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ABSTRACT A new and extended formulation of the random phase approximation (RPA) in the study of 
statics and dynamics of multicomponent polymer mixtures is presented. The new formulation simplifies the 
implementation of the RPA in both compressible and incompressible mixtures and allows the inclusion of 
hydrodynamic interaction in the dynamics of polymer melts in the RPA. The dynamics of copolymer melts 
with hydrodynamic interaction is studied in detail as an illustration of the extended formulation, and the 
variation of the first cumulant as a function of the wavenumber and interaction parameter is obtained. 

1. Introduction 
The implementation of the random phase approxima- 

tion (RPA) in studying the statics and dynamics of 
multicomponent polymer mixtures with an arbitrary 
number of components has been presented recently by 
Akcasu and Tombakoglul” and Akcasu.lb In these works, 
which henceforth we refer to as I, the polymer molecules 
with identical physical and chemical properties are iden- 
tified as a “component”. The molecules belonging to 
different components are allowed to be connected to each 
other to form copolymers, stars, etc. For example, a melt 
of copolymers of two chemical species is considered to be 
a two-component mixture in this description. Similarly, 
a mixture of polydisperse homopolymers is also treated as 
a multicomponent mixture in which the molecules in 
different components differ from each other only in their 
molecular weights. In the implementation of the RPA in 
incompressible multicomponent mixtures, one of the 
components, which is referred to as the “matrix” com- 
ponent in I, is eliminated by using the incompressibility 
constraint on the volume fractions of monomers in each 
component, and the system is described in terms of the 
densities of the remaining components. Although the 
introduction of incompressibility is not essential in the 
implementation of the RPA, it reduces the dimensionality 
of the response matrix, which is introduced to describe 
the linear response of the mean densities to external 
potentials, by one and thereby simplifies the calculation 
of the static structure factors and the dynamic scattering 
functions in mixtures with negligible compressibility. More 
importantly, the elimination of the matrix component 
enables one to express the results in terms of Flory 
interaction parameters, as shown in I. The elimination 
procedure was facilitated considerably by assuming that 
the molecules of the matrix component are not coupled 
in the bare system to the molecules of the other compo- 
nents. Mathematically, this assumption implies that in 
a mixture with n + 1 components, the (n + 1)-dimensional 
dynamic response matrix XO(q,s) describing the mean 
incremental density response in the bare system to time- 
dependent external potentials, is block diagonal, i.e., 
&(q,s) = 0, for j = 1, ..., n. Here, the subscripts “0” and 
J = 1, 2, ..., n designate the matrix component and the 
remaining n components, respectively. 

t Permanent address: Department of Nuclear Engineering, The 
University of Michigan, Ann Arbor, MI 48109. 

In this paper we present a generalization of the above 
elimination procedure by allowing the monomers of the 
matrix component to interact or to be connected with the 
monomers in other components, so that the assumption 
xjo(q,s) = 0, for j = 1, ..., n is no longer needed. This 
generalization not only simplifies the implementation of 
the RPA in incompressible multicomponent mixtures in 
which none of the components consists of homopolymers, 
such as in melts of copolymers, stars, etc., but also it allows 
more flexibility in the choice of the bare system in the 
implementation of the RPA, even in the case of ho- 
mopolymer mixtures. For example, one can now allow 
hydrodynamic interactions among the monomers, which 
couples dynamically the matrix molecules to those of the 
remaining components, and use the full Kirkwood- 
Riseman diffusion equation to describe the dynamics of 
the bare system, rather than being restricted to the Rouse 
dynamics, as has been the case in the implementation of 
the RPA until now. The situation is similar to the 
implementation of the perturbation theory in quantum 
mechanics, in which one introduces an unperturbed system 
with a Hamiltonian HO and a perturbation potential V 
such that the total Hamiltonian is H = HO + V. Putting 
more information into the unperturbed system, which 
corresponds to the bare system in the RPA, one can obtain 
increasingly more accurate results. 

The formulation of the RPA in this extended form is 
presented in section 2. The derivations in this section are 
self-contained and are actually simpler than those pre- 
sented in I, even though they are more general. A reader 
who is not interested in the derivations may skip this 
section, for the final results needed in applications which 
are summarized in section 3. Section 4 contains some 
applications illustrating the implementation of the RPA 
in its extended form. Discussions and conclusions are 
presented in section 5. 

