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Neuroblastoma is a common extracranial solid tumor of neural crest (NC) origin that

accounts for up to 15% of all pediatric cancer deaths. The disease arises from a transient

population of NC cells that undergo an epithelial-mesenchymal transition (EMT) and

generate diverse cell-types and tissues. Patients with neuroblastoma are characterized

by their extreme heterogeneity ranging from spontaneous regression to malignant

progression. More than half of newly diagnosed patients present highly metastatic tumors

and are stratified into a high-risk group with dismal outcome. As many as 20% of

high-risk patients have residual disease that is refractory or progressive during induction

chemotherapy. Although a majority of high-risk patients achieve remission, larger part

of those patients has minimal residual disease (MRD) that causes relapse even after

additional consolidation therapy. MRD is composed of drug-resistant tumor cells and

dynamically presented as cancer stem cells (CSCs) in residual tumors, circulating tumor

cells (CTCs) in peripheral blood (PB), and disseminated tumor cells (DTCs) in bone

marrow (BM) and other metastatic sites. EMT appears to be a key mechanism for

cancer cells to acquire MRD phenotypes and malignant aggressiveness. Due to the

restricted availability of residual tumors, PB and BM have been used to isolate and

analyze CTCs and DTCs to evaluate MRD in cancer patients. In addition, recent technical

advances make it possible to use circulating tumor DNA (ctDNA) shed from tumor

cells into PB for MRD evaluation. Because MRD can be detected by tumor-specific

antigens, genetic or epigenetic changes, and mRNAs, numerous assays using different

methods and samples have been reported to detect MRD in cancer patients. In contrast

to the tumor-specific gene-rearrangement-positive acute lymphoblastic leukemia (ALL)

and the oncogenic fusion-gene-positive chronic myelogenous leukemia (CML) and

several solid tumors, the clinical significance of MRD remains to be established in

neuroblastoma. Given the extreme heterogeneity of neuroblastoma, dynamics of MRD

in neuroblastoma patients will hold a key to the clinical validation. In this review, we

summarize the biology and detectionmethods of cancer MRD in general and evaluate the

available assays and clinical significance of neuroblastoma MRD to clarify its dynamics

in neuroblastoma patients.
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INTRODUCTION

Neuroblastoma is a common extracranial solid tumor in children
and accounts for ∼15% of all pediatric cancer-associated
mortalities. The disease originates from a transient population
of neural crest (NC) cells, especially a subpopulation of NC
cells committed to the establishment of the sympathoadrenal
tissues (Figure 1). NC cells undergo an epithelial-mesenchymal
transition (EMT), and migrate throughout the developing
body, and generate diverse cell-types and tissues. Various
subpopulations of NC cells adopt specific migratory behaviors
that has iterated in highly metastatic neuroblastoma (1, 2).
EMT is central to the initiation of NC cell migration
and confers on neuroblastoma cells invasive phenotype:
increased tumor-initiating and metastatic potential and a
greater drug-resistance (3, 4). Indeed, FoxD3, Slug, and
Sox9/10 constitute the minimal inducers of EMT in NC cells
and have all been shown to be dysregulated in aggressive
neuroblastoma (5–7).

Patients with neuroblastoma are characterized by their
extreme heterogeneity that has been described at multiple
levels. These include the anatomical localization of the
tumor (8), histology, genomic/molecular profile, and clinical
manifestations. Histology of neuroblastoma is mainly defined
by the relative proportion of neuroblastic ganglionic cells
and reactive stromal Schwann-like cells that determines the
tumor’s differentiation status. Intratumor heterogeneity of
neuroblastoma has been reported recently both at the cellular
and molecular levels. These studies conjointly reported two
or three types of interconvertible tumor cells with divergent
gene expression profiles (undifferentiated mesenchymal and
committed adrenergic cell types or NC-like, sympathoadrenal,
and mixed cell types) (9, 10). Infants with neuroblastoma
frequently experience spontaneous regression, whereas children
more than 18-months old with neuroblastoma usually have
highly metastatic and aggressive disease (11, 12).

Using a subset of these known clinical and biological
prognostic factors, patients with neuroblastoma are classified into
three risk groups: low-risk, intermediate-risk, and high-risk. For
patients with low-risk and intermediate-risk neuroblastoma, this
risk stratification, and subsequent treatment has been successful
with over 90% long-term event-free survival rates (13, 14).
However, treating high-risk neuroblastoma remains a significant
challenge despite intensive multimodal treatment. Children
with high-risk neuroblastoma account for approximately half
of newly diagnosed patients and are currently treated by the
standard regimens containing four main components: induction
chemotherapy, local control (surgery and radiation therapy),
consolidation therapy, andmaintenance therapy (13, 14). Overall
survival of high-risk neuroblastoma has improved from 29 to
50% over the past 20 years, mainly due to the intensification
of therapy through myeloablative therapy and immunotherapy
(15). Furthermore, a >70% of long-term remission is suggested
for high-risk patients who received all planned therapy of tandem
myeloablative therapy with autologous stem cell transplants and
immunotherapy in a recent Children’s Oncology Group study
ANBL0532 (16). Despite these progress, as many as 20% of

high-risk patients have residual disease that is refractory or
progressive during induction chemotherapy. The rest of high-
risk patients usually can achieve remission, but larger part of
those patients has minimal residual disease (MRD) that causes
relapse even after additional consolidation therapy. Patients with
relapsed neuroblastoma can rarely be cured with <10% of long-
term survival (13, 14).

