
433 

Progress of Theoretical Physics, Vol. 52, No.-2, August 1974 

Dynamics of Macrovariables for Nonuniform Systems 

--Scaling Theory--

Hazime MORI 

Department of Physics, Kyushu University, Fukuoka 

(Received February 20, 1974) 

A scale transformation of the nonequilibrium macroscopic system to larger similar sys­

tems is introduced to find kinetic equations for the evolution and fluctuation of the macro­

variables. In the scale transformation, we postulate that the probability distribution for the 

fluctuation of the macroscopic degrees of freedom and the quantities determined by the micro­

scopic degrees of freedom per unit volume are invariant. The characteristic length of the 

macroscopic state l, the macroscopic state variables Y• and their fluctuation variables z. are 

transformed by h=Ll, (L):-1), Y•L=L-"y• and z.L=L-Pz., respectively. The probability dis­

. tribution then takes the form P( {z;,lP}, {ql}, SJjl", t/l'), where q, SJ, d and t denote the wave 

vectors, volume, dimensionality and time, respectively. If a<{3, then the master equation is 

reduced to a linearly generalized Fokker-Planck equation with time-dependent coefficients and 

the probability distribution is normal around the mean evolution. If a;;;;{3, then the nonlinear 

drift terms are important and a renormalization of kinetic coefficients must be done to 

determine the mean evolution. For the isotropic Heisenberg ferromagnets near the Curie 

point, a={3= (d-2+7J) /2 and 0= (d+2-7J) /2, where 7J is the correlation critical exponent. 

For the isotropic homogeneous turbulence, a=1, {3= -1/3 and 0=2/3, where Kolmogorov's 

spectrum is assumed. For example, this indicates that the turbulent viscosity' has the form 

q-413V(wq-213), a> being the frequency. 

§ I. Introduction 

Macroscopic systems have characteristic properties which do not appear in 

systems of small numbers of degrees of freedom. The central limit theorem and 

the phase transitions are outstanding examples. In a previous paper/> we have 

proposed a general type of kinetic equations from the statistical-mechanical point 

of view. In this paper we shall explore the most dominant features of macro­

scopic systems by introducing a new method of asymptotic evaluation for large 

systems and deriving the asymptotic form of the kinetic equations. 

A similar attempt has been jD-ade by van Kampen2> and by Kubo, Kitahara 

and Matsuo3> for uniform systems by the use of the Kramers-Moyal expansion of 

the master. equation. They extended the central limit theorem in the form of the 

system-size expansion of the master equation, and showed that, for large values 

of the system size !2, the master equation is reduced to a linear Fokker-Planck 

equation and the probability distribution of the macrovariables is normal or Gaus­

sian around their mean evolution. These works, however, are limited to the uni­

form disordered systems which are described by a small number of macrovariables. 
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434 H. ·Mori 

The critical phenomena and ·the turbulence suggest that nonuniform systems can 
have quite different features and must' be described by a large number of the 
macroscopic degrees of freedom which increase enormously as the system size tJ 
becomes large. For such systems the tJ expansion cannot be used. Instead a 
scale transformation of the nonequilibrium macr~scopic state will be shown to 
be useful. 

As the characteris.tic lengths, we have the linear· range of the intermolecular 
force r 0 and the correlation length o~ fluctuation A, where A>r0• In the case of 
critical phenomena near the equilibrium critical point, A represents the correla­
tion length of equilibrium fluctuation which becomes anomalously large near the 
critical point.4> In the· case of the fully-developed turbulence, A would be the 
inverse of the lower limit of the inertial range of wave numbers, at which energy 
is fed into the turbulence.~h 6 > 

It is convenient to distinguish the following three cases about the range ~f 
wave numbers of the macrovariables concerned: denoting the upper limit of wave 
numbers of the macrovariables by q•, 

(a) q"A~l, (b) q"A~l, (c) q"A:::::l, (1) 

where q"~1/r 0 • The components with wave numbers q>q" will be called the 
eliminated degrees of freedom. In both (a) ana (b), the Markov approximation 
is valid, whereas in (c) it is not valid since the separation of the time scale of 
the macroscopic and the eliminated degrees of freedom is not possible.1> In (a), 
which will be called the normal case, the transport coefficients are determined 
by the eliminated degrees of freedom. In this case it will be shown except_ a 
few special systems that the master equ~tion is reduced to a linearly generalized 
Fokker-Planck equation and the probability distribution is normal around the 
mean evolution. In (b), which will be called the extremely anomalous case, the 
transport coefficients are not determined by the eliminated degrees of freedom but 
by the nonlinear fluctuation of the macroscopic degrees of freedom. 7> In this case, 
therefore, a renormalization by eliminating the nonlinear mode coupling between 
the components in the wave number range q")>q>q•', where q•' is a wave num­
ber satisfying q•' A~ 1, must be done to obtain the transport coefficients/>• 8> The 
turbulent viscositt> and the dynamic critical phenomena will be formulated from 
this point of view. 

