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The dynamis of interating vortex �laments in an inompressible �uid, whih are nearly

parallel, have been approximated in the Klein-Majda-Damodaran model. The regime

onsiders the de�etions of eah �lament from a entral axis; that is to say, the vortex

�laments are assumed to be roughly parallel and entered along parallel lines. While this

model has attrated a fair amount of mathematial interest in the reent literature, parti-

ularly onerning the existene of ertain spei� vortex �lament strutures, our aim is to

generalise several known interesting �lament solutions, found in the self-indued motion

of a single vortex �lament, to the ase of pairwise interations between multiple vortex

�laments under the Klein-Majda-Damodaran model by means of asymptoti and nu-

merial methods. In partiular, we obtain asymptoti solutions for ounter-rotating and

o-rotating vortex �lament pairs that are separated by a distane, so that the vortex �la-

ments always remain su�iently far apart, as well as intertwined vortex �laments whih

are in lose proximity, exhibiting orverlapping orbits. For eah senario, we onsider

both o- and ounter-rotating pairwise interations, and the spei� kinds of solutions

obtained for eah ase onsist of planar �laments, for whih motion is purely rotational, as

well as traveling wave and self-similar solutions, both of whih hange their form as they

evolve in time. We hoose traveling waves, planar �laments, and self-similar solutions

for the initial �lament on�gurations, as these are ommon vortex �lament strutures

in the literature, and we use the dynamis under the Klein-Majda-Damodaran model to

see how these strutures are modi�ed in time under pairwise interation dynamis. Nu-

merial simulations for eah ase demonstrate the validity of the asymptoti solutions.

Furthermore, we develop equations to study a o-rotating hierarhy of many satellite

vorties orbiting around a entral �lament. We numerially show that suh on�gura-

tions are unstable for plane wave solutions, whih lead to the ollapse of the hierarhy.

We also onsider more general traveling wave and self-similar solutions for o-rotating

hierarhies, and these give what appears to be haoti dynamis.

1. Introdution

Although vorties are oneptually simple objets in translational and turbulent �ow,

the interations of vortex �laments in three-dimensional �uids exhibit omplex dynamis

and appear in remarkably diverse systems. For example, muh researh into the phe-

nomenon was motivated by understanding vorties generated in the wake of airraft wings

and whether their subsequent interations would prove hazardous for following vehiles

(Breitsamter, 2011; Leweke et al., 2016). During landing or take-o�, o-rotating vorties

are shed from the tip of the wings and the lowered �aps (Meunier et al., 2005) whih
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then merge into a pair of ounter-rotating vorties (Parslew & Crowther, 2013) that

exhibit long and short wave instabilities (Leweke & Williamson, 1998, 2011). Further-

more, of interest is the evolution of vortex dynamis produed in the wake of propellers,

whih produe a main hub vortex and opposite irulating double helial tip vorties

that ollapse and breakdown in �nite time (Felli et al., 2011).

In nature, �sh similarly generate intriate wakes and patterns of vorties from the

shape of their �ns and bodies (Lauder et al., 2002; Tytell, 2006). However, the state of

suh vorties after their reation is of biologial importane beause �sh have been shown

to detet these �ows using the lateral-line system, a network of tubular organs overing

their bodies (Blekmann & Zelik, 2009; Chagnaud et al., 2006), whih allows shools of

�sh to swim together and predators to �nd their prey (Franosh et al., 2009; Pohlmann

et al., 2001).

To gain understanding into the on�gurations that arise from interating vorties, we

study the simpli�ed system of equations derived by Klein et al. (1995), who originally on-

sidered deformations of the straight vortex �laments whih were small in amplitude and

wavelength. We summarize their work as follows: Suppose there areN vorties in a three-

dimensional inompressible �uid. We de�ne the position of the jth vortex �lament at

some time t and ar-length parameter s in Cartesian oordinates as (xj (t, s) , yj (t, s) , s)
and introdue the omplex dependent variable ψj (t, s) = xj(t, s) + iyj (t, s), so that the

time-evolution of the jth vortex �lament reads

i
∂ψj

∂t
+ αjΓj

∂2ψj

∂s2
+ 2

∑

k 6=j

Γk
ψj − ψk

|ψj − ψk|2
= 0, j = {1, 2, ..., N} , (1.1)

where αj is related to the shape of the vortex ore, as desribed in the work of Klein &

Majda (1991) and Klein & Knio (1995), whilst Γj is the orresponding irulation of the

vortex �lament.

Under the framework of Klein et al. (1995), the shape of an individual vortex �lament is

in�uened by self-indution (the seond term of (1.1)) and the interations of neighboring

vorties (the third term of (1.1)), all of whih are assumed to be dominated by loal

ontributions; that is, ψj (t, s) at a partiular ar-length oordinate s is determined by

the veloity ontributions from all vortex �laments within this small region of s. For

suh �laments whih deviate from being nearly parallel, the nonlinear Shrödinger-type

equations in (1.1) break down for two reasons: First, the geometri ansatz desribing the

position (xj (t, s) , yj (t, s) , s) is no longer valid as the z-axis oordinate is not adequately
desribed by s. Seond, the dynamis is now dominated by non-loal ontributions (Klein

et al., 1992). As the �lament urls, the veloity ontributions at a partiular point on

the vortex beome inreasingly determined by the vortiity generated further up or down

the ar-length, not only from the same �lament, but neighboring �laments as well.

Using (1.1), Klein et al. (1995) were able to predit the periodi long-wave instabil-

ities that appear in oppositely-rotating vortex pairs due to the Crow mehanism, and

neutral stability for on�gurations rotating in the same diretion (Crow, 1970; Jimenez,

1975). However, more reent work on the model has onsidered the �nite time ollapse

of ounter-rotating vortex pairs and on�gurations with N o-rotating vorties with

imposed polygonal symmetry; in partiular, resulting from perturbing exatly straight

�laments with self-similar solutions as the �laments are held parallel at s→ ±∞ (Bania

& Miot, 2013; Bania et al., 2014, 2016). The existene of traveling wave-type solutions

(similar to those found by Hasimoto (1972) for a single vortex) as well as standing waves

has been proven for vortex systems with the same polygonal symmetry (Bania & Miot,

2011; Craig et al., 2016). Many of these results onern existene of solutions from very
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spei� initial on�gurations and boundary data. In the present paper, we shall be more

onerned with desribing the temporal dynamis of a wide variety of interating �lament

strutures, motivated by an interest in generalising known isolated �lament strutures to

aount for pairwise interations. Indeed, save for the original Klein et al. (1995) paper,

asymptoti solutions for more ompliated vortex �lament strutures under (1.1) are not

present in the literature.

We shall study various families of solutions to (1.1), not only for o-rotating and

ounter-rotating pairs, but also a N o-rotating hierarhy around a entral �lament.

We do not impose any assumptions on the symmetry of the system and onsider more

general initial and boundary onditions. Without these onstraints, we are able to derive

a partial di�erential equation for the ounter-rotating vortex pair with parallels in the

study of nonlinear beams and ables (Lazer & MKenna, 1990). We apply a similar

treatment to the o-rotating vortex hierarhy, whih produes ompatibility relations

desribing how the vorties are distributed around the entral �lament for the ase of

plane wave solutions, and numerially study the ase of two satellite vorties orbiting

around a entral �lament for various forms of solutions.

For eah of the physial on�gurations onsidered, we shall onsider traveling wave,

planar, and self-similar vortex �lament strutures. Not only are these natural mathe-

matial hoies for solutions, but these also orrespond to well-studied regimes for the

single vortex �lament under the Biot-Savart and Loal Indution Approximation (LIA)

models governing its self-indued motion. Perhaps the most ommonly studied traveling

wave solution under the non-loal Biot-Savart law is the helial �lament (Widnall, 1972;

Moore & Sa�man, 1972; Ria, 1994; Boersma & Wood, 1999). Analytial results are

ommon under the LIA (Zhou, 1997), whih is muh simpler to solve in the helial ase

(Kida, 1981; Sonin, 2012). Hybrid results on the helial �lament whih use the LIA

to regularise the ore region (rather than using the ut-o� method) whilst keeping the

Biot-Savart integral �tails� were presented in Van Gorder (2015a).

The planar vortex �lament is as studied (Da Rios, 1906; Ria, 1996; Kida, 1981)

and was related to problems in elastia (Hasimoto, 1971). The solution takes the form

of a plane urve, with the motion being rotational orthogonal to the plane in whih

the urve lies. A diret derivation in Cartesian oordinates was given in Van Gorder

(2012b). The Poinaré - Lindstedt method was used to study the spatial struture of a

spatially periodi planar �lament in the Cartesian frame by Van Gorder (2013b). Kida

(1982) onsidered a numerial stability analysis for the planar �lament, while Van Gorder

(2013a) was able to obtain an analytial result for the orbital stability (spetral stability).

