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We propose a biophysical mechanism for the high interspike interval
variability observed in cortical spike trains. The key lies in the nonlinear
dynamics of cortical spike generation, which are consistent with type I
membranes where saddle-node dynamics underlie excitability (Rinzel &
Ermentrout, 1989). We present a canonical model for type I membranes,
the θ -neuron. The θ -neuron is a phase model whose dynamics reflect
salient features of type I membranes. This model generates spike trains
with coefficient of variation (CV) above 0.6 when brought to firing by
noisy inputs. This happens because the timing of spikes for a type I ex-
citable cell is exquisitely sensitive to the amplitude of the suprathreshold
stimulus pulses. A noisy input current, giving random amplitude “kicks”
to the cell, evokes highly irregular firing across a wide range of firing rates;
an intrinsically oscillating cell gives regular spike trains. We corroborate
the results with simulations of the Morris-Lecar (M-L) neural model with
random synaptic inputs: type I M-L yields high CVs. When this model is
modified to have type II dynamics (periodicity arises via a Hopf bifurca-
tion), however, it gives regular spike trains (CV below 0.3). Our results
suggest that the high CV values such as those observed in cortical spike
trains are an intrinsic characteristic of type I membranes driven to firing
by “random” inputs. In contrast, neural oscillators or neurons exhibiting
type II excitability should produce regular spike trains.

1 Introduction

The statistical nature of single neuron response has been a widely recog-
nized feature of neural information processing. Historically, a number of
preparations yielded spike trains with a large degree of variability (Burns
& Webb, 1976; Kroner & Kaplan, 1993). Spike trains with high coefficients
of variation (CV) have been reported for a wide range of stimulus-evoked
activity of nonbursting pyramidal neurons in visual cortical areas of mon-
keys (Softky & Koch, 1993; Dean, 1981; McCormick, Connors, Lighthall, &

Neural Computation 10, 1047–1065 (1998) c© 1998 Massachusetts Institute of Technology



1048 Boris S. Gutkin and G. Bard Ermentrout

Prince, 1985). Such high in vivo interspike interval variability is contrasted
with highly reproducible in vitro response of neurons to depolarizing cur-
rent steps (Holt, Softky, Koch, & Douglas, 1996), aperiodic stimuli (Mainen
& Sejnowski, 1995) and robust spike timing for high-contrast visual stim-
uli in vivo (Reich, Victor, Knight, Ozaki, & Kaplan, 1997). Softky and Koch
(1993) presented an analysis of cortical spike trains, showing that neither
the changes in the mean firing rate nor spike frequency adaptation could
account for high CVs. To date, several hypotheses have been proposed to
explain these seemingly paradoxical findings.

Classical stochastic models presented neurons as temporal integrators
with spike generation as a random walk with an absorbing boundary (Stein,
1965; Ricciardi, 1994). Numerous variants of these random walk or stochas-
tic integrate-and-fire (IF) models strove to account for nonstationary ex-
citability of the neuron, nonlinear summation of the synaptic inputs, and
multimodal output distributions (Smith, 1992; Wilbur & Rinzel, 1983).

Softky and Koch (1993) suggested that the high CVs are inconsistent with
temporal integration of randomly arriving excitatory postsynaptic poten-
tials (EPSPs). Based on studies of compartmental models with Hodgkin-
Huxley spike-generating currents, they proposed that several mechanisms,
most notably active dendritic processes, amplify weak temporal correla-
tions in the input and produce highly variable input currents at the soma.
The cell acts as a coincidence detector and produces noisy output.

An alternative hypothesis states that sufficiently variable input currents
can be generated under a balance of excitatory and inhibitory inputs. The
neuron then remains close to the threshold, and firing reflects the fine tem-
poral fluctuations in the input current. Shadlen and Newsome (1994) found
high CVs for the balanced Stein model and Bell, Mainen, Tsodyks, and Se-
jnowski (1995) found similar results for a Hodgkin-Huxley neuron under
specific parameter choices. Networks with connectivity that ensures the
excitatory-inhibitory balance also produce highly variable firing in noisy
IF neurons (Usher, Stemmler, Koch, & Olami, 1994) and chaotic threshold
elements (van Vreeswijk & Sompolinsky, 1996).