Although one of the main purposes is to develop a general theory, we shall 
keep our mind on two typical examples. One is the isotropic homogeneous tur­
bulence in an incompressible, three-dimensional fluid whose velocity field ua (r) 
obeys the Navier-Stokes equation~) 

a fJ ( a )a -ua(r) =- :Eu.s(r)-. -ua(r) +v:E - ua(r), at {J ar.s '{I ar.s 
(2) 

where the subscripts a and {3 indicate the x, y and z components and v is the 

.. 
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Dynamics of Macrovariables for Nonuniform Systems 

kinematic viscosity. In terms of the Fourier components 

Uaq- ~ S dr exp(iq·r)ua(r), 

S2 being the volume of the system, (2) takes the form 

duaq/ dt = i:E' (p · Uq-p) Uap ~ q2VUaq , 
p 

435 

(3) 

(4) 

where L:p' denotes the sum over the wave vectors whose magnitude is smaller 

than a cutoff qc. · 'The other is the dynamic critical phenomena in an isotropic, 

three-dimensional Heisenberg ferromagnet near the Curie point whose Fourier 

components of the spin density sqa (a= 0, ±) obey7l 

d 0 i "'' [ 1 . 1 ]' + - 2 0 

dt sq = h(Je 1;" X~P- X't.q-p s P sq-P- q Vusq ' 

d ± ~ • ± i "'' [ 1 1 J 0 ± 2 ± 
-Sq -±ZiiJqSq ±-. ~ -.---.-- SpSq-p-q.J)J.Sq, 
dt . h(J p X11 p x J.q-p 

where (J• = 1/kT•, T• being the equilibrium temperature, 

Xftq=S2(isq0 l2
)•, X~q=SJ(Isq±l 2 )', 

(5) 

(6) 

(7) 

( · -)• indicating the equilibrium average, Va are the spin diffusion coefficients and 

liJq is the spin wave frequency: When qc).>1, Va depend on the wave number q. 

In § 2, basic kinetic equations are summarized from the viewpoint of the 

theory of generalized Brownian motions, and it is pointed out that the S2 expansion 

method is not valid for. nonuniform systems. In § 3, scaling exponents a, (3, 08 

and On are introduced to characterize the most dominant features of macroscopic 

systems and it is shown that the form of the master equation critically depends on 

the inequality relations between these scaling exponents. Examples of the normal 

case (a) and the anomalous case (b) are studied in §§ 4 and 5, respectively. 

Section 6 is devoted to a summary and remarks, where Table I summarizes the 

values of the scaling exponents in typical examples studied in this paper. 

§ 2. Basic kinetic equations 

The macroscopic state variables which we consider m this paper are the 

local densities X"'(r), (,u=-1, 2, ... ),*l which satisfy the conservation laws 

8X"'(r)/8t= -·L:oJ"'fJ(r)/orfJ, 
fJ 

(8) 

where J"' (r) are the local fluxes. The local densities and fluxes are assumed to 

be coarse-grained in coordinate space so that they consist of the Fourier .com­

ponents with the wave vectors whose magnitude is smaller than a cutoff qc.sl 

*l The capital letters A, X, Z, B, etc., indicate the phase functions, and the small letters a, x, 

z, ~' etc., denote their values~ 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

2
/2

/4
3
3
/1

9
0
4
6
6
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



436 H. Mori 

Following the theory of generalized Brownian motions; we write (8) in the·form 
of the generalized Langevin equation 

(9) 

The :first term represents the systematic part and R"',.(t) is the :fluctuating forces. 
The systematic part consists of a streaming term v p.r and a dissipative term 
c"' .. ;l> 

(10) 

The dissipative term C "',. is related to the :fluctuating forces R"',. (t) through the 
kinetic coefficients involved. In (2)' v p.'l' and c"'.. represent the first and the· 
second term, respectively. In general, we may assume that the systematic part 
is a functional of the lqcal densities {X. (r), v = 1, 2, · · ·} and their coordinate de­
rivatives at r; 

[ a ~ ]· h"',.(X) =f"' X.(r), -X.(r), X.(r), ··· . 
' ar a. ar a.Br II 

(11) 

Let us suppose that the macroscopic state is described by the solution of 
the deterministic equation 

with the boundary conditions imposed on the system. Then the :fluctuation of 
X"'(r) from y"'(r), 

is determined by 

(14) 

where 

Jh"',.(Z,t)={exp[I_;z.(r) a +E:EBZ.(r). a +···] 
• 8y. (r, t) • a 8r a. a (By. (r; t) /8r a.) 

-1} hp.r (y (t)). (15) 

When an external force is applied, it is added to (12). In describing the :fluctua­
tion, it is more convenient to use 

(16) 

since their two-time correlation functions 

(17) 

can be assumed to have definite values for large !J, where k represents the set 
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Dynamics of Macrovariables for Nonuniform Systems 437 

(1-l, q) and ( ··)0 indicates the .average over the initial ensemble. Then (14) 

leads to 

with 

dEk (t) I dt = - Ahk (E, t) + !Rk (t) 

Ahk(E, t) =JQ S dr exp(iq·r)Ah"'r(Z, t), 

~k (t) = L: iqp ;_ Jar exp (iq · r)!! pfl (r, t), 
. /i 'V SJ 

where !J"' (r, t) are the fluctuating local fluxes corresponding to R"'r (t). 

