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We study the dynamics of bright solitons formed in a Bose-Einstein condensate with attractive atomic

interactions perturbed by a weak bichromatic optical lattice potential. The lattice depth is a biperiodic

function of time with a zero mean, which realizes a flashing ratchet for matter-wave solitons. We find that

the average velocity of a soliton and the soliton current induced by the ratchet depend on the number of

atoms in the soliton. As a consequence, soliton transport can be induced through scattering of different

solitons. In the regime when matter-wave solitons are narrow compared to the lattice period the dynamics

is well described by the effective Hamiltonian theory.
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The ratchet effect, i.e., rectified average current induced
by an asymmetric potential and unbiased zero-mean driv-
ing, has historically attracted a lot of attention due to its
possible relevance to biological transport and molecular
motors, and prospects for nanotechnology [1]. Both in
classical and quantum systems, the ratchet effect has
been studied in dissipative as well as Hamiltonian regimes
[2,3] and is associated with a broken space-time symmetry
of the perturbing potential [4]. Directed ratchet transport
can be experimentally implemented in different physical
systems ranging from semiconductor heterostructures to
quantum dots, Josephson junctions, and cold atoms in
optical lattices [5]. Recently, the interest in optical ratchets
and especially in the effect of interaction on the ratchet
transport [6] has resurged with the experimental advances
in implementing atomic ratchets for Bose-Einstein con-
densates (BECs) [7].

A BEC of atoms with negative scattering length supports
the existence of localized collective excitations, bright
matter-wave solitons. It is therefore interesting to explore
the effect of ratchet potentials on the transport and inter-
action properties of such particlelike excitations. It is
especially important because theoretical studies of the
soliton ratchets so far were mostly focused on topological
solitons [8], whereas a BEC is a perfect test-bed for the
study of the ratchet dynamics of a general class of non-
topological solitons governed by a continuous Gross-
Pitaevskii (nonlinear Schrödinger) equation.

In this Letter we study, for the first time to our knowl-
edge, the effect of the ratchet potential on nontopological
nondissipative bright matter-wave solitons. The ratchet
potential for matter waves can be realized by means of a
bichromatic optical lattice which is ‘‘flashed’’ on and off in
such a way that its time-averaged amplitude vanishes. We
show that both the ratchet effect and soliton directed
transport are observed in such a system even in the absence

of losses, which sets it apart from previously studied dis-
sipative nonlinear systems subjected to ratchet potentials
[9]. A weak potential does not affect the soliton shape,
especially when the soliton is strongly localized, which
justifies its treatment as an effective classical particle.
However, we show that the ratchet effect is even more
pronounced when the extended nature of the excitation
cannot be ignored and the soliton width exceeds the period
of the lattice. Furthermore, we investigate the influence of
the ratchet on soliton scattering, and show that multiple
collisions between solitons may provide a space averaging
mechanism that can enable observation of a soliton current
in a ratchet potential.
We consider a matter-wave soliton formed in a strongly

elongated condensate cloud [10] subjected to a flashing
one-dimensional (1D) optical lattice. As long as the energy
of the longitudinal excitations is not sufficient to excite the
transverse modes of the BEC, the system can be described
by the 1D Gross-Pitaevskii (GP) equation:
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where the Fourier-synthesized lattice potential,

Vðx; tÞ ¼ V0fðtÞ½cosðxÞ þ cosð2xþ�Þ�; (2)

is driven biperiodically: fðtÞ ¼ sinð!tÞ þ sinð2!tÞ, and V0

depends on the intensity of the laser beams forming the
lattice. Quantum transport of ultracold atoms in the sta-
tionary potential of the form (2) has been recently studied
experimentally [11]. The choice of the potential (2) and the
time dependence fðtÞ ensures that both the space- and
time-inversion symmetries are broken if � � 0, �.
According to the symmetry analysis [4], this can allow a
directed transport of matter-wave solitons.
In the model (1) the energy, length, and frequency are

measured in the units of E0 ¼ @
2k2=m, a0 ¼ 1=k, and
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!0 ¼ @k2=m, respectively, where m is the atomic mass,
and k is the wave vector of the optical lattice. The 3D
model was reduced to the 1D GP equation by assuming
that the wave function is separable, c 3Dðx; y; zÞ ¼
c 1DðxÞ�ðy; zÞ, where �ðy; zÞ is the normalized ground
state wave function of the 2D harmonic trap with the
trapping frequency!?. The wave function in Eq. (1) there-
fore relates to c 1D as follows: � ¼ c 1D

ffiffiffiffiffiffiffiffi

g1D
p

, where

g1D ¼ 2ðas!?Þ=ða0!0Þ is the renormalized interaction
coefficient that characterizes the s-wave interaction of
atoms with a scattering length as. The number of atoms
in the system is given by N ¼ N=g1D, where N ¼
R j�j2dx is the norm of the dimensionless wave function.

