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The time dependence of the recently introduced minimum spanning tree description of correlations between
stocks, called the “asset tree”” has been studied in order to reflect the financial market taxonomy. The nodes of
the tree are identified with stocks and the distance between them is a unique function of the corresponding
element of the correlation matrix. By using the concept of a central vertex, chosen as the most strongly
connected node of the tree, an important characteristic is defined by the mean occupation layer. During crashes,
due to the strong global correlation in the market, the tree shrinks topologically, and this is shown by a low
value of the mean occupation layer . The tree seems to have a scale-free structure where the scaling exponent
of the degree distribution is different for “business as usual’’ and “‘crash’ periods. The basic structure of the
tree topology is very robust with respect to time. We also point out that the diversification aspect of portfolio
optimization results in the fact that the assets of the classic Markowitz portfolio are always located on the outer
leaves of the tree. Technical aspects such as the window size dependence of the investigated quantities are also

discussed.
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I. INTRODUCTION

In spite of the traditional wisdom ‘“Money does not grow
on trees,” here we wish to show that the concept of trees
(graphs) has potential applications in financial market analy-
sis. This concept was recently introduced by Mantegna as a
method for finding a hierarchical arrangement of stocks
through studying the clustering of companies by using cor-
relations of asset returns [1]. With an appropriate metric,
based on the correlation matrix, a fully connected graph was
defined in which the nodes are companies, or stocks, and the
“distances’ between them are obtained from the correspond-
ing correlation coefficients. The minimum spanning tree
(MST) was generated from the graph by selecting the most
important correlations and it is used to identify clusters of
companies.

In this paper, we study the time dependent properties of
the minimum spanning tree and call it a “dynamic asset
tree.”” It should be mentioned that several attempts have been
made to obtain clustering from the huge correlation matrix,
such as the Potts superparamagnetic method [2], a method
based on the maximum likelihood [3] or the comparison of
the eigenvalues with those given by the random matrix
theory [4]. We have chosen the MST because of its unique-
ness and simplicity. The different methods are compared in
Ref. [3].

Financial markets are often characterized as evolving
complex systems [5]. The evolution is a reflection of the
changing power structure in the market and it manifests the
passing of different products and product generations, new

1063-651X/2003/68(5)/056110(12)/$20.00

68 056110-1

PACS number(s): 89.65.—s, 89.75.—k, 89.90.+n

technologies, management teams, alliances and partnerships,
among many other factors. This is why exploring the asset
tree dynamics can provide us new insights to the market. We
believe that dynamic asset trees can be used to simplify this
complexity in order to grasp the essence of the market with-
out drowning in the abundance of information. We aim to
derive intuitively understandable measures, which can be
used to characterize the market taxonomy and its state. A
further characterization of the asset tree is obtained by study-
ing its degree distribution [6]. We will also study the robust-
ness of tree topology and the consequences of the market
events on its structure. The minimum spanning tree, as a
strongly pruned representative of asset correlations, is found
to be robust and descriptive of stock market events.
Furthermore, we aim to apply dynamic asset trees in the
field of portfolio optimization. Many attempts have been
made to solve this central problem from the classical ap-
proach of Markowitz [7] to more sophisticated treatments,
including spin-glass-type studies [8]. In all the attempts to
solve this problem, correlations between asset prices play a
crucial role and one might, therefore, expect a connection
between dynamic asset trees and the Markowitz portfolio
optimization scheme. We demonstrate that although the to-
pological structure of the tree changes with time, the compa-
nies of the minimum risk Markowitz portfolio are always
located on the outer leaves of the tree. Consequently, asset
trees in addition to their ability to form economically mean-
ingful clusters, could potentially contribute to the portfolio
optimization problem. Then with a lighter key one could
perhaps say that ““‘some money may grow on trees,” after all.

©2003 The American Physical Society
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FIG. 1. Left: Plot of the probability density function of the correlation coefficients as a function of time. Right: The mean, standard
deviation, skewness, and kurtosis of the correlation coefficients as functions of time.

II. RETURN CORRELATIONS AND DYNAMIC
ASSET TREES

The financial market, for the largest part in this paper,
refers to a set of data commercially available from the Center
for Research in Security Prices (CRSP) of the University of
Chicago Graduate School of Business. Here we will study
the split-adjusted daily closure prices for a total of N=477
stocks traded at the New York Stock Exchange (NYSE) over
the period of 20 years, from 02 Jan 1980 to 31 Dec 1999.
This amounts to a total of 5056 price quotes per stock, in-
dexed by time variable 7=1,2,...,5056. For analysis and
smoothing purposes, the data are divided timewise into M
windows t=1,2,...,M of width T corresponding to the
number of daily returns included in the window. Several con-
secutive windows overlap with each other, the extent of
which is dictated by the window step length parameter 67,
describing the displacement of the window, measured also in
trading days. The choice of window width is a trade off
between too noisy and too smoothed data for small and large
window widths, respectively. The results presented in this
paper were calculated from monthly stepped four-year win-
dows. Assuming 250 trading days a year, we used OT
~20.8 day and T=1000 day. We have explored a large scale
of different values for both parameters, and the given values
were found optimal [9]. With these choices, the overall num-
ber of windows is M = 195.