(18) 

(19) 

(20) 

The probability distribution function for E(t) = {Ek(t)} to take a set of values 

~= {~k} is given by 

(21) 

If we- may assume that the fluctuating forces !Rk (t) are represented by a Gaussian 

white process, then1> we obtain 

(22) 

where 

(23) 

(24) 

D"'" are related to Va by Dap=(Ja,fJVaX~q· The Gaussian assumption, however, is 

not valid at least when qc;.;::::l. Therefore, we go back to a general type of 

the master equation proposed in. a previous paper/> which will be referred to 

as I hereafter. 

Let us introduce the "extensive." variables 

A"'q (t) = J dr exp (iq · r) X"' (r, t) (25) 

and denote the set of them by A (t) = {Ak (t)}, where Ak* is included to denote 

Ak *. Then, as was shown in I, the probability distribution function for A (t) to 

take a set of values a= {ak} obeys the following master equation: 

(26) 

where 
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438 H. Mori 

(27) 

(28) 

(n>2) (29) 

In (27), the curly brackets denote' the Poisson brackets and ( · · ·; a)• indicates 
the conditional average over the ca,nonical ensemble with a :fixed value a of A. 
F(:Z) is the dimensionless generalized free energy 

F(a);,_ -lnw(a), [w(a}=(o(A(O) -a))']. (30) 

Lk, .. -k.; 1 (a) are the. generalized diffusion coefficients whose explicit expressions 
are given by (36) and (41) of I. Since the conservation laws (8) lead to 

Ak(t) = L;iq_s Jdr exp (iq · r)JPfJ (r, t), 
p -

we have 

Lk,···k.;z (a) ~on+r, 

where o=qcJ.... In most cases we may assume that 

(31) 

(32) 

Lk,···k,.; z (a) =:=!J( -1/ I.; qo_s · · · q2nf)q~Oq,+···+q,.,q'D Po:··p,.;v, (33) • p 

where Dp,···p,.;v are constants indepEjndent of !J, the wave vector and the macro­
scopic state, and the diffusion tensors of odd rank vanish due to the local isotropy 
in the local equilibrium state. 

Introducing the "densities" xk by 

ak=!Jxk, 

we denote the quantities per unit volume by G (x); 

G (x) =G (a) /!2. 

Then (26) can be written as 

_! P(x, t) = I; -~[hk(x)P(x, t)] 
at k axk 

(34) 

. (35) 

00 c-t 1 a a +I;---- I; ... I;- ... -[ak,···k.(x)P(x, t)], (36) 
n=2 n! Qn-l k, kn axk, axk. 

where 

hk(x) = -[vk(x) +C\(x)]. (37) 

Following van Kampen,2l let us introduce the deterministic equation 

dyk(t)/dt= -hk(Y); (38) 
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Dynamics of Macrovariables for Nonuniform Systems 439 

and define the fluctuation variables zk and ~k by 

1 
Xk=Yk(t) +zk, Zic= .jiJ ~k. (39) 

Examples of (38) are provided by (4), (5) and (6). The probability distribu­

tion function fo:t z= {zk} is given by 

P(z, t) =P(y (t) + z, t). (40) 

Since 

.§_ P(z, t) = aP(x, t) + 'E Yk(t) aP(z, t) , 

at at . k azk 
(41) 

(36) leads to 

.§_ P(z, t) = 'E ___!__{Jh~ (z, t) P(z, t)} 
at k azk 

where 

Jhk(z, t)=hk (y + z) - hk (y) = [exp ( 'E zi ___!__) -1]hk (y). ( 43) 
j ay j . 

Rewritting. in terms of ~k =-IIi zk, we thus obtain 

(} . a _ . . oo ( _ )n 1 
--;:II(~, t) = 'E ~c {Jhk(~, t)II(~, t)} + ~ ~ 1 - n(n-2)12 

ut . k U'ik n-2 n. J' 

(44) 

where 

Jhk(~,t)=../QJhk(z,t)=.Jii[exp(. ~·· 'E~ 1 ___!__)-1]hk(y). (45) 
vSJ J ayi 

When Jhk (z~ is a linear ·function of z, Jhk(~) = Jhk (~). Equation (19) with (15) 

is the local representation of ( 45). Equation ( 44) is the most fundamental equa­

tion on which the present theory is developed. The corresponding Langevin 

equation is given by (18). If o=qc). <( 1, then the terms of higher derivatives 

with n'>3 are of order on a11d the second term of (29) is of higher order than 

the first term by o. Then, to order o2, (44) is reduced to the generalized Fokker­

Planck equation (22). When o2;1, however, such an approximation is not valid. 

In uniform disordered systems which can be described by a small number 

of macrovariables, the sums in (44) and (45) do not depend on SJ, and II(~, t) 

must be a definite function of ~ and t for large SJ. Then, in the thermody-
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440 H. Mori 

namic limit !2-oo, (44) is reduced to 

where 

;..kJ (y) =ah~c (y) /aYJ, 

alcJ•(Y) /2 =Llc;J('Y) -2:: LkJ*;m(Y) f)F (y) /aYm *, 
m 

and (18) takes the form 

dE" (t) I dt = - 2:: AkJ (y) EJ (t) + !R,. (t). 
J 

(46) 

(47) 

(48) 

(49) 

Thus, in uniform systems, the fluctuation of the macrovariables is described by 
the linear Fokker-Planck and Langevin equations with time-dependent coefficients. 
In nonuniform systems, however, the sums in (44) and (45) are taken over all 
the macroscopic degrees of freedom whose number is proportional to !2, and II(~, t) 
cannot be a definite function of ~ and, t. Therefore, the thermodynamic limit 
!2- oo cannot be taken in ( 44) and ( 45). This difficulty, however, will be re­
moved by introducing a scale transJorination of the nonequilibrium macroscopic 
state. 

