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A spatial motion of a large passive satellite (space debris) and a space tug connected by an elastic tether

is considered. The motion of the system is excited by a thrust force acting on the space tug. Major attention is given

to a derivation of the equations of the motion based on the Lagrange formalism. Correctness of the mathematical

model is provedby the theoremonvariationof angularmomentumandby thenumerical simulations. The influence of

the initial conditions and the system parameters on the behavior of the passive satellite is studied. The possibility of

critical modes of the system motion leading to entanglement of the tether is shown by means of the numerical

simulations.

Nomenclature

A, B, C = moments of inertia of the passive satellite, kg · m2

a, b, c = coordinates of the tether-attachment point in the
coordinate frame Sxyz, m

ct = tether stiffness, N∕m
KH = angular-momentum vector of the system relative to

the point T, kg · m2∕s
KS = angular-momentum vector of the passive satellite

relative to the point S, kg · m2∕s
kt = tether-damping coefficient, N · s∕m
l = length of the tether, m
mH = mass of the space tug, kg
mS = mass of the passive satellite (space debris), kg
pψ , pφ = generalized impulses, kg · m2∕s
s = distance between centers ofmass of the space tug and

the passive satellite, m
Sxyz = principal coordinate frame of the passive satellite
Sxcyczc = coordinate frame aligned to the line between the

center mass of the passive satellite and the center
mass of the space tug

T = kinetic energy of the system, J
ψ , θ, φ = Euler angles that describe attitude motion of the

passive satellite relative to the frame Sxcyczc, rad

I. Introduction

T HE advent of tethered satellite systems (TSS) starts a new era
in space research. The knowledge of dynamics and simulation

of the tethered satellite systems during deployment and retrieval is
essential for such a study [1–5]. TSS emerged as a new technology in
space-related missions.
The density of debris in Earth’s orbits is increasing dramatically.

This fact reduces the availability of some orbits due to high risk of
collision with the space debris. Moreover, the problem is com-
pounded by every collision of the space debris, which creates more
debris. Controlling the growth of the orbital-debris population is
a high-priority task of the world community. There are several
technical solutions being proposed for space-debris mitigation [6–
11]. One of these uses a tethered removal satellite, a debritor [7], to

transport nonoperational debris objects from populated orbits. The
debritor has to perform a rendezvous maneuver, attach a tether to the
space debris, and deorbit the debris or change its orbit. This will
minimize future risk to space objects orbiting in the same region.One
of the motivating applications of this work is transporting space
debris (nonfunctional satellites or upper stages of the rockets) from
the orbit using a tethered space tug. Large space debris can strongly
affect the motion of the debritor and the tether during the transpor-
tation, which can lead to the loss of control of the TSS. Therefore, the
process of transportation must be analyzed in detail.
In this paper we consider space debris as a passive nonfunctional

satellite or an upper stage of a rocket as a rigid body hereafter referred
to as a passive satellite. The debritor (also referred to as active satellite
or space tug) is considered as a mass point. The debritor is equipped
with a rocket thruster and connected to the passive satellite by a
viscous-elastic weightless tether. We investigate only the behavior of
the passive satellite relative to the tether under the action of the tether-
tension force; therefore, the motion of the system is considered in
space without gravity. The Lagrangian-formulation procedure is
utilized to obtain the governing ordinary-differential equations of
the spatial motion for the proposed system. The theorem on variation
of angular momentum and results of numerical modeling are used
to validate the equations of the motion. The set of exact governing
equations ofmotion is numerically integrated to analyze the impact of
system parameters and initial conditions to the motion of the system.

