 18, above 
a certain capillary number, the results of the film thickness 
measurements from interface detection do not follow those 
obtained using the bubble to mean flow velocity ratio in 
Eq. 2. In accordance with the observations reported above, 
it can be seen that for Ca > 0.01, the relative bubble veloc-
ity alone is no longer sufficient to determine the film thick-
ness, thus suggesting that the stagnant liquid film assump-
tion is no longer valid. More precisely, the results of the 
present numerical simulations for air–water flows above the 
threshold Catr not only show non-negligible axial velocities 
in the liquid film, but also reveal relatively more significant 
velocity magnitudes in the radial direction. As an example, 
at Ca = 0.013, the maximum axial and radial velocity mag-
nitudes in the liquid film reach about 0.07 and 0.01 of the 
bubble velocity, respectively.

5.5  Development lengths before and after bubbles

5.5.1  Effect of bubble size

In this section, the length of the regions in the liquid phase 
influenced by the presence of the air bubbles is quantified 
using the procedure described in Khodaparast et al. (2014). 
As a result, the effect of bubble size on the development 
lengths in front Xn

∗ and at the back Xt
∗ of the bubbles is 

quantified at a constant liquid-phase flow rate. Figure 19 
displays the experimental and numerical results for air–
glycerol flows. For the sake of clarity, only ANSYS Flu-
ent results are presented for all results on development 
lengths. The threshold for defining the development length, 
as described in Sect. 3.3, was reduced to 2 % to increase 
the sensitivity of the measurements to the size of the bub-
bles, especially for very small bubbles. It can be seen that 
the development lengths are independent of the bubble size 
when deq

∗
> 1. As the bubble diameter is reduced in the 

small bubble flow regime, the length of the region where 
the flow is influenced by the motion of the bubble decreases 
and approaches zero for very small bubbles, as expected. 
As a general trend, the development length in front of the 
bubbles was slightly shorter than that obtained at the back 
of the bubbles. For the entire range of bubble diameters 
studied here, the development length was observed to be 
always shorter than half of the tube diameter, thus suggest-
ing that only very short gaps between bubbles will promote 
mutual interactions (multiple bubbles were, however, not 
studied here). Good agreement was achieved when compar-
ing the numerical and experimental trends and magnitude, 
also considering the large error affecting these measure-
ments, especially in the experimental approach. The spatial 
resolution in defining the development length in the present 
experimental study is directly dependent on the size of the 
interrogation windows used in the velocimetry step, which 
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can reach up to 10 % of relative error with respect to the 
tube diameter.

For air water flows, the relatively high-velocity mag-
nitudes at very low capillary numbers resulted in large 
uncertainty in the determination of the development length 
relative to the bubble size. Therefore, due to a consider-
able scattering in the numerical and experimental data, a 
clear meaningful trend could not be captured for Xn

∗ and 
Xt

∗ versus deq
∗ and thus these results are not reported here. 

However, it was found that the development length was 
always less than 0.7d in air–water flows for the range of 
flow parameters investigated here.

5.5.2  Effect of capillary number

The effect of flow capillary number on the development 
lengths in front Xn

∗ and at the back Xt
∗ of confined elon-

gated air bubbles in glycerol flows is shown in Fig. 20a. 
A monotonic decreasing trend was observed in Xn

∗ when 
increasing the flow capillary number, while the develop-
ment length (or the length of the wake region) behind the 
bubble tail Xt

∗ was observed to decrease very slowly as the 
capillary number increased until Ca ≃ 0.05, and then, its 
magnitude remained almost unchanged at higher capillary 
numbers. Similarly, as reported in Sect. 5.1.2, the capillary 
number was found to affect the curvature at the nose of the 
bubbles more than the rear end of the bubbles in air–glyc-
erol flows. Hence, the trend of X

∗ versus Ca is possibly 
related to the change in the curvature of the nose and the 
tail of the bubble; as a matter of fact, a slender bubble nose 
is expected to influence less the liquid flow in front of it 
than a more spherical one. As a general trend, the develop-
ment length in front of the bubble was always shorter than 

the development length behind the bubble tail, and the rela-
tive difference between these two parameters was found to 
increase at higher capillary numbers. The length of these 
developing regions did not exceed 0.32 times of the tube 
diameter, and the relative difference between the experi-
mental and numerical results was always less than 7 %.