In order to investigate correlations between stocks we first
denote the closure price of stock i at time 7 by P;(7) (Note
that 7 refers to a date, not a time window.) We focus our

attention to the logarithmic return of stock i, given by r;(7)
=In P,(7)—In P(7—1) which, for a sequence of consecutive
trading days, i.e., those encompassing the given window ft,
form the return vector ;. In order to characterize the syn-
chronous time evolution of assets, we use the equal time
correlation coefficients between assets i and j defined as

)=l
DAL = I )T

where (- --) indicates a time average over the consecutive
trading days included in the return vectors. Due to Cauchy-
Schwarz inequality, these correlation coefficients fulfill the
condition —1<p;;<1 and form an NXN correlation matrix
C’, which serves as the basis of dynamic asset trees to be
discussed later.

Let us first characterize the correlation coefficient distri-
bution (shown in Fig. 1), by its first four moments and their
correlations with one another. The first moment is the mean
correlation coefficient defined as

(1)

_ 1 .
p(t)= N_(N— 2 p’EeC’ Pij> (2)

ij

where we consider only the nondiagonal (i # j) elements p! !
of the upper (or lower) triangular matrix. We also evaluate
the higher order normalized moments for the correlation co-
efficients, so that the variance is
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The mean, standard deviation (square root of the variance),
skewness, and kurtosis of the correlation coefficients are
plotted as functions of time in Fig. 1.

In this figure the effect and repercussions of Black Mon-
day (October 19, 1987) are clearly visible in the behavior of
all these quantities. For example, the mean correlation coef-
ficient is clearly higher than average on the interval between
1986 and 1990. The length of this interval corresponds to the
window width 7, and Black Monday coincides with the mid-
point of the interval [10]. The increased value of the mean
correlation is in accordance with the observation by Drozdz
et al. [11], who found that the maximum eigenvalue of the
correlation matrix, which carries most of the correlations, is
very large during market crashes. We also investigated
whether these four different measures are correlated, as
seems clear from the figure. For this we determined the Pear-
son’s linear and Spearman’s rank-order correlation coeffi-
cients, which between the mean and variance turned out to
be 0.97 and 0.90, and between skewness and kurtosis 0.93
and 0.96, respectively. Thus the first two and the last two
measures are very strongly correlated.

We now move on to construct an asset tree. For this we
use the nonlinear transformation d;;= y2(1—p;;) to obtain
distances with the property 2=d;;=0, forming an N XN dis-
tance matrix D’. At this point an additional hypothesis about
the topology of the metric space is required. The working
hypothesis is that a useful space for linking the stocks is an
ultrametric space, i.e., a space where all distances are ultra-
metric. This hypothesis is motivated a posteriori by the find-
ing that the associated taxonomy is meaningful from an eco-
nomic point of view. The concept of ultrametricity is
discussed in detail by Mantegna [1], while the economic
meaningfulness of the emerging taxonomy is addressed later
in this paper. Out of the several possible ultrametric spaces,
the subdominant ultrametric is opted for due to its simplicity
and remarkable properties. In practice, it is obtained by using
the distance matrix D’ to determine the MST of the distances,
according to the methodology of Ref. [1], denoted by T'.
This is a simply connected graph that connects all N nodes of
the graph with N—1 edges such that the sum of all edge
weights, Edlr_ETtdﬁj, is minimum. [Here time (window) de-
pendence ofj the tree is emphasized by the addition of the
superscript 7 to the notation.] Asset trees constructed for dif-
ferent time windows are not independent of each other, but
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form a series through time. Consequently, this multitude of
trees is interpreted as a sequence of evolutionary steps of a
single dynamic asset tree.

As a simple measure of the temporal state of the market
(the asset tree) we define the normalized tree length as

1
- i
L(t)_N_l - d,'j? (6)

t
dUe

where ¢ again denotes the time at which the tree is con-
structed, and N—1 is the number of edges present in the
MST. The probability distribution function of the N—1 dis-
tance elements d;; in T' as a function of time is plotted in
Fig. 2 (cf. Ref. [12]). Also the mean, standard deviation,
skewness, and kurtosis of normalized tree lengths are de-
picted in Fig. 2.

As expected and as the plots show, the mean correlation
coefficient and the normalized tree length are very strongly
anticorrelated. Pearson’s linear correlation between the mean

correlation coefficient p(#) and normalized tree length L(t)
is —0.98, and Spearman’s rank-order correlation coefficient
is —0.92, thus both indicating very strong anticorrelation.
Anticorrelation is to be expected in view of how the dis-
tances d;; are constructed from correlation coefficients p;; .
However, the extent of this anticorrelation is different for
different input variables and is lower if, say, daily transaction
volumes are studied instead of daily closure prices [13].

It should be noted that in constructing the minimum span-
ning tree, we are effectively reducing the information space
from N(N—1)/2 separate correlation coefficients to N—1
tree edges, in other words, compressing the amount of infor-
mation dramatically. This follows because the correlation
matrix C’ and distance matrix D’ are both NXN dimen-
sional, but due to their symmetry, both have N(N—1)/2 dis-
tinct upper (or lower) triangle elements, while the spanning
tree has only N—1 edges. So, in moving from correlation or
distance matrix to the asset tree T’, we have pruned the
system from N(N—1)/2 to N—1 elements of information. If
we compare Figs. 1 and 2, we find that distribution of the
distance elements contained in the asset tree retain most of
the features of the correlation coefficient distribution. Their
corresponding moments also bear striking correlation/
anticorrelation, e.g., the Pearson’s linear correlation between
the skewness of the correlation coefficients and the skewness
of the edge lengths is —0.85, while the Spearman’s rank
order correlation is —0.82. Thus one may contemplate that
the minimum spanning tree as a strongly reduced represen-
tative of the whole correlation matrix, bears the essential
information about asset correlations.