§ 3. Scale transformation 

A scale transformation which we introduce here differs from the similarity 
laws in fluid mechanics which are obtained by changing all linear dimensions in 
the same ratio and by keeping all dimensionless quantities invariant.D> In the 
following scale transformation, molecular quantities such as the intermolecular 
force and the mean molecular density are kept constants. 

Denoting one of the characteristic lengths ·Of the macroscopic state by l, we 
introduce a larger similar system whose characteristic length lL and volume !JL 
are given by 

(L>l) (50) 

where d is the dimensionality. The smallest distance of the spatial variation of 
the macroscopic state variables b=l/q" is one of the characteristic lengths. There­
fore, the number of the macroscopic degrees of freedom is invariant under the 
scale transformation; 

(51) 

where 

(52) 

Equation (50) also leads to 
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Dynamics of Macrovariables for Nonuniform Systems 441 

(53) 

Since the force range r 0, the lattice constant and the mean molecular density 

are not changed, the total number of the degrees of the freedom of the system 

becomes Ld times, and thus the number of the microscopic degrees of freedom 

becomes Ld times. We postulate, however, that the quantities determined by the 

microscopic degrees of freedom per unit volume are invariant. This will be 

called the Ansatz I. For instance, D,., .. ·l'n;v in (33) are invariant, which leads to 

(54) 

This ansatz is the most crucial point of our scale transformation. In the normal 

case (a) and the extremely-anomalous case (b), (54) is satisfied. It will be 

pointed out in § 6 that (54) can be extended in a more general form. 

Let us define the scaling exponents for the time and the state variables by 

tL=L0t, Y~cL=L-ayJc, 

z~cL=L-fiz~c' ~~cL=L<df2)-fi~k. 

(55) 

(56) 

The time scaling exponent 8 must be positive. In most cases {3 differs from a. 

The values of a and {3 depend on the variable. For instance, the mass density 

p (r) and the momentum density j (r) of fluids can have different exponents which 

are related to each other by {3p={31 -8+1 from the conservation law. In the 

following, however, we assume that the relevant variables lead to a single {3. 

We next postulate that the probability distribution for the fluctuation of the 

macroscopic state variables. is invariant under the transformation t~tL when L 

is large: 

(57) 

In other words, the macroscopic probability distribution has a certain functional 

form independent of L when L is large. This will be called the Ansatz II. In 

accordance . with this ansatz, the macroscopic fluctuation part of the generalized 

free energy (30) must ,be invariant; 

LIFL (~L. h) = L-d LIF (~. t)' (58) 

where LIF(~, t) =F (y (t) + N .j !2) - F (y (t)). From (28), (29) and (54), there­

fore, we obtain 

C ~L ( L t ) _ L -(n+l+d-fi)C~ ( t) 
Jc 1···k., Z , L - k 1···k., z, , (59) 

(60) 

To obtain (60), we have assumed f3<d + 1, which is satisfied in all the examples 

we shall study in this paper. 

The fluctuation drift coefficient Llh~c (z, t) in ( 42) and ( 44) consists of the 

streaming and diss~pative part. Let us define their scaling exponents for large 

L by 
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where (59) leads to 

From ( 45) we have 

H. Mori 

LlvkL(zL, h) =L-<P+Bs'Livk(z, t), 

LICkL(zL,tL) =L-<I1+BDlLICk(z, t), 

' 

On=d+2-2(3. 

(61) -

(62) 

. (63) 

(64) 

and similar equations for Llvk (~, t) and LICk(~, t). The scaling exponents of 
Llhk (z, t) and Llhk (~, t) are thus determined by either of 08 and On which IS 

smaller. 

The scale transformation of the master equation ( 44) thus leads to 

:t II(~. t) =- ~ f)~k {[L 8 - 88 Livk(~. t) +V- 8 DLICk(~. t)]II(~. t)} 

oo ( _ t SJ -(n-2)!2 co f) f) ~ 

+ ~ Dn-J)tn :E · ·· :E ~ •• · ~{£k 1 ···kn_ 1 ;kn*JI(~, t)}, (65) n-2 k1 kn u~-k 1 U':,~kn 

where 

(66). 

On being given by (63). Equation (18) leads to . 

dEle (t) I dt = v-Os Llvk (E, t) + v-eD LICk (E, t) + DB-BD)/2$._k (t)' (67) 

where it has been used that !RkL(tL) =Ddf 2 )-f1-<B+BDJI 2 !R~c(t). In (65), (67) and the 
following, Llvk and LIC~c represent their most dominant parts for large L. The 
scale transformation of (42) is similarly obtained and each term yields the same 
scaling exponent as the corresponding term of (65). 

The time scaling exponent 0 must be chosen to equal either of 08 and On 
which is smaller. Thus we have the following two cases: 

[A] Os>On: 

Then O=On. From (66), (;'n=O if n=2, and (;'n>O if n>3. Thus for large 
L, 

where 

(68) 

(69) 

(70) 

(71) 
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Dynamics of Macrovariables for Nonuniform Systems 443 

The case v~e(Y) =0 is included as a special case of (70). Equation (68) is a 

· generalized Fokker-Planck equation, wP.ere Llh~e can be a nonlinear function of ~. 