II. Description of the System and Equations of Motion

The system is comprised of the tether connecting the active
satellite (space tug) with the passive satellite (Fig. 1). The tether is
assumed to be made of a light but rigid material such as Kevlarfi and,
hence, is taken to have negligible mass that is not considered in the
calculations. The tether’s transverse and torsional vibrations are
ignored.
The axes of the coordinate frame Ox0y0z0 passing through the

system center of mass O are parallel to the axes of inertial reference
frame. The origin of the coordinate frame Sxcyczc is at the mass
center of the space debrisS. The axis Sxc is directed along the lineSH
that joins the centers of mass of the space debris and the space tug.
The axis Szc is directed in the opposite direction of the axisOz0, and
the axis Syc is defined to be parallel to the plane Ox0y0, and it
completes the right-hand triad. The frame Sxyz is the coordinate
frame fixed at the space debris. The axes Sx, Sy, Sz are the principal
central axes of inertia of the space debris. The orientation of the
coordinate frame Sxyz relative to the coordinate frame Sxcyczc is
specified by a set of three successive Euler rotations (precession ψ ,
nutation θ, and spin φ) [12]. We assume the centerline SH remains in
the horizontal planeOxy and the thrust of the debritor F acts only in
this plane during the motion of the system.
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To obtain the equations of motion the most appropriate approach
seems to be the Lagrangian technique. Lagrange’s equations
present an energy method of dynamic analysis based on finding
expressions for the kinetic energy T of the system, and as well, its
generalized forces Qi. Lagrange’s equations have the following
general form [12]

d

dt

∂T

∂ _qi
−

∂T

∂qi
� Qi; i � 1; 2 : : : ; 7 (1)

where qi, (i � 1; 2; : : : ; 7) are the generalized coordinates, q1;2 ≡
x; y are coordinates of the center of mass of the system in the inertial
coordinate system, q3 ≡ SH � s, q4 ≡ α is an angle between the line
SH and the axis Oxo, q5 ≡ ψ , q6 ≡ θ, and q7 ≡ φ are Euler angles,
and Qi is a generalized force corresponding to the generalized
coordinate qi. The tether length l � PH is written as

l �
�������������������������������������������������������������������������������������������������������

ρ2 − 2s�a cos θ� �b sin φ� c cos φ� sin θ� � s2
q

(2)

where ρ � SP �
����������������������������

a2 � b2 � c2
p

, and a, b, c are the coordinates of
the point P where the tether is attached at the passive satellite.
The system kinetic energy T can then be written as

T � mH �mS

2
� _x2 � _y2� � mHmS

2�mH �mS�
� _s2 � s2 _α2�

� 1

2
fA�_α sin θ cos ψ � _ψ cos θ� _φ�2

� B� _α�cos θ sin φ cos ψ � cos φ sin ψ�

� _ψ sin θ sin φ� _θ cos φ�2

� C� _α�cos θ cos φ cos ψ − sin φ sin ψ�

� _ψ sin θ cos φ − _θ sin φ�2g (3)

where mH and mS are masses of the active satellite and the passive
satellite, respectively, and �A;B;C� are central principal moments of
inertia of the passive satellite.
The generalized forces Qi are determined by the following

formulas

Qx � Fx; Qy � Fy;

Qα � mSs

mH �mS

�Fx sin α − Fy cos α�;

Qs � −
mS

mH �mS

�Fx cos α� Fy sin α�

� ξ�a cos θ� �b sin φ� c cos φ� sin θ − s�

×

�

ct
l − l0

l
� kt _l

�

; Qψ � 0;

Qθ � ξs��b sin φ� c cos φ� cos θ − a sin θ�
�

ct
l − l0

l
� kt _l

�

;

Qφ � ξs sin θ�b cos φ − c sin φ�
�

ct
l − l0

l
� kt

_l

�

(4)

where ct is tether stiffness, kt is tether damping, and ξ is a unit step
function

ξ �
�

1; l − l0 ≥ 0;

0; l − l0 < 0

Substituting the kinetic energy [Eq. (3)] and the generalized forces
[Eq. (4)] in the Lagrange equations [Eq. (1)] and carrying out the
differentiation we can get the governing nonlinear coupled ordinary-
differential equations of the spatial motion of the system. However,
these equations are very cumbersome and can be used only for the
numerical simulation. Next, we write a simplified version of these
equations.