Fukumoto (1997) studied the in�uene of bakground �ows on planar �laments. There

is an alternate formulation, given by Umeki (2010), whih formulates the LIA in terms

of the unknown tangent vetor as a funtion of arlength and time, and a planar solution

in this framework was given by Van Gorder (2012a). Aside from these LIA results, the

planar vortex �lament solution was also reently shown to exist for the non-loal Biot-

Savart dynamis by Van Gorder (2015b). Planar �laments orrespond to stationary states

onsisting of rotating open spae urves. We should also note that torus knot solutions

are vortex �lament solutions whih may be desribed as stationary states whih form a

losed, braided spae urve. Suh torus knot solutions were presorted in Kida (1981) in

terms of ellipti integrals and in Ria (1993) as linear perturbations of irular solutions.

Self-similar solutions under the LIA have been used to understand quantized vortex

�lament motion in super�uid Helium (Bewley et al., 2008; Lipniaki, 2000, 2003a,b;

Van Gorder, 2013). Similarity solutions an model sharp kinks along vortex �laments

as well as the development of singularities (Gutiérrez et al., 2003). Pelz (1997) numer-

ially simulated vortex tangles whih exhibit some self-similarity at very small times



4 J. Kwieinski and R. A. Van Gorder

(although this may not persist at large times). Likewise, self-similar, singular-like stru-

tures loalised in time have been observed in ollapsing vortex rings just prior to ore

overlapping (Fernandez et al., 1995). Self-similar dynamis are useful in the study of

vortex ollapse and turbulene (Das et al., 2001; del Álamo et al., 2006; Kimura, 1987,

2009, 2010; Yoshimoto & Goto, 2007). In addition to these results for LIA, self-similar

solutions were very reently shown to exist for the non-loal Biot-Savart dynamis by

Van Gorder (2016).

The rotation and stability of N helial vorties of the same irulation, and whose

motion is on�ned to a ylinder, has been studied (Okulov, 2004) and further extended

to onsider the hanges brought on by an assigned axisymmetri vortiity �eld generated

by the wake of a propeller's hub vortex (Okulov & Sørensen, 2007). In partiular, the

results are derived from previous work by the exat solution of Hardin (1982) involving

expliit omputations of Kapteyn series and are further ompared to previous work by

(Boersma & Wood, 1999).

The remainder of the paper is organised as follows. In Setion 2, we shall onsider

asymptoti and numerial solutions for vortex �laments whih are always separated from

one another. Both o- and ounter-rotating on�gurations are taken, and we obtain

traveling wave and self-similar solutions for eah. In Setion 3, we onsider asymptoti

and numerial solutions for intertwined vortex �laments whih share the same orbital

envelope. Again, both o- and ounter-rotating on�gurations are taken, and we are

able to exhibit traveling wave, planar, and self-similar solutions for eah on�guration.

In Setion 4, we onsider numerial solutions for the more ompliated ase of many

satellite vortex �laments surrounding a entral vortex, thereby onstruting a o-rotating

hierarhy of �laments. We demonstrate instability in a plane wave on�guration, while

more general traveling wave and self-similar solutions result in what appear to be haoti

dynamis. Finally, we give onluding remarks and summarise some of the interesting

�ndings in Setion 5.

2. Same sized vortex �laments held apart by a distane funtion

We onsider the instane whereby two vorties of the same uniform ore struture α are

separated by a distane in the x-axis that depends on time t; expliitly, the �laments are

some funtion D (t) ∈ R apart, whih is taken to be very large. The intention is to gain

physial intuition into the role that the vortex interation plays in the system as the mean

separation distane between �laments is varied. We make the transformation ψ2 (t, s) →
ψ2 (t, s) +D (t) so that the position of the vorties is given by (Re (ψ1) , Im (ψ1) , s) and
(Re (ψ2) +D (t) , Im (ψ2) , s) for �laments 1 and 2 respetively. The time evolution of

ψ1 (t, s) and ψ2 (t, s) are then given by

i
∂ψ1

∂t
+ αΓ1

∂2ψ1

∂s2
+ 2Γ2

ψ1 − ψ2 −D

|ψ1 − ψ2 −D|2
= 0, (2.1)

i
∂ψ2

∂t
+ αΓ2

∂2ψ2

∂s2
+ 2Γ1

ψ2 − ψ1 +D

|ψ2 − ψ1 +D|2
= 0, (2.2)

where α1 = α2 = α.
We simplify (2.1) and (2.2) by introduing new dependent variables ν (t, s) = ψ2 (t, s)+

ψ1 (t, s) and µ (t, s) = ψ2 (t, s) − ψ1 (t, s), so that ψ1 (t, s) = (ν (t, s)− µ (t, s)) /2 and

ψ2 = (ν (t, s) + µ (t, s)) /2. One an interpret ν (t, s) as the position of the vortex pair's

enter whilst µ (t, s) desribes the deviations from this enter with the additional D (t)
o�set (see Fig. 1). Furthermore, we resale the independent variables ŝ = s/

√
α and
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Figure 1. A pitorial representation of transformed dependent variables ν (t, s) and µ (t, s) and
how they relate to the original variables ψ1 (t, s) and ψ2 (t, s) de�ned in (2.1) and (2.2). The

variable ν (t, s) determines the enter of the vortex pair whilst µ (t, s) measures the deviations

from this enter with an o�set D (t).

t̂ = Γ1t to obtain (upon dropping the hat symbol):

i
∂ν

∂t
+

1

2
(1 + Π)

∂2ν

∂s2
− 1

2
(1−Π)

∂2µ

∂s2
+ 2 (1−Π)

µ+D

|µ+D|2
= 0, (2.3)

i
∂µ

∂t
− 1

2
(1−Π)

∂2ν

∂s2
+

1

2
(1 + Π)

∂2µ

∂s2
+ 2 (1 + Π)

µ+D

|µ+D|2
= 0, (2.4)

where Π = Γ2/Γ1 is the ratio of vortex irulations. Note that in resaling t, we have

assumed that Γ1 > 0, however the ase of Γ1 < 0 an readily be aounted for by

transforming t → −t. For the forthoming analysis, we only onsider the former ase of

Γ1 > 0.

2.1. Co-rotating vortex pair at large separations

We suppose the two vorties have the same irulation (i.e. Π = 1). In this ase, (2.3)

and (2.4) deouple, meaning that an individual vortex �lament's deviations from the

enter and the position of this enter do not depend on eah other. The evolution of the

vortex pair is now desribed by:

i
∂ν

∂t
+
∂2ν

∂s2
= 0, (2.5)

i
∂µ

∂t
+
∂2µ

∂s2
+ 4

µ+D

|µ+D|2
= 0. (2.6)

By making the transformation to ν (t, s) and µ (t, s), we have removed the nonlinear

interation term, leaving us with the linear Shrödinger equation in (2.5). For this reason,

we only fous on (2.6) and study the traveling wave and self-similar solutions that result.

2.1.1. Traveling wave solutions

We onsider the ase where the vortex pair are separated by a onstant distane; that

is, D (t) = d≫ 1, and study traveling wave solutions to (2.6). We do this by introduing

the independent variable ξ = s− vt, where v is the veloity of the traveling wave (whih

is assumed to be onstant and O (1)), and �nd that the transformed equation beomes:

d2µ

dξ2
− iv

dµ

dξ
+ 4

µ+ d

|µ+ d|2
= 0. (2.7)
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We make use of the fat that we are studying large separation distanes and expand

µ (ξ) as a series in d−1
. In partiular, µ =

∑∞
m=0 (d)

−m
µ(m)

, so that, the seond order

asymptoti solution is (see Setion 6.1.1 for details):

µ (t, s) = c1 exp (iv (s− vt)) + c2 +
1

d

(

c3 exp (iv (s− vt)) + c4 −
4i

v
(s− vt)

)

+
1

d2

(

−2c∗1
v2

exp (−iv (s− vt)) +
4ic∗2
v

(s− vt) + c5 exp (iv (s− vt)) + c6

)

+O

(

1

d3

)

,

(2.8)

where cn ∈ C are integration onstants and ( )∗ is the omplex onjugate of the variable.

Equation (2.8) suggests that if the vorties are held at in�nite separation, suh that

self-indution e�ets are only inluded, the resulting shape of the individual �laments

is that of a helix with wavenumber v that osillates at an angular frequeny of v2. As

the pair is brought loser together, the vortex interation manifests in two ways: First,

there is repulsion in the perpendiular diretion due to the −4i (s− vt) /v term, whih

is independent of any imposed onditions on µ (ξ); an expeted result in light of point

vorties. In a 2D �ow, eah o-rotating point vortex will feel a veloity �eld that is

opposite in diretion to the �eld felt by the other vortex, both of whih are perpendiular

to the diretion of separation, thus driving the pair apart in the same manner as (2.8)

predits. Noting that Γ1 = Γ2 > 0, the diretion of repulsion is suh that the �lament

desribed by ψ1 (t, s) will drift in the positive y diretion, whilst the �lament desribed

by ψ2 (t, s) will drift in the negative y diretion. If we onsider the ase whereby Γ1 < 0,
suh that t→ −t, the vorties are repelled in the opposite diretion along the y-axis.
Seond, an additional wave is generated in the on�guration as a response to the zeroth

order solution; one whih has the form −2c∗1exp (−ivξ) /v. If we suppose that Im (c1) = 0,
then for Re (c1) > 0, the seondary wave suppresses osillations in the y diretion, whilst

vibrations in the x diretion are similarly subdued when Re (c1) < 0. Physially, the

helial shapes of the �laments �atten into ellipses due to the pairwise vortex interation.

