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We explicitly analyze the trajectories of learning near singularities in hi-
erarchical networks, such as multilayer perceptrons and radial basis func-
tion networks, which include permutation symmetry of hidden nodes,
and show their general properties. Such symmetry induces singularities
in their parameter space, where the Fisher information matrix degenerates
and odd learning behaviors, especially the existence of plateaus in gradi-
ent descent learning, arise due to the geometric structure of singularity.
We plot dynamic vector fields to demonstrate the universal trajectories of
learning near singularities. The singularity induces two types of plateaus,
the on-singularity plateau and the near-singularity plateau, depending
on the stability of the singularity and the initial parameters of learning.
The results presented in this letter are universally applicable to a wide
class of hierarchical models. Detailed stability analysis of the dynamics
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of learning in radial basis function networks and multilayer perceptrons
will be presented in separate work.

1 Introduction

There is a family of layered neural models with a number of hidden units.
All of these hidden units share the same activation function, and the output
unit linearly combines the signals from them. Typical examples are the
multilayer perceptrons (MLPs) and radial basis function (RBF) networks.
The gaussian mixture model of probability density also belongs to this class.

These models possess permutation symmetry such that the input-output
behavior is invariant under the permutation of hidden units (Chen, Lu, &
Hecht-Nielsen, 1993). That is, if we exchange the parameters of two hidden
units, together with the weights they apply to the output units, the input-
output map of the network is unchanged. When the activation function of
the hidden units is an odd or even function, there exists another type of
symmetry caused by the sign change invariance. The symmetry causes the
model parameters to be unidentifiable. When two hidden units overlap and
have identical parameters, there are many equivalent ways of partitioning
their output weights such that the total network input-output behavior
remains invariant. This defines a continuous region in the parameter space
in which all models share the same input-output relation, although their
model parameters are different.

The geometric structure of the parameter space of a hierarchical model
has been studied from the point of view of unidentifiability by many re-
searchers (Sussmann, 1992; Chen et al., 1993; Kurková & Kainen, 1994;
Fukumizu, 1996). It was noted that the symmetry gives rise to a singular
structure in the parameter space. When a model is disturbed by noise, it
becomes a statistical model, in which the Fisher information matrix plays
the role of a Riemannian metric in the space (Amari & Nagaoka, 2000). The
Fisher information matrix degenerates on the subsets of unidentifiability,
where the space collapses. More strongly, when we consider the space of
input-output behaviors, which can be obtained by dividing the parameter
space into equivalence classes by the input-output equivalence relation,
then the resultant space has algebraic singularities (Amari, Park, & Ozeki,
2006).

The conventional method of statistical inference relies on the regularity
conditions, which include the existence of a nonsingular Fisher information
matrix, and the Cramér-Rao paradigm holds. The maximum-likelihood
estimator (MLE) is asymptotically efficient, and its accuracy (measured by
the error-covariance matrix) converges to zero with the order of n−1 as the
number n of observed examples increases. However, this does not hold
at a singularity. The asymptotic optimality of MLE is not guaranteed, nor
does the n−1 convergence of the parameters hold. This is also known in the
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statistical community (e.g., Hartigan, 1985; Dacunha-Castelle & Gassiat,
1997; Amari, Park, & Ozeki, 2002). Hagiwara (2002) and Fukumizu (1996,
2003) gave a statistical evaluation of the estimation of the parameters in such
singular models. Watanabe (2001a & 2001b) and Watanabe and Amari (2003)
and his colleagues gave a detailed analysis of the behaviors of estimators
from the Bayesian point of view where techniques from modern algebraic
geometry were used effectively.

The dynamics of learning in layered models was studied in Amari (1967)
and in Heskes and Kappen (1991) for regular cases. However, it is known
that layered models have strange behaviors different from those in regu-
lar statistical models. A statistical-physical approach has clarified that this
phenomenon arises from symmetry (see, e.g., Riegler & Biehl, 1995; Saad &
Solla, 1995a, 1995b; Biehl, Riegler, & Wöhler, 1996; Inoue, Park, & Okada,
2003, 2004; Park, Inoue, & Okada, 2003, 2005; see also Biehl & Schwarze,
1995; Biehl & Caticha, 2002; Freeman & Saad, 1997a, 1997b; Huh, Oh, &
Kang, 2000). These studies show that the plateau phenomenon is ubiqui-
tous in such hierarchical systems in the thermodynamical limit, where the
number of examples and the number of parameters increase in proportion-
ality. The plateau phenomenon has been widely observed in simulation
studies of such systems.

It has been gradually recognized that the plateau phenomenon arises
from the geometric singularity of the parameter space. Fukumizu and
Amari (2000) gave a detailed analysis of the shape of the cost function
in the neighborhood of a singularity and elucidated that the plateau reflects
the random walk of model parameters on the singularity. More detailed the-
oretical studies have appeared in Amari and Ozeki (2001) and in Cousseau,
Ozeki, and Amari (in press), while Park et al. (2003, 2005) gave simulation
results. The odd behaviors of estimation and learning in such hierarchical
models are reviewed in Amari et al. (2006) in detail.

Theoretical analysis of the trajectories of dynamics of learning near sin-
gularities was first studied in the case of a gaussian mixture in Amari et al.
(2006). For the special case where the teacher is on a singularity, similar
trajectories were also found for MLPs (Cousseau et al., in press) and RBF
networks (Wei & Amari, 2006). Following these analyses on the stability
and dynamical flows near a singularity, this letter presents two new re-
sults. First, we prove that such dynamical flows (trajectories of learning)
are common and universal in various kinds of hierarchical models, regard-
less of whether the teacher is on a singularity, that is, whether the model
is redundant. Second, we elucidate the ubiquitous mechanism underlying
the plateau phenomenon in online gradient learning in such hierarchical
systems, including MLPs and RBF networks.

This letter outlines a general framework under which singularities and
plateaus in learning can be treated. Detailed stability analyses of RBF net-
works and MLPs will be given in separate work, in which more specific
effects of singularities on learning behaviors will be presented in detail.
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The rest of the letter is organized as follows. Section 2 summarizes the
paradigm of learning for hierarchical models, including MLPs, RBF net-
works, and gaussian mixtures. The general online learning equations and
singular region are given first. Then a new coordinate system is introduced,
in which the learning equation and singularity have new and transparent
expressions for later analyses. In section 3, we derive the trajectories of
learning near singularity and plot the dynamic vector fields based on the
stability analysis. Section 4 is devoted to a detailed explanation of how
singularity gives rise to on-singularity and near-singularity plateaus. The
relation between the plateau phenomenon and trajectories of learning is
revealed in this section. Section 5 contains conclusions and discussions.

2 Learning Paradigm in Hierarchical Networks

2.1 Two-Layer Networks. The hierarchical neural models discussed in
this letter have a two-layer structure in which the units of the first layer
(hidden layer) receive input signals x = [x1, x2, . . . , xn] ∈ Rn, where x is a
column vector.