Recently Troyer and Miller (1997) showed that input-output properties
of the neuron can strongly influence the integration of noisy inputs. They
modified the leaky IF neuron to include a partial postspike reset voltage.
Using the reset as a free parameter, they fitted IF neurons to real pyramidal
in vitro response frequency to input current (FI) curves. They found that
such IF neurons (termed “high gain”)1 give high CVs, and do so without a
balance of inputs. Neurons where FI gain is much lower than seen in data did
not produce high CVs. The explanation was that the “high-gain” IF neuron
hovers near a steady state (set by the reset voltage) and remains sensitive to
temporal fluctuations in the random inputs. The “low-gain” neuron spends

1 Gain is defined as the slope of the FI curve.
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much more time depolarizing toward the threshold and thus damps out the
input variability.

The emphasis of previous studies (with the notable exception of Troyer
& Miller, 1997) has been mainly on mechanisms that generate sufficiently
variable input currents at the soma. By using either the simplest point neu-
rons or a standard Hodgkin-Huxley soma, most of the authors referred to
omitted from their analysis the nonlinear spike-generating dynamics and
their role in spiking statistics.

In this article, we assume that the input at the soma is variable. Focus-
ing on the nonlinear dynamics of spike-generating mechanism, we show
how properties of neural membranes dominated by saddle-node dynamics
(type I) yield firing statistics observed in in vivo recordings and in vitro
input-output characteristics of cortical neurons. We argue that the key is the
sensitive dependence of spike latency to the amplitude of the suprathresh-
old inputs evident in type I membranes.

We review the salient characteristics of type I membranes and contrast
these with type II membranes. In section 3 we present the canonical model
for type I membranes, the θ -neuron. We show that high CV spike trains
arise for the θ -neuron in the excitable regime. The oscillating θ -neuron pro-
duces low CV firing patterns. We follow with an example of a more detailed
spiking neural model (Morris-Lecar, M-L) in section 4. Simulations of type
I Morris-Lecar corroborate our θ -neuron findings. Type II M-L yields low
CV spike trains, suggesting that type II membranes do not produce highly
variable spike trains.

2 Type I vs. Type II Neural Membrane Dynamics

Our major assumption is type I membrane excitability for the spike-
generating soma. The general idea is to classify the cells by the dynami-
cal structure that underlies the onset of autonomous periodic firing. A more
complete discussion of this classification can be found in Rinzel and Er-
mentrout (1989). The classification, based on observations of squid axons,
was proposed by Hodgkin (1948), who found arbitrarily low response fre-
quencies and spike latencies for some axons (Type I) and a narrow range of
responses with no spike delay for others (Type II). We use the M-L model
to illustrate type I and type II characteristics.

Observationally, a type I membrane is recognized by a continuous FI
curve that shows oscillations arising with arbitrarily low frequencies (see
Figure 1a). It shows that the type I cell is capable of a wide range of firing
frequencies and that near the threshold, the input-output gain is infinite.
This suggests that in the excitable regime, a number of dynamical behav-
iors is possible depending on the strength of the time-dependent stimulus
input. In Figure 1b we see that the spike latency for a type I neural model
(here M-L) is strongly sensitive to the magnitude of the suprathreshold
stimulus.
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Figure 1: (a) Firing frequency to input current plot for type I membrane shows
oscillations appearing with arbitrarily low frequencies. (b) The delay to spike
in the type I model depends on the amplitude of the suprathreshold stimulus.
(c) Firing frequency to input current plot for the type II shows oscillations arising
with nonzero frequency.

Consider that temporal integration by the neural membrane acts to trans-
late randomly timed synaptic inputs into a background DC bias (perhaps
due to distant synapses) plus current with randomly varying amplitude
(perhaps due to more proximal ones). Then a type I membrane, with its
high spike latency sensitivity, converts the variability in the input current
to variability in output spike timing. The phase plane for type I membrane
helps us understand why this happens (see Figure 2a). The voltage nullcline
intersects the activation nullcline, forming an attracting node and a saddle
that acts as a threshold for the spike generation. A subthreshold stimulus
would not evoke much response. Any stimulus pushing the voltage past
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the saddle node will result in a spike of constant shape, but with a varying
delay. This delay results from the fact that voltage trajectory near the thresh-
old hugs the stable manifold of the saddle, moving rather slowly away from
the threshold. Also, near the threshold, the membrane is most sensitive to
small size inputs. As the voltage increases, the velocity of motion increases,
and the membrane becomes insensitive to inputs because the active con-
ductances dominate the dynamics. A fast spike is produced, followed by a
refractory period and repolarization to the rest state. The important notion
is the nonuniformity of motion around the phase plane. This is reminiscent
of cortical neurons that, given a suprathreshold pulse stimulus, will slowly
depolarize and then produce a fast spike.2 We also note that a type I model
spends most of its time near the steady state, just like the “high-gain” neuron
of Troyer and Miller (1997).