Furthermore, there is additional attration or repulsion at O
(

d−2
)

that depends on

the initial o�-set of the helial vorties; that is, depending on 4ic∗2ξ/v. An o�set whih

is in the x diretion results in repulsion in the y diretion, as seen in the �rst order

orretion. However, if the onstant o�-set is in the y diretion, then the opposite holds

true; namely, that the vortex pair translates in the x diretion in either repulsion or

attration. For Γ1 > 0, if Im (c2) > 0, then 4ic∗2ξ/v > 0 and the pair attrat eah other,

whilst if Im (c2) < 0, then 4ic∗2ξ/v < 0 and the vorties repel. The opposite applies when

Γ1 < 0. This seondary repulsion or attration is not predited by the 2D theory and is

a onsequene of the vortex �laments existing in a 3D �ow.

We numerially solve (2.7) for the parameters v = 4 and d = 10, with initial onditions

µ (ξ = 0) = −i and µ′ (ξ = 0) = v, and plot the vortex �lament shapes that result when

we set ν (t, s) = 0 (shown in Fig. 2(a)-(d) for times t = {0, 40, 80, 120} respetively).

We observe that (2.8) breaks down for times past the initial repulsion of the vortex pair

and does not apture the slowly osillatory behavior of the numerial solution. This

periodi solution on the slow wave-sale physially orresponds to the binary orbit of

the vortex pair, whereby the �laments rotate around eah other (see Fig. 2). This result

is predited if one onsiders the same problem from the perspetive of 2D vorties. As

the vorties separate vertially from their initial repulsion (Fig. 2(a)), the veloity �eld

felt by eah vortex beomes inreasingly horizontal and dereasingly vertial, resulting

in the pair beoming vertially displaed from eah other (Fig. 2(b)). The veloity �eld

for eah vortex is now horizontal with the repulsion now leading to inreasing vertial
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ontributions and dereasing horizontal ontributions in the veloity. The pair beome

horizontally separated again (Fig. 2()) and the yle repeats.

Given that the pair are orbiting on a slow wave-sale and are separated by a onstant

d through all orientations, we instead look for a slowly varying solution of the form:

1 +
1

d
µslow (ξ) = exp

(

iθ (ξ)

dβ

)

, (2.9)

with β being a positive onstant and β, θ ∈ R. Ansatz (2.9) replaes the helial shape

of eah vortex in the pair, whih individually rotate on a fast time sale, with straight

�laments that no longer exhibit quik osillations.

Substituting (2.9) into (2.7), we �nd the general solution (see Setion 6.1.2 for details):

θ (ξ) = dc7 −
4ξ

v
+ c8 +

c9
d

+O

(

1

d3

)

, (2.10)

where c7, c8, c9 ∈ R are integration onstants determining the initial orientation of the

vortex pair. The odd powers of d−n
in (2.10) are orretions so that (2.9) satis�es

the initial onditions imposed on µslow (ξ), whilst even powers give orretions to the

frequeny of the vortex pair's orbit.

We ompare µslow (ξ) in (2.9), with θ (ξ) alulated from (2.10), to the numerial

solution of (6.1) for the same initial onditions and value for v as seen previously. To

impose µslow (ξ = 0) = −i, we expand the exponential in (2.9) as a series and math

powers of d−1
on both sides, giving c7 = −1, c8 = 0, and c9 = 0, whih inurs an error

of O
(

d−2
)

at ξ = 0. We show these omparisons for d = 10 in Fig. 3(a) and (b), and

d = 5 in Fig. 3() and (d), for the real and imaginary parts of µ (ξ). We observe that the

slowly-varying approximation agrees very well with the numerial solutions showing the

vortex pair's binary orbit, even for d = 5. However, we note that (2.9) and (2.10) begin

to break down as ξ ≈ 2000, suggesting higher order frequeny orretions are neessary

to keep this solution valid for large ξ.

2.1.2. Self-similar solutions

We onsider the ase where the separation of the vortex pair grows in time; that is,

D (t) = d
√
t. As in Setion 2.1.1, d ∈ R is a onstant whih is very large suh that

1/d = ǫ ≪ 1. For a vortex separation of this form, (2.6) has self-similar solutions given

by µ (t, s) =
√
tχ (η), where η = s/

√
t. Transforming so that η is the independent

variable, (2.6) beomes:

d2χ

dη2
− iη

2

dχ

dη
+

i

2
χ+ 4

χ+ d

|χ+ d|2
= 0. (2.11)

Taking d−1 ≪ 1, we expand χ (η) as a power series in d−1
, so that χ (η) =

∑∞
n=0 d

−nχ(n)
,

to �nd the �rst-order asymptoti solution (see Setion 6.2):

µ (t, s) = (−1)
1

4 a1s+ a2

(

√
texp

(

is2

4t

)

− (−1)
1

4

√
π

2
serfi

(

(−1)
1

4 s

2
√
t

))

+
1

d

(

8i
√
t+ (−1)

1

4 a3s+ a4

(

√
texp

(

is2

4t

)

+
(−1)

3

4

√
π

2
serf

(

(−1)
3

4 s

2
√
t

)))

+O

(

1

d2

)

,

(2.12)

where an ∈ C are integration onstants and erfi (z) = ierf (iz) is the omplex error

funtion.
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(a) (b)

(c) (d)

Figure 2. The time-evolution of traveling wave solutions in o-rotating vorties held at a

onstant distane, with ψ1 (t, s) and ψ2 (t, s) being denoted by blue and red respetively. In par-

tiular, ν (t, s) = 0 and the numerial solution to (2.7) have been plotted with initial onditions

µ (ξ = 0) = −i and µ′ (ξ = 0) = v, for v = 4 and d = 10, over s ∈ [30, 40]. Times shown are: (a)

t = 0, (b) t = 40, () t = 80 and (d) t = 120. (Color online)

We plot the vortex �lament shapes obtained by numerially solving (2.11) for χ (η = 100) =
1+ i, χ′ (η = 100) = 1, and d = 10 with ν (t, s) = 0 for times t = {0.1, 0.5, 1, 2} in Fig. 4.

These onditions orrespond to µ (t, s) having an initial shape that satis�es the relations:

(

−2t
3

2

s

∂µ

∂t
+ t

1

2

∂µ

∂s

)∣

∣

∣

∣

∣ t = t0
s = s0

= 1, (2.13)

µ (t0, s0) =
√
t0 (1 + i) , (2.14)

evaluated at 100 = s0/
√
t0.

We further ompare the numerial solution to the asymptoti solution in (2.12) for the

same boundary onditions in Fig. 5 and desribe the form of solutions predited for t > 0
and s > 0 as follows: At zeroth order, the initial shape of the pair is that of individual
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Figure 3. Real and imaginary omponents of µ (ξ) for the slowly-varying solution (2.9) and

(2.10) (denoted by blak) and numerial solution of the full problem (2.7) (denoted by red).

The initial onditions imposed are µ (ξ = 0) = −i and µ′ (ξ = 0) = v for parameters v = 4 and

((a) and (b)) d = 10 and (() and (d)) d = 5. (Color online)

helial ones along an arbitrary orientation whose amplitude, wavelength, and separation

grows with time. The onial nature of the helix arises from the omplex error funtion

whilst the inreasing helix amplitude is due to the omplex exponential in (2.12). Suh

onial-type solutions were previously seen for isolated vortex �laments (Van Gorder,

2016). The inlusion of vortex interation at �rst order gives the same general shape

as the zeroth order solution, with the exeption of the monotonially inreasing term in√
t. As with Setion 2.1.1, the vortex pair exhibit repulsion in opposite diretions along

the y-axis, however, in this instane, the asymptoti solution does not show signi�ant

disagreement with the numerial solution for t→ ∞. The reason is due to the separation

funtion D (t) used, whih makes the binary orbits, as seen with traveling wave solutions,

impossible due to the horizontal distane between the vortex pair inreasing with time

rather than staying onstant. Lastly, we note that the rotation of the vortex helies is

suh that they rotate in the same diretion with the orientation of one helix being a

re�etion of the other in both the x and y axis. In Fig. 4, both vorties have irulation

Γ > 0, however the helies rotate in a lokwise diretion, suggesting that the diretion

of a helix's rotation is opposite to an individual �lament's irulation.