The output of the ith hidden neuron (also called hidden unit i) in the
hierarchical model is φ(x, Ji ), where vector Ji ∈ Rm represents the parame-
ters for specifying the activation function φ, and m denotes the number of
parameters. The last layer has one output unit that computes a linear com-
bination of the activations of the hidden units, so the input-output mapping
of the model (or the output function) with k hidden units is written as

f (x, θ ) =
k∑

i=1

wiφ(x, Ji ), (2.1)

where wi denotes the weight from hidden unit i to the output and vector
θ = [J1, w1, . . . , Jk, wk] ∈ R(m+1)k represents all the parameters in the model.
These parameters are modifiable, and learning is carried out by modifying
θ . Note that m (dimension of Ji ) can be different according to the different
neural models.

We show three typical cases of the two-layer hierarchical models having
the same structure:

1. Radial basis function (RBF) networks. The RBF network has the
activation function

φ(x, Ji ) = 1√
2π

exp
(

−‖x − µi‖2

2σ 2
i

)
, (2.2)

where Ji = [µi , σi ], σi is the width parameter that controls the spread
of the function around the center µi ∈ Rn, and ‖ · ‖ is the Euclidean
norm. Note that here, Ji ∈ Rn+1, that is, m = n + 1.
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2. Multilayer perceptrons (MLPs). The MLP has the sigmoidal activa-
tion function

φ(x, Ji ) = tanh
(
JT

i x
)
, (2.3)

where superscript T denotes transposition of a vector. Here, one
may use the modified error function for ease of theoretical analy-
ses (Cousseau et al., in press):

φ(x, Ji ) = erf
(
JT

i x
)
, (2.4)

er f (u) =
√

2
π

∫ u

0
exp

(
− t2

2

)
dt. (2.5)

Note that for MLPs, if Ji includes a bias term (threshold term), then
Ji ∈ Rn+1 and m = n + 1; otherwise Ji ∈ Rn.

3. Gaussian mixtures. Here, the probability density function p(x) of
input x is calculated by

p(x) =
k∑

i=1

wiφ(x, Ji ), (2.6)

where φ is the gaussian function of the form 2.2, and Ji ∈ Rn+1. How-
ever, the region of the parameters w1, . . . , wk is restricted by

wi ≥ 0,

k∑
i=1

wi = 1. (2.7)

This case was analyzed in Amari et al. (2006). The population cod-
ing with multiple stimuli was also analyzed in this form by Amari
and Nakahara (2005).

2.2 Loss Function and Stochastic Gradient Learning. The first two
cases, RBF networks and MLPs, are regression problem, where the models
are required to imitate the function specified by the teacher:

y = f0(x). (2.8)

Instead of the analytical form of f0(x), input-output examples
(y1, x1), . . . , (yM, xM) are given, where yi are the noisy versions of the true
outputs,

yi = f0(xi ) + εi , i = 1, 2, . . . , M, (2.9)

and εi denotes the additive noise. The model parameter θ is adjusted to fit
the training examples. The distributions of training input x are assumed
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to be uncorrelated with noise ε, which the latter is subject to zero mean
gaussian distribution.

Generally when the parameter of the student model is θ , f (x, θ ) is dif-
ferent from y = f0(x) + ε. Then we define the instantaneous loss function
as

l(y, x, θ ) = 1
2

(y − f (x, θ ))2. (2.10)

Although there are dozens of methods for minimizing the above loss
function, this letter concentrates on the online learning scheme, in which
parameter θ is modified by the stochastic gradient descent algorithm. The
learning algorithm is thus

θ (t + 1) = θ (t) − η
∂l(yt, xt, θ t)

∂θ
, (2.11)

where η is a learning constant. This is a stochastic difference equation. Its
behavior is approximated by the continuous time equation averaged over
all possible inputs, outputs, and noises. This average is justified by the
stochastic approximation when source signals (yt, xt) are ergodic (Amari,
1967, 1977). Thus, we investigate the following averaged learning equation:

θ̇ (t) = −η

〈
∂l(y, x, θ )

∂θ

〉
. (2.12)

In equation 2.12, 〈·〉 denotes the expectation with respect to the input x and
the corresponding teacher’s signal y,

〈
∂l(y, x, θ )

∂θ

〉
=

∫
∂l(y, x, θ )

∂θ
p0(y, x) dy dx, (2.13)

where p0(y, x) is the joint probability of (y, x) of the teacher’s signal,

p0(y, x) = p0(x)
1√
2π

exp
(

−1
2

(y − f0(x))2
)

, (2.14)

and p0(x) is the probability density of the training input x.

2.3 Singularity Regions. Since we are interested in the learning dynam-
ics near the singularity, we should first find out where the singular regions
are in the parameter space of the model. We focus on the regression models
of cases 1 and 2 in section 2.1, but the structure is the same in case 3.

For a wide range of neural models, Amari et al. (2006) discussed the
singular regions from the point of view of information geometry (Amari
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& Nagaoka, 2000). They showed that in the parameter space of the neural
models, there are singular regions where the Fisher information matrix de-
generates and some of the parameters are not identifiable. When the model
parameter is located in one of these regions, the conventional Cramér-Rao
paradigm does not hold, and odd behaviors happen. Next, following the
method in that article, we study the singular regions in our hierarchical
neural models.

The model output function f (x, θ ) includes the term wiφ(x, Ji ), which
vanishes identically when wi = 0. We denote this region by R(i) =
{θ | wi = 0}, which is a subspace in the parameter space. Whatever value Ji

takes, f (x, θ ) is the same in R(i). That is, Ji does not have identifiability. The
Fisher information degenerates in R(i). In this region, the ith unit does not
play any role, so it is eliminable. Hence R(i) is called the elimination singu-
larity in this letter. In the case of MLPs where activation function 2.3 or 2.4 is
odd and satisfies φ(x, 0) = 0, the relation Ji = 0 also indicates the vanishing
of unit i , so the elimination singularity in MLPs is given by wi Ji = 0.

When Ji = J j holds, the model output function f (x, θ ) includes terms
that reduce to

wiφ(x, Ji ) + w jφ(x, J j ) = (wi + w j )φ(x, Ji ). (2.15)

In this case, when wi + w j = c is satisfied by a constant c, the output function
is the same whatever value each of wi and w j takes. Hence, wi and w j lose
identifiability. We denote this region by R(i, j). In this case, since the two
hidden units i and j are exactly the same and overlap, R(i, j) is called the
overlap singularity in this letter. In the case of RBF networks, units i and
j overlap completely, so that they behave as one unit. In the case of MLPs
with odd activation functions, the two units are also regarded as being the
same when Ji = −J j , because of φ(x,−Ji ) = −φ(x, J j ). Hence, R(i, j) also
includes this region. It is immediate to show that the Fisher information
degenerates in this region.

The above two (and their intersections) are the only singular regions in
RBF networks and gaussian mixture systems where the Fisher information
matrix degenerates (Fukumizu, 1996).