We can change the excitability of the cell by increasing the bias current,
which lifts the voltage nullcline. This lowers the threshold and reduces the
region in the phase space where the membrane is most sensitive to input
perturbations. With still more positive bias, the rest state disappears, and a
limit cycle is left behind. This limit cycle is of constant amplitude but with
a period dependent on the bias.

In contrast, type II membranes are characterized by discontinuous FI
curves with the oscillations arising with a nonzero frequency. These oscil-
lations are due to a subcritical Hopf bifurcation. The response frequency
range is narrow and largely independent of the bias (see Figure 1c). There
is also no true threshold for the appearance of spikes, which are not an all-
or-nothing phenomenon, but with amplitude that can depend on the size of
the pulse stimulus (see Figure 2c). The delay to spike is not sensitive to the
size of the suprathreshold stimulus, and the long prespike depolarization
is absent.

Several widely used cortical models are of type I—for example, Traub’s
model (Traub & Miles, 1991) and the Bower model (Wilson & Bower, 1989).
Examples of type II membrane include the standard Hodgkin-Huxley model
(Hodgkin & Huxley, 1952) and the FitzHugh-Nagumo reduced model
(FitzHugh, 1961). The M-L model can be put into either the type I or the
type II regime.

3 The θ -Neuron: A Canonical Model for Type I Membranes

We present a reduced neural phase model (θ -neuron) capable of reproduc-
ing spike-train statistics at a wide range of mean firing rates. The θ -neuron is
a canonical model for type I membranes resulting from formal mathematical
reduction of multidimensional neural models exhibiting type I dynamics.
That is, every neural model with type I dynamics can be reduced to the

2 This is thought to be due to the A-current.
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Figure 2: Phase plane for type I and type II neural membranes. Here we use
the Morris-Lecar model as an example, with w being the activation variable and
parameters set as in Rinzel and Ermentrout (1989). (a) Phase plane for a type I
membrane in the excitable regime. Note that the stimulus-induced processions
around the phase plane are of constant size and profile. Such processions r
periodic solutions are said to live on an invariant circle. However, the rise time
of spikes depends on stimulus amplitude. Here R is the attracting rest state, T is
the saddle, and U is an unstable steady state. (b) Phase plane for type I membrane
in oscillatory regime. Once again the spikes are of constant amplitude and live on
the invariant circle. The voltage nullcline has been lifted by the added constant
bias current. (c) Phase plane for type II membrane in the excitable regime. Note
that the spikes are of variable amplitude.

θ -neuron. The parameters of the θ -neuron can be quantitatively related to
physiologically observable quantities, and the dynamics reflect the nonlin-
ear properties of the neuronal membrane.

We describe the neuron by a phase-variable θ . This phase represents the
location of the voltage and activation state vector along the spike trajectory
(see Figure 3a). The dynamics of the phase under noisy input are governed
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Figure 3: (a) Phase evolution on a circle and its analog in state of the membrane
voltage. Note that the spike occupies a small region near π , and the model
spends most of its time near the threshold. A suprathreshold stimulus pushes θ
past the threshold and into the excited region. Here the regenerative dynamics
that summarize active conductances carry the phase through the spike. (b) A
representative spike train for the phase model excited by a random stimulus.
Here we plot not θ but ν = 1− cos(θ), which makes the spikes apparent.

by the following stochastic (Langevin) differential equation:

dθ/dτ = (1− cos θ)+ (1+ cos θ)(β + σWτ ) θ ∈ [0, 2π ], (3.1)

for white noise input Wτ with intensity σ .3 Here β is the bias parameter,
which controls the excitability of the cell. The critical value is at β = 0. In
the excitable regime, where β is negative, the model has an attracting rest
state and a repelling threshold.4

In case of a subthreshold stimulus, the phase returns passively to rest,
while a suprathreshold pulse causes the phase to rotate around the circle
and produce a spike. In fact, if we plot the time evolution of ν = (1−cos(θ))
we can readily see the fast spike (see Fig. 3b).