2. Derivations 
We consider an (n + 1)-component polymer mixture 

and denote the Fourier transform of the local density of 
monomers p,(r) belonging to the j th  component bppi(q). 
We define an (n + 1)-component density vector p(q) = 
column[p(q), po(q)], where p(q) is the density vector 
associated with the first n components and po(q) is the 
density of monomers belonging to the component chosen 
as the “matrix”. The overbar will always imply (n + 1)- 
dimensional vectors and matrices. We now assume that 

0 
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the mixture is perturbed by applying time-dependent 
external potentials Uj(r,t)j = 0, 1, ..., n, which are coupled 
to the monomers in the j th  component (see I) and 
collectively denoted by an (n + 1)-dimensional vector 
U(q,s) = column[U(q,s), Uo(q,s)l in the Fourier-Laplace 
domain. The mean value of the resulting perturbations 
in the monomer densities, measured from their equilibrium 
values, is also collectively denoted by a vector (SP(q,s)) = 
column[( Sp(q,s)), (Spo(q,s))l, whichwerefertoas thetime- 
dependent incremental mean density response. The 
brackets (...> denote the average with respect to the 
perturbed distribution function. According to the linear 
response theory, (&(q,s)) is related to U(q,s) in terms of 
an (n + 1) X (n + 1) square dynamic response matrix 
X(q,s) as 

(SP(q,s)) = -i(a,~)U(q,s) (1) 

The dynamic response matrix is related to the dynamic 
scattering matrix in the equilibrium state by 

where P is the the inverse temperature in energy units, 
Le., P = l / k ~ T ,  and V is the volume of the system. The 
elements of B(q,t)  are defined as Sjk(q,t) = (Spj(q,t) X 
6pk(-q,o))q. Since &q,t) is symmetric, so is i ( q , t ) .  The 
static response matrix, which characterizes the steady- 
state response of the mixture to a time-independent 
external potential, is obtained from eq 2 by integrating 
both sides in (0,m): 

(3) 

The i ( q )  is also equal to x(q,s=O), where i ( q , s )  is the 
Laplace transform of i ( q , t ) .  Equations 2 and 3 are generic 
in the sense that they are valid regardless of the dimen- 
sionality, and both in the bare and interacting systems. 
When the mixture can be treated as incompressible, the 
total mean local density fluctuations must be zero. Here 
we assume for simplicity that monomeric volumes are the 
same for all components. The incompressibility condition 
is expressed mathematically as 

ET(SP(q,s)) = 0 (4a) 

(6P(q,s) ) = column[ (b(q,s) ), (apo(q,s) ) 1, one can express 

(b,(q,s) ) = -eT( Mq,s) ) (4b) 
where e = columnil, 1, ..., 11 with n elements. The 
elements of the dynamic response matrix in an incom- 
pressible mixture are not independent of each other. 
Indeed, multiplying eq 1 from the left by ET and using eq 
4a, one obtains ETi(q,s)U(q,s) = 0. Since the latter must 
hold for any external potential, we must have ETi(q,s)  = 
0. The matrix i ( q , s )  can be expressed in block diagonal 
form as 

where E = columnll, 1, ..., 11 with n + 1 elements. Using 

eq 4a as 

where X(q,s) is a column matrix with elements Xj(q,s) = 
xjo(q,s), j = 1, ..., n, and represents the coupling between 
the matrix and the other components. Substituting this 
form into ETX(q,s) = 0 and using the symmetry of X(q,s), 
we obtain the following two conditions on the dynamic 
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matrix in incompressible mixtures: 

X(q , s )  = -x(q,s)e (6a) 
xaO(q,s) = -eTX(q,s) (6b) 

Using eqs 1 and 6a, one can express the time-dependent 
incremental mean density response of the first n com- 
ponents in an incompressible mixture as 

(Sp(q,s)) = -x(q,s) [U(q,s) - Uo(q,s)el 
which can also be written as 

(Sp(a,s) ) = -x(q,s)PW(Cr,s) (7) 
byintroducingan (n + 1) X n rectangular matrixP, without 
the overbar for simplicity, as 

'=[:TI 

where I is the n X n identity matrix and e was defined 
above. It is clear that PW(q,s) = [U(q,s) - Uo(q,s)eI. We 
note that PW(q,s) is a column vector with n components, 
whereas U(q,s) has n + 1 components. Introduction of 
the matrix P greatly simplifies the later manipulations. 