In summary, there are two types of singular regions R(i, j) and R(i),
which are given by

R(i, j) = {θ | Ji = J j } or {θ | Ji = ±J j } (2.16)

and

R(i) = {θ | wi = 0} or {θ | wi Ji = 0}, (2.17)
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where the first part (before “or”) is for RBF networks and the latter part is
for MLPs. This letter mainly deals with the dynamics of online learning near
the overlap singularity where any two of the hidden units coincide. Without
loss of generality, we discuss the learning dynamics in the neighborhood of
R(a , b) for two hidden units a and b, where Ja ≈ Jb , that is, the two hidden
units a and b almost overlap. Thus, the student model can be rewritten as

f (x, θ ) = g(x, s) + waφ(x, Ja ) + wbφ(x, Jb), (2.18)

where s = [J1, w1, . . . , Ji , wi , . . . , Jk, wk], i 	= a , i 	= b, represents the param-
eters of all the units except a and b, and g(x, s) = ∑k

i=1,i 	=a ,i 	=b wiφ(x, Ji ).
Note that s ∈ R(m+1)(k−2). In the following, we denote the overlap singu-
larity as R1 = R(a , b) = {θ | Ja = Jb}. The related elimination singularity
R2 = R(a )

⋃
R(b) = {θ | wawb = 0} intersects R1, and we also take this into

account.

2.4 Coordinate Transformation. We focus on the dynamical behavior of
online learning around the singular region R = R1

⋃
R2, where the output

function is equivalently represented by using only k − 1 hidden units:

f (x, θ ) = g(x, s) + wφ(x, v). (2.19)

In the above equation, if θ is on the overlap singularity R1, then v = Ja = Jb

and w = wa + wb ; if θ is on the elimination singularity R2 where wa = 0
(wb = 0), then v = Jb (v = Ja ) and w = wb (w = wa ).

Let us consider the following coordinates in the neighborhood of R1,
which was introduced and used by Fukumizu and Amari (2000) and by
Amari et al. (2006):

u = Jb − Ja , (2.20)

v = wa Ja + wbJb

wa + wb
, (2.21)

w = wa + wb, (2.22)

z = wa − wb

wa + wb
, (2.23)

and s is the same as before.
The equations to transform back to the original coordinates are

Ja = v + 1
2

(z − 1)u, (2.24)

Jb = v + 1
2

(z + 1)u, (2.25)
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wa = 1
2
w(1 + z), (2.26)

wb = 1
2
w(1 − z). (2.27)

Then the model parameter θ = [s, Ja , wa , Jb, wb] becomes ξ = [s, v, w, u, z].
Correspondingly, the singular regions R1 and R2 are now represented by
{ξ | u = 0} and {ξ | z = ±1} in the new coordinate system.

Now the student model can be rewritten as

f (x, ξ ) = g(x, s) + 1
2
w(1 + z)φ

(
x, v + 1

2
(z − 1)u

)

+ 1
2
w(1 − z)φ

(
x, v + 1

2
(z + 1)u

)
. (2.28)

Since the activation function φ is infinitely differentiable, we can perform
the Taylor expansion around u = 0 and get

f (x, ξ ) = g(x, s) + wφ(x, v) + 1
8
w(1 − z2)uT ∂φ2(x, v)

∂v∂vT
u

+ 1
24

wz(1 − z2)D(x, v, u) + O(u4), (2.29)

where D(x, v, u) = ∑
i, j,k

∂φ3(x,v)
∂vi ∂v j ∂vk

ui u j uk , vi and ui are the ith elements of v

and u, respectively. Note that D(x, v, u) is of order O(u3).
Note that if u = 0, equation 2.29 reduces to the regular model, equation

2.19, with k − 1 hidden units. In this sense, s, v, and w are parameters to
specify the regular model, while parameters u and z indicate the deviations
from the singular regions.

2.5 Equations of Learning. Next we derive the equations of learning in
terms of the new parameter ξ = [s, v, w, u, z]. The learning equation, 2.12,
is rewritten in terms of ξ as

ξ̇ = −ηTTT
〈
∂l(y, x, ξ )

∂ξ

〉
, (2.30)

where T = ∂ξ

∂θT is the Jacobian of the coordinate transformation (see the
appendix). Note that this is different from ξ̇ = −η〈 ∂l(y,x,ξ )

∂ξ
〉.
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According to equation 2.29, the gradients of f (x, ξ ) with respect to s, v,
w, u, and z are

∂ f (x, ξ )
∂s

= ∂g(x, s)
∂s

, (2.31)

∂ f (x, ξ )
∂v

=w
∂φ(x, v)

∂v
+ 1

8
w(1 − z2)q(x, v, u) + O(u3), (2.32)

∂ f (x, ξ )
∂w

=φ(x, v) + 1
8

(1 − z2)uT ∂φ2(x, v)
∂v∂vT

u + O(u3), (2.33)

∂ f (x, ξ )
∂u

= 1
4
w(1 − z2)

∂φ2(x, v)
∂v∂vT

u + 1
24

wz(1 − z2)
∂ D(x, v, u)

∂u
+ O(u3),

(2.34)

∂ f (x, ξ )
∂z

=−1
4
wzuT ∂φ2(x, v)

∂v∂vT
u + O(u3), (2.35)

where q(x, v, u) = ∂
∂v (uT ∂φ2(x,v)

∂v∂vT u) and ∂ D(x,v,u)
∂u are both vectors of order

O(u2). Then we get the negative gradient of the averaged loss function
〈l(y, x, ξ )〉 with respect to the new parameters:

ls(ξ ) =
〈
e(y, x, ξ )

∂g(x, s)
∂s

〉
, (2.36)

lv(ξ ) =w

〈
e(y, x, ξ )

∂φ(x, v)
∂v

〉
+ 1

8
w(1 − z2)Q(v, u) + O(u3), (2.37)

lw(ξ ) =〈e(y, x, ξ )φ(x, v)〉 + 1
8

(1 − z2)
〈
e(y, x, ξ )uT ∂φ2(x, v)

∂v∂vT
u
〉
+ O(u3),

(2.38)

lu(ξ ) = 1
4
w(1 − z2)

〈
e(y, x, ξ )

∂φ2(x, v)
∂v∂vT

u
〉

+ 1
24

wz(1 − z2)
〈
e(y, x, ξ )

∂ D(x, v, u)
∂u

〉
+ O(u3), (2.39)

lz(ξ ) =−1
4
wz

〈
e(y, x, ξ )uT ∂φ2(x, v)

∂v∂vT
u
〉
+ O(u3), (2.40)

where e(y, x, ξ ) = f0(x) − f (x, ξ ) + ε is the error between the model and the
teacher. In equation 2.37, Q(v, u) = 〈e(y, x, ξ )q(x, v, u)〉, and is still of order
O(u2). Note that lu is of order O(u) and lz is of order O(u2), whereas ls, lv,
and lw are all of order O(1).
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Consequently, by using some mathematical operations, we obtain the
equations of learning in the new coordinate system as

ṡ = ls, (2.41)

v̇ = z2 + 1
2

lv + z2 + 1
2w2 uuTlv + z

w
ulw − zlu − z2 + 1

w2 ulz, (2.42)

ẇ = z
w

uTlv + 2lw − 2z
w

lz, (2.43)

u̇ =−zlv + 2lu, (2.44)

ż =− z2 + 1
w2 uTlv − 2z

w
lw + 2(z2 + 1)

w2 lz. (2.45)

Note that we have omitted the learning rate η in the above equations.

2.6 Critical Line R∗
1 in the Singular Region. In the singular region

R1 where u = 0, for fixed parameters s, v, and w, the output function is
f (x, s, v, w, 0, z), but it does not depend on z. So it reduces to the output
function with k − 1 hidden units whose parameters are specified by (s, v, w).
Let us consider the line R1(s, v, w) in the parameter space where (s, v, w)
are fixed, u = 0, and z is arbitrary. All output functions are the same on this
line. We can add the region R2(s, v, w) specified by z = ±1 with arbitrary u
to this line, still keeping the same output function. Note that R2(s, v, w) is
a pair of n-dimensional subspaces, where z = ±1 and u is arbitrary. So the
set R = R1

⋃
R2 consists of three regions with fixed (s, v, w).