3.1 Reduction to θ -Neuron. We present an outline of the mathematical
reduction process, a more detailed description has been published in Er-
mentrout (1996b) and a complete mathematical treatment in Hoppensteadt
and Izhkevich (1997).

The reduction relies on perturbation methods for the saddle-node bi-
furcation inherent in type I membranes. Heuristically we can describe the

3 Wt is constructed by generating gaussian random deviates with variance propor-
tional to

√
dτ ; the integral of Wt gives a Wiener process.

4 These are given by θrest = − arccos 1+β
1−β and θthreshold = arccos 1+β

1−β , respectively.



1054 Boris S. Gutkin and G. Bard Ermentrout

behavior by a phase variable because the oscillations in the type I neuron
are of invariant amplitude (i.e., the cell produces spikes of constant shape).

Let us consider a generic conductance model:

dV/dt = F0(V)+ ε2N(V). (3.2)

Here V is the vector of dynamical variables of the model (e.g., membrane
voltage, activation variables), F0(V) is the nonlinear function that includes
the membrane properties of the conductance model, and N(V) is the input; ε
is small. We assume that when ε = 0, there exists an invariant circle around
a single fixed point, which persists on both sides of the bifurcation. Then let
the saddle node appear at the critical value V∗. We linearize F0(V) around
that value and note that the Jacobian of F0(V) at V∗ has a zero eigenvalue.
Letting V = V∗ + εzEe, where Ee is the eigenvector corresponding to the zero
eigenvalue, the dynamics of equation 3.2 near the bifurcation are governed
by

dz/dt = ε(η + qz2)+ h.o.t., (3.3)

which is the normal form for saddle-node dynamical systems. We now make
a change of coordinates τ=εt and z=tan(θ/2), and setting q to unity without
loss of generality, we arrive at

dθ/dτ = (1− cos θ)+ η(1+ cos θ), θ ∈ [0, 2π ], θ(0) = θ(2π), (3.4)

where η is proportional to the inputs in the original model.5

The reduction method determines how we can include a noise term to
model the influence of a large number of positive and negative inputs of
random strength arriving at random times. The additive input N(V) in the
full model (in equation 3.2) is reduced to η in the θ -neuron. Letting η =
(β + σWτ ) where β is the bias and Wτ models white noise, we arrive at
the appropriate model for the random inputs. The o.d.e. for the phase in
equation 3.4 then becomes the Langevin d.e.:

dθ/dτ=(1−cos θ)+(1+cos θ)(β+σWτ ), θ ∈ [0,2π ], θ(0)=θ(2π). (3.5)

Note that this noise model is based solely on the mathematics of the reduc-
tion and reflects several important characteristics about how a neuron re-
sponds to inputs. The neuron is most sensitive to its inputs when at rest and
most insensitive during the spike—when voltage is dominated by spike-
generating currents—and the refractory periods that follow. The inputs in
the θ -neuron are scaled by the (1+ cos(θ)) and have the most effect on the

5 In general, η and q can depend on time and phase and can be calculated directly from
the original neural model; see Ermentrout (1996b).
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Figure 4: Saddle-node dynamics on an invariant circle. The upper trace shows
the location of critical points on the invariant circle, the middle trace shows the
behavior of the phase variable, and the lower trace is the trace of (1 − cos(θ))
showing the spikes. The horizontal axis in the lower two traces gives time in
ms. (a) Excitable regime with β = −0.3, the spike is evoked by a suprathreshold
pulse stimulus marked by the triangle. (b) Bifurcation with saddle-node point,
β = 0. The homoclinic trajectory (one that joins a critical point to itself) has
an infinite period. (c) Oscillatory regime with β = 0.3. Autonomous periodic
processions in the phase variable and spikes in (1− cos(θ)) are present.

phase θ when the cell is close to the resting potential, and little or no effect
when the cell is traversing through the spike. In this work, we present re-
sults for the white noise inputs, although similar arguments can lead to an
appropriate model for Poisson-timed excitatory and inhibitory inputs.6

The deterministic behavior of the model has been described in detail
in Ermentrout (1996b). The main point is that the θ -neuron reflects all the
salient characteristics of the dynamics of the original full model. Since the θ -
neuron is a canonical model for type I neural models, its dynamics reflect the
saddle-node-based spike-generating behavior of any type I neural model,
including the spike latency sensitivity to stimulus amplitude. The θ -neuron
exhibits both excitable and tonically oscillating regimes, depending on the
bias β. Figure 4 summarizes the behavior of the model for different bias
values.