MRD is defined as drug-resistant persistent tumor cells
following cancer therapy. The accurate and sensitive detection of
MRD is essential to achieve optimal outcome in neuroblastoma
patients (15, 17). Accordingly, numerous MRD assays using
different methods and samples have been reported over past
two decades but their clinical significance remains to be
established. Given the extreme heterogeneity of neuroblastoma,
understanding the dynamics of MRD in neuroblastoma patients
will be critical to validate these MRD assays. In this review,
we will first overview the biology and detection methods of
cancer MRD in general and then examine the available assays
and clinical significance of neuroblastoma MRD to clarify its
dynamics in neuroblastoma patients.

MINIMAL RESIDUAL DISEASE (MRD)

Dynamics of MRD
MRD is conceptually defined as residual tumor cells that
persistently reside in patients following local and systemic cancer
therapy, and its activation causes tumor metastasis and relapse
that continue to represent the most difficult challenges for
cancer patients (18, 19). Most methods used in the current
clinical practices for tumor detection are based on imaging
studies and tumor marker assays. Early identification of tumor
metastasis and relapse is critical to achieve optimal outcome
since therapeutic intervention is more effective and successful in
treating smaller tumor. This has led to an intensive research to
develop more sensitive and accurate methods for the assessment
of MRD status (20).

Cancer cells in primary tumor can often gain the ability to
invade, migrate, disseminate, and proliferate in distant locations,
representing precursors of metastasis and relapse (21). Following
local and systemic cancer therapies, residual cancer cells persist
as cancer stem cells (CSCs) in primary tumor, circulating
tumor cells (CTCs) in peripheral blood (PB), and disseminated
tumor cells (DTCs) in bone marrow (BM), lymph node, and
micrometastasis in other metastatic tissues. These CSC, CTC,
and DTC represent the dynamics of MRD in cancer patients (22)
(Figure 2). Since invasive tumor biopsies of primary, metastatic,
and recurrent tumors cannot always be performed, the detection
and analysis of CTC andDTC by less invasive sampling of PB and
BM has been shown to be of clinical relevance in many cancer
types, particularly in breast, colon, and prostate cancers (23–25).
In addition, circulating tumor DNA (ctDNA), which is shed from
tumor cells into PB and isolated from blood serum or plasma,
has also been used for diagnostic and prognostic purposes in
several cancer types (26, 27). The detection and analysis of CTC,
DTC, and ctDNA will serve as complementary methods for the
assessment of MRD status in cancer patients (Figure 2).
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FIGURE 1 | MRD in neuroblastoma. MRD, minimal residual disease; CSC, cancer stem cell; EMT, epithelial-mesenchymal transition.

FIGURE 2 | Dynamics of MRD. MRD, minimal residual disease; CSC, cancer stem cell; CTC, circulating tumor cell; DTC, disseminating tumor cell; ctDNA, circulating

tumor DNA; EMT, epithelial-mesenchymal transition.
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Cancer Stem Cell (CSC)
Tumors are composed of multiple phenotypically distinct
subpopulations of cancer cells, which is considered amajor driver
of the development of resistance to cancer therapy (28, 29).
Genome sequencing has delineated the types of genetic changes
underling the phenotypic alteration and diversification of cancer
cells (30). The ability of cancer cells to frequently interconvert
between multiple alternative phenotypic states without genetic
changes (epigenetic changes) is also increasingly recognized
(31, 32). CSC has provided key insights into how epigenetic
mechanisms can contribute to the phenotypic diversity of cancer
cells within a tumor (33, 34). Over the past decades, numerous
studies have suggested that only a small subpopulation of the
cancer cell with tumor-initiating capability, named as CSC, is the
core origin of the tumorigenesis. CSCs are defined as cancer cells
that have the abilities to self-renew and differentiate into their
progeny (non-CSCs). Functionally, CSCs show tumor-initiating
potential in vivo, anchorage-independent growth in vitro, and
drug-resistance. Methodologically, CSCs can be isolated from
tumor samples using flow cytometry employing cell-surface
markers such as CD44 and CD133, or functional characteristics
such as dye extrusion capability (side population), aldehyde
dehydrogenase (ALDH) activity, and sphere formation capability
(35). The clinical relevance of CSCs is typically seen in metastatic
and recurrent tumors, which are enriched with CSCs and
associated with CSC-gene signatures (36).