We mention in passing that the condition in eq 6b 
enables one to express (Spo(q,s)) as 

(6po(q,s)) = -XT(q,s) [U(q,s) - ~,(q,s)el  
which states the incompressibility constraint more ex- 
plicitly. Since (Spo(q,s)) is expressible in terms of the 
densities of the remaining n components, this expression 
is not needed in the following derivations. 

The RPA provides tin alternative, albeit approximate, 
expression for the time-dependent incremental mean 
density response (SP(q,s)) as explained in I: 

(9) 
where i o (  ,s) is the dynamic response matrix of the bare 

Wj&) is the Fourier transform of the interaction potential 
Wjk(r) per monomer between a pair of monomers belonging 
to the j th  and kth components, and u(q,s) is a fictitious 
potential (or Lagrange multiplier) added to maintain 
incompressibility, which will be eliminated using the 
incompressibility constraint in eq 4. In eq 9, we suppressed 
the arguments for simplicity. It is clear from eq 9 that the 
bare system is identical to the original system in all respects 
except for the absence of the interactions between mono- 
mers included in W(q) and the incompressibility. The 
effect of these on (SP(q,s)) is included explicitly by the 
second and third terms in eq 9. The latter can also be 
written as 

(6;) = -iO[U + uE + W( Sp)]  

system, d (q )  is the interaction matrix whose element 

where l/iOis the inverse of io. In a compressible mixture, 
u(q,s) = 0, and a comparison of eqs 1 and 10 yields 

(1la) 

which is the RPA expression of the (n + 1) X (n + 1) 
dynamic response matrix in compressible mixtures in terms 
of the bare system dynamic response matrix. 

In an incompressible mixture, the potential u(q,s) in eq 
10 is eliminated using the incoplpressibility constraint in 
eq 4b, One first expresses (Sp)  in eq 10 in terms of ( 6 p )  
as (Sp)  = P(6p) using eq 4b. Then one multiplies eq 10 

-=- + W ( q )  1 
X ( Q P )  XO(q,s) 
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from the left by PT and verifies that PTE = 0. The result 
reads 
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The remaining task is to present the procedure of 
calculating the static structure factors and dynamic 
scattering functions in the interacting system using eq 13 
or 14 and point out the new features provided by the 
present extended formulation of the RPA. Since this 
procedure is the same as followed in I, we simply display 
the main steps. 

In a compressible mixture, the static structure matrix 
follows immediately from eqs 3 and l l a  as 

P T+ w P(6p) =-PTU 
' K O  1 

Comparing this expression with eq 7, we obtain 

which expresses the n X n dynamic response function in 
the original incompressible mixture in terms of the ipverse 
of the (n  + 1) X (n + 1) dynamic response function xo(q,s) 
in the compressible bare system and the (n + 1) X (n  + 
1) interaction matrix W(q). This equation can be written 
in a more conventional form by introducing the Flory 
interaction matrix KF through itF(@ = (p/ V)P%'(q)P whose 
elements are related to the usual Flory interaction 
parameters x:(q):  

( 12a) 
where 

= XF. L] - X F  10 - XF Jo 

1 

Since Wij(q) has a dimension of energy-volume, $(q) is 
dimensionless. In terms of K F ( q )  eq 11 reads 

Wi,(q) - $Wii(q) + W,j(q)l) (1%) 

which is one of the main results of the present derivation. 
It is possible to express the first term in eq 13 more 
explicitly by first finding the inverse of i o (q ,s )  using its 
block form given by 

(see Appendix A), where the block matrices are defined 
similar to those in eq 5, and then calculating PT(l/ 
io(q,s))P. We then obtain the following expression for 
x(q,s)-' in terms of only n-dimensional matrices: 

where 

Y(q,s) = xo(q,s)-'Xo(q,s) + e (15a) 

(15b) 

The form given in eq 13 was introduced by Akcasu et a1.2 
in 1986 in the special case of a two-component mixture in 
their study of copolymer melts (see eq 34 of ref 2). 

When the molecules in the matrix are not dynamically 
coupled to those in the remaining components so that the 
vector Xo(q,s)  = 0, which was assumed in I, eq 14 reduces 
to 

1 
m ( q , s )  = 

xL(4 ,s )  - Xo(q,s)TXo(q,s)-'Xo(q,s) 

(16) 

where we have introduced 

+ VKFW (17) eeT v(q,s)  = 0 7  
xoo(q,s) 

Equations 16 and 17 are identical to eqs 9 and 8 in I, 
respectively, in which v(q,s) is referred to as the excluded 
volume matrix. 