Given the teacher function y = f0(x), assume (s∗, v∗, w∗) is its best ap-
proximation by the model with k − 1 units. Let R∗

1 and R∗
2 be the sin-

gular regions specified by (s∗, v∗, w∗), and put R∗ = R∗
1
⋃

R∗
2. If ξ∗ =

(s∗, v∗, w∗, 0, z) is a point on the line R∗
1 = (s∗, v∗, w∗), then we have

〈
∂l(y, x, ξ )

∂s

〉 ∣∣∣∣ξ=ξ∗ = ls(ξ∗) = 0, (2.46)

〈
∂l(y, x, ξ )

∂v

〉 ∣∣∣∣ξ=ξ∗ = lv(ξ∗) = 0, (2.47)

〈
∂l(y, x, ξ )

∂w

〉 ∣∣∣∣ξ=ξ∗ = lw(ξ∗) = 0. (2.48)

Here, since at ξ∗ the loss function l(y, x, ξ ) does not depend on z, we have

〈
∂l(y, x, ξ )

∂z

〉 ∣∣∣∣ξ=ξ∗ = lz(ξ∗) = 0. (2.49)
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S∗

(S∗, v,∗ w ∗)

zR∗
1

(S, v,w)

u

R∗
2 R∗

2

−1 −1

Figure 1: R∗ = R∗
1

⋃
R∗

2 in the parameter space.

Moreover, the output function does not change its value when we replace
(u, z) by (−u,−z) because this corresponds to the replacement of unit b by
unit a . Hence,

〈
∂l(y, x, ξ )

∂u

〉 ∣∣∣∣ξ=ξ∗ = lu(ξ∗) = 0 (2.50)

also holds at ξ∗.
The above shows thatR∗

1 consists of critical points at which the equations
of learning in equations 2.41 to 2.45 are all zero. In fact, if we let ls = 0, lv = 0,
and lw = 0 in equations 2.41 to 2.45, then it is quite clear that ξ̇ |u=0= 0, and
vice versa. So ls = 0, lv = 0, and lw = 0 is a necessary and sufficient condition
of u = 0 being a critical line.

However, although (s∗, v∗, w∗) is the optimal approximation of teacher
function y = f0(x), R∗

1 is not necessarily a stable critical line because the
Hessian submatrix,

〈
∂2l(y, x, ξ )

∂u∂uT

〉∣∣∣∣ξ=ξ∗ , (2.51)

might not be seminegative definite in general.
Interestingly, R∗

2 is not critical in most cases, and we will show this in
section 3.3.

Figure 1 illustrates the shape of R∗
1 (the thick black line on the z-axis) and

R∗
2 (the two thick lines parallel to the u-axis, which are n-dimensional) in

the parameter space. The gray plane S∗, which includes R∗
1 and R∗

2, is the
region determined by (s, v, w) = (s∗, v∗, w∗), that is, S∗ = {(s, v, w, u, z) |
s = s∗, v = v∗, w = w∗}.

2.7 Stability Analysis. The dynamics of learning near the singularity
depends crucially on the stability of the singularity. The stability analysis on
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the overlap singularity can be performed by analyzing the Hessian matrix
at R∗

1, that is, the matrix

F
∣∣∣∣ξ=ξ∗ =

〈
∂2l(y, x, ξ )

∂ξ∂ξT

〉 ∣∣∣∣ξ=ξ∗ (2.52)

evaluated at ξ∗ = (s∗, v∗, w∗, 0, z).
Fukumizu and Amari (2000) have calculated the above Hessian for MLPs

and shown that the stability of R∗
1 depends solely on the signature of the

Hessian 〈 ∂2l(y,x,ξ )
∂u∂uT 〉 | ξ=ξ∗ , which is calculated as

〈
∂2l(y, x, ξ )

∂u∂uT

〉 ∣∣∣∣ξ=ξ∗ = (1 − z2)H(s∗, v∗, w∗), (2.53)

where

H(s∗, v∗, w∗) = 1
4
w∗

〈
e(y, x, ξ )

∂φ2(x, v)
∂v∂vT

〉 ∣∣∣∣ξ=ξ∗ . (2.54)

This results still holds in our general case. For the special case where the
teacher is on the singularityR∗

1, we have f (x, ξ∗) = f0(x) and H(s∗, v∗, w∗) =
0. In this case, the whole line of R∗

1 is stable. That is, it is a line attractor.
For the general case where the teacher cannot be emulated exactly by the
model, the stability of R∗

1 is determined by (1 − z2)H(s∗, v∗, w∗).
We summarize this in the following theorem:

Theorem 1. When the teacher is on the singularity R∗
1, the whole critical line

of R∗
1 is stable. When H has both positive and negative eigenvalues, all points on

the critical line R∗
1 are saddles. Otherwise the line R∗

1 is divided into stable and
unstable parts. When H is negative definite, the part z2 < 1 is stable and attractive,
whereas the part z2 > 1 is repulsive. When H is positive definite, the part z2 > 1
is stable and attractive, whereas the part z2 < 1 is repulsive.

3 Dynamics of Learning

3.1 Trajectories of Learning Near a Singularity. When the matrix H in
equation 2.54 is positive or negative definite, part of R∗

1 is a stable attractor.
Here, we analyze the trajectories of learning in the neighborhood of R∗

1.
Such trajectories were obtained in the special cases of gaussian mixtures
(Amari et al., 2006), multilayer perceptrons (Cousseau et al., in press), and
RBF networks (Wei & Amari, 2006) when the teacher is on the singularity.
However, in Amari et al. (2006) and Cousseau et al. (in press), the gradient
flows were calculated in terms of the new coordinates and are different
from the original gradients. Here, we give ubiquitous trajectories in terms
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of the original gradients by using the new coordinate system in general
cases, where the teacher may be located at any place.

Let us consider the subspace S∗ determined from s∗, v∗, and w∗, which
includesR∗ = R∗

1
⋃

R∗
2. It is shown by the gray plane in Figure 1. It includes

two free parameters u and z, and the other parameters s, v, and w are
determined from equations 2.46 to 2.48:

s = s∗, v = v∗, w = w∗. (3.1)

Thus the dynamics of learning near the critical line R∗
1 in S∗ is governed

by higher-order terms of u in lv, lw, lu, and lz. More concretely, if we put
ξ̃ = (s∗, v∗, w∗, u, z), then equations 2.37 to 2.40 change to

lv(ξ̃ ) = 1
8
w∗(1 − z2)Q(v∗, u) + O(u3), (3.2)

lw(ξ̃ ) = 1
2

1 − z2

w∗ uT H(s∗, v∗, w∗)u + O(u3), (3.3)

lu(ξ̃ ) = (1 − z2)H(s∗, v∗, w∗)u

+ 1
24

w∗z(1 − z2)
〈
e(y, x, ξ )