The epigenetic changes between CSCs and non-CSCs seems
to be linked to a distinct transcriptional program found
during developmental tissue remodeling referred to as EMT,
which imparts heritable phenotypic changes to cancer cells
through epigenetic modifications without introducing new
genetic changes (37) (Figures 2, 3). Upon activation of EMT
program, cancer cells lose many of their epithelial characteristics
including epithelial cell junctions and apical–basal polarity, and
instead acquire mesenchymal attributes such as an increased
capacity for migration and invasion (38). In a number of cancer
types, only cancer cells within CSC-enriched subpopulations
exhibit aspects of activated EMT-program. In addition, EMT-
program activation increases the capacity of tumor initiation
and confers resistance to various therapeutic agents (3, 4, 39).
The CSC phenotypes (CSCs or non-CSCs) interconnected to
activated EMT-program likely define a continuum of cellular
states, leading to the distinct subpopulations of CSCs (40)
(Figures 2, 3).

Circulating Tumor Cell (CTC)
CTC represents an intermediate of tumormetastasis that requires
the acquisition of diverse properties including invasion and
migration from the primary tumor, intravasation, survival,
extravasation, colonization at a distinct tissues, and growth
into a macro metastatic lesion (41, 42). Direct evidences for
metastatic precursors of CTCs have recently came from breast
and lung cancers that is characterized by early dissemination
and dismal prognosis (43, 44). While some CTCs passively enter
the bloodstream, CTCs derived from actively invading tumor
cells can acquire EMT and CSC phenotypes required for tumor
metastasis (45, 46). CTCs can circulate as single cells or clusters,

with clusters having increased metastatic potential and a shorter
half-life in the circulation (6–10min for clusters and 25–30min
for single cells) (47). Most CTCs die in the circulation, whereas
the surviving CTCs either extravasate into the adjacent tissue or
become lodged in the capillary beds of homing tissues (48).

While CTCs are a very rare population of PB sample, they
are accessible through simple non-invasive PB sampling. In
metastatic tumors, CTCs are derived from both the primary
and metastatic tumors, and only from the metastatic tumors
when the primary tumor has been resected. Among independent
metastatic tumors within a single patient, each tumor can evolve
independently and acquire de novo mutations (41, 42). Since
surgical resections and biopsies of metastatic tumors are prone to
have sampling bias and limited landscape of mutations across all
metastatic tumors, CTCs may provide less-biased sampling and
more global picture of metastatic tumors. The recent advances
in technology for the enrichment and characterization of CTCs
have begun to provide new insight into the mechanisms of tumor
metastasis and relapse (25, 49).

Disseminated Tumor Cell (DTC)
Although CTCs provide a valuable information about the
aggressiveness of tumor, there are additional barriers for CTCs
to gain the ability to form metastatic tumors (41, 42). Once
CTCs has entered the bloodstream, they must survive, exit the
bloodstream, and grow in a foreign microenvironment to cause
metastasis. Survived CTCs in the bloodstream disseminate into
homing tissues, such as BM, lymph nodes, lung, liver, and brain,
and called DTCs (25, 49). Although DTCs and CTCs present
similar cytologic and membrane markers, they represent two
distinct phenotypes: epithelial-type DTCs and mesenchymal-
type CTCs. While a small minority of DTCs generates a
proliferating metastatic tumor, a majority of DTCs spread
throughout the parenchyma of homing tissues. Depending on
cancer types, metastatic tumors develop over a period of months
to years (50). A direct contribution of DTCs to metastases
formation have shown in breast and esophageal cancers. Presence
of DTCs at the time of primary tumor diagnosis or following
systemic treatment strongly correlated with metastasis at distant
sites in breast cancer patients (51). DTCs established from
micrometastatic lymph nodes of esophageal cancer patients have
generated tumors in immune-compromised mice (52).

DTCs have been found long after curative treatment of tumor,
even in patients without overt metastasis. These DTCs may
enter a dormant state but retain the ability to grow into a
metastatic tumor or may reach an equilibrium between cellular
proliferation and cell death or elimination. Dormant DTCs
remain clinically silent and are apparently maintained by an
interaction with microenvironment in their homing tissues (53,
54). In breast and prostate cancers, dormant DTCs have acquired
additional genetic and epigenetic changes or significant alteration
in their microenvironment, and resulted in very late relapses
that occur years after treatment (55). BM is the most common
homing tissue for blood borne DTCs derived from primary and
metastatic tumors. As with CTCs, studies of DTCs in BM have
apparent advantages over other homing tissues, which include
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FIGURE 3 | EMT program in tumor progression. EMT, epithelial-mesenchymal transition; MET, mesenchymal-epithelial transition; CSC, cancer stem cell.

accessibility, analysis through flow cytometry, and opportunity
to gain real-time information about tumors (25, 49).

Circulating Tumor DNA (ctDNA)
Circulating tumor DNA (ctDNA) is a fraction of extracellular
nucleic acid (cell-free DNA) that is released into the bloodstream
by tumor cells. While CTCs are isolated from the cell pellet
containing normal blood cells, ctDNA is isolated from the
supernatant. Because the number of CTCs is very low in
PB, ctDNA is more sensitive in detecting tumor-associated
genetic and epigenetic changes in tumors (26, 27). Although
ctDNA can be isolated both from plasma and serum, plasma is
recommended as a preferred source for ctDNA because serum-
derived ctDNA is contaminated with normal blood cell DNA
during the clotting process (56). The release of ctDNA into PB
is caused by the apoptosis, necrosis, autophagy, secretion, and
other mechanisms, but the exact mechanism of ctDNA release
remains unclear (57). In PB, ctDNA circulates predominantly in
the form of nucleosomes that retains at least some features of
the nuclear chromatin and enables the determination of genetic
and epigenetic changes. The size of ctDNA varies between small
fragments of 70–200 base pairs and large fragments of ∼21
kilobases (26). ctDNA is cleared from the blood by the kidney,
liver, and spleen and has a variable half-life ranging from 15min
to several hours (58).