In an incompressible mixture, it follows from eqs 3 and 
13 as 

(18b) 

or, using the block form of the (n + 1) X (n + 1)-dimensional 
static structure matrix SO(q), i.e., 

where So(q)j = S o ( q ) p  and following thesame steps leading 
from eq 13 to 14, one immediately finds 

with the new definitions of Y(q) and m(q) as 

For example, in a binary mixture of A and B polymers, eqs 
18 reduce to 

where S(q) = S,(q)-= Sbb(q) = -Sab(q), S&) = S i ( q )  + 

The generalized form in eq 18 greatly simplifies the 
calculation of the static structure factors when mixtures 
contain molecules with complicated architecture such as 
copolymers, stars, e tc3  The partial structure factors 
So(q),p in the bare system are to be calculated with the 
equilibrium distribution function, in which the interaction 
potentials W(q),o are excluded in the Hamiltonian. For 
example, if all the interactions are included in W(q),B in 
a mixture consisting of only homopolymers, then SO(q) is 
diagonal, and the diagonal elements are proportional to 
the single Gaussian-chain static structure factors in each 
component. 

To calculate the dynamic scattering matrix S ( q , t ) ,  we 
first express its Laplace transform as 

$b(q) + 2s:,(q), Iso(q)l = se(q)gb(q) - s:b(q) Y and 
K,, - F  - Kbb -2xrb = -2XF have been used. 

(20) 

where D(q,s) may be viewed as a generalized diffusivity 
matrix. Substitution of eq 20 into eq 2 yields 

(21) 
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where the mobility matrix p(q,s) is defined by 

r(q,s) = BD(q,s)S(q) (22) 
The reason for introducing the mobility matrix is that it 
is a purely dynamic quantity. The relationships and 
definitions in eqs 20-22 are generic in the sense that they 
are valid in both the bare and interacting systems, 
irrespective of the dimensionality of the matrices. 

In the case of a compressible mixture, one writes eq 21 
for the (n + 1) X (n + 1) dynamic response matrices, 
substitutes them into eq l l a ,  and makes use of eq 18a to 
obtain 

i ( q , s )  = i 0 ( S , S )  (23a) 
which relates the mobilities in the interacting and bare 
systems in the RPA. 

In the case of an incompressible mixture, substitution 
of eq 21 into eq 13 and use of eq 18b in the resulting 
expression yield a simple relationship between the n X n 
mobility matrix p(q,s) in the interacting system and the 
(n + 1) X (n + 1) mobilitymatrixiO(q,s) in the bare system: 

(23b) -= 1 T- l P  
Aq,s)  iiO(q,s) 

Introducing the block form 

where vO(q,s), = &q,s)jo, and following the same steps 
leading from eq 13 to 14, we obtain the following alternative 
expression for the inverse of cc(q,s): 

1 (24a) -=- + m W T  
I.C(q,s) rO(q,s) 

with a new definition of U(q,s) and m(q,s) as 

U(q,s) = bo(q)-'vo(q,s) + e (24b) 

(244 1 
m(q,s) = 

&(q,s) - vo(q,s)Tbo(q,s)-'vo(q,S) 
In fact, using the Sherman-Morrison formula (Appendix 
A) to invert eq 24a, we obtain an expression for p(q,s), 
rather than its inverse, as 

(25) 
I.( = bo-  (pee + vo)(eTpo + voT) 

&, + eTpoe + voTe + eTvo 
where we have suppressed the arguments (q,s) for sim- 
plicity. Equation 25 is also a new result. When the 
mobility matrix is block diagonal so that vo(q,s) = 0, eq 25 
reduces to 

(26) bO(q,s)eeTbo(q,s) 

&,(q,s) + eTpO(q,s)e 
C((q,s) = bo(q,s) - 

which was given in I (eq 11 of ref lb). 
To display the new features of this result we consider 

a binary mixture of A and B species which may be 
homopolymers or copolymers. In this case, there is only 
one independent mobility in the interacting system because 
p~ -pm, and it is given in terms of the mobilities p k ,  piB, and p h  in the bare system by 

PBB 

(27) 

In the absence of coupling between the A and B compo- 
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nents so that &, = 0, eq 27 reduces to the well-known 
inverse superposition rule of mobilities in incompressible 
binary mixtures:2*u 

This rule ceases to be valid when the mobility matrix in 
the bare system is not diagonal. 