∂ D(x, v, u)
∂u

〉 ∣∣∣∣
ξ=ξ̃

+ O(u3), (3.4)

lz(ξ̃ ) =−zuT H(s∗, v∗, w∗)u + O(u3), (3.5)

where H(s∗, v∗, w∗) is as in equation 2.54. Now lu(ξ̃ ) is of order O(u),
and lv(ξ̃ ), lw(ξ̃ ), and lz(ξ̃ ) are all of order O(u2). Neglecting higher-
order terms in the above equations and focusing changes only in u and
z, the dynamics near R∗

1 in equations 2.44 and 2.45 can be rewritten
as

u̇ = 2(1 − z2)H(s∗, v∗, w∗)u, (3.6)

ż =− z(1 − z2)
w∗2 uT H(s∗, v∗, w∗)u − 2z(z2 + 1)

w∗2 uT H(s∗, v∗, w∗)u. (3.7)

In the above equations, the right side of u̇ corresponds to the term of lu in
equation 2.44, while the two terms on the right side of ż correspond to those
of lw and lz in equation 2.45, respectively. By putting

h(u) = 1
2

uT u, (3.8)
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we obtain the following equation of the closed form from equations 3.6 and
3.7:

ḣ = uT u̇ = 2w∗2(z2 − 1)
z(z2 + 3)

ż. (3.9)

This is integrable, leading us to the next theorem:

Theorem 2. The trajectories of the averaged learning equations are given by

h(u)
de f= 1

2
uT u = 2w∗2

3
log

(z2 + 3)2

|z| + C (3.10)

in the neighborhood of R∗
1, where C is a constant depending on the initial model

parameter (u(0), z(0)).

The two terms in the right side of equation 3.7 are both of order O(u2);
they are comparable to each other in general. However, when we discuss
the dynamics near the elimination singularity R∗

2, where z2 ≈ 1, the first
term on the right side of equation 3.7 can also be neglected. That is, in the
neighborhood of R∗

1
⋂

R∗
2, the lw term in equation 2.45 can be left out too.

Thus, we get

ḣ = w∗2(z2 − 1)
z(z2 + 1)

ż, (3.11)

and this leads to a simpler form of the learning trajectories near R∗
1
⋂

R∗
2.

Corollary 1. The trajectories of the averaged learning equations are given by

h(u) = w∗2log

(
|z| + 1

|z|
)

+ C (3.12)

in the neighborhood of R∗
1
⋂

R∗
2.

Remark 1. The trajectories determined from equations 2.41 to 2.45 are not
closed in S∗, where s, v, and w are determined by equation 3.10. Hence,
equations 3.10 and 3.12 are the projections of the true trajectories to S∗.
However, when they deviate from this submanifold, they soon return to S∗,
provided the corresponding part of R∗

1 is stable and attractive, because the
dynamical equations of s, v, and w force them to the submanifold except
for the small-order term of u.

Remark 2. The trajectories in equations 3.10 and 3.12 are obtained from the
averaged learning equations, so they reflect the average learning behaviors.
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The actual trajectories of learning, however, are not smooth and fluctuate
around equations 3.10 and 3.12. Such fluctuations are due to the fact that
the training examples are given one by one in online learning and are
contaminated by noise.

3.2 Dynamic Vector Fields: Redundant Case. Here we show the gen-
eral results of dynamical behaviors around a singularity in hierarchical
systems. In this section, we study the dynamical behavior of learning when
the teacher function f0(x) is also included in the student networks and the
number of hidden units in the student model is larger than that of the
teacher. This implies that the teacher parameter might be on the singularity
of u = 0 or z = ±1, such that the teacher can be realized by the student
model exactly. In this case, we have

f0(x) = g(x, s0) + w0φ(x, v0). (3.13)

Then from equation 2.19, the teacher function is realized by any function
in R∗ = R∗

1
⋃

R∗
2, and 〈l(y, x, ξ )〉 = 0 on R∗. So the region R∗ itself is stable,

which means that the critical lines u = 0 (i.e., R∗
1) and z = ±1 (i.e., R∗

2) are
both attractive, and any trajectories approaching these lines finally stop at
their intersection points with R∗.

The proof of stability is trivial. Because the noise ε in equation 2.9 is as-
sumed to be subject to zero mean gaussian distribution uncorrelated with
the input x, the averaged loss function 〈l(y, x, ξ )〉 takes the minimum value,
which is due to the random noise on the singularity R∗ and is larger other-
wise. Therefore, 〈l(y, x, ξ )〉 is a Lyapunov function, and thus the singularity
R∗ is stable.

Next we discuss the dynamic vector field near the singularity R∗
1 by

fixing s, v, w at their optimal values. In this subspace, the trajectories are
written in terms of h(u) and z:

h(u) = 2w2
0

3
log

(z2 + 3)2

|z| + C. (3.14)

The final trajectories of the dynamic vector field of (h, z) are shown
in Figure 2. The most interesting result is that near the singularity, the
trajectories converge to R∗, depending on the initial value of (h, z), that is,
(h(0), z(0)). The two destinations are R∗

2 (z = ±1, h is arbitrary) or R∗
1 (h = 0,

z is arbitrary). Let us examine these two cases in detail:

� Converging to R∗
1 (h = 0). In this case, u = 0, which means that the

two student units a and b coincide, reaching the overlap singularity
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Figure 2: Dynamic vector fields in redundant case.

R∗
1. Since z is arbitrary, units a and b are both active in the student

network. They cooperate to perform exact learning of the teacher unit
parameterized by (v0, w0), since Ja = Jb = v0, wa + wb = w0. In this
case, the two hidden units overlap completely.

� Converging to R∗
2 (z = ±1). Here, we discuss only the situation of z =

+1 (the discussion of z = −1 is the same). According to the coordinate
transformation in section 2.4, we have wa = w0, Ja = v0, while wb =
0, Jb = v0 + u. This means that the student model has reached the
elimination singularity R∗

2, and only unit a imitates the teacher unit
(v0, w0). As for unit b, because its output weight is 0, it is eliminated
completely.

As can be seen from Figure 2, the basin of attraction ofR∗
1 is limited in the

regions that |z| is small or |z| is large. So in most cases, the model parameter
reaches R∗

2. Even when the state reaches R∗
1, it may move to R∗

2 by random
fluctuation. This confirms the results for MLPs (Cousseau et al., in press),
in which the trajectories of natural gradient learning were also studied in
detail.

3.3 Dynamic Vector Fields: General Case. Now we consider the general
case where the teacher function f0(x) cannot be realized by the student
model exactly. This implies that 〈l(y, x, ξ )〉 	= 0 on R∗

1 even without additive
noise. In spite of this, it is interesting to see that the trajectories of learning
in the neighborhood of R∗

1 are exactly the same as in the redundant case.
However, the directions of the flow are quite complex because the stability
of R∗

1 and R∗
2 is completely different from the previous one. On one hand,

except for the intersection points with R∗
1, there are no critical points on R∗

2.
This is obvious from equation 3.7. So even though the trajectories intersect
R∗

2, they do not stop at any intersection point unless u = 0. As a result,
the directions of trajectories depend on only the stability of R∗

1, which is
determined from the signature of the matrix H(s∗, v∗, w∗) in equation 2.54.
There are three cases:
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Figure 3: Stable region is z2 < 1 on R∗
1.
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Figure 4: Stable region is z2 > 1 on R∗
1.