Although cancer patients have higher ctDNA levels than
healthy control individuals, the concentrations of overall ctDNA
vary considerably in plasma or serum samples in both groups.
In cancer patients, ctDNA concentrations are generally lower
in localized tumors and higher in metastatic tumors, but
also affected by tumor burden, vascularity, and treatment
response (56). Tumor-associated genetic and epigenetic changes

such as point mutations, genomic rearrangements, copy
number variation (CNV), microsatellite instability (MSI), loss of
heterozygosity (LOH), and DNAmethylation have been detected
in ctDNA. These changes warrant a distinction between ctDNA
and remaining cell-free DNA, and allow the use of ctDNA
as potential biomarkers for determining tumor state, tumor
metastasis and relapse, and treatment response (27).

MRD DETECTION METHODS

Cell-Based Assays
While conventional cytology and histology have been accepted
as the gold standard for initial diagnosis and staging of tumor
patients, these methods are not always possible to detect tumor
cells below the level of 1% by morphology alone (59, 60). To
achievemore sensitive and quantitative detection ofMRD, single-
cell-based analytical methods of immunocytology (IC), and flow
cytometry (FCM) are applied for quantification of MRD in BM
and PB samples (61–63). Both IC and FCM methods rely on
the availability of antibodies to tumor-associated cell-surface or
intracellular antigens that are ideally expressed on all tumor
cells but not normal hematopoietic cells. The sensitivity of IC
solely depends on the number of investigated cells and reaches a
single tumor cell in 104-105 normal cells in most clinical settings,
whereas the sensitivity of FCM is about 10 times lower than IC
due to the requirement for at least 10–20 events to call a sample
positive (64–66).

gDNA-Based Assays
Tumor DNA can be detected by tracking tumor-specific
changes in CTCs, DTCs, and ctDNA samples. In contrast
to cell-based assays that are dependent on the availability of

Frontiers in Oncology | www.frontiersin.org 5 June 2019 | Volume 9 | Article 455

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Uemura et al. Neuroblastoma Minimal Residual Disease

FIGURE 4 | MRD detection methods. MRD, minimal residual disease; CSC, cancer stem cell; CTC, circulating tumor cell; DTC, disseminating tumor cell; ctDNA,

circulating tumor DNA; PB, peripheral blood; PBSC, peripheral blood stem cell; BM, bone marrow; IC, immunocytology; FCM, flow cytometry; PCR, polymerase chain

reaction; aCGH, array comparative genomic hybridization; MPS, massively paralleled sequencing; RT-PCR, reverse transcriptase-PCR.

FIGURE 5 | Sampling from neuroblastoma patients. MRD, minimal residual disease; PB, peripheral blood; PBSC, peripheral blood stem cell; BM, bone marrow;

IC, immunocytology.

antibodies, gDNA-based assays have relied on the existence of
tumor-specific genetic and epigenetic changes such as point
mutations, genomic rearrangements, CNV, MSI, LOH, and
DNA methylation (20, 67). Polymerase chain reaction (PCR)
amplification of genomic rearrangements has been particularly
powerful in the characterization and detection of hematopoietic
tumors. In acute lymphoblastic leukemia (ALL), tumor cells can

be detected by PCR amplification of leukemia-specific junctional
regions of rearranged immunoglobulin (Ig) genes, and T-cell
receptor (TCR) genes (68, 69). Detection of MRD in ALL
patients is clinically relevant both in primary and relapsed ALL,
and incorporated into patient’s risk stratification (70, 71). For
solid tumors, DNA sequencing of known oncogene or tumor
suppressor mutations has utilized to detect tumor cells. In

Frontiers in Oncology | www.frontiersin.org 6 June 2019 | Volume 9 | Article 455

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Uemura et al. Neuroblastoma Minimal Residual Disease

colorectal cancers, KRAS, APC, and TP53 have a high mutation
frequency and their mutation status is correlated with diagnosis,
prognosis, and treatment response (72). Recent progress in
array comparative genomic hybridization (aCGH) and massively
paralleled sequencing (MPS) has begun to realize the detection
of patient-specific genetic and epigenetic changes rather than
tumor-specific ones (73).

mRNA-Based Assays
Although tumor RNA can be isolated from CTCs and DTCs,
the detection of tumor-specific mRNA has been limited to the
oncogenic-fusion gene-positive tumors. In chronic myelogenous
leukemia (CML), the detection of leukemia-specific BCR-ABL
fusion mRNA is used to monitor MRD, and CML patients are
currently treated by BCR-ABL fusion kinase inhibitors based on
the level of MRD (74, 75). However, the oncogenic-fusion genes
have not been identified for most tumors. In melanoma, tumor
cells have been identified by the detection of mRNA specific to
the tissue of tumor origin (tumor-associated mRNA), tyrosinase
mRNA (76). Since the first demonstration in melanoma, the
detection of tumor-associated mRNA expression by reverse
transcriptase-PCR (RT-PCR) has been applied to detect tumor
cells in a number of different tumors. The value of the detection
of tumor-associated mRNA expression by RT-PCR has been
dependent on the samples evaluated (PB, BM, or lymph nodes),
the tumor type, and the clinical stage of tumor (20).