[BJ ()s<()D: 

Then ()=()8. From (66), C,.>O. This is obvious if d+2(}8-(}D>O. If d 

+2(}s-(}D<O, then this comes from the inequality C,.>((}D-(}8) + (d+2(}s-(}D)j2 

= (d/2) + (()D/2) >O. Thus for large L, 

(72) 

dE~e (t) 1 dt = Llv~e (E, t). (73) 

Equation (72) quite differs from (68). This form will appear in the extremely 

anomalous case (b). 

When a<(), we have a simple situation. 

[A'] a<(): 

Let us consider (43). Since z/8/ay//'-/L -<P-a) is small for large L, 

Llh~eL(~L, tL) =Vdf2)-<f3-a>-8LJJi~e(~, t), 

where 

(74) 

J.~e 1 being given by ( 47), and (J denotes the scaling exponent of h~e (y). In this 

case, we have () = (J- a= ()D from (62) and (63), and thus arrive at the case [A]. 

Insertion of (74) into (68) and (69) leads to the linearly generalized Fokker­

Planck and the Langevin equation with time-dependent coefficients, respectively. 

The probability distribution function II(~, t) depends on the macroscopic 

characteristic length l; for the lL system, 

IIL(~L, tL)=F( {~~eL}, {qL}, !JL, tL, h). (75) 

The L dependence of the arguments are given by (50), (52), (55) and (56), 

but IIL(~L, tL) must have such a functional form that L cancels out the right­

hand side of (75). This can only happen if II(~, t) is of the form 

(76) 

Equation (76) is the most general representation of the scaling of the macro­

scopic fluctuation, including the dynamic scaling. Similarly (58) leads to 

(77) 

It should be noted that we can replace ~~ez-<df 2 )+f3 in (76) and (77) by z~el 13 , but 

then their !J dependence changes. The explicit functional form of (76) is not 

known to ,us until we solve the kinetic equation (68) or (72) explicitly. Never-
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444 H. Mori 

thele'ss, (76) gives us useful information. As an example let us consider the 
mean evolution of ~k; 

~k (t) = (~k) (t) = J d~II(~. t) ~k. (78) 

Equation (76) leads to the form 

~pq(t) =q-<clf2J+fl'fJJ'P(ql, tqs). (79) 

The· characteristic complex frequency of the time evolution of (78), therefore, 
must be of the form 

!Jpq=q8Sp(ql). (80) 

Thus the exponent of the frequency spectrum is given by {}, 
Since (} is a function of {3, the UJ:?-known parameter is {3 only; To determine 

this· we use the same-time correlation function 

Xpg(t)=(~~q~::)(t) =q-rCp(ql, tq8), ,(81) 

where ~k'==~k-~~c(t) and r must be non-negative. From (76), 

r=d-2[3>0. (82) 

Let us take the correlation length of fluctuation A. as l. In the normal case where 
q•;t <{ 1, r = 0 and {3 = d/2. In the critical regi~e of the equilibrium critical phe­
nomena where q•A.~1, r=2-1J and {3= (d-2+1})/2, where 1J is the correlation 
critical exponent. In the isotropic homogeneous turbulence, r = 11/3 and {3 = -1/3 
if Kolmogorov's spectrum is. used. 

Finally let us consider the scaling of the evolution equation (38) which 
describes the macroscopic state. The scale invariance of the macroscopic flow 
pattern leads to 

y pq(t) = qayp (ql, tq'). (83) 

The scale transformation must keep the most dominant feature of the evolution 
equation (38) invariant. Thus a and r are determined in such a way that ' I 

(84) 

satisfies 

(85) 

where [···]L denote the L factors of v1cL and C~cL. For the equilibrium systems, 
(38) leads to the .free energy minimum 8F(y)j8y~c=0, which determines a. In 
most cases the evolution scaling exponents a and r differ from the fluctuation 
scaling exponents {3 and (}. For example, the, Navier-Stokes equation (4) has 
a=1 and i=2. If t" could be smaller than both of (}8 and On, then (} had to 
be set to be r and all the terms of (65) and (67) would vanish for large L. 
This, however, cannot occur. Although there are two kinds of time scales r 
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Dynamics of Macrovariables for Nonuniform Systems 445 

and () in the nonsteady states, therefore, r>(J and we can single out the ()time 

scale by taking large L. 

§ 4. Normal cases (q0 'J\,<f..l) 

Since q•). «:..1, we obtain 

(86) 

To have exponents explicitly, we first consider three examples. 

[1] Navier-Stokes fluids: 

Equation (4) leads to 

a=1, r=2, (87) 

Av~c(z, t) =i~'[(p·yq-p)Zap+Yap(p·zq-p) + (p·zq-p)Zap]. (88) 
p 

If d>2, then a</3, 0=08 =2(=0D) and 

Av~c(~, t) =i~'[(p·yq-p)~ap+Yap(p·Eq-p)]. (89) 
p 

If d=2, then a=/3, 0=08 =2(=()D) and 

A11~c(~. t) =i~'[ (p·yq-p)~ap+Yap(P·Eq-p) +]!i (p·Eq-p)~ap]. (90) 

If d<2, then a>/3, 0=08 = (d+2)/2(<0;) and 

Av~c (~, t) =i (1/ V !J) ~' (p · E~-p) ~ap. (91) 
p 

In this case, since O<r, the scaling of the fluctuation is valid in the inertial range 

where the dissipative term can be neglected. 