Figure 20b presents the experimental and numerical 
results obtained for air–water flows. Due to the relatively 
high velocity of the water phase for Ca > 0.01, precise 
experimental determination of the development lengths 
was not possible, and hence, experimental results in this 
range are omitted from Fig. 20b. In general, the developing 
region in air–water flows was found to be relatively longer 
than what was observed in air–glycerol flows, up to 0.7 
times of the tube diameter measured in front of the bubble 
at the lowest capillary numbers tested. Unlike air–glycerol 
flows, the length of the developing region of the flow in the 
front of the bubble nose was longer than the one measured 
behind the tail of the bubble. In spite of the different range 
of capillary numbers, air–water and air–glycerol flows pre-
sent similar magnitudes of the development lengths behind 
the rear end of the bubbles. However, the development 
length in front of the bubble is substantially longer in air–
water flows, especially at very low capillary numbers. This 
difference can be ascribed to the larger diameter of the fit-
ted sphere to the nose of the bubbles in air–water flows at 
low capillary numbers (above deq

∗
= 0.9) with respect to 

the values measured in the air–glycerol flows, such that the 
nose of the bubble is expected to influence the liquid flow 
field in front of it to a greater extent. A descending trend 
was observed for both Xn

∗ and Xt
∗ in air–water flows as 

the flow capillary number was increased up to Ca = 0.005, 
although the experimental data for the development length 
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behind the bubble tail show some scattering. At higher cap-
illary numbers, however, the development lengths in front 
and at the back of the bubbles were observed to increase as 
the flow capillary number was increased.

6  Conclusions

Experimental measurements and numerical simulations 
were performed in the present study in order to investigate 
the dynamics of air bubbles in liquid flows through circular 
channels of diameters d = 0.5 mm and d = 1 mm. Water 
and glycerol were used as the continuous phase so that a 
large range of flow capillary numbers 10

−4
< Ca < 10

−1 
and Reynolds numbers 10

−3
< Re < 10

3 could be covered. 
Measurements were reported for several flow parameters, 
such as the shape, velocity and size of the bubbles, veloc-
ity of the continuous phase, thickness of the liquid film 
surrounding the bubbles at the wall and the development 
lengths in front of the bubble nose and behind the bubble 
tail. For each parameter, the effects of bubble size and flow 
capillary number were quantified.

For small confined bubbles deq < d, the nose and the 
back of the bubbles remained spherical at very low cap-
illary numbers Ca < 10−3, while the curvature at the 
nose was higher than the one at the back for higher cap-
illary numbers when deq > 0.5d. For deq > 1.5d, bubble 
size was found to have no significant effect on the bub-
ble shape. For such bubbles, the curvature at the nose 
increased, while the back of the bubble became flatter as 
the flow capillary number was increased. Inertial effects 
were found to be no longer negligible in air–water flows 
at Ca > 0.01. Such effects resulted in non-axisymmetric 
time-dependent features at the phase interface and the 
back of the bubble.

In the absence of buoyancy effects in air–glycerol flows, 
in the range of deq < d decreasing the bubble size increased 
the bubble velocity, while for deq > 1.1d an asymptotic 
value of the bubble velocity was achieved. Air bubbles with 
volume-equivalent diameters of deq < 0.2d were found not 
to significantly disturb the glycerol flow and to nearly fol-
low the localised liquid velocity on the tube centre line. 
Buoyancy effects were, however, found to be more signifi-
cant in air–water flows, especially for 0.2d < deq < 0.8d.

For air–glycerol flows, where the velocity in the liquid 
film was found to be always less than 1 % of the bubble 
velocity and the flow Reynolds number was always well 
below unity, the thickness of the liquid film was observed 
to agree favourably with the well-known Taylor’s law. 
However, Taylor’s law was observed to under-predict the 
film thickness measurements in air–water flows, especially 

at Ca > 0.01 due to the presence of significant inertial 
effects.

In general, the development lengths in air–water flows 
were longer than those measured in air–glycerol flows. For 
the range of parameters and both liquids presently stud-
ied, the development lengths in front and at the back of 
the bubbles were found to be always smaller than the tube 
diameter.

The numerical results obtained with both ANSYS Flu-
ent and OpenFOAM agreed well with the experimental 
measurement, with except of a few cases characterised by 
very small capillary numbers (Ca ∼ 10

−4) and small bub-
bles (deq < 0.8d) due to spurious velocity fields related to 
insufficient accuracy in the surface tension discretisation. 
ANSYS Fluent, here enhanced with self-implemented algo-
rithms for surface tension estimation, performed slightly 
better than OpenFOAM in reproducing the dynamics of the 
liquid film for air–water flows at the largest capillary num-
bers presently tested.