2.2. Counter-rotating vortex pair at large separations

For a vortex pair with opposite irulation, Π = −1 so that (2.3) and (2.4) now give:

i
∂ν

∂t
− ∂2µ

∂s2
+ 4

µ+D

|µ+D|2
= 0, (2.15)

i
∂µ

∂t
− ∂2ν

∂s2
= 0. (2.16)
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(a) (b)

(c) (d)

Figure 4. The time-evolution of self-similar solutions in o-rotating vorties held apart by

a separation funtion D (t) =
√
t, with ψ1 (t, s) and ψ2 (t, s) being denoted by blue and red

respetively. In partiular, ν (t, s) = 0 and (2.11), with onditions satisfying (2.13) and (2.14),

have been plotted for d = 10 over s ∈ [10, 20]. Times shown are: (a) t = 0.1, (b) t = 0.5, ()
t = 1, and (d) t = 2. (Color online)
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Im(  )Â

´

(b)

Figure 5. Solutions of χ (η) alulated from the �rst-order asymptoti solution (2.12) (shown

in blak) and the numerial solution of (2.11) (shown in red). In partiular, the initial onditions

χ (η = 100) = 1 + i and χ′ (η = 100) = 1 were used with d = 10. (Color online)

However, supposing ψ1 (t, s) and ψ2 (t, s) are C4
in s and C2

in t, we di�erentiate

(2.16) one with respet to t and di�erentiate (2.15) twie with respet to s to �nd a
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single time-evolution equation for µ (t, s):

∂2µ

∂t2
+
∂4µ

∂s4
− 4

∂2

∂s2

(

µ+D

|µ+D|2

)

= 0, (2.17)

whih shares similarities to equations in the studies of beams and ables (Lazer &

MKenna, 1990).

There are two noteworthy aspets of (2.17): First, µ (t, s) and ν (t, s) are not inde-

pendent of eah other and are still related by (2.16); that is, the position of the vortex

pair's enter and the deviations from this enter are oupled, unlike the o-rotating vor-

ties studied in Setion 2.1. Seond, the additional onditions neessary to solve (2.17)

now ome from those whih are imposed on ν (t, s), along with its relation to µ (t, s),
aording to (2.15) and (2.16).

2.2.1. Traveling wave solutions

As in Setion 2.1.1, we onsider vorties that are separated by a onstant distane

D (t) = d suh that we have the small parameter d−1 ≪ 1. Transforming (2.17) into

wave oordinates ξ = s− vt, with v = O (1), we �nd:

d2µ

dξ2
+ v2µ− 4

µ+ d

|µ+ d|2
= δ, (2.18)

where there is only one non-zero integration onstant due to the relationship between

µ (t, s) and ν (t, s), whih imposes the onstraints:

d3µ

dξ3
+ v2

dµ

dξ
− 4

d

dξ

(

µ+ d

|µ+ d|2

)

= 0, (2.19)

v2µ− iv
dν

dξ
= δ, (2.20)

with the latter equation used to determine δ from onditions on µ (ξ) and ν′ (ξ).
We note that (2.18) has solutions up to O

(

d−2
)

that remain �nite for all time and

along the entire arlength of the �lament pair, provided the veloity of the traveling wave

v is suh that v2 > 4d−2
. As a result, we are able to �nd solutions of the osillatory

Poinaré-Lindstedt form, whih, to seond order, are:

X (Ξ1) = c1 cos (vΞ1) + c2 sin (vΞ1) +
δ1
v2

+
1

d

(

c3 cos (vΞ1) + c4 sin (vΞ1) +
4

v2

)

+
1

d2

(

c5 cos (vΞ1) + c6 sin (vΞ1)−
4δ1
v4

)

, (2.21)

and

Y (Ξ2) = c7 cos (vΞ2) + c8 sin (vΞ2) +
δ2
v2

+
1

d
(c9 cos (vΞ2) + c10 sin (vΞ2))

+
1

d2

(

c11 cos (vΞ2) + c12 sin (vΞ2) +
4δ2
v4

)

, (2.22)

where X,Y ∈ R and are related to µ by µ = X + iY , Ξ1 =
(

1 + 2/v2d2
)

(s− vt),

Ξ2 =
(

1− 2/v2d2
)

(s− vt), δ = δ1 + iδ2, and all cn ∈ R (see Setion 6.3.1 for further

details).

We omment on some important aspets of (2.21) and (2.22): For ounter-rotating

vorties, there is no seular vortex repulsion or attration, unlike what was previously
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seen with the o-rotating pair in (2.8). Instead, the deviations of the vortex pair have

a onstant o�set, whih is determined by the speed of the traveling wave solution, as

well as δ, whih is dependent on the onditions imposed on µ (ξ) and ν′ (ξ). However,

we note that by integrating (2.20) that the onstant o�sets seen in µ (ξ) beome seular

in ξ for ν (ξ). Though the deviations of the vortex pair may not grow for all time by

means of attration or repulsion, the enter of the vortex pair will move from its initial

position; that is, the �laments will move together at a onstant veloity through the 3D

�ow. However, the deviations in the y diretion will tend to −∞ and ∞ if v2 < 4ǫ2,
whih suggests that the veloity of the traveling wave serves to stabilize the vortex pair

so that they remain together. Note that (2.21) and (2.22) will not approximate suh

a regime aurately beause of the assumption made at the beginning of Setion 2.2.1;

namely, that v = O (1).
Lastly, the osillations of the �laments is subjet to dispersion that arises from the

vortex interation at O
(

1/d2
)

. Vibrations in the x diretion will inrease in frequeny

by a fator of 2/v2d2, whilst osillations in y will derease by 2/v2d2. This orientation

dependent osillation auses a vortial helix to shear to a planar vibration and bak to a

helix again.

To illustrate some of the phenomena outlined, we solve (2.18) and (2.20) numerially

for d = 10 and v = 1 with the initial onditions µ (ξ = 0) = 0, µ′ (ξ = 0) = v + iv,
ν (ξ = 0) = 0, and ν′ (ξ = 0) = 0. The orresponding vortex �lament shapes are shown

in Fig. 6(a)-(d) for times t = {25, 80, 135, 190} respetively. In this ase, the inlusion of

ν (t, s) auses the vortex pair to travel together in the y diretion as t > 0. This result

is again predited by onsidering the simpler problem of point vorties in a 2D �ow. A

pair that has opposite irulation will generate a veloity �eld that is the same diretion

for both vorties, thus pushing them together. For the ase shown in Fig. 6, ψ1 (t, s) has
positive irulation whilst ψ2 has negative irulation, leading to the respetive vorties

feeling a veloity �eld that is in the positive y diretion.

However, there is an additional e�et that is not predited by the 2D theory; that

is, the osillations of ν (t, s). These vibrations ause the amplitude of the helies to

periodially vary in a manner suh that the individual helies are out of phase with

eah other. We observe that as time evolves, ψ1 (t, s), whih initially has a helial shape

(Fig. 6(a)), has an amplitude that shrinks (Fig. 6(b)), before returning to its original

shape (Fig. 6()). The vortex desribed by ψ2 (t, s) is out of phase in that its amplitude

shrinks when ψ1 (t, s) grows (Fig. 6(d)).
We ompare the asymptoti solutions given by (2.21) and (2.22) to the numerial

solution of (2.18) for the same parameters and initial onditions on µ (ξ) and ν (ξ) (shown
in Fig. 7). We note that the asymptoti solutions provide a very good approximation to

the full vortex interation with a notable exeption: The solution with the untrunated

vortex interation predits that ν (ξ) exhibits slow amplitude modulation when ompared

to the seond-order asymptoti orretion in Fig. 7(). This result suggests that, in a

similar manner as for the o-rotating vorties, we require a slow-sale analysis of the

problem to apture this e�et.

We look for a slow solution of the form:

νslow (ξ) = ǫ exp
(

iǫβθ (ξ)
)

− 4iǫξ

v
, (2.23)

where we have inluded the previously mentioned onstant translation of the vortex pair's

enter from the 4/dv2 term in (2.21).

We substitute (2.23) into (2.20) to obtain µslow (ξ), the use of whih, gives the following
asymptoti solution upon using the result in (2.18) (see Setion 6.3.2 for mathematial
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(a) (b) (c) (d)

Figure 6. The time evolution of traveling wave solutions in ounter-rotating vorties held apart

by a onstant distane d, with ψ1 (t, s) and ψ2 (t, s) being denoted by blue and red respetively.

In partiular, numerial solutions to (2.18) and (2.20) are plotted for v = 2, d = 10, and initial

onditions µ (ξ = 0) = 0, µ′ (ξ = 0) = v + iv, ν (ξ = 0) = 0, and ν′ (ξ = 0) = 0 over s ∈ [20, 40].
Times shown are (a) t = 25, (b) t = 80, () t = 135, and (d) t = 190. (Color online)

details):

θ (ξ) = c13 −
c14
v

cos (vξ) +
c15
v

sin (vξ) +
1

d2

(

16ξ

v3
+ c16 −

c17
v

cos (vξ) +
c18
v

sin (vξ)

)

,

(2.24)

for cn ∈ R.

