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Dynamics of measured many-body quantum chaotic systems
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We consider the evolution of continuously measured many-body chaotic quantum systems. Focusing on the
dynamics of state purification, we analytically describe the limits of strong and weak measurement rate, where
the latter case is challenging in that monitoring up to time scales exponentially long in the numbers of particles
is required. We complement the analysis of the limiting regimes with the construction of an effective replica
theory providing information on the stability and the symmetries of the respective phases. The analytical results
are tested by comparison to exact diagonalization.
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Introduction— Continuous time or repeated projective
measurements performed on complex quantum systems may
trigger a measurement-induced quantum phase transition
[1–28]. What sets this transition apart from generic phase
transitions is that it remains invisible in system density opera-
tors averaged over measurement-detector degrees of freedom.
It is, rather, of statistical nature and manifests itself through
correlations of individual “quantum trajectories” traced out
by a system subject to repeated monitoring with random
outcomes. Observables serving as effective order parame-
ters include Rényi or von Neumann entanglement entropies
[1,2,29–32], or the purity of the evolving quantum states
[4,33,34]. What they all have in common is that they are ex-
pressed through moments or replicas of the system’s density
operator [19,20,30,35].

The necessity to deal with system replicas complicates the
theoretical description of measurement dynamics [16–19,36–
41]. However, external monitoring also implies a sim-
plification: A continuously observed system is subject to
noise representing the randomness of measurement outcomes
[20,42–45]. Decoherence due to this noise effectively projects
states onto configurations diagonal in the measurement basis.
For nonintegrable systems the repeated projection actually
simplifies the dynamics compared with that of the unmeasured
system, and it is this principle that allows us to gain traction
with the problem.

In contrast to unitary quantum circuits, the measurement-
induced dynamics of nonintegrable Hamiltonian systems are
still largely unexplored with only few available numerical
results [9,27,29]. In this paper, we focus on this system class
for particle numbers, N , large but finite, as relevant to quantum
hardware in current technological reach [33,46,47]. Conceptu-
ally, our main goal is the construction of analytical approaches
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versatile enough to describe the dynamics of such systems in
different regimes. Specifically, we will find that the cases of
weak and strong measurement call for individual treatments
tailored to the dominance of ergodic chaotic time evolu-
tion and repeated measurement intrusion, respectively. These
limiting cases are separated by a symmetry-breaking phase
transition whose presence and parametric dependence on
system parameters we describe in terms of a semiphenomeno-
logical replica mean-field theory. Exact diagonalization shows
that results obtained in this framework enjoy a high level of
stability away from the limits in which they were obtained.
In this way, the present three-thronged approach describes the
different manifestations of monitored evolution in quantum
ergodic systems of mesoscopic extension under reasonably
general conditions.

Model— We consider a system with N � 1 fermion
states α = 1, . . . N governed by the Hamiltonian, Ĥ =∑

α,β c†
αhαβcβ + Ĥint , where Ĥint is a two-body interaction.

Concerning the free part, hαβ , we need not be specific
other than that it is chaotic with extended single-particle
states |ψi〉. An expansion of the Hamiltonian in the single-
particle eigenbasis brings it into the form Ĥ = ∑

α c†
i ciεi +∑

i jkl Ji jkl c
†
i c†

j ckcl . Reflecting the effective randomness of
chaotic wave functions, the interaction matrix elements may
be considered as stochastic variables [48] with variance
〈|Jabcd|2〉J ≡ 6J2/(2N )3. Depending on the relative strength
of the interaction and the single-particle contributions this
model may be in one of two phases [49]: For single-particle
band widths W > J it defines a Fermi liquid with quasi-
particle states renormalized by interactions. In the opposite
case, strong interactions send it into a non-Fermi liquid phase
with the characteristics of a “strange metal.” As we will
see, the results of our analysis are largely insensitive to
this distinction and therefore enjoy a considerable level of
universality.

To simplify the model somewhat, we sacrifice particle
number conservation; introducing real (Majorana) fermions
through ci = 1

2 (χ2i−1 + iχ2i ), we generalize the interaction

to Ĥint = ∑2N
a,b,c,d=1 Jabcdχaχbχcχd , where the real constants

Jabcd are implicitly defined by the complex Ji jkl . This
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FIG. 1. Purification (〈τt 〉 = 〈trρ2
t 〉) of a fully mixed initial state

ρ0 ∼ 1 for strong measurements, J = 10−2η, and different system
sizes N . Discrete dots are averages over 500 simulated trajectories.
Bold lines correspond to the analytical strong measurement predic-
tion 〈τt 〉 = (1 − 1

2 e−ηt )N .

generalization puts us into the class of the Majorana SYK2+4

model containing maximally random two and four fermion
operators. Compared with the complex version, the many-
body chaotic dynamics now mix between all states in the
2N -dimensional fermion Fock space (and not just sectors of
definite particle number).