As further evidence that the MST retains the salient fea-
tures of the stock market, it is noted that the 1987 market
crash can be quite accurately seen from Figs. 1 and 2. The
fact that the market, during crash, is moving together is thus
manifested in two ways. First, the ridge in the plot of the
mean correlation coefficient in Fig. 1 indicates that the whole
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FIG. 2. Left: The probability distribution function of the (N—1) distance elements contained in the asset tree, as a function of time.
Right: The mean, standard deviation, skewness, and kurtosis of the normalized tree lengths as functions of time.

market is exceptionally strongly correlated. Second, the cor-
responding well in the plot of the mean normalized tree
length in Fig. 2 shows how this is reflected in considerably
shorter than average length of the tree so that the tree, on
average, is very tightly packed. Upon letting the window
width T—0, the two sides of the ridge converge to a single
date, which coincides with Black Monday [10].

III. TREE OCCUPATION AND CENTRAL VERTEX

Next we focus on characterizing the spread of nodes on
the tree. In order to do so, we introduce the quantity of mean
occupation layer as

1 N
Ut =5 2 L(v), (7)

where L£(v;) denotes the level of vertex v;. The levels, not to
be confused with the distances d; ; between nodes, are mea-
sured in natural numbers in relation to the central vertex v,
whose level is taken to be zero. Here the mean occupation
layer indicates the layer on which the mass of the tree, on
average, is conceived to be located.

Let us now examine the central vertex in more detail, as
the understanding of the concept is a prerequisite for inter-
preting mean occupation layer results, to follow shortly. The
central vertex is considered the parent of all other nodes in
the tree, also known as the root of the tree. It is used as the
reference point in the tree, against which the locations of all
other nodes are relative. Thus all other nodes in the tree are

children of the central vertex. Although there is arbitrariness
in the choice of the central vertex, we propose that it is
central, or important, in the sense that any change in its price
strongly affects the course of events in the market on the
whole. We propose three alternative definitions for the cen-
tral vertex in our studies, all yielding similar and, in most
cases, identical outcomes.

The first and second definitions of the central vertex are
local in nature. The idea here is to find the node that is most
strongly connected to its nearest neighbors. According to the
first definition, this is the node with the highest vertex de-
gree, i.e., the number of edges which are incident with
(neighbor of) the vertex. The obtained results are shown in
Fig. 3. The vertex degree criterion leads to General Electric
(GE) dominating 67.2% of the time, followed by Merrill
Lynch (MER) at 20.5%, and CBS at 8.2%. The combined
share of these three vertices is 95.9%. The second definition,
a modification of the first, defines the central vertex as the
one with the highest sum of those correlation coefficients
that are associated with the incident edges of the vertex.
Therefore, whereas the first definition weighs each departing
node equally, the second gives more weight to short edges,
since a high value of p;; corresponds to a low value of d;; .
This is reasonable, as short connections link the vertex more
tightly to its neighborhood than long ones (the same prin-
ciple employed in constructing the spanning tree). This
weighted vertex degree criterion results in GE dominating
65.6% of the cases, followed by MER at 20.0%, and CBS at
8.7%, the share of the top three being 94.3%.

The third definition deals with the global quantity of cen-
ter of mass. In considering a tree T at time ¢, the vertex v;
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FIG. 3. Central vertices according to (1) vertex degree criterion
(top), (2) weighted vertex degree criterion (middle), and (3) center
of mass criterion (bottom).

that produces the lowest value for mean occupation layer
[(t,v;) is the center of mass, given that all nodes are assigned
an equal weight and consecutive layers (levels) are at equi-
distance from one another, in accordance with the above
definition. With this center of mass criterion we find that the
most dominant company, again, is GE, as it is 52.8% of the
time the center of mass of the graph, followed by MER at
15.4%, and Minnesota Mining & MFG at 14.9%. These top
three candidates constitute 83.1% of the total. Should the
weight of the node be made proportional to the size (e.g.,
revenue, profit, etc.) of the company, it is obvious that GE’s
dominance would increase.

As Fig. 3 shows, the three alternative definitions for the
central vertex lead to very similar results. The vertex degree
and the weighted vertex degree criteria coincide 91.8% of the
time. In addition, the former coincides with center of mass
66.7% and the latter 64.6% of the time, respectively. Overall,
the three criteria yield the same central vertex in 63.6% of
the cases, indicating considerable mutual agreement. The ex-
istence of a meaningful center in the tree is not a trivial issue,
and neither is its coincidence with the center of mass. How-
ever, since the criteria applied, present a mixture of both
local and global approaches, and the fact that they coincide
almost 2/3 of the time, does indicate the existence of a well-
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FIG. 4. Plot of mean occupation layer /(#,v.) as a function of
time, with static (solid) and dynamic (dotted) central vertices.

defined center in the tree. The reason for the coincidence of
the criteria seems clear, intuitively speaking. A vertex with a
high vertex degree, the central vertex, in particular, carries a
lot of weight around it (the neighboring nodes), which in turn
may be highly connected to others (to their children), and so
on. Two different interpretations may be given to these re-
sults. One may have either (i) static (fixed at all times) or (ii)
dynamic (updated at each time step) central vertex. If the
first approach is opted for, the above evidence well substan-
tiates the use of GE as the central vertex. In the second
approach, the results will vary somewhat depending on
which of the three criteria are used in determining the central
vertex.