1. H includes both positive and negative eigenvalues. In this case R∗
1

is unstable, and all trajectories leave S∗, going quickly outside S∗.
Therefore, the trajectories in S∗ have little meaning.

2. H is negative-definite. The dynamic vector field is shown in Figure 3.
In this case, the segment of z2 < 1 on R∗

1 is stable (the thick black
line), while the other parts of R∗

1 are unstable. The basin of attraction
is shown in the gray area. When the trajectories do not reach the
attractor, they enter the region of z2 > 1, where wawb < 0, and leave
the neighborhood of u = 0.

3. H is positive-definite. The dynamic vector field is shown in Figure 4.
In this case, the two segments of z2 > 1 on R∗

1 are stable (the two thick
black line segments), while the part of z2 < 1 is unstable. The gray
basin of attraction in Figure 4 shows that unless the trajectories reach
the stable part, they first approach the region z2 < 1, where wawb > 0,
and then leave the singularity.

In the dynamic vector fields of Figures 2, 3, and 4, whether a trajectory
intersects the critical line u = 0, depends on the constant C in equation 3.10
or 3.12. When

C = C0 = −8w∗2

3
log 2, (3.15)
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the trajectory is tangential to R∗
1. Otherwise, if C < C0, the trajectory has

two intersection points with R∗
1; if C > C0, the trajectory is totally above

R∗
1 and certainly passes the elimination singularity R∗

2, where wawb = 0.
In this case, C represents the distance between the trajectory and overlap
singularity u = 0. Note that if we use equation 3.12, then C0 = −w∗2 log 2.

An interesting result from Figures 3 and 4 is that near the singularity
R∗

1, the destination of a flow also depends on the initial model parameter
(h(0), z(0)), which is equivalent to (u(0), z(0)). When (h(0), z(0)) is located in the
stable region (gray area), (u, z) converges to R∗

1, with its destination being
either z2 > 1 or z2 < 1; otherwise, (u, z) passes the elimination singularity
R∗

2, changes the sign of wa or wb , and then goes to other singularities or
local minima.

Figures 3 and 4 are the averaged dynamic vector fields with small ‖u‖.
The dynamic vector fields, however, are different when ‖u‖ is large. Such
trajectories for RBF network learning will be discussed in a separate article
(Wei & Amari, in press).

4 Plateau Phenomena Near the Singularity

The plateau phenomenon is ubiquitous in the learning process of various
hierarchical neural models (Amari et al., 2006). It has been believed that
permutation symmetry gives rise to plateaus. Here, we show that there are
two kinds of plateaus: the on-singularity plateau and the near-singularity
plateau.

4.1 On-Singularity Plateau. According to the previous discussion,
when R∗

1 is partially stable and the initial state of the model parameter
belongs to its basin of attraction, the averaged dynamics of the model pa-
rameter is attracted to its stable part and stays on it (see Figures 3 and 4).
However, since our learning paradigm is online, training examples are re-
ceived one by one, and the model parameters are adapted each time when a
new example is given. Therefore, the actual change in parameters includes
fluctuations due to the random sampling of x and additive noise. Such fluc-
tuations exist after the model parameters reach the stable part of R∗

1, even
when the teacher signals do not include noise. When the model parameter
leaves R∗

1, it returns to the critical line because of the partial stableness of
the line. However, since all the points on R∗

1 correspond to the same model
function, which does not depend on z, such fluctuations result in a random
walk process of the model parameter on R∗

1. That is, each time after the
model parameter is adjusted, it moves randomly to a different point on the
stable part of R∗

1.
Unfortunately, R∗

1 is only partially stable. This means that once the pa-
rameter reaches the unstable part of R∗

1 by passing through R∗
2, that is,

|z| = 1, it begins to move away from the singularity since R∗
1 becomes re-

pulsive. As a result, an arbitrary small noise in the teacher signal may kick
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the parameters away from the singularity, which means that the singularity
R∗

1 is attractive but eventually unstable. Although it has a positive measure
of basin of attraction, the state finally leaves it from its unstable part. In this
sense the singularity is completely different from the saddle point and is a
Milnor-like attractor (Milnor, 1985).

Unlike the ordinary saddle point, the basin of attraction of the singularity
has a positive measure. Hence, starting from the basin of attraction, the state
is first attracted to the stable interval ofR∗

1; then it undergoes a long period of
random walk on R∗

1; finally it leaves R∗
1. During the period of random walk,

because the model functions on R∗
1 are the same, the averaged loss function

(i.e., the generalization error) also remains almost unchanged. This is the
mechanism of the on-singularity plateau phenomenon in online learning.

The random walk on the critical line is one-dimensional. According to
the random walk theory (see, e.g., Feller, 1971), for any random walk in one
dimension, every random trajectory starting at a point on the line will cross
the boundary almost surely. As a result, once the random walk begins, the
points of z = +1 or z = −1 on R∗

1 will be crossed almost surely. However,
it might take a long time for the system to escape the singularity.

Next we give some experimental results. Here we give just a brief in-
troduction. Detailed discussion about the dynamics of learning in RBF net-
works will be shown in Wei and Amari (in press). For RBF networks and
MLPs that use a modified error function in equation 2.4, if we assume that
the teacher function is also generated by the student network and the train-
ing input x is subject to gaussian distribution with zero mean and unit vari-
ance, then both the averaged learning equation θ̇ (t) in equation 2.12 and the
matrix H(s∗, v∗, w∗) in equation 2.54 can be integrated explicitly. The equa-
tion θ̇ (t) can be solved numerically to obtain the time evolution of model pa-
rameter θ . Then we can obtain the best approximation parameter (s∗, v∗, w∗)
of the student model with k − 1 hidden units by simply letting the initial
parameters of two of the hidden units be identical when we solve θ̇ (t). If we
have obtained (s∗, v∗, w∗) and H(s∗, v∗, w∗), then u̇ and ż in equations 3.6
and 3.7 can also be solved numerically to get their time evolutions within
the subspace S∗. It is straightforward to plot the time evolution of h and the
corresponding h ∼ z trajectory from the time evolutions of u and z.

To observe the plateau phenomenon, it is also very important to know
the time evolution of the generalization error, which is measured by the
averaged loss function,

E(ξ ) = 〈l(y, x, ξ )〉 = 1
2
〈( f0(x) − f (x, ξ ))2〉. (4.1)

Near the overlap singularity R∗
1, E(ξ ) can be simplified by using

equations 3.1 and 2.29,

E(ξ ) = E0(s∗, v∗, w∗) − 1
2

(1 − z2)uT H(s∗, v∗, w∗)u + O(u4), (4.2)
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Figure 5: On-singularity plateau observed by the numeric method.

where H(s∗, v∗, w∗) is as in equation 2.54 and

E0(s∗, v∗, w∗) = 1
2
〈( f0(x) − g(x, s∗) − w∗φ(x, v∗))2〉. (4.3)

Since the time evolutions of u and z have been obtained numerically, we
can also plot the evolution of generalization error according to equation 4.2.