We ompare (2.24) and (2.23) with the numerial solution of (2.18) and (2.20) for the

same parameters and initial onditions on µ (ξ) and ν (ξ) as previously, but with d =
{10, 7.5} in Fig. 8(a) and (b) respetively. In partiular, the onstants are c13 = −π/2,
and all other cn = 0. Note that as ξ → ∞, the monotially inreasing term in ξ dominates

in (2.24). Furthermore, we have vertially o�-set the slowly-varying solution to show its

�t to the slowly-varying envelope. We observe very good quantitative agreement for

d = 10, however, break down is apparent when d = 7.5 for ξ ≈ 200.

2.2.2. Self-similar solutions

We proeed in the same manner as Setion 2.2.2 by onsidering a distane funtion

D (t) = d
√
t and self-similar solutions of the form µ =

√
tχ (η), with the addition of

ν =
√
tρ (η), for η = s/

√
t. Transforming (2.15) and (2.16) gives:

i

2

(

ρ− η
dρ

dη

)

− d2χ

dη2
+ 4

χ+ d

|χ+ d|2
= 0, (2.25)

i

2

(

χ− η
dχ

dη

)

− d2ρ

dη2
= 0, (2.26)

whih an be ombined by di�erentiating (2.25) one with respet to η, and substituting

(2.26) into this result to obtain:

d3χ

dη3
+
η2

4

dχ

dη
− η

4
χ− 4

d

dη

(

χ+ d

|χ+ d|2

)

= 0, (2.27)

where the additional initial ondition on χ′′ (η) is alulated by the onditions imposed

on χ (η), χ′ (η), and ρ′ (η) in (2.25).

We expand the nonlinear interation term in (2.27) and use the standard perturbation
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Figure 7. Real and imaginary omponents of µ (ξ) and ν (ξ) predited by the seond-order

asymptoti orretion (2.21) and (2.22) (shown in blak) and numerial solutions of (2.18)

and (2.20), with the parameters v = 2 and d = 10 and initial onditions µ (ξ = 0) = 0,
µ′ (ξ = 0) = v + iv, ν (ξ = 0) = 0, and ν′ (ξ = 0) = 0. (Color online)
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Figure 8. Real omponents of ν (ξ) predited by the slowly varying solution (2.24) and (2.23)

(shown in blak) and the numerial solution of (2.18) and (2.20) (shown in red) for v = 2 and

(a) d = 10 and (b) d = 7.5.

expansion for χ (η) =
∑∞

q=0 d
−qχ(q)

to �nd:

d3χ(0)

dη3
+
η2

4

dχ(0)

dη
− η

4

dχ(0)

dη
+O

(

1

d2

)

= 0, (2.28)
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whih gives the �rst order solution:

µ (t, s) = sc1 − c2

[

√
t exp

(

− is2

4t

)

+
(−1)

1

4

√
π

2
serf

(

(−1)
1

4 s

2
√
t

)]

+ c3

[

i
√
t exp

(

is2

4t

)

− (−1)
1

4

√
π

2
serf

(

(−1)
3

4 s

2
√
t

)]

+O

(

1

d2

)

. (2.29)

The absene of the O
(

d−1
)

vortex interation term results in no repulsion of the vortex

pair, as seen for the o-rotating pair. The interations between the pair is O
(

d−2
)

, so

that the shape of the �laments in (2.29) is wholly determined by self-indution. The

orresponding shape is similar to the o-rotating ase in (2.12); that is, the vorties form

onial spirals of inreasing amplitude and wavelength. We show the vortex �lament

shapes obtained by numerially solving (2.25) and (2.26) for boundary onditions on

µ (t, s) satisfying (2.13) and (2.14) with ρ (η = 100) = ρ′ (η = 100) = 0 and d = 20 in

Fig. 9 for times t = {0.05, 0.5, 1, 2}. We observe that, as with the o-rotating ase, the

helies rotate in the opposite diretion to the vortex's respetive irulation, with ψ1 (t, s)
and ψ2 (t, s) having irulations Γ1 > 0 and Γ2 < 0. The helies are now re�etions of

eah other aross the y axis.

We ompare the real and imaginary omponents of the asymptoti solution (2.29)

with the numerial solutions for the same onditions in Fig. 10. In this ase, the bound-

ary ondition neessary to determine the third ondition on χ (η) is χ′′ (η = 100) =

4d−1
(

1 + d−1 (1− i)
)−1

by (2.25). Expanding the ondition for d−1 ≪ 1, gives χ′′ (η = 100) =

O
(

d−2
)

, whih we impose to �nd the zeroth order solution χ(0) (η) and subsequently �nd

the orresponding ρ(0) (η) from (2.26). We note that the asymptoti solution shows good

agreement to the numerial solutions, but breaks down as longer time sales are onsid-

ered.

3. Intertwining Vortex Pairs

We now onsider the ase whereby the distane funtion D (t) vanishes. The vorties

now intertwine and revolve around eah other, with ν (t, s) desribing the enter of rev-

olution and µ (t, s) oiniding with the deviations from this enter (see Fig. 11). The

equations desribing the time-evolution of the vortex pair are now given by:

i
∂ν

∂t
+

1

2
(1 + Π)

∂2ν

∂s2
− 1

2
(1−Π)

∂2µ

∂s2
+ 2 (1−Π)

µ

|µ|2
= 0, (3.1)

i
∂µ

∂t
− 1

2
(1−Π)

∂2ν

∂s2
+

1

2
(1 + Π)

∂2µ

∂s2
+ 2 (1 + Π)

µ

|µ|2
= 0. (3.2)

3.1. Co-rotating vorties

We again study pairs whose vorties have the same irulation Π = 1. Equations (3.1)

and (3.2) deouple in a similar manner as in Setion 2.1:

i
∂ν

∂t
+
∂2ν

∂s2
= 0, (3.3)

i
∂µ

∂t
+
∂2µ

∂s2
+

4µ

|µ|2
= 0, (3.4)
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(a) (b)

(c) (d)

Figure 9. The time-evolution of self-similarity solutions in ounter-rotating vorties held apart

by a distane funtion D (t) = d
√
t, with ψ1 (t, s) and ψ2 (t, s) being denoted by blue and red

respetively. In partiular, numerial solutions of (2.25) and (2.26), with onditions satisfying

(2.13), (2.14), and ρ (η = 100) = ρ′ (η = 100) = 0 have been plotted for d = 20 over s ∈ [10, 20].
Times shown are: (a) t = 0.05, (b) t = 0.5, () t = 1, and (d) t = 2. (Color online)
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Figure 10. Real and imaginary omponents of χ (η) and ρ (η) obtained by the asymptoti

solution (2.26) and (2.27) (shown in blak) and the numerial solution of (2.25) and (2.26)

(shown in red). The initial onditions are χ (η = 100) = 1+ i, χ′ (η = 100) = 1, ρ (η = 100) = 0,
and ρ′ (η = 100) = 0, with d = 20. (Color online)
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Figure 11. Intertwining vortex oordinates µ (t, s) and ν (t, s) and how they relate to

�laments ψ1 (t, s) and ψ2 (t, s) in the ase of no separation funtion (i.e. D (t) = 0).

so that, for the following analysis, we will only onsider the nonlinear Shrödinger-type

equation given by (3.4).

We suppose that µ (t, s) has an amplitude and phase ansatz given by

µ (t, s) = A (t, s) exp (iθ (t, s)) , (3.5)

with A (t, s) ∈ R measuring the separation of the vortex pair and θ (t, s) ∈ R measuring

the orientation of separation from the positive x-axis.
Upon separating (3.4) into real and imaginary omponents using (3.5), we �nd:

−A∂θ
∂t

+
∂2A

∂s2
−A

(

∂θ

∂s

)2

+
4

A
= 0, (3.6)

∂A

∂t
+A

∂2θ

∂s2
+ 2

∂A

∂s

∂θ

∂s
= 0. (3.7)

By multiplying (3.7) by A (t, s), we note that it an be written as a onservation law

1

2

∂

∂t

(

A2
)

+
∂

∂s

(

A2 ∂θ

∂s

)

= 0, (3.8)

whih is a statement on the evolution of the vortex pair's separation squared A2
and

how it is onneted to the gradient of that same separation together with the pair's

twist ∂θ/∂s, along the �lament arlength s. For vorties whih are straight under some

orientation, ∂θ/∂s = 0 and the separation between vorties at a partiular s will not

hange for all time. However, if the pair are highly oiled, suh that ∂θ/∂s → ∞, then

slight deviations in A (t, s) along the �laments will result in very quik hanges in the

pair's separation.

3.1.1. Plane wave solutions

We onsider rotating helix solutions to (3.4) of the form:

µ (t, s) = A0 exp (i (ks− ωt)) , (3.9)

where A0 is the onstant amplitude of separation, k is the wavenumber related to the

twist of the helix, ω is the rotational veloity, and A0, k, ω ∈ R.
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Substituting (3.9) into (3.4) gives the dispersion relation:

ω = k2 − 4

A0
, (3.10)

a result whih has previously been found by Klein et al. (1995). However, (3.10) implies

that the vortex pair an rotate lokwise, anti-lokwise, or not at all depending on the

twist of the helial solution and its amplitude, regardless of the individual irulation of

the vorties.