MRD DETECTION IN
NEUROBLASTOMA PATIENTS

Neuroblastoma-Associated
Antigen Detection
Given the limitation of conventional morphology, single-cell-
based IC and FCM with anti-neuroblastoma-associated antigen
antibodies have been used to detect residual neuroblastoma
cells in BM, PB, and peripheral blood stem cell (PBSC)
samples (77–79). A variety of antibodies raised against
neuroblastoma cells and established neuronal markers such
as neuron specific enolase (NSE) (80), synaptophysin (81),
NB84 (82), chromogranin A (83), and CD56 (N-CAM) (84, 85)
have been tested for IC. However, many of these antibodies are
inappropriate for MRD detection due to their heterogeneous
labeling in individual tumors, cross-reactivity with normal
hematopoietic cells, or differential labeling on primary vs.
metastatic and on undifferentiated vs. differentiated tumor
cells (86). Among these neuroblastoma-associated antigens,
a cell surface glycosphingolipid, disialoganglioside (GD2), is
homogeneously and strongly expressed on neuroblastic tumors
but not on normal hematopoietic cells (78, 87, 88). Although
the reliability of tumor cell detection and quantification by IC
had been controversial, IC detection of neuroblastoma cells
was standardized in BM aspirates by using fixed cytospins
and anti GD2-antibody (63) and recommended for single-cell
based sensitive MRD detection in BM, PB, and PBSC samples
by the International Neuroblastoma Risk Group (INRG) (66)
(Figures 4, 5, Table 1).

TABLE 1 | Comparison of neuroblastoma MRD detection methods.

Methods Targets/markers Application

IC GD2, NSE, synaptophysin,

NB84, chromogranin A, CD56

(N-CAM)

BM, PB, PBSC

(Sample preparation) Fixed

cytospins

(Advantage) Gold standard

(Disadvantage) Low sensitivity,

Inconsistency

(Applicability) Depends on the

availability of antibody

FCM CD9+/CD56+/CD45–,

CD81+/CD56+/CD45–,

GD2+/CD56+/CD45–,

NB84+/CD56+/CD45–,

GD2+/CD81+/CD56+/CD45–,

CD9+/CD81+/CD56+/CD45–

BM, PB, PBSC

(Sample preparation) Dissociated

cell suspension

(Advantage) Consistency

(Disadvantage) Low sensitivity

(Applicability) Depends on the

availability of antibody

PCR

aCGH

MPS

Neuroblastoma-specific

genetic and epigenetic

changes

Patient-specific genetic and

epigenetic changes

BM, PB, PBSC

(Sample preparation) ctDNA, gDNA

(Advantage) High sensitivity,

Consistency

(Disadvantage) Difficulty in

identifying the genetic and

epigenetic changes

(Applicability) Depends on the

availability of genetic and

epigenetic changes

RT-PCR Neuroblastoma-associated

mRNAs

BM, PB, PBSC

(Sample preparation) mRNA

(Advantage) High sensitivity

(Disadvantage) Inconsistency

(Applicability) No restriction

Although immunophenotyping with FCM has proven to
be essential for differential diagnosis of most hematopoietic
tumors, it remains optional for pediatric solid tumors
including neuroblastoma (89). Neuroendocrine tumors
were reported to display CD56+/CD45– immunophenotype
(90). In addition to CD56, CD9, CD81, GD2, and NB84
antigens were used for FCM. The first multiparameter
FCM application for neuroblastoma cell detection was
based on CD9+/CD56+/CD45– immunophenotype (61),
which was later replaced by CD81+/CD56+/CD45–
immunophenotype (91). Subsequently, GD2+/CD56+/CD45–,
NB84+/CD56+/ CD45–, GD2+/CD81+/CD56+/CD45–,
and CD9+/CD81+/CD56+/CD45– immunophenotypes were
also applied to FCM-based MRD detection (64, 65, 92, 93)
(Figures 4, 5, Table 1). However, a very limited data about
prognostic value are currently available for FCM-based
MRD detection methods. Detection of NB84+/CD56+/
CD45– cells by FCM in initial diagnostic BM samples from
metastatic neuroblastoma patients had predicted significantly
poor cumulative survival (93). Neuroblastoma patients with
GD2+/CD81+/CD56+/CD45– cells in BM by FMC had
significantly worse event-free survival and increased cumulative
incidence of relapse/progression (94) (Table 4).

Neuroblastoma-Specific gDNA Detection
While tumor DNA can be detected by tracking tumor-
specific genetic and epigenetic changes in CTCs, DTCs,
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TABLE 2 | Neuroblastoma-associated mRNAs.