In summary, the dynamics of two-phase flows in micro-
geometries still remains a challenging problem in fluid 
mechanics; however, the present methodology, based on 
non-intrusive experimental measurements in conjunction 
with CFD simulations with interface capturing techniques, 
proves to be a promising approach toward acquiring more 
reliable and accurate fundamental knowledge in the field.

Appendix 1: Selected experimental data

This appendix reports, in a tabular form, the flow param-
eters characterising the flow conditions (fluids, channel 
diameter d, dispersed phase volume Vd, and mean liquid 
flow velocity Uc) and results (dispersed phase velocity Ud,  
dimensionless liquid film thickness δ*, dimensionless 
diameter of the fitted sphere to the bubble nose dnose

∗ and 
tail dtail

∗) for 22 selected experimental runs, whose corre-
sponding bubbles shape are displayed in Figs. 5a, b, 9 and 
10 of the present paper. These data are useful for bench-
marking computational codes aimed to simulate the con-
fined small and elongated bubbles in liquid flows within 
narrow channels.

The experimental test conditions are the following:

• Temperature: 25 °C.
• Density: water 997 kg/m3, glycerol solution 1250 kg/m3,  

air 1.204 kg/m3.
• Viscosity: water 0.88 mPa·s, glycerol solution 

550 mPa·s, air 0.019 mPa·s.
• Surface tension: air–water 72.8 mN/m, air–glycerol 

63.4 mN/m.



233Microfluid Nanofluid (2015) 19:209–234 

1 3

Case Fluids d (µm) Vd [µl] Uc [m/s] Ud [m/s] δ* [–] dnose

∗ [–] dtail
∗ [–]

1. Figure 5a, deq
∗

= 0.354 Air–glycerol 494 0.0028 0.00553 0.01033 – 0.35 0.36

2. Figure 5a, deq
∗

= 0.513 Air–glycerol 494 0.0085 0.00454 0.00777 – 0.50 0.54

3. Figure 5a, deq
∗

= 0.677 Air–glycerol 494 0.0196 0.00360 0.00599 – 0.62 0.74

4. Figure 5a, deq
∗

= 0.747 Air–glycerol 494 0.0263 0.00451 0.00713 – 0.67 0.81

5. Figure 5a, deq
∗

= 0.813 Air–glycerol 494 0.0339 0.00463 0.00708 – 0.69 0.92

6. Figure 5a, deq
∗

= 1.047 Air–glycerol 494 0.0724 0.00435 0.00568 – 0.72 1.06

7. Figure 5a, deq
∗

= 1.189 Air–glycerol 494 0.1061 0.00454 0.00599 0.065 0.68 1.07

8. Figure 5b, deq
∗

= 0.789 Air–water 514 0.0349 0.0454 0.0533 – 0.79 0.79

9. Figure 5b, deq
∗

= 0.852 Air–water 514 0.0439 0.0593 0.0697 – 0.85 0.85

10. Figure 5b, deq
∗

= 0.946 Air–water 514 0.0602 0.0557 0.0607 – 0.95 0.97

11. Figure 5b, deq
∗

= 1.016 Air–water 514 0.0745 0.0534 0.0550 – 0.94 0.99

12. Figure 5b, deq
∗

= 1.386 Air–water 514 0.1893 0.0543 0.0554 0.006 0.94 0.99

13. Figure 9a, Ca = 0.008 Air–glycerol 494 0.1970 0.00084 0.00095 0.026 0.85 1.00

14. Figure 9b, Ca = 0.052 Air–glycerol 494 0.1061 0.00450 0.00600 0.062 0.69 1.05

15. Figure 9c, Ca = 0.075 Air–glycerol 494 0.1086 0.00618 0.00871 0.075 0.64 1.11

16. Figure 9d, Ca = 0.098 Air–glycerol 494 0.1231 0.00777 0.01137 0.083 0.61 1.14

17. Figure 9e, Ca = 0.163 Air–glycerol 494 0.0780 0.01145 0.01888 0.099 0.60 1.05

18. Figure 10a, Ca = 0.003 Air–water 514 0.1751 0.242 0.261 0.013 0.89 0.96

19. Figure 10b, Ca = 0.008 Air–water 514 0.1715 0.666 0.704 0.023 0.82 1.03

20. Figure 10c, Ca = 0.0098 Air–water 514 0.2208 0.757 0.815 0.025 0.78 1.05

21. Figure 10d, Ca = 0.015 Air–water 514 0.1882 1.118 1.293 0.039 0.72 1.23

22. Figure 10e, Ca = 0.023 Air–water 514 0.2179 1.580 1.944 0.054 0.64 –
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