The short-time mobilities, m(q) (not to be confused with 
m introduced in eqs 15b and 24c), defined in terms of the 
first cumulant matrix through7 

m(q) = Pq-2Q(q)s(q) (28) 
are obtained from the generalized mobilities p(q,s) as the 
limit of the latter ass - m.7 Hence, m(q) in the interacting 
system can be related to the bare system short-time 
mobilities mo(q) through eqs 23 or 25: 

(29) 
(moe + no)(eTmo + noT) 

mL + eTmoe + noTe + eTno 
m = m  - 

where the arguments (q )  are suppressed and where 
n;(q) = m;o(q). The mobilities in the bare system have 
usually been calculated by using Rouse dynamics, which 
does not take into account hydrodynamic interactions. 
One of the points we make in this paper is to show that 
both intra- and interchain hydrodynamic interaction can 
be included in the dynamics of the bare system, in the 
light of the new formulation of the dynamic RPA. The 
calculation of the mobilities in the presence of hydrody- 
namic interactions is standard (see, for example, refs 7-9): 

(30) 
and 

(31) m:t,(q) = -Jd3k p&-Cl)q&) 

where N ,  is the total number of monomers in component 
A. T33(k) is the Fourier transform of T33(R) = qT(R)q/ 
q2, where T(R) is the conventional Oseen tensor, i.e., 

1 1  
9 k2 

1 
(2T)3 

(32) T33(k) = - -(I - COS2 8,) 

In eq 32, el, is the angle between vectors q and k, and 9 
is the viscosity of the mixture, which we will discuss more 
in a later section. In eqs 30 and 31, @,(k) and E&) 
denote the partial static structure factors in the bare system 
and are defined as 

(33) 

The average (...) refers to the equilibrium average in the 
bare system. Since there are no interactions among the 
monomers in the bare system except for those maintaining 
chain connectivity, the interchain correlations in eq 33 
vanish. Hence, in eq 30 we have 

(34) 
where n, = NJV is the monomer density in component 
A, and $(k) is the single-chain static structure factor 
normalized as g ( 0 )  = pa, where pa is the polymerization 
index for an A molecule (number of monomers). Sub- 
stitution of eq 34 into eq 30 and the use of ?"33(q) = 0 yield 

@,(k) = N,[SZ(k) + (2d3n,6(k)1 
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the results of the previous section. We consider an (n  + 
Wcomponent mixture, in which one of the components 
(designated by A) is labeled. The dynamic scattering 
function SM(q,t) is measured as a function of time at  
different wavenumbers q, and its first cumulant I'&) is 
extracted from the data as a function of q. The short- 
time behavior of the (n + l ) (n  + 2)/2 partial scattering 
functions Sog(q,t), a,@ = 1, ..., n, are jointly described by 
a matrix equation 

S ( q , t )  = e-*(q%(q) (43) 
where the static structure factor &q) is expressed as 

The above procedure leads to  the conclusion that  
m:b(q) = 0 when the chains of components A and B are 
not connected to each other, but m:b(q) # 0 otherwise. 
For example, in the case of copolymer melts one finds 

where S$(k)  is the correlation function between the two 
parts of a single A/B copolymer, normalized as SL(0) = 
@&)'/'. Since Si(k) and Sk(k) depend only on the 
magnitude of vector k, the angular integration in eqs 35 
and 36 can be performed: 

where the function Z(x) denotes 

(39) 

The S i ( k )  and Sk(k) in eqs 37 &d 38 L e  obtained using 
Gaussian statistics. In the small-q region where qa << 1 
holds, they are represented by the Debye function. Here 
"a" denotes the statistical segment length of an A chain. 
Since neutron spin-echo scattering experiments are per- 
formed in the high-q region, where qa can be of the order 
of unity, we need the full expression of S i ( k )  and 
Ss (k) valid for all q's.l0J1 The former can be written as 
S,(k) = PaP@a,aa)t where P 

where = q2a2/6. In the limit of a - 0 and pa - a, 
keeping Rga' = paa2/6 constant, P@,,a,) reproduces the 
conventional Debye form: 

pD(xa) = +(x ,  - 1 + e-'.) (41) 

where x a  = Paan (qRga)' and Rga is the radius of gyration 
of an A chain. The difference between the full expression 
P@a,aa) and the Debye form PD(x,) is that the former 
behaves as l / p a  in the high-q region where qa >> 1, whereas 
the latter behaves as 2/x,. 