[2] Isotropic Heisenberg ferromagnets': 

Equations (5) and (6) lead to 

a=O, r=2, (92) 

Avq0 (z, t) =iC 11 ~'(q·p) [Yp+z;-p+Yq-pzp++zP+zq-_p], (93) 
p 

Avq±(z, t) = ±iq 2 Bzq±±iCl_~'(q·p) [Yp0z:-p+Y:-pzp0 +z/z:-p], (94) 
p 

where Band Care constants. Since a<f3,()=()8 =2(=()D) and 

Ahq 0 (~, t) = -iC 11 ~'(q·p) [Yp+~q-p+Yq-p~p+] +q 2 V 11 ~q 0 , (95) 
p . 

Ahq±(~. t) = ~iq 2 B~q±~iCl_~'(q·p) [Yp 0 ~:-p+Y:-p~p 0 ] +lvl_~q±· (96) 
p 

Since () =r, and Ah~c are linear functions of ~. no singular phenomena are expected 

to occur. 

[3] Fluctuations in the eq'lfilibrium state: 

Since q•;.«;.1, the macroscopic densities y"(r, t) and their Fourier transform 
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446 H. Mori 

Y~c (t) do not depend on the system size tJ and are invariant under the scale 

transformation. This le,ads to a= 0. 

Except for the case of the low-dimensional Navier-Stokes fluids (d<2), we 

have a<f3 and arrive at the case [A']. Then (68), (69) and (7 4) lead to 

(97) 

(98) 

Thus we obtain the linearly .generalized Fokker-Planck equation of the same type 

as ( 46), even for nonuniform systems, though under the restricted conditions. 

Let us put 

II(~, t) = exp [- ([J(~, t)]. 

Then (98) takes the form 

f)([J f)([J ] 

f)~k 8~,* . 

(99) 

(100) 

Noting that ([J (~, t) depends on ~k through x~c = Y~c (t) + (~~c/ ../ Q), we expand ([J(~, t) 

in the power series of ~k· Since ([J(~, t) =([JL(~L' tL), we obtain 

= L -(fJ-a)n f)"([J (0 t) 
([J (~, t) = ([Jo(t) + .E n 2 .E "' .E ~lc 1 ••• ~kn ' (101) 

n=l n! Q I k, . kn f)yk, · · · f)ykn 

Since a<{3, the terms with n>3 can be neglected for large L. Thus we can 

assume the quadratic form 

where ~ 1c (t) is the mean evolution (78), and ¢~c 1 (t) is the inverse matrix of X~c! (t), 

(103) 

Both X~c 1 and ¢~c 1 are hermitian matrices; 

(104) 

Inserting (102) into (100), and equating the terms of the same order in ~/ = ~k 

-~~c(t), we find 

d~~c(t)/dt= -.E J..~c 1 (y)~ 1 (t), (105) 
J 

dX~cz (t) 1 dt = - .E [X~c 1 J..,, (y) + U1 (y) x,~J + 2iA1c , (106) 
j 

where Ltz=[L~c;z+Lz•;~c•]/2=1At. Equation (105) represents the average of (97). 

Since 1:~ 1 are real constants, Lt, form a real symmetric matrix. The AkJ (y), L~cz, 

~~c(t), X~c 1 (t), if;~cz(t) and ([J(~, t)/!2 are definite functions in the thermodynamic 
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Dynamics of Macrovariables for Nonuniform Systems 447 

limit !J-HXJ. In the homogeneous systems, the square matrices are diagonal with 

r_espect to the wave vector. Inserting (102) into (99), we obtain 

(107) 

Thus it turns out that when a<{3, II(~, t) is given by the normal distribution. 

§ 5. Extremely anomalous cases (q 0 A~ I) 

As typical examples, we consider the fully-developed turbulence in the Navier­

Stokes fluids and the dynamic critical phenomena in the isotropic Heisenberg 

ferromagnets near the Curie ·point. 

[1] Isotropic homogeneous turbulence in three dimensions: 

Assuming Kolmogorov's spectrum r=2+ (5/3), we obtain 

!3=-1/3, r=ll/3, eD=17/3. (108) 

The a and r are given by (87) . Since a> {3, (88) leads to 0 8 = 1 + {3 = (d + 2 

-r)/2=2/3<0D, and 

(109) 

which is identical with (91). Thus we arrive at the case [B] with e = 2/3. Since 

O< r ( = 2), the range of wave numbers must be divided into two subranges; the 

range I, q<qrt, where the time scale is determined by the characteristic frequency 

!Jq=q8S(qJ...), and the range II, qrt-;Sq<q•, where it is given by !Jq=q"S'(qJ...). 

The range I is the inertial range where Kolmogorov's spectrum is expected to 

be valid5),B) and thus {108) and (109) are obtained. In the range II, the dis­

sipative term is also important even for determining the fluctuation. 