The relationship between the dimensionless and physi-
cal parameters of the system depends on the particular
experimental conditions. Here we consider the experimen-
tal setup of Ref. [10], where a bright soliton forms in the
7Li cloud with a modified scattering length as �
�0:21 nm trapped in a quasi-one-dimensional atomic
waveguide with !? ¼ 2�� 710 Hz. Furthermore, we
consider a flashing optical lattice applied in the direc-
tion of the waveguide and formed by CO2 laser beams
with a wavelength � ¼ 10:62 �m crossed at the angle
� ¼ 38�. Given these physical parameters, our scaling
units of length and frequency take the values a0 ¼
�=½4� sinð�=2Þ� ¼ 2:52 �m and !0 ¼ 2�� 224 Hz. A
stable bright soliton typically created in the experiment
[10] contains N � 5� 103 atoms, which corresponds to
N � 2:62. We note that by changing the angle � it is
possible to achieve smaller or larger values of a0, and
hence of N, for the same number of atoms, N .

The Hamiltonian description of the mean field [12]
allows us to write an effective energy integral associated
with the equation of motion (1):

Hðx;tÞ¼
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dx: (3)

In the absence of driving, the Eq. (1) has a well-known
solution in the shape of a moving bright soliton:

�ðx; tÞ ¼ N

2
sech

�

N

2
ðx� x0Þ

�

eivðtÞðx�x0Þ; (4)

where x0ðtÞ is the position of the soliton’s center of mass
and vðtÞ ¼ dx0=dt is its velocity. If we assume that the
weak ratchet potential does not affect the soliton shape
during its evolution, then by substituting the expression (4)
into (3) we obtain the effective Hamiltonian,

HeffðtÞ ¼ p2=ð2NÞ þ NVeff ; (5)

that describes the matter-wave soliton as a classical parti-
cle [12] with an effective mass [13] N and momentum p ¼
vðtÞN, moving in the effective potential:

Veffðx0; tÞ ¼ 1

N

Z 1

�1
j�ðx; 0Þj2Vðx; tÞdx

¼ fðtÞ�V0

N

�

cosx0
sinhð�=NÞ þ 2

cosð2x0 þ�Þ
sinhð2�=NÞ

�

� fðtÞuðx0Þ: (6)

The position and velocity of the soliton in the effective-
particle approximation (EPA) can be obtained from the
equation of motion: dp=dt ¼ �@Heff=@x0.
The instantaneous shape of the effective potential, uðx0Þ,

has different symmetry properties depending on the value
ofN. It can be seen that for strongly localized solitons with
large effective masses, N � 1, uðx0Þ approaches the shape
of the optical lattice (2) which is asymmetric for� � 0, �.
In contrast, for small N the second term in uðx0Þ becomes
exponentially smaller than the first one, the effective po-
tential becomes practically independent of � and hence
always symmetric. From these symmetry considerations
we expect that the average velocity acquired by a soliton in
the ratchet potential will strongly depend on N and vanish
as N ! 0.
To test the EPA predictions we calculate the cumulative

velocity �v ¼ ð1=TÞRT
0 vðtÞdt for solitons with different

effective masses, N, both by using the effective
Hamiltonian (5) and by numerical integration of the model
Eq. (1). As can be seen in Fig. 1(a), where we have used
T � 103 � 2�=!, the EPA is in good agreement with the
numerical results obtained from the GP model. As Fig. 1(a)
demonstrates, for a fixed initial position of the soliton,
x0ð0Þ, there is a sharp transition between a regime where
a soliton oscillates between neighboring wells but is not
transported [Fig. 1(b)], and a regime where the soliton
acquires a ballistic motion [Fig. 1(c)]. The EPA also pre-
dicts that the velocity of the ballistic motion, �v ¼
�ð3=2!Þduðx0ð0ÞÞ=dx0ð0Þ, tends to a constant value as
N ! 1, which is confirmed by the numerics. Although
numerical simulations employ periodic boundary condi-
tions, the tails of the soliton never overlap.
The cumulative velocity, �v, is also a function of the