We present the expression Sh(k) in the case of diblock 
copolymer A-B, allowing the statistical segment lengths 
a and b of the two arms to be different. Writing 
SL(k) as S:,(k) = P@ab(Pa,Pb,CXatCYb), we obtain12J3 

x&l 

(42) 
Detailed calculation of P e b  for multiblock copolymers 
having different architectures can be found elsewhere.12 

3. Interpretation of Dynamic Scattering 
Experiments on Polymer Melts 

In this section we describe briefly the procedure to be 
followed for the interpretation of dynamic scattering 
experiments on multicomponent polymer mixtures using 

(44) 

in the RPA without incompressbility. The first cumulant 
matrix Q(q) is related to the short-time mobility matrix 
m(q) through f%q) = kgTq2m(q)Q(q)-l, in which m(q) = 
mo(q) within the RPA without incompressibility (see eq 
23a). The expressions of m$(q) and are given by 
eqs 37-39 and 40-42. Thus, the calculation of S(q,t) is 
reduced to straightforward matrix manipulations. One 
finds for example that SM(q,t) can be expressed as a 
superposition of n + 1 eigenmodes with relaxation fre- 
quencies X j ( q )  which are the eigenvalues of Q(q). Often, 
only the first cumulant r&) of SM(q,t) is analyzed in a 
scattering experiment which is given by 

(45) 

Note that Faa(q) is not equal to any of the matrix elements 

It is observed that in the absence of incompressibility 
the RPA requires specification of the partial structure 
factors SB,(q) in the bare system and the Fourier trans- 
form of the interaction potentials Wag(') between pairs of 
monomers treated as perturbation. The accuracy of the 
RPA increasingly improves by including in Wag(r) smaller 
portions of the actual interaction potential. For example, 
Wag(r) may be chosen to include the long-range potential 
interactions among monomers and the short-range inter- 
chain excluded volume interactions. In this case the bare 
system consists of noninteracting chains, except for the 
chain connectivities, with intrachain excluded volume 
interactions. The latter must be included in the calculation 
of S$(q). The choice of Wag(r) affects the calculation of 
the bare system mobilities as well, through e&) as 
indicated in eqs 37 and 38. 

Implementation of the RPA in polymer melts, which 
can be treated as an incompressible mixture, is further 
simplified by making use of the incompressibility condi- 
tion. The number of independent partial scattering 
functions S,g(q,t) is reduced from (n  + l ) (n  + 2)/2 to n(n 
+ 1)/2. The time evolution of these can be described by 
an n X n matrix S(q , t ) .  The short-time behavior of the 
latter is given by 

~ ( q , t )  = e-*(%(q) (46) 
where the n X n static structure matrix is to be calculated 
using eq 18 or equivalently eq 19. The n X n first cumulant 
matrix Q(q) = keTq2m(q)S-'(q) in eq 46 is evaluated by 
calculating the mobility matrix m(q) from eq 29. The 
measured dynamic scattering function SM(q,t)  contains 
n modes with relaxation frequencies Xj (q) ,  j = 1, ..., n, 
which are the eigenvalues of Q(q).  In an incompressible 
mixture the total monomer density fluctuations, whose 

of Qq). 
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relaxation is mediated by cooperative diffusion, vanish. 
Since the cooperative diffusion is not a pure normal mode 
of the mixture in general, the reduction in the number of 
modes from n + 1 to n does not correspond to a simple 
deletion of one of the modes in the absence of incom- 
pressibility. The latter affects all the relaxation frequen- 
cies of the system. 

In the calculation of the bare system mobilities and static 
structure factors in eqs 40-42 and 37-39, all the monomer- 
monomer interactions, except for those maintaining chain 
connectivities, are included in Wap(q), so that the bare 
system consists of noninteracting Gaussian chains. Rep- 
tation is not taken into account explicitly in these 
calculations. It is usually included in the framework of 
the RPA through the bare mobilities such as discussed by 
Binder.s 

4. Dynamics of Block-Copolymer Melts with 
Hydrodynamic Interactions 

Dynamics of block-copolymer melts were studied earlier2 
via the RPA in the small- and intermediate-q regions 
without including hydrodynamic interaction. In this 
section, we consider this problem and include hydrody- 
namic interactions using the extended formulation of the 
RPA developed in the previous sections, as well as the 
high-q region. The latter extension is needed in the 
interpretation of neutron spin-echo experiments. For 
simplicity, we consider symmetrical copolymers so that 
both the statistical segment lengths and the polymerization 
indices of the A and B blocks are the same, Le., pa = P b  
= p and aa = ab = a = (qaI2/6. Also Na = Nb = N ,  where 
N is the total number of A or B monomers in the system. 
One can verify from eqs 40 and 42 that Pab = 2PT(q) - 
PI/&), where we have introduced PT(Q) = P(2p,a) and 
P1/2(q) = P@,a), which are the static structure factors of 
a full Gaussian and a half-Gaussian chains, respectively. 
The static structure factor follows from eq 19 directly as 
S(q) = Np/Q(q) ,  where the thermodynamic factor Q(q) is 
defined by 