Since a>{3, the probability distribution of fluctuation must drastically differ 

from the normal distribution. It is, however, not easy to determine it since (73) 

is a, highly-nonlinear equation. Recently N elkin has discussed this problem, as­

suming a kinetic equation similar to (72) .6l The turbulent viscosity llturb may 

be regarded as an effective viscosity on a single mode ~,. 0 (t) due to the mode­

mode coupling with other modes. Since Q 2llturb = Q 9 S (QJ...), its spectrum must be 

of the form 

llturb (Q, (J)) = Q-'18V (QJ..., (J)Q-218), (110) 

where (J) is the frequency. 

The turbulent viscosity can be formulated in the following way. Other modes 

exert a fluctuating force on the mode ~ aQ (t) due to the nonlinear mode coupling 

(109). In order to express this effect in terms of a viscosity, we eliminate other 

modes by the projection-operator method.10l Using the master operator M(~) and 

its adjoint A(~) 
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448 H. Mori 

(111) 

we first introduce 

~k(t) =exp [tA (~)] ~k. (112) 

Since (72) leads to II(~, t) =exp[tM(~)]II(~, 0), we can then write the mean 
evolution (78) as 

(113) 

If we set II(~, 0) = [1+B 1 o~ 1 *]II'(~) with a steady-state distribution II'(~), B 1 

being a constant, then this takes the form 

(114) 

where o~k(t)=~k(t) -(~~<)', and (-··)'indicates the average over the steady-state 
distribution II'(~). Equation (114) shows that the two-time correlation functions 
7Jfkz (t) describe the linear response of the steady state to a. weak disturbance. 
In previous papers/),IO) the renormalization for the equilibrium fluctuation has been 
shown. This method, however, can be used .also for the steady state by replac­
ing the equilibrium average by the steady-state average. Namely, setting (o~ko~ 1 *)' 
= ok,1(1 0'~ 1 1 2 )", we introduce the projection operator 

(115) 

Then the equation of motion for (112) can be written as10l 

d~k(t)/dt= :E iwi< 1 o~ 1 - :E f\/Jk,(s)o~ 1 (t-s)ds+qk(t), (116) . J J Jo 
where 

iwk,=<o~/ A(~) o~k)'/(lo~JI 2 )', 

cpk,(t) =-<a~/ A C~)qk(t) )'/<lo~,l 2 )', 

qk(t)= exp[t(1-P)A(nJ (1-P)A(no~k. 

(117) 

(118) 

(119) 

The qk (t) represents the fluctuatin,g force exerted by other modes due to the 
nonlinear mode coupling. Since (qk(t)o~ 1 *(0))'=0, the mean evolutiono~k(t) is 
obtained from (116) through (114). The mean evolution has a quite different 
feature from in the normal case (105). That is the memory effect coming out 
from the memory kernel ¢k1 (s) in (116). The turbulei;lt viscosity is represented 
by this memory kernel. In the isotropic homogeneous turbulence, all the corre­
lation functions are diagonal. Then (116) leads to 

d~aq(t) /dt=iWQO~a(J -Q2 I Vturb(Q, s) O~aq(t -s)ds, (120) 

where iwQ=(o~: 9 Jvaq(~))"/(lo~aql 2 )', and (118) leads to 
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Dynamics of Macrovariables for Nonuniform Systems 449 

Vturb(Q, w) = c~~:) I" (q:() exp[t(1-P)A(~)]qa())•e-l"tdt' (121) 

where qa()= (1-P)Jva()(~). Since [qa9]L::=V16 and [t]L=V18, (l21) satisfies 

the dynamic scaling (110). To calculate (121) explicitly, we may employ a self­

consistent equation approach developed fot the equilibrium critical phenomena.7>• 11> 

[2] Magnetic critical phenomena: 

The equilibrium state y is determined by 

with the positive hermitian matrix F~t 1 =fiF (y) /8yk8y/. Since the second terms 

of (27) and (28) can be neglected for large !J, 

(123) 

where fJJt,(x) =-( {A~t, A 1*}; x//f3•!J. Therefore, (122) gives a stable steady 

·solution of the evolution equation (38). The correlation length of critical fluctua­

tion is a function of temperature T;4> A~c·, (e=jT-T0 j/T0 ), where T 0 is the 

Curie temperature and v::::::2/3 for the three-dimensional isotropic Heisenberg fer­

romagnets. Now we take q" A~ 1. Then A is· one of the characteristic lengths 

of the macroscopic state, and the scale transformation (50) means T approach­

ing to T 0 according to eL=L-<1Me. This agrees with Kadanoff's scaling.4> Ac­

cording to the scaling theory of static critical phenomena, the thermodynamic free 

energy F'.(y) obeys the same scaling as the fluctuation fr~e energy JF (z). H 

a magnetic field h is applied, then it must be transformed by hL=L-xh, where 

x = d- a. Therefore, 

a=f3=d-x= (d-2+r;)/2, (124) 

and r=2-r;, {)D=4-r;, where r;::::::0.075 for the three-dimensional isotropic 

Heisenberg ferromagnets. Since Mlt1(x) '""'X.:,. (123) leads to [v~t(x)]L= [F(x)]L 

=L -d, giving 

8s=d-{3= (d+r)/2= (d+2-r;)/2. (125) 

Since Wq = (J /h/3eX~q, (J being the spontaneous polarization, (5) and (6) lead to 

the same result for 88 • Thus we have the following two cases. 