Our observable of interest will be the purity 〈τt 〉 ≡
〈tr(ρ2

t )〉, where 〈...〉 denotes the average over measurement
runs [4,33,34]. This quantity indicates the transition between
phases with weak and strong measurement rates through its
time dependence; the typical time scale tp to reach asymp-
totic purification, τt → 1 for weak (strong) measurement is
exponentially long tp ∼ exp(N ) [logarithmically short tp ∼
log(N )] in the system size N . We will discuss how these limits
are realized and discuss the stability range of the respective
time dependencies. For simplicity, we consider the pure inter-
action model, W = 0, in the main text. The numerical analysis
of the generalized model in the Supplemental Material leads
to no significant changes in the results.

Strong measurement— We consider measurement so strong
that the scrambling effect of Ĥ on states projected onto the
occupation number eigenbasis |n〉 = ⊗N |ni〉 is negligible. In
this limit, individual of the qubit states defined by ni = 0, 1
can be considered separately. Assuming an initially fully
mixed state, ρ0 = ∑

n |n〉〈n|, the density matrix remains di-
agonal in the occupation number basis, and τt = tr(ρ2

t ) =
τN

1t factorizes into the N th power of single qubit purities,
τ1t . To describe the evolution of the latter, we assume that
each qubit is measured with an average rate η. The prob-
ability p that no measurement has taken place after time t
then is e−tη. In this case, the qubit remains fully mixed and
τ1 = 1/2; otherwise the qubit state is known and τ1 = 1.
We thus obtain 〈τ1t 〉 = p1

2 + (1 − p) = 1 − 1
2 e−ηt , and 〈τ 〉 =

(1 − 1
2 e−ηt )N . For times exceeding the measurement time,

t > η−1, we may approximate 〈τt 〉 ≈ exp(−N
2 e−ηt ), showing

that tp ≡ η−1 ln N sets the characteristic time scale at which
purification is reached. Finally, a simple replacement 1/2 →
(1/2)r yields the rth moments of the purity, and from there the
typical purity τtyp,t ≡ exp〈ln τt 〉 = exp[∂r〈τ r

t 〉]r=0 as τtyp,t =
exp(−Ne−ηt ln 2), showing that the strong measurement pu-
rity essentially is a self-averaging quantity. Figure 1 shows

that these predictions match the results of exact numerical
simulations performed for a continuous time measurement
protocol (see Ref. [50]) at J/η = 10−2.

Weak measurement— The analysis of the weak measure-
ment regime is more challenging. We consider measurement
rates η 
 J much smaller than the inverse of the time scale
∼J−1 at which the SYK dynamics approach ergodicity. In this
case we anticipate that the information ln 2 learned by mea-
suring a single qubit is scrambled over the entire Hilbert space
between two measurement events. The goal is to describe how
a tiny fraction of this information is retained and a purified
state is reached, albeit on very large time scales. Referring
to the Supplemental Material for more details, we represent
the density operator after a sequence of l projective qubit
measurements as ρl = NlZl with Nl = tr(Zl )−1 and Zl =
PlUlPl−1 . . . Pl−1U

†
l Pl = PlUlZl−1U

†
l Pl in a recursive defini-

tion. Here Pk are projectors onto a definite state 0,1 of any
of the N qubits (which one does not matter) and Uk are D × D
dimensional unitary matrices, assumed independently Haar
distributed. These operators serve as proxies to the ergodic
dynamics, and their independent distribution reflects the ran-
domly distributed times between measurements. The purity
after l measurements is given by 〈N 2

l tr(Z2
l )〉. We evaluate this

expression under the additional assumption of approximate
statistical independence of the normalization factor and the
operator trace 〈τl〉 ≈ 〈N−2

l 〉−1〈tr(Z2
l )〉. This approximation is

not backed by a small parameter and its legitimacy must be
checked by comparison with exact diagonalization.