The mean occupation layer [(¢) is depicted in Fig. 4,
where also the effect of different central vertices is demon-
strated. The solid curve results from the static central vertex,
i.e., GE, and the dotted one to dynamic central vertex evalu-
ated using the vertex degree criterion. The two curves coin-
cide where only the solid curve is drawn. This is true most of
the time, as the above central vertex considerations lead us to
expect. The two dips at 1986 and 1990, located symmetri-
cally at half a window width from Black Monday, corre-
spond to the topological shrinking of the tree associated with
the famous market crash of 1987 [10]. Roughly between
1993 and 1997, I(t) reaches very high values, which is in
concordance with our earlier results obtained for a different
set of data [ 14]. High values of [(¢) are considered to reflect
a finer market structure, whereas in the other extreme low
dips are connected to market crashes, where the behavior of
the system is very homogeneous. The finer structure may
result from general steady growth in asset prices during that
period as can be seen, for example, from the S&P 500 index.

IV. TREE CLUSTERS AND THEIR
ECONOMIC MEANINGFULNESS

As mentioned earlier, Mantegna’s idea of linking stocks in
an ultrametric space was motivated a posteriori by the prop-
erty of such a space to provide a meaningful economic tax-
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onomy. We will now explore this issue further, as the mean-
ingfulness of the emerging economic taxonomy is the key
justification for the use of the current methodology. In Ref.
[1], Mantegna examined the meaningfulness of the tax-
onomy by comparing the grouping of stocks in the tree with
a third party reference grouping of stocks by their industry,
etc., classifications. In this case, the reference was provided
by Forbes [15], which uses its own classification system,
assigning each stock with a sector (higher level) and industry
(lower level) category.

In order to visualize the grouping of stocks, we con-
structed a sample asset tree for a smaller dataset [14], shown
in Fig. 5. This was obtained by studying our previous dataset
[14], which consists of 116 S&P 500 stocks, extending from
the beginning of 1982 to the end of 2000, resulting in a total
of 4787 price quotes per stock [16].

Before evaluating the economic meaningfulness of group-
ing stocks, we wish to establish some terminology. We use
the term sector exclusively to refer to the given third party
classification system of stocks. The term branch refers to a
subset of the tree, to all the nodes that share the specified
common parent. In addition to the parent, we need to have a
reference point to indicate the generational direction (i.e.,
who is who’s parent) in order for a branch to be well defined.
Without this reference there is no way to determine where
one branch ends and the other begins. In our case, the refer-
ence is the central node. There are some branches in the tree,
in which most of the stocks belong to just one sector, indi-
cating that the branch is fairly homogeneous with respect to
business sectors. This finding is in accordance with those of
Mantegna [ 1], although there are branches that are fairly het-
erogeneous, such as the one extending directly downwards
from the central vertex, see Fig. 5.

Since the grouping of stocks is not perfect at the branch
level, we define a smaller subset whose members are more
homogeneous as measured by the uniformity of their sector
classifications. The term cluster is defined, broadly speaking,
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as a subset of a branch. Let us now examine some of the
clusters that have been formed in the sample tree. We use the
terms complete and incomplete to describe, in rather strict
terms, the success of clustering. A complete cluster contains
all the companies of the studied set belonging to the corre-
sponding business sector, so that none are left outside the
cluster. In practice, however, clusters are mostly incomplete,
containing most, but not all, of the companies of the given
business sector, and the rest are to be found somewhere else
in the tree. Only the Energy cluster was found complete, but
many others come very close, typically missing just one or
two members of the cluster.

Building upon the normalized tree length concept, we can
characterize the strength of clusters in a similar manner, as
they are simply subsets of the tree. These clusters, whether
complete or incomplete, are characterized by the normalized
cluster length, defined for a cluster ¢ as follows:

1
L=~ 2 dj, ®)

NC d:./.ec

where N, is the number of stocks in the cluster. This can be
compared with the normalized tree length, which for the
sample tree in Fig. 5 at time ¢* is L(*)~1.05. A full ac-
count of the results is to be found in Ref. [16], but as a short
summary of results we state the following. The Energy com-
panies form the most tightly packed cluster resulting in
Ligpnergy(1*)~0.92, followed by the Health-care cluster with
Lijeatth care(1¥)~0.98. For the Utilities cluster we have
Lyiies(£*)~1.01 and for the diverse Basic Materials cluster
Lsic materials(1¥) =~ 1.03. Even though the Technology cluster
has the fewest number of members, its mean distance is the
highest of the examined groups of clusters being
L technology(*)~1.07. Thus, most of the examined clusters
seem to be more tightly packed than the tree on average.
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One could find and examine several other clusters in the
tree, but the ones that were identified are quite convincing.
The minimum spanning tree, indeed, seems to provide a tax-
onomy that is well compatible with the sector classification
provided by an outside institution, Forbes in this case. This is
a strong vote for the use of the current methodology in stock
market analysis. Some further analysis of the identified clus-
ters is presented in Ref. [16].