Gene

symbol

Gene name References

B4GALNT1 Beta-1,4-N-acetyl-galactosaminyl transferase 1

GD2-synthase (GD2-s)

(106)

CCND1 Cyclin D1 (107)

CHGA Chromogranin A (CGA) (108)

CHGB Chromogranin B

Secretogranin 1 (SCG1)

(109)

CHRNA3 Cholinergic receptor nicotinic alpha 3 subunit (109)

CRMP1 Collapsing response mediator protein 1 (110)

DBH Dopamine beta-hydroxylase (111)

DCX Doublecortin (112)

DDC Dopa decarboxylase (113)

ELAVL4 ELAV like RNA binding protein 4 (114)

GABRB3 Gamma-aminobutyric acid type A receptor beta 3

subunit

(110)

GAGE G antigen (115)

GAP43 Growth associated protein 43 (109)

ISL1 ISL LIM homeobox 1 (110)

KIF1A Kinesin family member 1A (110)

PHOX2B Paired-like homeobox 2b (116)

SNAP91 Synaptosome associated protein 91 (109)

ST8SIA2 ST8 alpha-N-acetyl-neuraminide

alpha-2,8-sialyltransferase 2 sialyltransferases (STX)

(117)

STMN2 Stathmin 2 (109)

STMN4 Stathmin 4 (109)

TACC2 Transforming, acidic coiled-coil containing protein 2 (110)

TH Tyrosine hydroxylase (111, 118, 119)

UCHL1 Ubiquitin C-terminal hydrolase L1

Neuron cytoplasmic protein 9.5 (PGP9.5)

(120)

and ctDNA samples, neuroblastoma-specific genetic changes
such as known oncogene or tumor suppressor mutations
and genomic rearrangements have not been identified yet
(102). For epigenetic changes specific to neuroblastoma, DNA
methylation of tumor suppressor RASSF1A has been applied
to detect MRD in DTCs samples (103). In addition to
neuroblastoma-specific genetic and epigenetic changes, patient-
specific ones have begun to be identified in DTCs and
ctDNA sample. Patient-specific DNA breakpoints in eight high-
risk neuroblastoma patients have been identified by whole
genome sequencing (WGS) of primary tumor and used to
detect MRD in DTCs samples (104). Patient-specific genomic
mutations in 19 neuroblastoma patients have been detected
by whole exome sequencing (WES) of sequentially collected
ctDNA samples, revealing a shift of mutational pattern over
time and a generation of treatment-resistant clones (105)
(Figures 4, 5, Table 1).

Neuroblastoma-Associated
mRNA Detection
Neuroblastoma-Associated mRNAs
A number of neuroblastoma-associated mRNAs have been
identified initially as a single marker (Table 2) and later as a set

TABLE 3 | Sets of neuroblastoma-associated mRNAs.

Marker genes Reference

genes

Sample References

CCND1, DDC,

GABRB3, ISL1, KIF1A,

PHOX2B

B2M BM (110)

DCX, PHOX2B, TH B2M BM

Ovary

Testis

(121–123)

CHRNA3, DDC,

GAP43, PHOX2B, TH

GUSB BM (109)

CHRNA3, DBH, DDC,

PHOX2B, TH

GUSB PB

PBSC

(109, 124)

CHRNA3, CRMP1,

DBH, DCX, DDC,

GABRB3, GAP43,

ISL1, KIF1A, PHOX2B,

TH

B2M BM, PB (125)

CHGA, DCX, DDC,

PHOX2B, TH

B2M, GAPDH,

HPRT1, SDHA

PBSC

BM, PB

(101, 126)

B4GALNT1, DDC, TH Calibrator BM, PB (127, 128)

DCX, TH GAPDH BM, PB (95)

B4GALNT1, CCND1,

ISL1, PHOX2B

B2M BM (129, 130)

B4GALNT1, ELAVL4,

PHOX2B, TH

ABL BM (131)

of multiple markers (Table 3) for qPCR-based MRD detection in
neuroblastoma patients.

In the absence of tumor-specific mRNA, the rate-limiting
enzyme in catecholamine biosynthesis, TH, was evaluated as
the first neuroblastoma-associated mRNA to detect MRD in
neuroblastoma patients (132). While amplification of TH mRNA
was shown to detect neuroblastoma cells in BM and PB
samples (118, 119), low level of its expression in normal
BM cells initially limited its specificity (111). Application of
quantitative RT-PCR (qPCR) made it possible to quantify
the number of TH mRNA transcripts and allowed to set a
threshold of its expression between tumor and normal cells
for neuroblastoma MRD detection in BM and PB samples.
A number of additional neuroblastoma-associated mRNAs
were then reported to detect MRD in PB and BM samples
(Table 2). Among these markers, PHOX2B was identified as
the most specific and sensitive marker for qPCR-based MRD
detection in neuroblastoma patients (116). However, PHOX2B
was not highly expressed in all neuroblastoma tumors and its
expression considerably varied among different neuroblastoma
patients (109).