6 η = (β + gedNex + gidNin), where dNex dNin are unit events with arrival times given
by Poisson processes with intensity λex and λin, respectively. The amplitudes of ESPSs and
IPSPs are given by gex and gin. We should note that the bias + white noise input model
would not work in the limit of low EPSP amplitudes, long EPSP duration, and high arrival
rates where the net effect would be a mean DC current. However, for this work, we start
by assuming that the inputs to the soma carry a significant degree of variability.
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4 Results of Numerical Experiments for θ -Neuron

To study the stochastic dynamics of model 3.1, we carried out numerical
simulations using the XPPAUT differential equation exploration package
(Ermentrout, 1996a) The equations were integrated on a circle with period
of 2π using a stochastic version of the Euler method with time step of 0.05 ms.
The noise was generated by XPP using standard algorithm for construction
of Wiener process (see footnote 3 and Kloeden & Platen, 1994). The voltage
time series was converted into spike-train data for which we computed ISI
CVs and histograms. The interspike interval (ISI) data were examined to
ensure stationarity.

4.1 The Excitable Regime: Noise-Induced High-CV Firing. In the ex-
citable regime (β below 0), firing is induced purely by the noise inputs.
ISI histograms of the noise-driven excitable θ -neuron show a characteristic
peak. That is, for a given β, the noise induces a characteristic mean ISI. The
mean ISI is controlled by both the constant bias and the amplitude of the
noise process. As the β becomes more positive or σ increases, the peak in
the ISI histogram moves to the left (see Figures 5a and b) increasing the
mean firing rate. The noise and bias have similar effects on the firing rate.
However, they have differential effects on the ISI variability.

Increasing the amplitude of the noise inputs while holding the bias con-
stant has comparatively little effect on the scale of the ISI histogram. For
β = −0.3, the high-noise histogram has qualitatively equal mass in the tail
as the low-noise one (see Figure 5a). Consequently, when the firing rate is
controlled by the noise intensity, the CV remains high and does so across a
wide range of mean ISIs, with a slight downward trend toward the shorter
ISIs (see Figure 6c).

We propose the following explanation. With a constant negative bias,
the distance to the threshold and the region where the motion is slow are
held constant. The firing rate then depends on the mean frequency of ran-
dom crossings of the threshold. Because of the spike latency characteristics
of type I membranes, the variance of the ISIs depends on the threshold
crossings, and also on the amplitudes of the suprathreshold inputs. As the
variance of the noise input goes up, the variability in the amplitude of the
suprathreshold shocks increases, thereby driving the variability of the spike
latencies up. Thus, the CV remains largely invariant for a wide range of fir-
ing rates. As the firing rate becomes very large, the refractory period exerts
a regularizing influence, and the CV begins to decrease.

On the other hand, when we hold the noise amplitude fixed, increasing
β gives spike trains with lower CVs and ISI histograms with progressively
shorter tails (see Figure 5b). We suggest that this happens because as the rest
and threshold approach each other, the active spike currents (here intrinsic
regenerative behavior of the phase) are much easier to activate. These cur-
rents then drown out the variability in the inputs. To put it another way, the
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Figure 5: Normalized histograms for θ -neuron, ISIs plotted on log scale. (a) β =
−0.3 and noise amplitude varied. Note that the left tail of the histogram appears
to shorten as σ increases; partially due to the log scale and also because with
higher input variance, the mode moves to closer to the smallest possible ISI.
(b) Noise amplitude= 1 and β varied. The mean ISI of deterministic oscillations
for β = 1 case is 3.14 ms.

more excitable cell is much less dominated by the slow dynamics near the
rest state, and the range of inputs that would cause highly variable spike is
decreased.

4.2 The Oscillatory Regime: Noise-Modulated Periodic Firing. At su-
percritical bias values (β above 0), the model fires periodically even without
the noisy inputs. In this regime, the noise modulates the mean frequency
of firing, while the firing is comparatively regular with low CVs and short-
tailed ISI histograms. Once again our explanation holds. The dynamics of
the oscillating cell are dominated by the active currents, and the noise inputs
exert a comparatively weak influence on the firing behavior.