There are, however, some observed deviations to the clas-
sification, which call for an explanation. For them the fol-
lowing points are raised.

(i) The seemingly random asset price fluctuations stem
not only from standard economic factors, but also from psy-
chological factors, introducing noise in the correlation ma-
trix. Therefore, it is not reasonable to expect a one-to-one
mapping between business sectors and MST clusters.

(ii) Business sector definitions are not unique, but vary by
the organization issuing them. In this work, we used the clas-
sification system by Forbes [15], where the studied compa-
nies are divided into 12 business sectors and 51 industries.
Forbes has its own classification principle, based on com-
pany dynamics rather than size alone. Alternatively, one
could have used, say, the Global Industry Classification Stan-
dard (GICS), released on January 2, 2001, by Standard &
Poor’s [17]. Within this framework, companies are divided
into 10 sectors, 23 industry groups, 59 industries, and 122
subindustries. Therefore, the classification system clearly
makes a difference, and there are discrepancies even at the
topmost level of business sectors amongst different systems.

(iii) Historical price time series is, by definition, old.
Therefore, one should use contemporary definitions for busi-
ness sectors, etc., as those most accurately characterize the
company. Since these were not available to the authors, the
current classification scheme by Forbes was used. The error
caused by this approach varies for different companies.

(iv) In many classification systems, companies engaged in
substantially different business activities are classified ac-
cording to where the majority of revenues and profits comes
from. For highly diversified companies, these classifications
are more ambiguous and, therefore, less informative. As a
consequence, classification of these types of companies
should be viewed with some skepticism. This problem has its
roots in the desire to categorize companies by a single label,
and the approach fails where this division is unnatural.

(v) Some cluster outliers can be explained through the
MST clustering mechanism, which is based on correlations
between asset returns. Therefore, one would expect, for ex-
ample, investment banks to be grouped with their invest-
ments rather than with other similar institutions. Through
portfolio diversification, these banks distance themselves
from the price fluctuations (risks) of a single-business sector.
Consequently, it would be more surprising to find a totally
homogeneous financial cluster than a fairly heterogeneous
one currently observed.

(vi) The risks imposed on the companies by the external
environment vary in their degree of uniformity from one
business sector to another. For example, companies in the
Energy sector (price of their stocks) are prone to fluctuations
in the world market price of oil, whereas it is difficult to
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think of one factor having equal influence on, say, companies
in the Consumer/Noncyclical business sector. This unifor-
mity of external risks influences the stock price of these
companies, in coarse terms, leading to their more complete
clustering than that of companies facing less uniform exter-
nal risks. In conclusion, regarding all the above listed fac-
tors, the success of the applied method in identifying market
taxonomy is remarkable.

V. SCALE-FREE STRUCTURE OF THE ASSET TREE

So far we have characterized the asset tree as an important
subgraph of the fully connected graph derived from all the
elements of the correlation matrix. Since the asset tree is
expected to reflect some aspects of the market and its state, it
is therefore of interest to learn more about its structure. Dur-
ing the last few years, much attention has been devoted to
the degree distribution of graphs. It has become clear that the
so called scale-free graphs, where this distribution obeys a
power law, are very frequent in many fields, ranging from
human relationships through cell metabolism to the Internet
[18,19]. Scale-free trees have also been extensively studied
(see, e.g., Ref. [20]). Recently, examples for scale-free net-
works in economy and finance have been found [6,21,22].

Vandewalle et al. [6] found scale-free behavior for the
asset tree in a limited (one year, 1999) time window for 6358
stocks traded at the NYSE, NASDAQ, and AMEX. They
proposed the distribution of the vertex degrees f(n) to fol-
low a power law behavior:

f(n)~n"¢, )

with the exponent a~2.2, where n is the vertex degree (or
number of neighbors of a node). This exponent implies that
the second moment of the distribution would diverge in the
infinite market limit, or in other words, the second moment
of the distribution is always dominated by the rare but ex-
tremely highly connected vertices.

Our aim here is to study the property of scale freeness in
the light of asset tree dynamics. First, we conclude that the
asset tree has, most of the time, scale-free properties with a
rather robust exponent a~2.1+0.1 for normal topology
(i.e., outside crash periods of “business as usual”), a result
close to that given in Ref. [6]. For most of the time the
distribution behaves in a universal manner, meaning that the
exponent « is a constant within the error limits. However,
when the behavior of the market is not business as usual (i.e.,
within crash periods), the exponent also changes, although
the scale-free character of the tree is still maintained. For the
Black Monday period, we have a~1.8£0.1. This result is in
full agreement with the observation of the shrinking of the
tree during market crashes, which is accompanied by an in-
crease in the degree, thus explaining the lower value of the
exponent a. The observation concerning the change in the
value of the exponent for normal and crash period is exem-
plified in Fig. 6.