Defining X2l ≡ 〈tr(Z2
l )〉, and X1l ≡ 〈(tr(Zl ))2〉 the recur-

sive computation of the purity is now reduced to that of
the matrix averages X2l = 〈tr([PlUlZl−1U

†
l Pl ]2)〉 and X1l =

〈(tr(PlUlZl−1U
†
l Pl ))2〉. The Haar-averaged products of four

matrices can be computed in closed form (see Ref. [50]) with
the simple result Xl = (z1 z2

z2 z1
)Xl−1, where Xl = (X1l , X2l )T ,

and z1 ≈ 1/4 and z2 ≈ 1/D. This equation describes the evo-
lution of the purity in terms of just two trace invariants X1l,2l .
Its structure reflects the general principle mentioned in the
introduction: Chaotic mixing implies that only universal trace
invariants survive at time scales exceeding the ergodicity time.

The linear recursion relation is straightforwardly solved by
an exponential ansatz subject to the initial condition X20 =
tr(ρ2

0 ) = D−1 and X10 = (tr(ρ0))2 = 1. Noting that the step
number l = t/ηN equals physical time divided by the the total
measurement rate, we obtain the purity 〈τl〉 = X2l/X1l as

〈τt 〉 ≈
sinh

(
t
tp

)
+ D−1 cosh

(
t
tp

)

cosh
(

t
tp

)
+ D−1 sinh

(
t
tp

) . (1)

This result predicts purification 〈tr(ρ2
∞)〉 = 1 at t ∼ tp =

D/Nη no matter how small the measurement rates. However,
the purification time scale, tp, now grows exponentially in
the number of qubits, in contrast with the logarithmic scaling
tp ∼ ln(N )/η in the strong measurement regime. Figure 2
compares this prediction with numerics for J/η = 5 × 103

and different system sizes, N = 6, 8, 10. We indeed find data
collapse for the scaled variable t/tp. For intermediate times
(ηtN ≈ D), Eq. (1) overestimates the purification with a
maximum error of 10%— likely a consequence of a partial vi-
olation of the above assumptions on statistical independence.

L022066-2



DYNAMICS OF MEASURED MANY-BODY QUANTUM … PHYSICAL REVIEW RESEARCH 4, L022066 (2022)

ηtN/D0 2 4 60

0.2

0.4

0.6

1

0.8

(a)

N = 6
N = 8
N = 10
Eq. (6)

ηtN/D2 40 6

1
−

τ t

10−2

0.1

1

∼ exp(−2t/tp)
(b)

40

0
N

5 7 8 9

(c)

J = 20

log(N)

J = 100

J = 5

J = 1

J = 0.2
J = 0.01

∼ D/N

∼ N2

20

6 10

η

η

η
η
η

η

τt

τ t
ηtp,num

FIG. 2. (a), (b) Purification of the weakly measured system (J =
5 × 103η) compared with the analytical prediction Eq. (1). The dots
are obtained by averaging over 500 numerically simulated trajecto-
ries. A scaling collapse of τt = trρ2

t is obtained when evolving it in
the dimensionless time ηtN/D. (c) Purification time tp,num (defined
by τtp,num = 0.9) for different values of J/η. The purification time
matches the weak measurement prediction [Eq. (1), red data] for
J � 5η and the strong measurement prediction [tp,numη ∼ log(N ),
black data] for J � 0.2η. The scaling tp,num ∼ N2 around J = η is
associated with the vicinity of the entanglement transition, expected
at J � 2η according to our theory

The bottom panel of Fig. 2 compares the purification time
tp,num, here defined as the time scale at which the purity has
reached the value 0.9, with the analytical predictions. It turns
out that the two time dependencies ηtp ∼ ln N and ηtp ∼ D/N
for η/J � 1 and η/J 
 1, respectively, show a remarkable
degree of stability away from the limits in which they were
obtained. Hinting at the existence of a phase transition, they
cover almost the entire parameter axis η/J , except for a range
0.2 < J/η < 5 where the purification time shows quadratic
power law dependence ηtp,num ∼ N2. In the following, we
derive an approximate evolution equation describing the dy-
namics of moments of density matrices subject to a common
measurement protocol. On this basis we will be able to pre-
dict the boundary between the two phases, the symmetries
characterizing them, and the mechanisms safeguarding their
stability.