5 Numerical Simulation of Stochastic Morris-Lecar

To corroborate our findings in the θ -neuron, we studied the M-L model. The
M-L has the advantage of being a conductance-based model that can be put
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Figure 6: CV results for θ -model. (a) CV remains high across a wide range of
noise parameters. (b) CV decreases linearly with β. (c) CV remains high across
a wide range of firing rates, when such are controlled by noise. Here β = −1, σ
varied.

into both type I and type II regimes depending on the chosen parameters.
We examined the hypothesis that for equivalent excitability, the type I model
yields high CVs under a variety of random input conditions, while the type II
model gives a regular firing pattern. For our simulations, both type I and
type II models were parameterized by the deviation from the critical input
bias current, (Ibias− Icritical), to fix the excitability conditions.7 Equations and
exact parameter values for both models are given in the appendix. For both
models, the negative deviation indicates the excitable regime, while the
positive corresponds to an intrinsic oscillator. The inputs consist of instan-
taneous excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs,
respectively) with Poisson-distributed arrival times. The amplitudes of EP-

7 For type I Morris-Lecar Icritical = 40 mV, type II, Icritical = 100 mV.
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SCs were set to ensure integration of many inputs to generate a spike. Both
inputs were modeled as simple exponentials with time constants of 1 ms.
The IPSC arrival rate for all simulations was kept constant, while the rate of
EPSCs was varied.8 The random arrival times were generated by using two-
state Markov chains with transition probabilities set to give Poisson arrival
proccesses for inhibition and excitation with desired means (this feature is
built into XPP).

5.1 Morris-Lecar in Type I Regime. Type I Morris-Lecar shows high CV
behavior. The type I model yields a wide range of firing rates for different
excitability and input parameters. There is a strong dependence of the CV on
the excitability of the cell (see Figure 7, upper trace). In the excitable regime,
CV values close to unity are observed, with the CV clearly decreasing as
the model passes into the oscillatory regime, yet the CV is always above
0.3. In the oscillatory regime, the inputs are dominated by the intrinsic dy-
namics of the oscillating membrane, and the mean ISI reflects the intrinsic
frequency of oscillation. On the other hand, for a model in the excitable
regime, the CV value is comparatively insensitive to the rate of arrivals of
EPSPs. Consequently the CV remains consistently high for a wide range of
firing rates when these are controlled by the variability of inputs. Also the
CVs for type I spike train for the M-L model are largely independent of the
inhibition-to-excitation ratio.

5.2 Morris-Lecar in Type II Regime. We now modify the M-L model to
reflect type II excitability. Compared to type I, this model in the excitable
regime exhibits a narrow range of ISIs, which are in fact close to the fre-
quency of oscillations at criticality. The CV is not sensitive to the bias cur-
rent (see Figure 7, lower trace) and at no value of EPSP rate does the model
exhibit CVs above 0.5. In fact, the only way to achieve high CV value for
this model is to resize the amplitude of EPSP to make the threshold near to
one event, with the model doing no integration.

6 Summary

In this work we asked whether dynamics of spike generation consistent with
cortical neuron data can account for the statistics of cortical spike trains.
Using a canonical model, we show that type I cells driven to firing by the
noisy inputs give highly variable spike trains. On the other hand, intrinsic
oscillators have a much more regular spiking behavior. Furthermore, type
I M-L results clearly show high CV levels, with excitation dominating the
random inputs, while type II models give regular firing. Our results are

8 The ratio of inhibition to excitation as defined in Troyer and Miller (1997) R =
(gi|V − Vi| ∗ ratei)/ge|V − Ve| ∗ ratee) varied from 0.1 to 2.
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Figure 7: CV results for Morris-Lecar models. The upper trace shows type I
behavior, and the lower trace is type II. Note that IPSC rate was 0.3 for all
simulations. EPSC rate varied.

in contrast to the suggestions by Softky and Koch (1993), who imply rather
specific synaptic organization of inputs and restrictive parameter regime for
the dendritic spikes, or to the Bell et al. model (1995), which requires not only
a balance of inhibitory and excitatory inputs but also a very narrow subset
of the parameter space. We are also able to reproduce neural variability
without reliance on network dynamics. We provide a formal mathematical
method to derive the θ -neuron from conductance-based models, and thus
can give specific physiological meaning to the parameters.