When fitting the data, in many cases we found one or two
outliers, i.e., vertices whose degrees did not fit to the overall
power law behavior since they were much too high. In all
cases these stocks corresponded either to the highest con-
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FIG. 6. Typical plots of vertex degree for nor-
mal (left) and crash topology (right), for which
the exponents and goodness of fit are a~2.15,
R?~0.96 and a~1.75, R*~0.92, respectively.
The plot on the left is centered at 28.2.1994 and
the right one at 1.5.1989, and for both 7=1000
days, i.e., 4 years.

nected node (i.e., the central vertex) or were nodes with very
high degrees. This result suggests that it could be useful to
handle these nodes with special care, thus providing further
support to the concept of the central node. However, for the
purpose of fitting the observed vertex degree data, such
nodes were considered outliers. To give an overall measure
of goodness of the fits, we calculated the R? coefficient of
determination, which can be interpreted as the fraction of the
total variation that is explained by the least-squares regres-
sion line. We obtained, on average, values of R?*~(.86 for
the entire dataset with outliers included and R*>~0.93 with
outliers excluded. Further, the fits for the normal market pe-
riod were better than those obtained for the crash period as
characterized by the average values of R>~0.89 and R’
~0.93, respectively, with outliers excluded. In addition to
the market period based dependence, the exponent & was
also found to depend on the window width. We examined a
range of values for the window width 7 between 2 and 8§ yr
and found, without excluding the outliers, the fitted exponent
to depend linearly on T.

In conclusion, we have found the scaling exponent to de-
pend on the market period, i.e., crash vs normal market cir-
cumstances and on the window width. These results also
raise the question of whether it is reasonable to assume that
different markets share the scaling exponent. In case they do
not, one should be careful when pooling stocks together from
different markets for the purpose of vertex degree analysis.

VI. ASSET TREE EVOLUTION

In order to investigate the robustness of asset tree topol-
ogy, we define the single-step survival ratio of tree edges as
the fraction of edges found common in two consecutive trees
at times f and t—1 as

1
U(t)=m|E(t)ﬂE(t—1)|. (10)

In this E(t) refers to the set of edges of the tree at time #, N
is the intersection operator, and |- - -| gives the number of
elements in the set. Under normal circumstances, the tree for
two consecutive time steps should look very similar, at least
for small values of window step length parameter 67. With
this measure it is expected that while some of the differences

10

can reflect real changes in the asset taxonomy, others may
simply be due to noise. On letting 67—0, we find that
o(t)—1, indicating that the trees are stable in this limit [9].

A sample plot of single-step survival ratio for 7=1000
days and 67~20.8 days is shown in Fig. 7. The following
observations are made.

(i) A large majority of connections survives from one time
window to the next.

(ii) The two prominent dips indicate a strong tree recon-
figuration taking place, and they are window width T apart,
positioned symmetrically around Black Monday, and thus
imply topological reorganization of the tree during the mar-
ket crash [10].

(iii) Single-step survival ratio o(¢) increases as the win-
dow width T increases while 6T is kept constant. Thus an
increase in window width renders the trees more stable with
respect to single-step survival of connections. We also find
that the rate of change of the survival ratio decreases as the
window width increases and, in the limit, as the window
width is increased towards infinity 7—oc,0(¢)—1 for all t.
The survival ratio seems to decrease very rapidly once the
window width is reduced below roughly 1 yr. As the window
width is decreased further towards zero, in the limit as T
—0, o(t)—0 for all .
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FIG. 7. Single-step survival ratio o(#) as a function of time. The
average value is indicated by the horizontal line.
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FIG. 8. Multistep survival ratio o(#,k) as a function of time for
different parametric values of 7T (in days).

(iv) Variance of fluctuations around the mean is constant
over time, except for the extreme events and the interim
period, and it gets less as the window width increases.

In order to study the long term evolution of the trees, we
introduce the multistep survival ratio at time t as

o-(t,k)=%|E(t)ﬂE(t—l)~ E(t—k+1)NE(t—k)|,
(11)

where only those connections that have persisted for the
whole time period without any interruptions are taken into
account. According to this formula, when a bond between
two companies breaks even once in k steps and then reap-
pears, it is not counted as a survived connection. It is found
that many connections in the asset trees evaporate quite rap-
idly in the early time horizon. However, this rate decreases
significantly with time, and even after several years there are
some connections that are left intact. This indicates that some
companies remain closely bonded for times longer than a
decade. The behavior of the multi-step survival ratio for
three different values of window width (2, 4, and 6 yr) is
shown in Fig. 8, together with the associated fits.

In this figure the horizontal axis can be divided into two
regions. Within the first region, decaying of connections is
faster than exponential, and takes place at different rates for
different values of the window width. Later, within the sec-
ond region, when most connections have decayed and only
some 20%—-30% remain (for the shown values of T), there is
a crossover to power law behavior. The exponents obtained
for the window widths of 7=500, T=1000, and 7= 1500,
in days, are —1.15, —1.19, and — 1.17, respectively, and so
remains the same within error margins. Thus, interestingly,
the power law decay in the second region seems independent
of the window width.
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FIG. 9. Plot of half-life ,, as a function of window width 7.