III. Equations of the SpatialMotion of theAxisymmetric
Passive Satellite Relative to the Tether

Let us write the equations of the spatial motion of the system with
these assumptions: the passive satellite has an axisymmetric inertia
tensor �A;B � C�, the tether is attached at the axis of symmetry
�a ≠ 0; b � c � 0�, and the tether damping is absent (kt � 0). In this
case kinetic energy [Eq. (3)] of the system has the form

T � 1

2

�

A� _φ� _ψ cos θ�2 � B�_θ2 � _ψ2 sin2 θ� � mHmS

mH �mS

_s2

� �m1 �m2�� _x2 � _y2�
�

(5)

We also suppose that the tether length l is much greater than SP � a

l ≫ a (6)

Then the tether length can be expressed as

l ≈ s − a cos θ (7)

At the initial time α � 0 and the space-tug thrust force acts along the
x-axis Fx � F, Fy � Fz � 0. In this case generalized forces
[Eq. (4)] are expressed as

Qx � F; Qy � 0; Qα � 0; Qψ � 0; Qφ � 0;

Qs � −
mS

mH �mS

F� ξctl; Qθ � −ξctal sin θ (8)

Herewe consider the spatial motion of the passive satellite relative to
the tether only, and the differential equations of the center of mass of
the system are omitted. Note that the kinetic energy [Eq. (5)] doesn’t
depend on the coordinates ψ and φ, and we can write two first
integrals [12]

Fig. 1 Space debris and space tug connected by the tether.
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pφ � ∂T

∂ _φ
� A� _φ� _ψ cos θ� � const;

pψ � ∂T

∂ _ψ
� A _φ cos θ� _ψ�A cos2 θ� B sin2 θ� � const (9)

Taking into account these first integrals the equations of the spatial
motion of the passive satellite have the simple form

�s� kt
mH �mS

mHmS

s � ct
mH �mS

mHmS

�a cos θ� l0� −
mS

mH

F (10)

�θ� �R − G cos θ��R −G cos θ�
sin3 θ

� act

B
s sin θ � a2ct

2B
sin 2θ

(11)

where R � pφ∕B, G � pψ∕B. So far as Euler angles are used to
describe attitude motion of the passive satellite; Eq. (11) is correct
while sin θ ≠ 0.
We note that Eq. (11) has a lot of similarity to the equation of the

Lagrange case [13]. The tether force acts like a gravity force, but here
the tether force is a function of time. There is a small periodic term at
the right side of Eq. (11) according to the assumption [Eq. (6)].
Furthermore, Eq. (11) is similar to the equations of the spatial motion
of the axisymmetric spacecraft in the atmosphere [14].

IV. Validation of the Mathematical Model

To validate the correctness of the equations let us write a variation
of the angular-momentum vectorKH relative to the moving pointH
[15]

dKH

dt
� �mH �mS�VO × VH �MH

� �VHmH � VSmS� × VH �MH � mSVS × VH (12)

In Eq. (12)MH � 0 because of the tether attached at pointH, and the
moment of the tether force relative to point H equals zero. In the
inertial frame the angular-momentum vector is defined as [13]

KH � JSωS �RS × �mSVS� �RH × �mHVH� �RH

× ��mH �mS�V0�

VS is a velocity of the passive satellite relative to the inertial frame

VS � V0 �
dRS

dt
; RS � OS � mHs

mH �mS

0

@

cos α

sin α

0

1

A (13)

where VH is a velocity vector of the space tug

VH � V0 �
dRH

dt
; RH � OH � −

mSs

mH �mS

 

cos α

sin α

0

�

(14)

where V0 is a velocity vector of the system center of mass.
The absolute angular velocity of the passive satellite is

ωS � ωc �ΩT (15)

whereΩS is an angular velocity of the passive satellite relative to the
frame Sxcyczc