High-CV spike trains are observed for the excitable θ -neuron and type
I Morris-Lecar. The saddle-node bifurcation characteristic of such mem-
branes underlies the observed results. In particular, we suspect that the
CVs are high because the noise randomly “samples” large period orbits,
leading to the spike latencies that are strongly dependent on the size of
the time-dependent stimulus. Thus a stimulus that provides suprathresh-
old shocks of random amplitudes will evoke strongly variable ISIs for type
I neurons.

In contrast are membranes with type II dynamics, where the oscillations
arise with a nonzero frequency through a Hopf bifurcation. In such a system
there are no long-period orbits for the noise to sample, and the spike latency
for suprathreshold stimuli is bounded above. We observe generically low
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CV values for the type II M-L even with inhibition and excitation balanced in
the random inputs. We expect that type II neurons in general do not exhibit
high CVs except under some very special conditions that ensure bistability
(Bell et al., 1995).

We also observe that type I neurons that are driven to firing by random
inputs exhibit high CV values generically, without the balance of excitation
and inhibition. We suggest that the high “physiological gain” condition pro-
posed by Troyer and Miller (1997) is a natural consequence of type I mem-
brane dynamics. In fact, for type I models, gain is infinite near the threshold
for onset of oscillations. The key, we suggest, is not the gain as such, but the
range of input amplitudes that leads to significantly variant spike latencies.
Furthermore, just like the “high”-gain IF neuron, type I models spend most
of their time near a steady state and not depolarizing toward the thresh-
old. Essentially the dynamics of the saddle-node-induced firing imply a
highly nonuniform motion for the voltage-activation trajectory with very
slow motion near the rest state.9 Then the cell spends most of its time near
the rest and is pushed to firing by the fast swings in the input current. In this
way, the spike-generating mechanism acts as a de facto high-pass filter. It
is particularly interesting to note that Hodgkin in his 1948 paper observed
that type I spikers (axons in his case) produced a much more variable firing
pattern than the type II spikers. Arbitrary spike delay latencies were also
reported in the same work.

At the same time θ -neuron and the M-L are not coincidence detectors
in the sense that both code the mean input rate with a mean output rate.
This means that high CVs cannot be used as a litmus test to solve the rate
versus coincident coding dilemma. However, the delay to spike characteris-
tics of type I neurons suggests that cortical neurons can act as amplitude to
spike latency converters, and perhaps pass information about the temporal
structure of the stimulus not only in the firing rate but also in the relative
timing of individual spikes. In this way, the spike train as a whole would
look very noisy, yet the information about the stimulus would be encoded
quite precisely by the timing of spikes. In order for this coding mecha-
nism to work, the cells must respond robustly to aperiodic inputs, and in
fact data from Mainen and Sejnowski (1995) show highly reproducible re-
sponses to repeated noiselike stimuli in vitro. Robust spike timing despite
noisy firing was also recently reported by Reich et al. (1997) in visually
stimulated in vivo cat retinal ganglion cells and lateral geniculate nucleus
for high-contrast stimuli, while low-contrast stimuli seemed to lead to less

9 Such “slowdown” near the rest can result in a real neuron or biophysical model from
a sodium current that is slow to activate at the beginning of the spike generation, with a
steeply increasing voltage-dependent time constant. Alternatively, the same effect can be
generated by an interaction of a slow potassium current that is partially activated at rest
(e.g., Im) and a fast sodium spike-generating current, or an inactivating potassium current
(e.g., IA).
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robust responses. We found behavior similar to that reported in both reports
above for the θ -neuron in our preliminary simulations. These results will
be published elsewhere.

The θ -neuron model, like the integrate-and-fire model, is a one-dimen-
sional caricature of a “real” neuron. Both models have arbitrarily low firing
rates as the input current is lowered to the threshold. However, the way
in which the frequency goes to zero is like 1/| log(I − I∗)| in the integrate-
and-fire model rather than the square root law that type I models and the
θ -model obey. Similarly, the slope at criticality is infinite in both cases. The
main difference lies in the latency to firing due to a suprathreshold stimulus.
There is no notion of latency to firing in an integrate-and-fire model; either
a stimulus is above threshold, in which case firing is instantaneous, or it is
below threshold and no firing occurs. In the θ -model and in type I mem-
branes, the latency is due to the saddle point. This enables cells to respond
at arbitrarily long latencies after receiving a suprathreshold stimulus. This
in fact was noted by Hodgkin (1948).