We can also define a characteristic time, the so called
half-life of the survival ratio ¢, , or tree half-life for short, as
the time interval in which half the number of initial connec-
tions have decayed, i.e., o(t,t,,/ 6T)=0.5. The behavior of
t1p as a function of the window width is depicted in Fig. 9
and it is seen to follow a clean linear dependence for values
of T being between 1 and 5 yr, after which it begins to grow
faster than a linear function. For the linear region, the tree
half-life exhibits 7,,~0.127T dependence.

This can also be seen in Fig. 8, where the dashed horizon-
tal line indicates the level at which half of the connections
have decayed. For the studied values of the window width,
tree half-life occurs within the first region of the multistep
survival plot, where decaying was found to depend on the
window width. Consequently, the dependence of half-life on
window width T does not contradict the window width inde-
pendent power law decaying of connections, as the two oc-
cur in different regions. In general, the number of stocks N,
as well as the their type, is likely to affect the half-lives.
Earlier, for a set of N=116 S&P 500 stocks, half-life was
found to depend on the window width as 7,,~0.20T [9]. A
smaller tree, consisting primarily of important industry gi-
ants, would be expected to decay more slowly than the larger
set of NYSE-traded stocks studied in this paper.

VII. PORTFOLIO ANALYSIS

Next, we apply the above discussed concepts and mea-
sures to the portfolio optimization problem, a basic problem
of financial analysis. This is done in the hope that the asset
tree could serve as another type of quantitative approach to
and/or visualization aid of the highly interconnected market,
thus acting as a tool supporting the decision making process.
We consider a general Markowitz portfolio P(t) with the
asset weights w,w,,...,wy. In the classic Markowitz
portfolio optimization scheme, financial assets are character-
ized by their average risk and return, where the risk associ-
ated with an asset is measured by the standard deviation of
returns. The Markowitz optimization is usually carried out
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FIG. 10. Plot of the weighted minimum risk portfolio layer
Ip(t,6=0) with no short selling (dotted) and mean occupation layer
I(t,v,) (solid) against time. Top—static central vertex, bottom—
dynamic central vertex according to the vertex degree criterion.

by using historical data. The aim is to optimize the asset
weights so that the overall portfolio risk is minimized for a
given portfolio return rp [23]. In the dynamic asset tree
framework, however, the task is to determine how the assets
are located with respect to the central vertex.

Let r,, and r) denote the returns of the minimum and
maximum return portfolios, respectively. The expected port-
folio return varies between these two extremes, and can be
expressed as rp g=(1—6)r,+ 0ry, where 6 is a fraction
between 0 and 1. Hence, when =0, we have the minimum
risk portfolio, and when #=1, we have the maximum return
(maximum risk) portfolio. The higher the value of 6, the
higher the expected portfolio return rp 4 and, consequently,
the higher the risk the investor is willing to absorb. We de-
fine a single measure, the weighted portfolio layer as

Ip(1,0)= >,

ieP(1,0)

wiL(vh), (12)

where E§V=1w,-=l and further, as a starting point, the con-
straint w;=0 for all i, which is equivalent to assuming that
there is no short selling. The purpose of this constraint is to
prevent negative values for /p(#), which would not have a
meaningful interpretation in our framework of trees with
central vertex. This restriction will shortly be discussed fur-
ther.

Figure 10 shows the behavior of the mean occupation
layer [(#) and the weighted minimum risk portfolio layer
Ip(t,0=0). We find that the portfolio layer is higher than the
mean layer at all times. The difference between the layers
depends on the window width, here set at 7= 1000, and the
type of central vertex used. The upper plot in Fig. 10 is
produced using the static central vertex (GE), and the differ-
ence in layers is found to be 1.47. The lower one is produced
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FIG. 11. Plot of the weighted minimum risk portfolio layer
Ip(t,0=0) with short selling allowed (dotted) and mean occupation
layer [(t,v.) (solid) against time. Top—static central vertex,
bottom—dynamic central vertex according to the vertex degree cri-
terion.

by using a dynamic central vertex, selected with the vertex
degree criterion, in which case the difference of 1.39 is
found.

Above we assumed the no short-selling condition. How-
ever, it turns out that, in practice, the weighted portfolio layer
never assumes negative values and the short-selling condi-
tion, in fact, is not necessary. Fig. 11 repeats the earlier plot,
this time allowing for short selling. The weighted portfolio
layer is now 99.5% of the time higher than the mean occu-
pation layer and, with the same central vertex configuration
as before, the difference between the two is 1.18 and 1.14 in
the upper and lower plots, respectively. Thus we conclude
that only minor differences are observed in the previous plots
between banning and allowing short selling, although the
difference between weighted portfolio layer and mean occu-
pation layer is somewhat larger in the first case. Further, the
difference in layers is also slightly larger for static than dy-
namic central vertex, although not by much.