Figure 5 shows the on-singularity plateau observed in RBF networks
by using the above numeric method. We use two hidden units in both
the teacher and student networks, but the results are the same for
large networks (Wei & Amari, in press). The teacher network param-
eters are µ

(t)
1 = [0.2, 0.3], w

(t)
1 = −0.3, µ

(t)
2 = [−0.2,−0.3], w

(t)
2 = 0.9, and

σ
(t)
1 = σ

(t)
2 = 0.5. Using the numeric method, we can find that one of the

best approximations is v∗ = [−0.2837,−0.4255], w∗ = 0.7510. Then from
the definiteness of H(v∗, w∗), we can check that the z2 < 1 part of R∗

1 is
attractive. Given v∗, w∗, and an initial state, now we can solve u̇ and
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ż in equations 3.6 and 3.7 numerically. We choose the following initial
student parameters: µ

(0)
1 = [−0.50,−0.85], w

(0)
1 = 0.4, µ

(0)
2 = [−0.25,−0.60],

w
(0)
2 = 0.1. The widths of the two student units are fixed at σ = 0.5.

With the above configuration, the model parameter converges to a point
on the stable part of R∗

1. Because equations 3.6 and 3.7 reflect only the aver-
aged dynamics of online learning, we use a stationary gaussian stochastic
process with zero mean and small covariance instead of the subsequent
random walk. Figure 5 shows the results of the test. Figure 5a is the time
evolution of the generalization error, Figure 5b is the corresponding h ∼ z
trajectory of learning, and Figures 5c and 5d are the time evolutions of z and
h. In all figures, segment 1 to 2 represents the period of model parameter
converging to the singularity, segment 2 to 3 is the period of random walk,
and segment 3 to 4 is the period of model parameter leaving the singularity.
Note that in real online learning, segments 1 to 2 and 3 to 4 might include
fluctuations around them. We will show this later. It is clear that during the
period of random walk, the on-singularity plateau occurs.

In Figure 5b the trajectories 1 to 2 and 3 to 4 correspond to those moving to
and leaving from the overlap singularity in Figure 3. However, the moving
speeds of h and z during these two periods might be different. According
to equations 3.6 and 3.7, if (u, z) is close to the elimination singularity R∗

2
where 1 − z2 ≈ 0, then z changes faster than u because u̇ ≈ 0; if (u, z) is far
away from R∗

2, then u changes much faster than z because u̇ is of order O(u)
and ż is of order O(u2).

The above discussion also indicates that during the period of z drifting
toward the elimination singularity R∗

2, h may have a small but nonzero
value. The closer z is to R∗

2, the larger h may be. This phenomenon is shown
by the nonzero h value in Figures 5b and 5d.

Trajectories in Figure 5 are plotted based on equations 3.6, 3.7, and 4.2.
They are the projections of the true trajectories to S∗, by fixing s, v, and w

at their optimal values s∗, v∗, and w∗. Next we compare them with the real
trajectories in online learning by simulation. The teacher parameters and
the initial student model parameters in simulation are exactly the same as
in the numeric test in Figure 5. Training examples (yt, xt) are obtained one
by one, with additive noise subject to gaussian distribution with zero mean
and variance 0.02. Each time we get an example, the model parameter is
trained according to equation 2.11 with a learning rate η = 0.05. Training
on the current example is stopped until the algorithm reaches a maximum
times of 200, or |yt − f (xt, θ t)| < 10−3. Then the algorithm waits for the next
example.

Figure 6 shows the real online learning dynamics. In all figures ◦ and
× represent the initial and final states, respectively. We can see that the
trajectories in Figure 6 are very similar to those in Figure 5, except that the
online trajectories include fluctuations due to the additive noise and the
random sampling of xt . It is quite clear that the random walk on R∗

1 results
in the on-singularity plateau.
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Figure 6: On-singularity plateau in real online learning.

During the period of random walk, although the generalization error
keeps almost unchanged, the eigenvalues of the Hessian 〈 ∂2l(y,x,ξ )

∂u∂uT 〉|ξ=ξ∗ on
R∗

1 are always fluctuating along with the drift of z. This is an important
feature of the random walk, which can be seen clearly from equation 2.53.
When z walks to the unstable part of R∗

1, the eigenvalues of the Hessian flip
their signs. As a result, the system becomes unstable because of the positive
eigenvalues, and the system escapes the singularity.

It should also be pointed out that in online learning, the overlap singu-
larities look like local minima, although they are not. A local minimum is
always stable, but an overlap singularity is unstable. If we have enough
patience, the algorithm will finally escape it. Note that the fluctuations due
to the noise and the random sampling of input play an important role in
such an on-singularity plateau.

4.2 Near-Singularity Plateau. Even when the initial state of the model
parameter does not belong to the basin of attraction of R∗

1, the plateau-like
phenomenon appears. This is called the near-singularity plateau, which
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occurs when trajectories are close to the overlap singularity R∗
1. Such tra-

jectories are called near-singularity trajectories. Although they have no in-
tersection with R∗

1 (totally above R∗
1), they cross the elimination singularity

R∗
2.
Now we elucidate the mechanism of the near-singularity plateau. Near

the overlap singularity, the rate of change of E(ξ ) in equation 4.2 is

Ė(ξ ) = zuT H(s∗, v∗, w∗)uż − (1 − z2)uT H(s∗, v∗, w∗)u̇ + O(u4). (4.4)

We know that ż is of order O(u2) and u̇ is of order O(u). So in equa-
tion 4.4, the first term of Ė(ξ ) is of order O(u4), and the second term is
at most of order O(u2). When the model parameter is very close to the
elimination singularity R∗

2, where z ≈ ±1, then the first term dominates
in Ė(ξ ), and Ė(ξ ) is of order O(u4). This tells us that if u is small, E(ξ )
remains almost unchanged when the model parameter crosses the lines
z = ±1. As a result, a plateau-like phenomenon appears near the elimination
singularity.

We can see this more clearly by plotting the error evolution when the
model parameter passes a near-singularity trajectory. Since H(s∗, v∗, w∗) is
a real symmetric matrix, its Rayleigh quotient κ(u), defined as

κ(u) = uT H(s∗, v∗, w∗)u
uT u

, (4.5)

satisfies

λmin ≤ κ(u) ≤ λmax, (4.6)

where λmin and λmax are the minimum and maximum eigenvalues of H.
Since the dynamics is discussed around R∗

1
⋂

R∗
2, we can use equation 3.12

and get

E(ξ ) = E0(s∗, v∗, w∗) − κ(u)(1 − z2)
(

w∗2 log
(

|z| + 1
|z|

)
+ C

)
. (4.7)

Note that if H < 0 (H is negative-definite), then κ(u) < 0, and the di-
rections of near-singularity trajectories (see Figure 3) are from the z2 < 1
region to the z2 > 1 region; if H > 0 (H is positive-definite), then κ(u) > 0,
and the directions of near-singularity trajectories (see Figure 4) are from
the z2 > 1 region to the z2 < 1 region. According to equation 4.7, Figures 7a
and 7b plot the error evolutions (E(ξ ) versus z) when the model parameter
moves along near-singularity trajectories in Figures 3 and 4. In Figure 7, u is
assumed to be one-dimensional, and the constant E0(s∗, v∗, w∗) is assumed
to be 1. It is obvious that there is a plateau near z = ±1 when C = C0 (curve
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Figure 7: E(ξ ) ∼ z curves near z = ±1.

1). But if we increase C , the plateau vanishes gradually (curves 2, 3, and
4). Note that such near-singularity trajectories exist only when C > C0. If
C < C0, then the trajectories intersect the singularity line u = 0, and the
on-singularity plateau occurs.