Our work suggests that cells with high CV spike trains are in the excitable
regime as opposed to intrinsic oscillators. This may mean that cortical neu-
rons are not intrinsic oscillators but are driven to firing by the inputs. Then
coherent oscillations such as those observed in cortical networks depend
critically on the presence and characteristics of the afferent and efferent
inputs.

One interesting finding in this study is the dependence of CV on the
excitability of the cells. The excitability in the simple models we present
is set by the DC bias. In in vitro experiments, the bias current is the step
current applied by the experimenter, but in in vivo neurons, any slow depo-
larizing or hyperpolarizing currents or effects of inputs impinging on distal
dendrites and filtered by the dendritic tree can be viewed as bias currents.
Some suggestions for changing bias currents include NMDA activation and
muscarinic modulation of the M-current; then our work implies an interest-
ing effect of slow modulation—that the slow modulatory synaptic currents
can upregulate the spike rate by making the cell easier to fire and reducing
accommodation, and also change the overall variability of the spike train.
The effects of changing excitability on spike-train variability can be studied
experimentally in pyramidal neurons by manipulating the slow modulatory
currents (e.g., by applying NMDA agonists or muscarinic antagonists).

Finally, since our models become noisier as the input mean moves away
from the repetitive firing threshold, the mechanism for generating highly
noisy firing is not “balancing” of inhibition and excitation. As we have
pointed out before, the key is the high-pass filtering property of the spike-
generating mechanism when the spike is caused by a fast procession in the
random input current. On the other hand, in the intrinsically oscillating cell,
the inputs are dominated by the intrinsic currents that generate the periodic
firing, with the random inputs having less influence on the statistics of the
spike train. Thus, the further the cell is from being an intrinsic oscillator, the
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more it is driven by the synaptic currents (relative to intrinsic currents) and
the noisier is its output.

In summary, by focusing on the dynamics of the spike generation by
a soma receiving random inputs, we propose that the dynamical mecha-
nism of spike generation has a strong effect on the stochastic properties of
neuronal activity. The dynamical mechanism in our work implies that spike
generation in cortical pyramidal cells is consistent with saddle-node dynam-
ics. This suggestion can be tested in in vitro experiments that examine spike
latency curves and experimentally constructing phase response curves for
cortical pyramidal neuron. In fact, we already know that arbitrarily low
firing rates are observed experimentally. The saddle-node spike-generating
dynamics can be caused by a number of biophysical mechanisms, and fur-
ther experiments should be designed to pinpoint the precise combination
of conductances that forms the substrate in a particular class of neurons.

Furthermore, we expect that cells that tonically oscillate (due to the
slow depolarization) and are given noisy current input would not show
high CVs. At the same time, experiments where a noisy current is injected
into cells exhibiting type II dynamics should corroborate the idea that such
spike-generating dynamics cannot produce high, irregular firing except for
a rather specific parameter regime (e.g., where the cell is bistable).

Appendix: Morris-Lecar Equations

The Morris-Lecar equations that we used are based on the model that ap-
peared in Rinzel and Ermentrout (1989). They have the form:

C
dV
dt
= −gCam∞(V)(V − VCa)− gKw(V − VK)− gL(V − VL)+ I

dw
dt
= φ(w∞(V)− w)/τw(V)

m∞(V) = .5(1+ tanh((V − V1)/V2))

w∞(V) = .5(1+ tanh((V − V3)/V4))

τw(V) = 1/ cosh((V − V3)/V4))

Standard values for type I membranes are VK = −80 mV, VL = −60 mV,
VCa = 120 mV, C = 20 µF/cm2, gL = 2 µS/cm2, gK = 8 µS/cm2, V1 = −1.2
mV, V2 = 18 mV, V3 = 12 mV, V4 = 17.4 mV, φ = .067, and gCa = 4.0
µS/cm2. For type II membrane simulations, parameters are the same except,
V3 = 2 mV, V4 = 30 mV, φ = 0.04, and gCa = 4.4 µS/cm2.
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