Diagonal projection— The starting point of our con-
struction is the observation that the random outcome of
repeated measurements acts as a source of noise suppress-
ing Fock space matrix elements ρnm off diagonal in the
measurement basis, n = m, by decoherence. The stochastic
Schrödinger equation formulation of measurement dynamics
(see Ref. [50]) makes this interpretation concrete and can be
used to derive an effective equation for the states P ≡ Pρ,
where P is a projector onto the subspace spanned by the Fock
space diagonal states {|n〉〈n|}. In the Supplemental Material
we show that the discrete time dynamics of the diagonal

coefficients Pn,t are governed by the evolution equation

dPt ≡ Pt+δt − Pt = −(δt XH + Vφt )Pt , (2)

where the action of the two operators on the r.h.s is defined
through

(XH P)n ≡
∑

m

Wnm(Pn − Pm),

(VφP)n ≡
∑

i

2φi(ni − n̄i )Pn. (3)

Here the first term describes incoherent transitions between
different occupation states in Fock space with rates Wnm =
2−1|Hnm|2. They are induced by transient fluctuations out
of the diagonal state with matrix elements Hnm, followed by
relaxation back into it with a decay rate  ∼ η. Specifically,
for the SYK model XH = g

∑
i jkl (1 − σx,iσx, jσx,kσx,l ), with

g = J2/(ηN3) where we used  = η, and the Pauli matrices
σx,i flip the occupation of the occupation of site i according to
0, 1 → 1, 0.

The second term introduces locally correlated measure-
ment noise, 〈φi,tφi′,t ′ 〉 = ηδtδt,t ′δii′ . The noise affects states
the farther they are from the instantaneous expectation values
n̄i ≡ 〈ni〉 = ∑

n Pnni. [The subtraction of the expectation val-
ues also safeguards the positivity and probability conservation
of the diagonal states d

∑
n Pn = ∑

i 2φi
∑

n Pn(ni − ni ) = 0.]
The self-consistent coupling of the r.h.s. of Eq. (3) to the
solution P via the expectation values n̄i makes the equa-
tion difficult to solve. In the following, we consider cases
where these terms are expected to play no significant role.
These should include the physics of the weak measurement
regime and at least qualitative aspects of the dynamics across
the transition.

Generator of dynamics— Our objects of interest are r-
fold replicated tensor products P(r) ≡ 〈P ⊗ . . . ⊗ P〉 averaged
over noise (r = 2 for the averaged purity). Taking the average
is facilitated by the Itô discretization of Eq. (2), i.e., Pt depend-
ing only on the noise history at earlier times, {φt ′<t }. Passing
to a continuum description, it is then straightforward to derive
the master equation [50]

∂t P
(r) = −X (r)P(r)

X (r) =
∑

a

X a
H − 4η

∑
a =b

na
i nb

i ≡ X (r)
H + X (r)

M , (4)

where operators carrying a superscript a act in the ath copy of
the replica product space.

The generator X (r) describes a competition between the
stochastic hopping dynamics represented by XH and a ten-
dency to confine the r copies of states to a common
configuration of measurement outcomes {ni} (notice the nega-
tive sign in −4η which rewards positive correlation in replica
space). Since XH and XM appear in the effective Hamiltonian
as sums over ∼N4 and N site configurations, respectively, we
characterize their relative strength in terms of a parameter
λ ≡ (N4g)/(Nη) = N3g/η.

The structural similarity of Eq. (4) with an imaginary
time Schrödinger equation suggests to interpret P(r) ≡ |P(r)〉
as a state vector with components P(r)

n = 〈n|P(r)〉, n =
(n1, . . . , nr ) and X (r) as its “effective Hamiltonian.” At large
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times, |P(r)
t 〉 → |� (r)

λ 〉, the physical states will asymptote
toward the measurement strength-dependent ground states,
|� (r)〉 (the dark states of the replicated Lindbladian measure-
ment dynamics) of X (r).

To understand the nature of the latter in the regimes
of weak and strong measurement, respectively, it is crucial
to note two discrete symmetries of X (r): The first is Z×r

2

symmetry under σ
(a)
xi → (±)(a)σ

(a)
xi , with a replica-dependent

(but i-independent) sign factor; this freedom represents the
fermion parity symmetry of each individual of the replicated
SYK systems. The second is a Z×N

2 symmetry under σ
(a)
zi →

(±)iσ
(a)
zi , with an i-dependent (but a-independent) sign factor;

this symmetry reflects the physical equivalence of the 2N

possible measurement outcomes. In the following, we discuss
how the full symmetry group Z×r

2 × Z×N
2 is broken by the

ground states in the two phases of the system.
Replica symmetry-breaking transition— In the limiting

case of absent measurement, λ → ∞, the effective
Hamiltonian possesses the 2r-fold degenerate ground states,
|� (r)