As the stocks of the minimum risk portfolio are found on
the outskirts of the tree, we expect larger trees (higher L) to
have greater diversification potential, i.e., the scope of the
stock market to eliminate specific risk of the minimum risk
portfolio. In order to look at this, we calculated the mean-
variance frontiers for the ensemble of 477 stocks using T
= 1000 as the window width. In Fig. 12, we plot the level of
portfolio risk as a function of time, and find a similarity
between the risk curve and the curves of the mean correlation

coefficient p and normalized tree length L. Earlier, in Ref.
[14], when the smaller dataset of 116 stocks—consisting of
primarily important industry giants—was used, we found
Pearson’s linear correlation between the risk and the mean
correlation coefficient p(¢) to be 0.82, while that between
the risk and the normalized tree length L(f) was —0.90.
Therefore, for that dataset, the normalized tree length was
able to explain the diversification potential of the market
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FIG. 12. Plots of (a) the mean correlation coefficient p(t), (b)
the normalized tree length L(¢), and (c) the risk of the minimum
risk portfolio, as functions of time.

better than the mean correlation coefficient. For the current
set of 477 stocks, which includes also less influential com-
panies, the Pearson’s linear and Spearman’s rank-order cor-
relation coefficients between the risk and the mean correla-
tion coefficient are 0.86 and 0.77, and those between the risk
and the normalized tree length are —0.78 and —0.65, re-
spectively.

So far, we have only examined the location of stocks in
the minimum risk portfolio, for which 6=0. As we increase
6 towards unity, portfolio risk as a function of time soon
starts behaving very differently from the mean correlation
coefficient and normalized tree length. Consequently, it is no
longer useful in describing diversification potential of the
market. However, another interesting result emerges: The av-
erage weighted portfolio layer /p(7,6) decreases for increas-
ing values of 6, as shown in Fig. 13. This means that out of
all the possible Markowitz portfolios, the minimum risk port-

1984 1986 1588 1980 1992 1994 1996 1998
time (year)

FIG. 13. (Color online) Plots of the weighted minimum risk
portfolio layer /p(t, 8) for different values of 6.
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folio stocks are located furthest away from the central vertex,
and as we move towards portfolios with higher expected re-
turn, the stocks included in these portfolios are located closer
to the central vertex. When static central node is used, the
average values of the weighted portfolio layer /p(¢,0) for 6
=0, 1/4, 1/2, and 3/4 are 6.03, 5.70, 5.11, and 4.72, respec-
tively. Similarly, for a dynamic central node, we obtain the
values of 5.68, 5.34, 4.78, and 4.37. We have not included
the weighted portfolio layer for #=1, as it is not very infor-
mative. This is due to the fact that the maximum return port-
folio comprises only one asset (the maximum return asset in
the current time window) and, therefore, [p(f,0=1) fluctu-
ates wildly as the maximum return asset changes over time.
We believe these results to have potential for practical
application. Due to the clustering properties of the MST, as
well as the overlap of tree clusters with business sectors as
defined by a third party institution, it seems plausible that
companies of the same cluster face similar risks, imposed by
the external economic environment. These dynamic risks in-
fluence the stock prices of the companies, in coarse terms,
leading to their clustering in the MST. In addition, the radial
location of stocks depends on the chosen portfolio risk level,
characterized by the value of 6. Stocks included in low-risk
portfolios are consistently located further away from the cen-
tral node than those included in high-risk portfolios. Conse-
quently, the radial distance of a node, i.e., its occupation
layer, is meaningful. Thus, it can be conjectured that the
location of a company within the cluster reflects its position
with regard to internal, or cluster specific, risk. Characteriza-
tion of stocks by their branch, as well as their location within
the branch, enables us to identify the degree of interchange-
ability of different stocks in the portfolio. For example, in
most cases we could pick two stocks from different asset tree
clusters, but from nearby layers, and interchange them in the
portfolio without considerably altering the characteristics of
the portfolio. Therefore, dynamic asset trees provide an
intuition-friendly approach to and facilitate incorporation of
subjective judgment in the portfolio optimization problem.

VIII. SUMMARY AND CONCLUSION

In summary, we have studied the distribution of correla-
tion coefficients and its moments. We have also studied the
dynamics of asset trees: the tree evolves over time and the
normalized tree length decreases and remains low during a
crash, thus implying the shrinking of the asset tree particu-
larly strongly during a stock market crisis. We have also
found that the mean occupation layer fluctuates as a function
of time, and experiences a downfall at the time of market
crisis due to topological changes in the asset tree. Further,
our studies of the scale-free structure of the MST show that
this graph is not only hierarchical in the sense of a tree but
there are special, highly connected nodes and the hierarchical
structure is built up from these. As for the portfolio analysis,
it was found that the stocks included in the minimum risk
portfolio tend to lie on the outskirts of the asset tree: on
average the weighted portfolio layer can be almost one and a
half levels higher, or further away from the central vertex,
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than the mean occupation layer for window width of four
years.

For many of the quantities we have studied, the behavior
is significantly different for those data windows containing
the dates around October 19, 1987 (Black Monday) from
windows without them. We have studied the effects of this
crash, more specifically in Ref. [10]. We should clarify that
the period 1986—1990 which has shown a ‘“‘crashlike” be-
havior is an artifact of the four-year window width used to
analyze the data and except for the dates around October 19,
1987 this period 1986—1990 was “‘normal.”

Correlation between the risk and the normalized tree
length was found to be strong, though not as strong as the
correlation between the risk and the mean correlation coeffi-
cient. Thus we conclude that the diversification potential of
the market is very closely related also to the behavior of the
normalized tree length. Finally, the asset tree can be viewed
as a highly graphical tool, and even though it is strongly
pruned, it still retains all the essential information of the
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market and can be used to add subjective judgment to the
portfolio optimization problem.
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