3.1.2. Traveling wave solutions

We introdue the same wave oordinate ξ = s−vt seen in the aforementioned analysis,

for v being a onstant. Transforming relations (3.6) and (3.8), we �nd:

d2A

dξ2
+ vA

dθ

dξ
−A

(

dθ

dξ

)2

+
4

A
= 0, (3.11)

d

dξ

(

A2 dθ

dξ

)

− v

2

d

dξ

(

A2
)

= 0. (3.12)

Solutions to these equations will e�etively generalise the plane wave or helix solutions

of Klein et al. (1995) mentioned above, as those solutions orrespond to the ase where

A is onstant.

We note that (3.11) and (3.12) allow the exat impliit solution:

ξ − ξ0 = ±
ˆ

dA
√

2 (E − V (A))
, (3.13)

where ξ0, E ∈ R are integration onstants, and V (A) is a Hamiltonian potential given

by:

V (A) =
v2

8
A2 + 4 lnA+

γ2

2A2
, (3.14)

for γ ∈ R being another integration onstant that is a measure of oupling between the

vortex pair's separation and hanges in its orientation (see Setion 7.1).

We omment on some important aspets of (3.13): The potential funtion implies that

all traveling wave solutions will be attrated to A→ 0+ as ξ → ±∞ if γ = 0, resulting in

the ollapse of the vortex pair as t→ ±∞. Coupling between the amplitude of separation

and the angular veloity of the pair is neessary to sustain traveling wave solutions for

o-rotating pairs. When γ 6= 0, (3.8) predits that A will have periodi trajetories

suh that A > 0 for all time. However, for γ ≪ 1, there are three di�erent asymptoti

regimes in (3.11) and (3.12) (for full details of the other regimes see Setion 7.1), the

most noteworthy of whih is A (ξ) = O (γn) for n > 1. In this ase, there exists an initial

layer of width γ2n−1
so that A′′ ∼ 1/A3

and the leading-order behavior is:

A

(

ξ

γ2n−1

)

∼ ±1√
c1

√

1 + c21c
2
2 + 2c21c2

ξ

γ2n−1
+ c21

ξ2

γ4n−2
, (3.15)

θ

(

ξ

γ2n−1

)

∼ γ tan−1

(

ξ

γ2n−1
c1 + c1c2

)

+
v

2

ξ

γ2n−1
+ θ0, (3.16)

for c1, c2, θ0 ∈ R.

We illustrate the vortex pair by numerially solving (3.11) and (3.12) and ompare

these results with those from the leading-order behavior and the impliit solution (3.13).

In partiular, we onsider the onditions A (ξ = 0) = 1, A′ (ξ = 0) = 0, and θ (ξ = 0) = 0,



Dynamis of nearly parallel interating vortex �laments 19

0.2 0.4 0.6 0.8 1.0

-30

-25

-20

-15

-10

-5

5

V

A

(a)

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

A

»

(b)

2 4 6 8 10

- 1.0

- 0.5

0.5

1.0

exp(iµ)

»

(c)

Figure 12. (a) Potential of the separation equation as de�ned in (3.14), and numerial solutions

of (b) A (ξ) and () the real and imaginary parts of the omplex exponential exp (iθ (ξ)) (shown
in blak and red respetively). The numerial solutions were obtained by solving (7.1) and (7.2)

for v = 1 and γ = 0.001, with initial onditions A (ξ = 0) = 1, A′ (ξ = 0) = 0, and θ (ξ = 0) = 0.
The trajetories of A (ξ) are restrited in the potential well suh that they never exeed the

potential v2/8 + γ2/2, shown by the dashed line, and osillate with period T ≈ 1.226 by (3.13).

(Color online)

with γ = 0.001 and v = 1. For these parameters, the trajetories of A are suh that they

never exeed the potential given by v2/8 + γ2/2, aording to (3.14), onstraining the

values of A to the range A ∈ [1.17× 10−5, 1] and, furthermore, the period of osillation

in A (ξ) is T ≈ 1.226 by solving (3.13). We plot the potential (3.14), orresponding

A (ξ), and the real and imaginary omponents of exp (iθ (ξ)) in Fig. 12(a), (b), and ()

respetively as well as the shape of the vortex pair at t = {0, 2, 4, 6} with ν (t, s) = 0
(shown in Fig. 13(a)-(d)).

From Fig. 12(b), we observe that the period of osillation is indeed T ≈ 1.226,
and furthermore note that the numerial solutions show similarities to (3.15) for small

A (ξ); in partiular, the sharp usp that was predited in the regime A = O (γn) for

n > 1. As the vorties approah eah other, their attration ours on a very fast

time-sale, for γ ≪ 1, until the pair reahes their minimum separation whereby they

repel. The orientation of the vorties at this moment hanges almost instantaneously, as

γ tan−1
(

c1c2 + c1ξ/γ
2n−1

)

dominates in (3.16). As the vorties repel and A → O (1),
the time-sale slows down and the orientation of the pair evolves aording to the vξ/2
term, whih now plays a role in (7.6). The vorties reah their maximum separation

before attrating eah other again and repeating the yle.
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(a) (b)

(c) (d)

Figure 13. Time evolution of traveling wave solutions in intertwining o-rotating vorties, with

ψ1 (t, s) and ψ2 (t, s) shown in blue and red respetively. Numerial solutions of (7.1) and (7.2),

with ν (ξ) = 0, are plotted over s ∈ [0, 5]. In partiular, the initial onditions are A (ξ = 0) = 1,
A′ (ξ = 0) = 0, and θ (ξ = 0) = 0, with parameters v = 1 and γ = 0.001. Times shown are: (a)

t = 0, (b) t = 2, () t = 4, and (d) t = 8. (Color online)

3.1.3. Purely rotating wave solutions

We study solutions of the rotating-wave ansatz:

A (t, s) = A (s) , (3.17)

θ (t, s) = −ωt, (3.18)

where ω is the onstant angular veloity of the rotating wave. The resulting solutions

are eah e�etively planar �laments, as they maintain their spatial struture while the

only motion is pure rotation; see Van Gorder (2015b) and referenes therein.

Substituting this ansatz into (3.6) gives:

d2A

ds2
+ ωA+

4

A
= 0, (3.19)

whih, following the treatment of Setion 7.1, has the exat impliit solution:

s− s0 =

ˆ

dA
√

2 (E − V (A))
, (3.20)

where s0, E ∈ R are integration onstants and the Hamiltonian potential is given by:

V (A) =
ωA2

2
+ 4 lnA. (3.21)

We note that (3.21) is not bounded from below, suggesting that, for all rotating wave

solutions with ω > 0, A→ 0+ as s→ ±∞; the vortex pair will ollapse if their respetive

irulations are in the same diretion as the pair rotates. If ω < 0, then another possibility
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(a) (b)

(c) (d)

Figure 14. Time evolution of planar rotating �lament solutions in intertwining o-rotating

vorties, with ψ1 (t, s) and ψ2 (t, s) shown in blue and red respetively. Numerial solutions of

(3.19), with ν (t, s) = 0, are plotted over s ∈ [0, 9]. In partiular, the initial onditions and

parameters are A (ξ = 0) = 1, A′ (ξ = 0) = 5, and ω = 1 ((a) and (b)) and A (ξ = 0) = 1,
A′ (ξ = 0) = 1.8, and ω = −1 (() and (d)), both of whih are plotted at times t = {0, 2}.
(Color online)

arises, namely, A→ ∞ as s→ ∞, as the potential is not bound from above. If we onsider

a vortex pair with irulations in the opposite diretion, then rotating pairs with ω < 0
will ollapse or, if ω > 0, may also repel without bound.