driving frequency, ! [see inset in Fig. 1(a)]. For high
frequencies the velocity vanishes as �v / !�1, as the soli-
ton becomes insensitive to the rapidly oscillating potential.
For the driving frequencies used here the soliton with a
substantial effective mass, e.g., N ¼ 4, radiates very little,
losing less than 1.5% of atoms for typical evolution times
of T ¼ 5� 102 (0.35 s). Changes of the soliton shape are
also small in this regime, with the amplitude varying by
less than 1.5% of the initial value, which justifies our use of
Eq. (4) for the soliton profile as well as the EPA. In the
limit of small ! the soliton strongly interacts with the
lattice and may break up. In the EPA model the trajectory
of the soliton in this case is chaotic and the study of this
regime is beyond the scope of this Letter.
The dependence of the soliton velocity on its effective

mass is a general feature regardless of the symmetry of the
periodic potential; however, the precise form of this rela-
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tionship depends on the initial position of the soliton
relative to the lattice. Since the space inversion symmetry
of the lattice is broken, we can expect that averaging over
all initial soliton positions, x0ð0Þ, will lead to a nonzero
average velocity, h �vi ¼ ð1=2�ÞR2�

0 �vdx0ð0Þ, i.e., directed
soliton current. To demonstrate this effect in Fig. 2 we plot
the soliton velocity averaged over an ensemble of 40 initial
positions, as a function of the effective mass. Although the
average velocity is always nonzero, we can identify two
different regimes of the ratchet dynamics depending on the
value of N, as discussed below.

As seen in Fig. 2, for small values of N the EPA results
and numerical solution of Eq. (1) disagree both on the
onset of the ratchet effect and on its magnitude. For N <
2:5 the soliton’s size is comparable to or larger than a
period of the optical lattice. Hence it is more accurately
described as a wave packet than an effective particle.
Soliton shape changes significantly in this regime, with
the amplitude varying by 5% for N ¼ 1, although only
0.1% of atoms are lost to the background at T ¼ 5� 102.
The details of the soliton response to the flashing potential
are best seen by examining the dependence of the cumu-
lative velocity �v on the initial position, x0ð0Þ. In Figs. 3(a)
and 3(b) we show this response for N ¼ 1 and N ¼ 2.
Interestingly the numerical results show that the soliton

either has no cumulative velocity or moves in only one
direction. As a result, for N < 2:5 a soliton attains a much
larger average velocity than that predicted by the EPA (see
Fig. 2). In fact the EPA incorrectly predicts that the soliton
can move in both directions depending on its initial posi-
tion. We also note that for N ¼ 1 the cumulative velocity
due to the EPA is almost symmetric around x0ð0Þ ¼ 0 as
expected due to the symmetry of the effective potential (6)
in the limit of small N.
For large values of N, corresponding to a strongly lo-

calized matter-wave soliton, the ratchet dynamics is well
described by the EPA. In Fig. 2 we observe a good agree-
ment between the average velocity predicted by the
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FIG. 2. (a) Average velocity of a soliton, h �vi, vs effective mass
N, calculated using the GP model (solid line) and EPA (dashed).
Parameters are: V0 ¼ 0:3, � ¼ �=2, ! ¼ 10.
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FIG. 3 (color online). (a) Cumulative velocity of a soliton, �v,
vs initial position, x0ð0Þ, for (a) N ¼ 1; (b) N ¼ 2; (c) N ¼ 5;
calculated using the GP model (solid line) and EPA (dashed).
(d) Poincaré section for the effective-particle model (5) in (c).
Sections are taken at t ¼ 2�l=! where l is an integer.
Parameters are: V0 ¼ 0:3, � ¼ �=2, ! ¼ 10.