Figure 7 indicates that trajectories above the line R∗
1 give rise to plateaus

when they pass the elimination singularity. The closer the trajectory is toR∗
1,

the more serious the plateau is. In this sense, the so-called quasi-plateaus
(Park et al., 2005) are also easily observed (see curves 2 and 3 in Figure 7).

Figure 8 shows the near-singularity plateau observed in RBF networks
when the model parameter crosses the elimination singularity R∗

2. The nu-
meric method of obtaining the figure is the same as depicted in section 4.1.
However, the teacher and the initial student network parameters are differ-
ent. The teacher network parameters are µ

(t)
1 = [0.4, 0.3], w

(t)
1 = 0.4, µ

(t)
2 =

[−0.4,−0.3], w
(t)
2 = 0.9, and σ

(t)
1 = σ

(t)
2 = 0.5. Using the numeric method,

we can solve that the best approximation is v∗ = [−0.2323,−0.1742],
w∗ = 1.0555, and the z2 > 1 part of R∗

1 is attractive. We choose the follow-
ing initial student parameters so that the averaged trajectory does not reach
R∗

1 but passes through the elimination singularity z = 1: µ
(0)
1 = [0,−0.3],

w
(0)
1 = 1.3, µ

(0)
2 = [0.4, 0], w

(0)
2 = −0.3. The widths of the two student units

are also fixed at σ = 0.5.
Figure 8a shows the time evolutions of generalization error, Figure 8b

shows the corresponding near-singularity trajectories, and Figures 8c and
8d show the time evolutions of z and h. We can see that when the model
parameter passes the line z = 1, where wb = 0, a plateau-like phenomenon
occurs, although h 	= 0.

Figure 9 shows the near-singularity plateau observed in real online learn-
ing simulation. In simulation, the teacher network parameters and the initial
student parameters are also the same as the numeric test in Figure 8. Note
that in Figure 9, the slow learning speed around z = 1 is shown as a period
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Figure 8: Near-singularity plateau observed by the numeric method.

of random walk in the neighborhood of z = 1. It is during this period that
the near-singularity plateau happens.

From the dynamic vector fields in Figures 3 and 4, which are projections
of the true learning trajectories on the S∗ plane (see Figure 1), we can imag-
ine the shape of the error surface of the averaged cost function around the
overlap singularity u = 0. Here let us consider only the z > 0 part of the
overlap singularity whose stable part is z > 1 (discussion of other cases are
similar). u = 0 and z = 1 are both contour lines with the same E(ξ ). Around
the line of u = 0, the error surface in the neighborhood of z > 1 is above the
line, while the error surface in the neighborhood of 0 < z < 1 is under the
line. Moreover, this error surface becomes flat around z = 1. The closer the
z is to z = 1, the flatter the surface is. Obviously the learning trajectories
around u = 0 depend on the initial states. If the model parameter is initial-
ized in the neighborhood where z � 1, then it first moves toward u = 0,
then drifts to z = 1 along the critical line, with some fluctuations (so h 	= 0).
This corresponds to the on-singularity plateau. But if the initial parameter is
close to the intersection point of u = 0 and z = 1, then the model parameter



Dynamics of Learning Near Singularities in Layered Networks 839

100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

0.03

Learning Step

G
en

er
al

iz
at

io
n 

E
rr

or

(a) Time evolution of generalization error

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

z

h

(b) h ∼ z trajectory

0 100 200 300 400
0

0.5

1

1.5

2

Learning Step

z

(c) Time evolution of z

0 100 200 300 400
0

0.1

0.2

0.3

0.4

0.5

0.6

Learning Step

h(
3,

4)

(d) Time evolution of h

Figure 9: Near-singularity plateau in real online learning.

just passes the line of z = 1 and leaves the overlap singularity. Since the error
surface in this area is flat, a near-singularity plateau phenomenon occurs,
and h 	= 0 also holds since the near-singularity trajectory never intersects
the line of u = 0. So from the point of view of error surface, these two kinds
of plateaus have different mechanisms.

In the case of the on-singularity plateau, Ė(ξ ) = 0 on average when the
model parameter walks randomly onR∗

1. However, during the period of the
near-singularity plateau, Ė(ξ ) < 0 always holds, although its value is very
small. This is an important difference between the two kinds of plateaus,
which implies that it is relatively easy for the learning algorithm to leave
the near-singularity plateau. This also explains why the time period of
near-singularity plateau in Figures 8 and 9 is much shorter than that of the
on-singularity plateau in Figures 5 and 6.

5 Conclusion

This letter investigates the dynamics of learning near singularities in lay-
ered networks by discussing the stability, the trajectories of learning, and
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the plateau phenomena in a unified framework. We show that various
hierarchical models share common trajectories of learning near an over-
lap singularity. They are represented by a very simple form, 1

2 uT u =
2w∗2

3 log (z2+3)2

|z| + C , provided that irrelevant parameters (s∗, v∗, w∗) are the
best approximation to the teacher by the model with k − 1 units. The result
applies to many other hierarchical models trained by the gradient descent
method as long as their activation function is smooth enough so that Taylor
expansion can be used (e.g., the reformulated RBF networks by Karayiannis
& Randolph-Gips, 2003).

The universal mechanism of plateau has been elucidated. The dynam-
ical analysis shows that the overlap singularity gives rise to a Milnor-like
attractor driven by noise. If a trajectory converges to the stable part of the
overlap singularity, then the subsequent random walk gives rise to the
on-singularity plateau. Even when the trajectory does not converge to the
overlap singularity, near-singularity plateaus appear.

This letter mainly discussed the learning dynamics near the overlap
singularity and the elimination singularity close to them. The dynamics
of learning near the elimination singularities far away from the overlap
singularities still remains unknown. Determining the influences of such
singularities on the dynamics of learning is one of our topics for further
research.

In addition to giving rise to plateaus, the overlap singularity may also
cause other problems. For example, a lot of Milnor-like attractors are caused
by them. Considering that so many overlap singularities exist because of
the permutation symmetry, we can imagine that there are also many black
hole–like attractors in the parameter space. Once the model parameter is
attracted to such a singularity, it is very hard for it to get away. This explains
why there are so many local minima in backpropagation learning for hier-
archical models, including MLPs and RBF networks. How to escape such
singularities in learning is another interesting topic. The natural gradient
method (Amari, 1998; Park, Amari, & Fukumizu, 2000) gives one solution
to it. It is interesting to investigate it further in the present context (see
Cousseau et al., in press).

Appendix: Learning Equations in the New Coordinate System

According to the coordinate transformation, the relation between the learn-
ing equations in the new and original coordinate systems is represented
by

ξ̇ = Tθ̇ , (A.1)

where T is the Jacobian matrix:

T = dξ

dθT . (A.2)
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On the other hand, the gradients of f in terms of the two coordinates are
related as

∂ f (x, θ )
∂θ

= TT ∂ f (x, ξ )
∂ξ

. (A.3)

Arranging the above equations, we obtain

ξ̇ = −ηTTT
〈
∂l(y, x, ξ )

∂ξ

〉
(A.4)

Now it is easy to obtain the learning equations 2.41 to 2.45 in the new
coordinate system.
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