where we redefined the Flory interaction parameter to 
absorb 2N so that now xF is per segmental volume uo = 
V12N. In eq 47, the expression of PI/&) follows from eq 
40 as 

with a = q2a2/6. The expression of PT(q) is obtained by 
replacing p in eq 48 by 2p. The above expression of S(q)  
reduces to eq 32 of ref 2, when P1/2(q) and PT(Q) are 
replaced by the Debye function. 

The calculation of the mobility m(q) = m,(q) = mbb(q) 
in the interacting system in terms of the bare system 
mobilities is simplified in the case of symmetric copolymers 
because in this case m&(q) = m:b(q)' From eq 29, one 
obtains m(q) = [mL(q) - m:b(q)1/2. The expressions of 
m&(q) and m:b(q) are given in eqs 37 and 38 with the 
modification Na = N and 6 = (b = 5. Using Pat, = 2 P ~ ( q )  
- PI/&) in eq 38 and calculating the first cumulant r(q) 
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Table I. Asymptotic Behavior of Various Quantities as a 
Function of q 

small q intermediate q large q 
( q R a  >> 1, qa << 1) (qa >> 1) ( q R a  << 1) 

which is also one of the contributions of this work. This 
equation can be cast to a more compact form as 

(50) 

are the half and full single-chain 
r(q) = F'l/2(q)r&Aq) - PT(q)r%?))Q(q) 

where I'fI2(q) and 
first cumulants, respectively, defined by 

The advantage of the form in eq 50 is that the variations 
of the single-chain first cumulant are known and well 
documented. The asymptotic behavior of r(q) in various 
q regions can therefore be investigated easily in terms of 
the asymptotic expressions of I':&) and l';(q), as well as 
of those of P1/2(q) andPT(Q), which are presented in Table 
I. 

In the small-q region one finds 

(52) 6 r ( q - 4 )  = -#:/2 - D:l 

where DS12 is the translational diffusion coefficient of a 
single chain with a polymerization index p in a fluid with 
viscosity q, including hydrodynamic interaction: 

R, 

where we have used Z(x-4) = 413. Upon performing the 
indicated integral, one finds the well-known Zimm ex- 
pression of translational diffusion coefficient for a Gaussian 
chain: 

The constant frequency given in eq 52 corresponds to the 
structural mode characterizing the relaxation of the local 
inhomogeneities. Although it is related to the internal 
modes of the chain, it is sometimes loosely referred to as 
the interdiffusion coefficient. In the absence of hydro- 
dynamic interaction, eq 52 reduces to 3k,TlptR& which 
is identical to eq 48 of ref 2. 

In the intermediate- and high-q regions one obtains 

= q &BT -(I - 2xF) ,  1 large 4 5 (54) 

which are the same as the asymptotic behaviors of the 
first cumulant of a single chain in the presence of 
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Figure 1. Expected behavior of the first cumulant in copolymer 
melts as function of qR2 when the Flory-Huggins interaction 
parameter Xp and the gee draining parameter h* are varied. 
Curves: (a) xF/x; = 0.0, h* = 0; (b) XF/X; = 0.65, h* = 0; (c) 

0.65, h* = 0.29; (0 XF/Xk = 1.0, h* = 0.29. 

hydrodynamic interactions. The additional factors rep- 
resent the effect of interactions. SincepXF I 5 (see below) 
in the one-phase region, where Q > 0, the deviation of 
these factors from unity is negligible in these q regions. 
They are added only to indicate the trends with the 
interaction parameter. 