If d<6-r;, then 8=8s(<8D) and the dynamics of the critical fluctuation 

is described by (72) and (73). The streaming velocity Jvk may be approximately 

given by 
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450 H. Mori 

where, since a={3>0, only the terms of lowest order in Yk and zk ,have been 
retained. Then we meet a situation similar to the turbulence. Since a= {3, the 
probability distribution of fluctuation II(~, t} must deviate from the normal one~ 
The mean evolution of fluctuation (J~k (t), however, can be determined by (116) 
and written in terms of the renormalized kinetic coefficients </hJ (i(J)) . The linear 
transport coefficients, observed by neutron scattering for example, are thus given 
by 

r,.Q(i(J)) = ~ 2 [n,.+~ foo <q-;9 exp[t(1-P)A(~) ]q,.9 )•e-i"tdt ], 
X,.g Q Jo (128) 

where D,. is given by (24). From (80) the second term in the square brackets 
must have the scaling form ).812D,.(QJ.., (J)).6f2), where we have assumed d=3and 1]=0. 
This form .agrees with the Halperin-Hohenberg non-classical dynamic scaling.12l 

If d>6-1J, then 0=0n=4-'I](<08 ) and the kinetic equations are provided 
by (68) and (69) with (126), (127) and JCk(~) = -q 2 [D,./X~q]~q"· For d>6-1], 
therefore, (70) leads to a simple relaxation form for the mean evolution; ~q a (t) 
,.__. exp[ -tq 2 D,./X~q]. Thus it turns out that the conventional theory13l is valid 
only for d>6- 'IJ, and the non-classical dynamic scaling12l holds for d<6- '17· 

§ 6. Summary and remarks 

It has been shown that the scaling exponents a, {3, 08 and On defined by (55), 
(56), (61) and (62), are the parameters characterizing the most dominant 
stochastic features of the macroscopic systems and provide us with a useful method 
for finding asymptotic kinetic equations for large systems. Table I summarizes 

Table· I. Scaling exponents. in typical examples. 

1 
I 

2 3 
I 4 

Equilibrium Fluctuations Navier-Stokes Fluids (d=3) 

qc,\<{1 
I 

qc,t~1bl qC,\<{1 
I 

qc,\~1 

region hydrodynamic c~itical laminar· turbulent 

a 0 (d-2+-q)/2 1 1 
{3 d/2 (d-2+-q)/2 3/2 -1/3 

a<fi a={i a<fi a>fi 

OD rp&) 2--q+¢ 2 17/3 
Ds (d+2--q)/2 2 2/3 

8=8D=rp 8s'58D 8=·DD=2 6=88<8D 
if d'52--q+2¢. 

a) ¢-==2 for the conserved densities and .¢-==0 for the bulk-contact systems. 
b) The ordered state (T<Ta) is included in the case 2 irrespectively of the value of qc since ,\~oo. ' 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

2
/2

/4
3
3
/1

9
0
4
6
6
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Dynamics of Macrovariables for Nonuniform Systems 451 

their values in the typical examples studied in this paper. This table indicates 

that our scaling would be useful for constructing a framework of the statistical 

mechanics of fluctuations and nonequilibrium states, including the nonlinear steady 

states far from equilibrium. In fact, starting from a general type of the master 

equation, proposed in a previous paper from the statistical-mechanical viewpoint, ll 

and applying our scaling, we have derived asymptotic kinetic equations for sev­

eral examples. 

In the uniform systems2>· 3> and in the generalized time-dependent Ginzburg­

Landau model,i4> the fluctuation of the macroscopic state variables also arises from 

the interaction with the contact system. Imagine, for example, the spin system 

in contact with the phonon system. To include such systems, we extend (54) 

in the follo~ing form: 

(¢>0) 

Then, instead of (63) and (60), we obtain 

fJD=d+¢-2f3=¢+r, 

[ ~ ]L-L-n<f>f2 
ak,···kn - ' 

(129) 

(130) 

(131) 

where we have used f3<d + 1. These equations lead to the same expression 

for (,. as (66) but with (130) for f) D. Thus (65), (67) and the subsequent 

equations are also valid for the bulk-contact systems with (130) for f}D· It turns 

out that the SJ expansion method is valid only if a=O, f3=d/2, (r=O), ¢=0 and 

thus f)= f) D = 0. It is worth noting here that the SJ expansion method is not valid 

for the ordered or coherent state, since then a is not zero as suggested by 

Table I. In the kinetic Ising model near the Curie point,i4l if qc}. ~ 1, then 

a={3= (d-2+7J)/2, (r=2-rJ), and fJ=fJD=2-rJ+¢, where ¢::::::0.14>' 15> These cases 

are also included in Table I. Thus our scaling theory gives us a generalization 

of the central limit theorem, the SJ expansion methods2>' 3> and the scaling theories 

of thermodynamic critical phenomena4),12>: 14),16) in a unifying manner. 

The second merit of our scaling theory is that it can also be applied to 

nonlinear steady states far from equilibrium, such as the turbulence, as discussed 

in § 5 [1]. 

The third and probably the most important merit would be that the inequality 

relations between the scaling exponents give us a useful method for finding ki­

netic equations from the statistical-mechanical point of view. This has been 

formulated in [A], [A'] and [B] of § 3, and examples have been studied in 

§§ 4 and 5. 
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