ΩS �

0

@

_φ� _ψ cos θ
_θ cos φ� _ψ sin θ sin φ

−_θ sin φ� _ψ sin θ cos φ

�

The angular velocity of the frame Sxcyczc relative to the inertial
frame is

ωc � kc _α (16)

where kc is a unit vector of the axis Sxc.
After obtaining the solution of the differential equations [Eq. (1)]

of the system we can substitute the solution in to Eqs. (13)–(15) and
build Eq. (12). If the right-hand side and the left-hand side of Eq. (12)
are the same, the solution is correct. In Fig. 2 the components of the
left-hand-side vector and the right-hand-side vector of Eq. (12) are
shown. The relative numerical integration error εK is

εK � j _KH −mV0 × VHj
j _KHj

< 10−4

Table 1 presents the result for the parameters of the system and the
following initial conditions

Fig. 2 Components of the left-hand side and right-hand side of Eq. (12). Projection on the axes x0, y0, and z0 depicted as solid, dashed, and dotted lines,

respectively.

Table 1 Parameters of the system.

Parameter Value Parameter Value Parameter Value Parameter Value

A, kg · m2 3000 Fx, N −10 a, m 2.5 m1, kg 1000
B, kg · m2 10,000 Fy, N 0 b, m 0 m2, kg 3000
C, kg · m2 10,000 Fz, N 0 c, m 0 l0, m 50
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φ0 � ψ0 � _s0 � _θ0 � 0 θ0 � π∕3;

_φ0 � 0.05 rad∕s s0 � s�
(17)

where s� is the solution of Eq. (2) for l � l0.
In the Fig. 3 the solutions for angle θ of the accurate differential

equations [Eq. (1)] and the approximate equations [Eqs. (10) and (11)]
are shown for two lengths of the tether. We note that approximate

solution of Eqs. (10) and (11) close to the solution of the accurate
differential equations for the longer tether.

V. Numerical Results

Herewe investigate the behavior of the passive satellite depending
on its initial position relative to the tether. We consider four types of
the initial orientation of the passive satellite relative to the tether and

Fig. 4 Initial orientations of the passive satellite relative to the angular-
momentum vector and relative to the tether.

Fig. 5 Time history of angle θ for case 1 when l�0� − l0 � 0.

Fig. 6 Time history of angle θ for case 1 when l�0� − l0 � 0 and time
interval [0; 20 s].

Fig. 8 Time history of angle θ for case 1 when l�0� − l0 � −2 m.

Fig. 3 Solution for angle θ of the accurate differential equations (solid line) and the approximate equations (dashed line).

Fig. 7 Time history of tether elongation l − lo for case 1 when l�0� −
l0 � 0 and time interval [0; 20 s].
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the initial angular-momentum vectorKS(Fig. 4): 1) case 1:KS ⊥ Sx,
KS ⊥ Sxc, _φ0 � 0 (Fig. 4a); 2) case 2: �KS�t�0kSx (Fig. 4b); 3) case
3: �KS�t�0

�

�Sxc (Fig. 4c); 4) case 4, a general case, in which vectors

KS, Sx, Sxc, R12 are arbitrarily oriented in space (Fig. 4d).
Motion of the passive satellite is investigated for the tense and

slack tether at the initial time for the four cases. Parameters of the
system and initial conditions are presented in the Table 1 and
in Eq. (17).

A. Case 1

At first we consider the plane motion of the passive satellite when
its angular-momentum vector remains perpendicular to the axis of
symmetry Sx (Fig. 4a). Figure 5 shows the time history of angle θ
when _ψ0 � 0, _φ0 � 0, _θ0 � 0, and the tether is tensioned at t � 0.
Figures 6 and 7 show time histories of angle θ and the tether
elongation for time interval from 0 to 20 s. These two figures explain
the discontinuity in slope of angle θ in Fig. 5. When the tether slacks
the slope of the function θ changes.