 ω
-0.2

0

0.2

v

4 6 8

x

−2π

−π

0

π

2π

t
100 300 5000

0 20 40 

2

N

0

0.1

v
(a)

(b)

(c)

t

x

100 300 500

−2π

−π

0

π

2π

(b)

 

 

0
0

1

0

4(c)

FIG. 1 (color online). (a) Cumulative
velocity of a soliton, �v, vs effective
mass, N, calculated using Eq. (1) (solid
line) and EPA (dashed); �v ¼ 1 corre-
sponds to 3:5 mm=s. Parameters are:
V ¼ 0:3, � ¼ �=2, ! ¼ 10, x0ð0Þ ¼ 0.
Inset: Cumulative velocity �v vs driving
frequency, !, for N ¼ 4 and x0ð0Þ ¼ 0
(solid line) and x0ð0Þ ¼ ��=2 (dashed
line). (b,c) Density plot of the mean field
evolution, j�ðx; tÞj2, shown for the
marked points at N ¼ 2 and N ¼ 4 in
(a).
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effective-particle model and that found from solving
Eq. (1) numerically. Similarly, in Fig. 3(c) we see a good
agreement between the numerics and the EPA in the de-
tails of the cumulative velocity dependence on x0ð0Þ. In
Fig. 3(d) we show the Poincaré section corresponding to
the EPA results of Fig. 3(c). Two different types of trajec-
tories are observed, transporting and nontransporting. A
comparison between Figs. 3(c) and 3(d) shows a clear
correlation between zero (nonzero) cumulative velocity
in Fig. 3(c) and a nontransporting (transporting) trajectory.

Two solitons with different N have different velocities
even if their relative initial positions in the flashing lattice
are the same. Therefore multiple binary collisions can be
realized in a ratchet potential combined with a toroidal trap
[14]. As shown in Fig. 4(a) a larger moving soliton can then
induce transport of a smaller soliton which otherwise
would not be transported. This happens because each
collision incrementally changes the soliton’s position in
the phase space until it moves from a nontransporting to a
transporting trajectory. The driving has little effect on the
actual quasielastic scattering event.

If the solitons have equal effective masses, N, collisions
can occur only if they have different relative positions in
the lattice, and hence different initial velocities. In this case
the interaction between the solitons is strong due to the
large interaction energy [13] and each collision event in-
duces an immediate and pronounced transition to a differ-
ent phase-space trajectory. The dramatic changes in the
soliton velocities after each collision are evident in
Fig. 4(b). In this scenario the spatial shift that solitons
acquire during each collision may lead to an effective
averaging over initial positions, x0ð0Þ, after multiple scat-
tering events. Hence, in principle, it is possible to observe a
nonzero total average current for a sufficiently large num-
ber of collisions or for a sufficiently large number of
interacting solitons with different initial positions.

In conclusion, we have demonstrated the ratchet dynam-
ics of matter-wave solitons with a fixed number of atoms
loaded into a time-varying potential with zero bias. The
main effect of the ratchet potential is the asymmetry in the
dependence of the soliton’s velocity on its initial position,
which results in a preferred direction of motion. The rate of
transport for a given initial position is atom-number de-
pendent, with larger solitons typically moving faster. In
addition, solitons containing a small number of atoms are
transported in one direction only, while larger solitons may
be transported in either direction. We have established an
overall directed soliton current numerically, by averaging
over all initial positions. In an experiment, our main results
could be confirmed either by random loading of isolated
matter-wave solitons into a flashing lattice and observing a
bias in cumulative velocity distribution, or by loading an
array of several solitons, which would introduce effective
position averaging in a single-shot experiment. Finally, we
illustrated the effect of the ratchet potential on soliton
scattering. Collisions can cause instantaneous transitions
between nontransporting and transporting trajectories in
the phase space, which could potentially be used for trans-
port or spatial filtering of solitons based on the number of
atoms.
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FIG. 4 (color online). Density plot, j�ðx; tÞj2, of the colliding
solitons (a) with N ¼ 4 and N ¼ 2:2 initially located at x0ð0Þ ¼
0 and x0ð0Þ ¼ 4�, respectively, and (b) with N ¼ 4 initially
located at x0ð0Þ ¼ 0 and x0ð0Þ ¼ 3�þ 1:2. Parameters are:
V0 ¼ 0:3. � ¼ �=2, ! ¼ 10.
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