Given the extreme heterogeneity of neuroblastoma, an
increasing number of multiple marker sets for qPCR-based
MRD detection have been reported (Table 3). A set of six
markers (CCND1, DDC, GABRB3, ISL1, KIF1A, PHOX2B)
was identified by genome-wide gene expression microarray
analyses of 48 neuroblastoma tumors and nine remission BM
samples followed by selecting genes with higher tumor-to-
BM expression ratios (110). A set of three markers (DCX,
PHOX2B, TH) was identified by genome-wide gene expression
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TABLE 4 | Prognostic significance of neuroblastoma MRD detection methods.

Methods Targets Samples and patients Outcome References

IC GD2 PB

Patients during chemotherapy

MRD detection was significantly correlated

with relapse.

(78)

FCM NB84+/CD56+/ CD45– BM

Stage 4 patients at diagnosis

MRD detection was significantly correlated

with lower OS.

(93)

FCM GD2+/CD81+/CD56+/CD45– BM

Patients at diagnosis

MRD detection was significantly correlated

with lower EFS.

(94)

RT-PCR DCX, TH BM, PB

Non-metastatic patients

at diagnosis

MRD detection in PB was significantly

correlated with lower EFS.

(95)

RT-PCR CHRNA3, DDC, GAP43,

PHOX2B, TH

BM

Stage 4 and over 1-year patients

at 3 months after diagnosis and

after induction chemotherapy

MRD detection was significantly correlated

with poor outcome.

(96)

RT-PCR TH PBSC

High-risk patients

MRD detection was significantly correlated

with lower 2-year OS.

(97)

RT-PCR DCX, PHOX2B, TH BM, PB

High-risk patients at diagnosis

and after

induction chemotherapy

High levels of DCX, PHOX2B, or TH

mRNAs in BM and PB at diagnosis or in

BM after induction therapy predicted

significantly poor outcome.

(98)

RT-PCR CHRNA3, DDC, GAP43,

PHOX2B, TH

BM

Localized patients at diagnosis

MRD detection with more than one marker

was significantly associated with lower EFS.

(99)

RT-PCR DCX, TH BM, PB

Metastatic patients at diagnosis,

after induction therapy, and at

the end of treatment

High levels of DCX mRNAs in BM and PB

at diagnosis or in BM after the induction

therapy predicted significantly poor

outcome.

High levels of TH mRNAs in BM and PB at

diagnosis, in PB after the induction therapy,

or in PB at the end of treatment predicted

significantly poor outcome.

(100)

RT-PCR CHGA, DCX, DDC, PHOX2B,

TH

BM, PB

High-risk patients with

relapsed/progressive disease or

refractory disease

Levels of 5NB-mRNAs was significantly

correlated with PFS.

(101)

microarray analyses of 32 neuroblastoma tumors and pooled PB
sample from 24 healthy volunteers followed by selecting genes
not expressed in pooled PB samples (121–123). Two sets of
five markers (CHRNA3, DDC, GAP43, PHOX2B, TH) for BM
samples and five markers (CHRNA3, DBH, DDC, PHOX2B,
TH) for PB samples were identified by comparing serial analysis
of gene expression (SAGE) libraries of neuroblastoma and
healthy tissues followed by qPCR analysis of 56 neuroblastoma
tumors, 51 control BM samples, and 37 control PB samples
(109, 124). A set of 11 markers (CHRNA3, CRMP1, DBH,
DCX, DDC, GABRB3, GAP43, ISL1, KIF1A, PHOX2B, TH)
was identified by validating known 14 makers expression in
CSC-enriched spheres of neuroblastoma BE(2)-C cells (125).
A set of five markers (CHGA, DCX, DDC, PHOX2B, TH)
normalized by four references (B2M, GAPDH, HPRT1, SDHA)
was also developed (101, 126). In addition, several amended
sets of two markers (DCX, TH) for BM and PB samples
(95), three markers (B4GALNT1, DDC, TH) for BM and
PB samples (127), four markers (B4GALNT1, CCND1, ISL1,
PHOX2B) for BM sample (129, 130), and four markers
(B4GALNT1, ELAVL4, PHOX2B, TH) for BM sample were
reported (131).

Clinical Significance of qPCR-Based MRD Detection
A growing number of qPCR-based MRD detection assays using
different methods (MRD markers) and samples have been
reported over past two decades. These assays use three types
of samples (BM, PB, and PBSC). BM is the most common
site of infiltration in metastatic neuroblastoma patients at the
time of diagnosis, and is a frequent site of tumor relapse (133).
Neuroblastoma cells have been detected in PB of metastatic
neuroblastoma patients at diagnosis and during therapy (78).
High-risk neuroblastoma patients are treated with the standard
regimens containing high-dose myeloablative chemotherapy
rescued with autologous stem cells (auto PBSCs) and have
naturally expected to cause relapse if PBSC contaminated with
neuroblastoma cells are transplanted (126). These assays are also
targeted for different groups of neuroblastoma patients (localized
and metastatic neuroblastoma) (Figures 4, 5, Table 1).