To illustrate the aforementioned desription of the vortex shapes, we plot the numerial

solution of (3.19) with ν (t, s) = 0 for the ase of ω > 0 and ω < 0. In partiular, we

onsider ω = 1 for the initial onditions A (s = 0) = 1 and A (s = 0) = 5 (shown in

Fig. 14(a) and (b)) and ω = −1 for onditions A (s = 0) = 1 and A (s = 0) = 1.8,
both at times t = {0, 2}. We note that, as predited, the solutions for ω > 0 exhibit

the eventual ollapse of the pair for inreasing s, whilst solutions for ω < 0 show the

unbounded growth of the pair for inreasing s.
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3.1.4. Self-similar solutions

We transform (3.4) into the variables of µ (t, s) = sχ (η), with η = s/
√
t:

η2
d2χ

dη2
+

(

2η − iη3

2

)

dχ

dη
+

4χ

|χ|2
= 0, (3.22)

and use the amplitude-phase ansatz for χ (η) to simplify the vortex interation term:

χ (η) = A (η) eiθ(η), (3.23)

whih, substituting into (3.22) and separating real and imaginary omponents, gives:

η2
d2A

dη2
− η2A

(

dθ

dη

)2

+ 2η
dA

dη
+
η3

2
A
dθ

dη
+

4

A
= 0, (3.24)

η2A
d2θ

dη2
+ 2η2

dA

dη

dθ

dη
+ 2ηA

dθ

dη
− η3

2

dA

dη
= 0. (3.25)

By multiplying (3.25) through by A (η) and dividing by η2, we obtain:

d

dη

(

A2 dθ

dη

)

+
2

η
A2 dθ

dη
− η

4

d

dη

(

A2
)

= 0, (3.26)

whih is a linear equation in A2θ′ (η) that an be integrated to give:

dθ

dη
=

γ

η2A2
+

1

η2A2

ˆ

η3

4

d

dη

(

A2
)

dη, (3.27)

where γ ∈ R is an integration onstant. Note that, ompared to the traveling wave

solutions in Setion 3.1.2, γ does not quantify the degree of oupling between the hanging

orientation of the vortex separation and the amplitude of separation, beause if γ = 0,
there is still dependene of θ′ (η) on A (η).
We numerially solve (3.24) and (3.27) for the boundary onditions A (η = 0.001) = 5,

A′ (η = 0.001) = 1, θ (η = 0.001) = 0, θ′ (η = 0.001) = 0 and plot A (η) and exp (iθ (η)) in
Fig. 15(a) and (b) respetively, and the orresponding vortex �lament shapes in Fig. 16

for ν (t, s) = 0 at times t = {10, 50, 100, 500, 1000, 5000}.
We observe a number of interesting aspets: First, given the onditions on A (η) and

θ (η), we note that γ 6= 0, whih implies that when A (η) → 0+, then θ′ (η) → ±∞.

In a similar manner as in Setion 3.1.2 for the ase of γ 6= 0, when the vortex pair

ome into lose proximity, the orientation of separation hanges rapidly, as we note

in Fig. 15(a) and (b). Furthermore, as η → 0+, orresponding to time t → ∞, the

amplitude and the wavelength of the vortex separation beomes larger and the hanges

in orientation beome slower. We note that these results follow diretly from the self-

similar nature of the vortex pair whih exhibit an initial shape (Fig. 16(a)) that beomes

inreasingly zoomed in (Fig. 16(b)-(f)) for inreasing times. As t → ∞, the separation

of the vorties themselves will grow to in�nity, and their orientation will be planar along

a single diretion.

3.2. Counter-rotating vorties

We now study vortex pairs with opposite irulation, so that Π = −1. In this ase, (3.1)

and (3.2) give:

i
∂ν

∂t
− ∂2µ

∂s2
+

4µ

|µ|2
= 0, (3.28)

i
∂µ

∂t
− ∂2ν

∂s2
= 0. (3.29)
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Figure 15. Numerial solutions of (a) A (η) and (b) real and imaginary parts of the om-

plex exponential exp (iθ (η)) (shown in blak and red respetively), obtained by solving (3.24)

and (3.27) with initial onditions A (η = 0.001) = 5, A′ (η = 0.001) = 1, θ (η = 0.001) = 0,
θ′ (η = 0.001) = 0. (Color online)

(a) (b)

(c) (d)

(e) (f )

Figure 16. Time evolution of self�similar solutions in intertwining o-rotating vorties, with

ψ1 (t, s) and ψ2 (t, s) shown in blue and red respetively. Numerial solutions of (3.24) and

(3.27), with ν (t, s) = 0, are plotted over s ∈ [0.5, 20]. In partiular, the initial onditions are

A (η = 0.001) = 5, A′ (η = 0.001) = 1, θ (η = 0.001) = 0, and θ′ (η = 0.001) = 0. Times shown

are: (a) t = 10, (b) t = 50, () t = 100, (d) t = 500, (e) t = 1000, and (f) t = 5000. (Color

online)
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As in Setion 2.2, we an rewrite (3.28) and (3.29) as a single partial di�erential

equation for µ (t, s) by supposing the same di�erentiability onstraints on ψ1 (t, s) and

ψ2 (t, s):

∂2µ

∂t2
+
∂4µ

∂s4
− 4

∂2

∂s2

(

µ

|µ|2

)

= 0, (3.30)

and subsequently alulate ν (t, s) by solving (3.29).

3.2.1. Plane wave solutions

We onsider solutions to (3.30) of the form given in (3.9). The vortex enter ν (t, s) is
not arbitrary in this ase, and is expliitly given by solving (3.29):

ν (t, s) = − ω

k2
A0exp (i (ks− ωt)) + c1s+ c2, (3.31)

for c1, c2 ∈ C and where A0, k, and ω have the same meaning as in Setion 3.1.1. The

enter of the pair traes out a helix with the same wavenumber and rotates at the same

angular veloity as the separation between the vortex pair, up to an arbitrary orientation

determined by c1 and translation de�ned by c2.

Substituting (3.9) into (3.30) gives the dispersion relation:

ω = ±k
√

k2 +
4

A2
0

. (3.32)

The angular veloity is again determined by the wavenumber k and the amplitude

of vortex separation A0. Similar to Setion 3.1.1, ω an be positive, negative, or zero,

however, for all nonzero values, the angular veloity an be either lokwise or anti-

lokwise rotating, regardless of the parameters imposed on the system. To illustrate,

we plot the �lament shapes of the vortex pair in Fig. 17 for A0 = 1 with (a) and (b)

k = 1 with ω = −
√
5, and () and (d) k = 1 with ω =

√
5. The positive root of (3.32)

was taken in both ases.

3.2.2. Traveling wave solutions

We transform (3.30) into wave oordinate ξ = s− vt and integrate twie with respet

to ξ to obtain:

d2µ

dξ2
+ v2µ− 4µ

|µ|2
= δ, (3.33)

for δ ∈ C, whih has onstraints:

d3µ

dξ3
+ v2

dµ

dξ
− d

dξ

(

4µ

|µ|2

)

= 0, (3.34)

v2µ− iv
dν

dξ
= δ. (3.35)

As before, we determine δ by imposing onditions on µ (ξ) and ν′ (ξ). However, for

the forthoming analysis, we only onsider ases whereby δ = 0.

We study solutions to (3.33) of the amplitude-phase ansatz (3.5) and �nd, upon sepa-
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(a) (b)

(c) (d)

Figure 17. Time evolution of plane wave solutions in intertwining ounter-rotating vorties,

with ψ1 (t, s) and ψ2 (t, s) shown in blue and red respetively. In partiular, (3.9) and (3.31),

with the dispersion relation determined by (3.32), is plotted over s ∈ [−5, 5]. The parameters

are A0 = 1 and: (a) and (b) k = −1 with ω = −
√
5, and () and (d) k = 1 with ω =

√
5. Times

shown are: (a) and () t = 0 and (b) and (d) t = 0.5. (Color online)

rating real and imaginary omponents:

d2A

dξ2
+ v2A−A

(

dθ

dξ

)2

− 4

A
= 0, (3.36)

d

dξ

(

A2 dθ

dξ

)

= 0. (3.37)

Solutions to these equations naturally generalise the plane wave helix solutions of the

previous subsetion, as those solutions orrespond to onstant A.
We note that (3.36) and (3.37) have an exat solution given by (3.13) with a potential

funtion given by:

V (A) =
v2A2

2
− 4 ln (A) +

γ2

2A2
, (3.38)

where γ ∈ R is an integration onstant that has the same physial meaning as in Se-

tion 3.1.2, measuring the oupling between the vortex pair's separation and its hange

in orientation.

We note some important di�erenes ompared to the o-rotating ase: First, if γ = 0,
then the orientation of the ounter-rotating pair does not hange and the osillation

remains ompletely planar for all time. For example, vorties whih only vibrate in the x



26 J. Kwieinski and R. A. Van Gorder

axis will do so for all time. Furthermore, the pair no longer ollapses as t→ ∞, aording

to (3.38), as the lower bound of the potential is determined by −4/A in (7.8). For any

value of v or γ, the ounter-rotating vorties will not meet, however, if the veloity of

the traveling wave solution v = 0, the pair will repel as A → ∞ for ξ → ±∞. If v 6= 0,
then periodi solutions in A are guaranteed for all values of γ. This aspet leads to the

ounter-rotating vorties having a di�erent asymptoti struture that no longer depends

on γ, unlike what was previously seen for the o-rotating vorties (see Setion 7.3 for

further details).

We illustrate the potential (3.38) and numerially solve (7.7) and (7.8) for A (ξ) and

θ (ξ) with the onditions A (ξ = 0) = 2, A′ (ξ = 0) = 0, and θ (ξ = 0) = 0, for parameters

v = 2 and γ = 1 (shown in Fig. 18(a), (b), and () respetively). In this ase, the

trajetories of A are restrited suh that they always remain within the range A ∈
[0.494376, 2] for all t and s, with period given by T ≈ 1.925. We note that both Fig. 18(b)

and () show that the separation of the vortex pair is periodi, whih, by (3.35), suggests

that the position of the pair's enter will periodially osillate too.