If the motion starts when l�0� � lo − δl (δl � 2 m, slack tether)
the amplitude of angleθ increases (Fig. 8). The tether acts on the
passive satellite at short time intervals that lead to the higher
amplitude of angle θ. Most of the time the tether is slack (Fig. 9).
Angle θ changes linearly in time while tether is slack (passive
spacecraft rotates with constant angular velocity). In the short time
intervals the tether becomes tensioned and quickly changes the
angular velocity of the passive spacecraft (compare Figs. 8 and 9).
This type of transportation is objectionable due to risk of tether
rupture.

B. Case 2

Next we consider a case when the angular-velocity vector of the
passive satellite parallel to the axis of symmetry of the passive
satellite (Fig. 4b). The initial angular velocity of the passive satellite is
jω2j � _φ0 � 0.05 rad∕s. Figure 10a shows the time history of angle
θ. As with in the previous case with tensioned tether the oscillations
of angle θ are such that jmaxt�θ�j < jθ0j. The evolution of angle θ for
the slack tether [l�0� � lo − δl] is shown in Fig. 10b.

C. Case 3

Let us consider the motion of the passive satellite when the initial
angular-momentum vector is parallel to the axis Sxc (Fig. 4c). The
system starts its motion with the initial conditions [Eq. (17)] and

_φ0 � 0.05
rad

s
; _ψ0 � 0.0247

rad

s

for whichKS is parallel to the axis Sxc. Figures 11a and 11b show the
time histories of angle θ for the tension tether and the slack tether
at t � 0.

D. Case 4

Here we consider the behavior of the passive satellite with initial
conditions [Eq. (17)] and

Fig. 10 Time history of angle θ for case 2.

Fig. 11 Time history of angle θ for case 3.

Fig. 9 Time history of tether elongation l − lo for case 1 when tether is

slack at t � 0.
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_φ0 � 0.05
rad

s
; _ψ0 � 0.01

rad

s

In this case the tether passes from the outside of the precession
cone

KSx

jKSj
< cos θ

Figure 12 shows the time histories of angle θ for the tension tether and
the slack tether at t � 0.
We haven’t noticed any significant difference in the behavior of the

passive satellite in any particular case. If we take more slackness of
the tether, e.g., δl � 6 m, the high amplitude of θ can result in the
tether contacting the passive satellite. The tether can tangle or break.
Figure 13 shows the case when angle θ exceeds the value π∕2.
We can expect a higher amplitude of angle θ for the softer tether.

Figure 14 shows the time history of angle θ for δl � 6 m and
ct � 1 GPa.
Next we investigate themotion of the systemwith a damped tether.

Tether damping can decrease its amplitude of oscillations. Figure 15a
shows the time history of angle θ for the systemwith initial conditions
[Eq. (17)] and the damping coefficient kd � 10 Ns∕m. Figure 15b
shows the time history of the tether elongation. We note that the
damping properties of the tether affect high oscillations of the tether,
but it doesn’t affect the oscillation of angle θ.

Fig. 15 Time history of angle θ and the elongation of the tether with damping.

Fig. 13 Time history of angle θ for large initial slackness of the tether and possible orientation of the passive satellite that can lead to tether rupture.

Fig. 14 Time history of angle θ for case 4 (ct � 1 GPa, δl � 6 m).

Fig. 12 Time history of angle θ for case 4.
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VI. Conclusions

The motion equations of the space-tether system are built upon
the Lagrange formalism. The simplified equations of the spatial
motion of the passive satellite relative to the tether are developed.
The correctness of the equations is validated bymeans of the angular-
momentum-variation law. The possibility of transporting the passive
satellite is shown. The spatial motion of the passive satellite is
considered for the different cases of the system’s parameters. It is
shown that the amplitude of oscillation of the passive satellite
primarily depends on the properties of the tether. Slackness of the
tether can lead to tether tangling due to the high amplitude of the
oscillation of the passive satellite relative to the tether. For the safe
transportation of the passive spacecraft the slackness of the tether and
the high initial angle between the tether and the line SB that connects
the center mass of the passive spacecraft with the tether-attachment
point should be avoided.
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