The variation of r(q) with q between the above 
asymptotic q regions has to be calculated numerically using 
its full expression given in eq 49, as we have done in Figure 
1 for a few values of the interaction parameter. We 
normalized r(q) as 

XF/X; = 1.0, h* = 0; (d) Xp/XE = 0.0, h* = 0.29; (e) xF/xi = 

where K = {R&, V ( K )  = [Pi/z(K) - PT(K)I/[Pl/Z(Kc) - PT- 
( ~ ~ 1 1 ,  and xc = l / p [ P ~ p ( ~ ~ )  - &(KC)] is the critical value 
of the interaction parameter, a t  which Q(q) becomes zero 
(spinodal point) a t  a wavenumber KC that maximizesPl/Z(K) 
- PT(K). When the Debye forms of P1/2(~)  and PT(K) are 
used, one finds2 KC = 3.7984and [Plp(Kc) -PT(Kc)I = 0.1906. 
With the full expression of P1/2 (K)  and PT(K), K~ becomes 
slightly dependent on the chain length p. In eq 55, h* = 
[/7a~(12?r)'/~ is the usual draining parameter measuring 
the strength of the hydrodynamic interaction. The P I ~ ( K )  
and PT(K)  are defined by 

Since K = q2R& is normalized with the radius of gyration 
of the full chain, PT(K) is not obtained from P I / Z ( K )  by 
simply replacing p by 2p. Finally, Y(x) in eq 55 denotes 
Plp(x )  - PT(x) - (1/2p), or 

Since Y(x---) = exp(-x/2p)(l- 3/2p)/p, the integration 
in eq 55 is convergent even though Z(x--) = 413. The 
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curves in Figure 1 are plotted with p = 100 and h* = 0.29. 
The latter corresponds approximately to the Flory value 
of 0.262 for the draining parameter in solution.14 It is 
obtained treating statistical segments as a Gaussian chain 
and using preaveraged hydrodynamic interaction. This 
procedure may be used also in polymer melts to calculate 
the ratio of the friction coefficient per segment to the 
viscosity of the polymer mixture, i.e., t / q  a,  a t  least as a 
first guess. We consider h* as an adjustable parameter to 
be determined experimentally. The values 0, 0.65, and 
1.0 for xF/x: are chosen for comparison with the curves 
in Figure 3 of ref 2, which are plotted with these values 
in the absence of hydrodynamic interaction, Le., with h* 
= 0, and using the Debye forms for P1/2(K) and PT(K).  The 
effect of hydrodynamic interaction in various q regions is 
clearly observable in Figure 1. It would be interesting to 
check these theoretical predictions experimentally and to 
assess the importance of hydrodynamic interactions in 
the dynamics of polymer melts. 

5. Conclusions 
We have presented in this paper a new formulation of 

the random phase approximation for the study of statics 
and dynamics of multicomponent polymer melts. This 
formalism allows interaction and connectivity of the 
monomers of the matrix component, which is eliminated 
on the basis of incompressibility, with the monomers of 
the remaining components and, thus, is particularly 
suitable to the study of melts of copolymers, stars, etc. 
The new elimination procedure used in this formalism 
elucidates the relationship between the Flory interaction 
parameters and the interaction potentials between mono- 
mer pairs, which is treated perturbatively, and enables 
one to include the effect of hydrodynamic interactions 
among the monomers in the study of dynamics of polymer 
melts. Hydrodynamic interactions were introduced earlier 
by Fredrickson15 in the description of the dynamics of 
polymer mixtures by taking into account the coupling 
between the density and momentum fluctuations. The 
hydrodynamic interactions in Fredrickson's formulation 
enter in the functional Fokker-Planck equation for the 
distribution function of the order parameter, through the 
Oseen tensor with a renormalized macroscopic viscosity. 
The explicit results obtained in this paper for the first 
cumulant can also be obtained starting from this Fokker- 
Planck equation. Therefore, the viscosity of the mixture 
appearing in the results of this paper should also be 
interpreted as a renormalized macroscopic viscosity. The 
latter concept has also been introduced recently by Roby 
and Joannyla into dynamics of concentrated ternary 
polymer solutions. 

Dynamics of copolymer melts with hydrodynamic 
interaction is presented in detail as an illustration of the 
new formalism, and the variation of the first cumulant is 
calculated with and without hydrodynamic interaction as 
a function of the wavenumber and interaction parameter. 
The effect of the hydrodynamic interaction is expressed 
in terms of a Yfree draining" parameter, as in the case of 
polymer solutions. Although hydrodynamic interactions 
are not expected to play a dominant role in the dynamics 
of polymer melts, the analytical results obtained in this 
paper may be used to assess their effect in the case of 
copolymer melts. 
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Appendix A. Inverse of a Block Matrix 
It can easily be verified that 

where A is symmetric and M, n, and m are 

M = A-' + mA-'bbTA-' 
n = -mA-'b 

(Al l  1 m =  
c - bTA-'b 

Equation A1 is known as the Sherman-Morrison formula.17 
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