∞ 〉 ≡ |� (r)
s 〉 = |s1〉 ⊗ . . . ⊗ |sr〉, where |s〉 = |±〉 ≡

⊗n
i=1|±〉 with |±〉 = 1√

2
(|0〉 ± |1〉). These are cat states,

fully polarized in ±x direction independently for each
replica channel. Their ground-state property follows from the
observation that XH ≡ g(N4 − S4

x ) affords a representation
in terms of the global spin operator Sx = ∑

i σxi. The
2r-fold degeneracy of these states indicates that the weak
measurement phase is a replica symmetry-breaking phase.
We also note that the ground state is uniformly distributed
over Fock space, |〈n1, . . . , nr |� (r)

s 〉| = D−r , as is typical for
quantum ergodic states. Finally, the symmetry breaking is
stable under the inclusion of weak but finite measurement; it
takes “thermodynamically many” O(N ) matrix elements of
the measurement operator to flip one cat state into another.

In the opposite case, λ = 0, we have the 2N -fold degen-
erate set of ground states |� (r)

n 〉 = ⊗
i |n(r)

i 〉, where |n(r)
i 〉 =⊗

a |ni〉 are fully ±z-polarized replica symmetric states, in-
dependently for each site—a “real-space” symmetry-breaking
configuration. However, for arbitrarily weak g > 0, only r
matrix elements of the operator XH are required to flip
between states of identical replica polarization but differ-
ent site configuration. The actual, nondegenerate ground
state is an equal weight superposition |� (r)

0 〉 ≡ D−1 ∑
n |� (r)

n 〉
showing unbroken Z×r

2 × Z×N
2 symmetry: The combination

of measurements and any residual system dynamics leads
to an homogenization of measurement outcomes at large
time scales. In the limit J � η, this homogenization can be
described perturbatively in XH by performing a “Schrieffer-
Wolff” transformation of the Lindbladian [50]. It also reveals
the perturbative stability of the strong measurement dynamics
discussed above for 0 < J � η.

Since the two ground states of the effective theory, |� (r)
0,∞〉

have different symmetry, there must be a discrete symmetry-
breaking phase transition at a finite value of λ. An estimate

for the transition threshold is obtained by comparison of the
expectation values 〈� (r)|X (r)|� (r)〉 in the respective states.
We find that 〈� (r)

∞ |X (r)|� (r)
∞ 〉 = 0 while 〈� (r)

0 |X (r)|� (r)
0 〉 =

grN4 − 4ηr(r − 1)N , indicating a transition in the r-replica
system at λ = 4(r − 1). With λ = gN3/η = J2/η2, and r = 2,
the energy balance suggests a transition at J = 2η. This pre-
diction is compatible with the numerically observed change in
the time dependence of purification in Fig. 2.

From the ground states, one may also compute other sig-
natures of the two phases. For example, one may introduce
an entanglement cut by partition of n = (nA, nB) into two bit-
strings of total length N = NA + NB. Moments of the reduced
(diagonal) density matrix are then obtained as 〈trA(ρr

A)〉 =∑
nA

∑
nBi

〈(nA, nB1 ), . . . (nA, nBr )|�λ〉. A straightforward cal-
culation obtains that the entanglement entropies in the two
phases, SA = ∂r |r=1〈trA(ρr

A)〉, come out as SA,λ�1 = NA ln 2
and SA,λ
1 = 0. The change from volume law to vanishing
entanglement entropy reveals SA as an alternative indicator of
the transition [1,2]. However, for the small system sizes con-
sidered here, this change is difficult to resolve in simulations.

Conclusions— The starting point of this paper was the
observation that in the measured quantum dynamics of non-
integrable systems, the two sources of complexity “continued
measurement” and “chaotic dynamics” to some degree neu-
tralize each other. We exploited this principle to formulate a
comprehensive approach to the description of measurement
dynamics for interacting systems of mesoscopic (number of
particles large but finite) extensions. Its elements included
explicit calculations of the purity for strong and weak mea-
surement, and an analysis of the symmetry breaking transition
between them. In view of the growing importance of measured
quantum dynamics in mesoscopic (“NISQ”) device struc-
tures, various directions of future research present themselves.
For example, it would be interesting to extend the theory
to systems where local correlations slow the scrambling of
information by Lieb-Robinson bounds. It would also be nice
to identify a one-does-it-all path-integral framework, with
an account for coherences (required to describe the weak
measurement phase), and a self-consistent update of measure-
ment records (required to describe the strong measurement
phase).
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