Accordingly, qPCR-based MRD detection assays can
be classified into the following five groups: (1) Localized
neuroblastoma-PB samples, (2) Localized neuroblastoma-
BM samples, (3) Metastatic neuroblastoma-PBSC samples,
(4) Metastatic neuroblastoma-PB samples, (5) Metastatic
neuroblastoma-BM samples. At the moment, the clinical
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significance of all five groups remains to be established. However,
the promising data has been reported in two groups (Metastatic
neuroblastoma-PB and BM samples).

Localized neuroblastoma-PB and BM samples
In localized neuroblastoma, the clinical significance of qPCR-
based MRD detection is still not clear in both PB and
BM samples.

Expression of B4GALNT1, DCX, DDC, ELAVL4, PHOX2B,
ST8SIA2, and TH mRNAs in BM and PB samples at diagnosis
was not associated with clinical events in localized neuroblastoma
patients (134). MRD detection evaluated by DCX or TH
mRNA expression in PB samples at diagnosis predicted worse
event-free survival (EFS) of non-metastatic neuroblastoma
patients (95). When BM samples are evaluated by a set of
five markers (CHRNA3, DDC, GAP43, PHOX2B, and TH),
unfavorable outcome in localized neuroblastoma patients is
associated with the detection of more than one positive-marker
(99) (Table 4).

Metastatic neuroblastoma-PBSC samples
In metastatic neuroblastoma, the clinical significance of qPCR-
based MRD detection is still not clear in PBSC samples.

There are conflicts between the previous reports. TH mRNA
expression in PBSC samples was not statistically associated
with unfavorable outcome in high-risk metastatic neuroblastoma
patients (135). qPCR-based MRD detection by B4GALNT1 or
TH mRNAs in PBSC samples did not affect survival of stage 4
neuroblastoma patients (136). High-risk neuroblastoma patients
received unpurged PBSCs did not have more relapses (126). In
contrast to these reports, positive TH mRNA in PBSC samples
predicted a lower 2-year OS in high-risk neuroblastoma patients
(97). High levels of CHGA, DCX, DDC, PHOX2B, or THmRNA
expression in PBSC samples was associated with worse outcome
(126) (Table 4).

Metastatic neuroblastoma-PB and BM samples
In metastatic neuroblastoma, the clinical significance of qPCR-
based MRD detection remains to be established in both PB and
BM samples.

While the independent study groups reported the promising
data, they used different methods (MRD markers) and their
data remained controversial. MRD detection in BM samples
evaluated by a set of five markers (CHRNA3, DDC, GAP43,
PHOX2B, and TH) was associated with poor outcome in patients
aged over 1 year with stage 4 neuroblastoma (96). High levels
of DCX, PHOX2B, or TH mRNAs in BM and PB samples
at diagnosis or BM samples after induction therapy predicted
poor outcome in children with stage 4 neuroblastoma (98).
High levels of DCX and TH mRNAs in BM and PB samples
at diagnosis was associated with poor outcome in metastatic
neuroblastoma (100). Expression levels of B4GALNT1, CCND1,
ISL1, or PHOX2BmRNAs in BM samples predicted progression-
free survival (PFS) and overall survival (OS) for anti-GD2

antibody-treated patients in first or second remission or with
refractory disease (130). The combined signature of five markers
(CHGA, DCX, DDC, PHOX2B, and TH) expression in BM and
PB was correlated with PFS of relapsed/refractory neuroblastoma
(101) (Table 4).

CONCLUSION

Drug-resistant MRD is principally responsible for dismal
outcome for aggressive cancers. Current intensive multimodal
therapies eliminate the bulk population of tumor cells while
sparing the minor subpopulations of MRD that is dynamically
presented as CSCs, CTCs, and DTCs in cancer patients. EMT
appears to be a key mechanism operated in cancer cells to
acquire these MRD phenotypes. Although qPCR of tumor-
associated mRNAs in BM and PB samples have detected
clinically relevant tumor cells in many hematopoietic and solid
tumors, current qPCR-based assays for neuroblastoma MRD
detection use different neuroblastoma-associated mRNAs (alone
or in combination) and will require the prospective quality-
controlled clinical studies that evaluate the clinical significance
of these qPCR-based assays. Given the extreme heterogeneity
of neuroblastoma, the normal variations, which can arise from
sampling of the different patients or sequential sampling of
the same patient, hold a key to interpret the data from these
clinical studies.

Recent advances in techniques to isolate and detect rare DNA
changes in a complex mixture of DNA with high sensitivity have
made it possible to track tumor-specific genetic and epigenetic
changes in CTCs, DTCs, and ctDNA. Because neuroblastoma
relapses often occur at multiple anatomic sites and distinct
DNA aberrations can be unique to each metastatic site, the
assessment of ctDNA would provide unprecedented insights
into the metastatic and recurrent processes of neuroblastoma.
The complementary assessment of MRD status in CTCs, DTCs,
and ctDNA collected from the same patient during entire
course of treatment will provide our foundation to understand
the dynamics of MRD in neuroblastoma patients. Toward the
optimal stratification and outcome of neuroblastoma patients,
there is an urgent need for these clinical studies realizing a solid
evaluation of neuroblastoma MRD.
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