We numerially solve (3.35) to obtain ν (ξ), imposing the ondition ν (ξ = 0) = 0, and
plot the assoiated �lament shapes at times t = {1, 1.5, 2, 2.5} to obtain Fig. 19(a)-(d)

respetively. Furthermore, we show the shape the vortex pair traes on the x− y plane,

for s = 0 during the time t ∈ [0, 25], in Fig. 20. We observe that ψ2 (t, s) osillates in

a trefoil knot-like shape whilst ψ1 (t, s) traes out a helial shape that is deformed suh

that its urvature minima oinide with the maximal tips of the trefoil shape; a result

that arises due to the oupling of µ (t, s) and ν (t, s), whih auses the enter of the vortex

pair to form the periodially deformed helial shape for all time and �lament arlength.

3.2.3. Purely rotating wave solutions

We study solutions of the rotating-wave ansatz of (3.5), (3.17), and (3.18) and apply

it to (3.30) to obtain

d4A

ds4
− ω2A− d2

ds2

(

4

A

)

= 0, (3.39)

where the general solution to ν (t, s) is given by a ombination (3.28) and (3.29) as

ν (t, s) =
1

ω

(

d2A

ds2
− 4

A

)

exp (−iωt) + c1s+ c2, (3.40)

for c1, c2 ∈ C. Again, the solutions we obtain will orrespond to planar vortex �laments

whih maintain their spatial form as the only motion is purely rotational.

We observe that, with the harateristi oupling between the deviations and the

enter of the ounter-rotating vorties, the pair not only rotate around eah other, but

also around a enter point in the �uid, determined by the onditions on ν (t, s).

We numerially solve (3.39) and (3.40) with boundary onditions given by A (s = 0) =
2, A (s = 10) = 2, A′ (s = 0) = 0, A′ (s = 10) = 0, and ν (t, 0) = ∂ν (t, 0) /∂s = 0, with
ω = 0.5 and c1 = c2 = 0. We plot µ (t, s) and ν (t, s) at t = 0 in Fig. 21(a) and (b), and

the orresponding �lament shapes over s ∈ [0, 10] at times t = {2.5, 7.5} in Fig. 21()

and (d). We observe that, for the boundary onditions hosen, the separation of the

vortex pair is osillatory along the ar-length (Fig. 21(a)), a solution not possible for the

o-rotating ase seen in Setion 3.1.3. By (3.40), ν (t, s) is also bounded and non-zero

(Fig. 21(b)). The �lament shapes are therefore asymmetrial when ompared to the

symmetrial o-rotating vorties (Fig. 21); a diret result of the oupling of µ (t, s) and
ν (t, s) in ounter-rotating vorties.
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Figure 18. (a) Potential of the separation equation as de�ned in (3.38), and numerial solutions

of (b) A (ξ), () real and imaginary parts of the omplex exponential exp (iθ (ξ)) (shown in blak

and red respetively) obtained by solving (3.37) and (3.36) for v = 2, γ = 1, and δ = 0 with

initial onditions A (ξ = 0) = 2, A′ (ξ = 0) = 0, and θ (ξ = 0) = 0. The trajetories of A are

restrited in the potential well suh that they never exeed the potential 2v2/8− 4 ln (2)+ γ2/8,
shown by the dashed line, and osillate with period T ≈ 1.925 aording to (3.13). (Color

online)

3.2.4. Self-similar solutions

We transform (3.28) and (3.29) into the variables µ (t, s) = sχ (η) and ν (t, s) = sρ (η),
for η = s/

√
t, to �nd:

− iη3

2

dρ

dη
− η2

d2χ

dη2
− 2η

dχ

dη
+

4χ

|χ|2
= 0, (3.41)

− iη3

2

dχ

dη
− d

dη

(

η2
dρ

dη

)

= 0, (3.42)

and a single equation for χ (η) upon substituting (3.41) into (3.42):

η
d3χ

dη3
+ 3

d2χ

dη2
+
η3

4

dχ

dη
− 4

η

d

dη

(

χ

|χ|2

)

+
4

η2

(

χ

|χ|2

)

= 0, (3.43)

with the additional initial ondition χ′′ (η) obtained from (3.41) using onditions on χ (η),
χ′ (η), and ρ′ (η).

We study solutions to χ (η) of the amplitude-phase ansatz in (3.23) and �nd, upon



28 J. Kwieinski and R. A. Van Gorder

(a) (b)

(c) (d)

Figure 19. Time evolution of traveling wave solutions in intertwining ounter-rotating vor-

ties, with ψ1 (t, s) and ψ2 (t, s) shown in blue and red respetively. Numerial solutions of

(3.35), (3.37), and (3.36) are plotted over s ∈ [0, 10]. In partiular, the initial onditions are

A (ξ = 0) = 2, A′ (ξ = 0) = 0, θ (ξ = 0) = 0, and ν (ξ = 0) = 0 with parameters v = 2, γ = 1,
and δ = 0. Times shown are: (a) t = 0, (b) t = 2, () t = 4, and (d) t = 8. (Color online)
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Figure 20. The shape that the �lament pair in Fig. 19 traes out in the x − y plane during

the time t ∈ [0, 25] at s = 0, with ψ1 (t, s) and ψ2 (t, s) orresponding to blak and red lines

respetively. (Color online)
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Figure 21. Numerial solutions of (3.39) and (3.40) at t = 0 (shown in (a) and (b))

for the onditions A (s = 0) = 2, A (s = 10) = 2, A′ (s = 0) = 0, A′ (s = 10) = 0, and

ν (t, 0) = ∂ν (t, 0) /∂s = 0, with ω = 0.5 and c1 = c2 = 0. The orresponding �lament shapes

of ψ1 (t, s) (shown in blue) and ψ2 (t, s) (shown in red) are plotted over s ∈ [0, 10] for times ()

t = 2.5 and (d) t = 7.5. The solutions learly take on a planar �lament struture. (Color online)

substitution into (3.43) and separating real and imaginary parts:

η
d3A

dη3
− 3ηA

dθ

dη

d2θ

dη2
− 3η

dA

dη

(

dθ

dη

)2

+ 3
d2A

dη2
− 3A

(

dθ

dη

)2

+
η3

4

dA

dη
+

4

ηA2

dA

dη
+

4

η2A
= 0,

(3.44)

ηA
d3θ

dη3
+ 3η

dA

dη

d2θ

dη2
+ 3η

dθ

dη

d2A

dη2
− ηA

(

dθ

dη

)3

+ 6
dA

dη

dθ

dη
+ 3A

d2θ

dη2
+
η3A

4

dθ

dη
− 4η

A

dθ

dη
= 0.

(3.45)

To obtain physial intuition into the types of solutions predited by (3.43), we nu-

merially solve (3.44) and (3.45) with the onditions A (η = 3) = 1, A′ (η = 3) = 0,
A′′ (η = 3) = 0, θ (η = 3) = 0, θ′ (η = 3) = 1, and θ′′ (η = 1) = −5, and plot the real and

imaginary parts of χ (η) and ρ (η), using the ondition ρ (η = 3) = 0, in Fig. 22(a), (b),

and (), (d) respetively. Furthermore, we illustrate the orresponding �lament shapes

over the arlength s ∈ [5, 15] at times t = {0.1, 1, 2, 2.5} in Fig. 23. We observe some

parallels to self-similar solutions in other vortex on�gurations (i.e. Setion 2.1.2, 2.2.2,

and 3.1.4); namely, the progression of the vortex pair's shape from a straight �lament

in some orientation to osillatory solutions with inreasing amplitude and wavelength as

t→ ∞. However, in ontrast with the self-similar solutions in Setion 3.1.4, the vorties
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Figure 22. Real and imaginary omponents of χ (η) and ρ (η) alulated by the numerial

solution of (3.44), (3.45), and (3.42). The initial onditions are A (η = 3) = 1, A′ (η = 3) = 0,
A′′ (η = 3) = 0, θ (η = 3) = 0, θ′ (η = 3) = 1, θ′′ (η = 3) = −5, and ρ (η = 3) = 0.

are never in very lose proximity, so that the orientation of the pair does not rapidly

hange aording to the dependene of 1/A in (3.44). The vortex pair remains separated

due to the onstant o�set in ρ (η) in Fig. 22() and (d), but as t→ ∞, the enter of the

vortex pair moves suh that the �laments begin to intertwine and rotate around eah

other (Fig. 23(d)).

4. Co-Rotating Vortex Hierarhy

We generalize the intertwining vortex oordinates introdued in Setion 3 to study

N o-rotating vorties around a entral �lament, all of whih have the same size α and

irulation Γ. We denote the entral �lament by ψ0 (t, s) ∈ C and the satellite vorties

that revolve around this entral �lament as ψn (t, s) ∈ C for n ∈ {1, ..., N}. We transform

ψ0 (t, s) and ψn (t, s) into oordinates desribing the enter of the vortex hierarhy and

the deviations from this enter by de�ning new variables ν (t, s) and µn (t, s), whih

satisfy:

ν =

N
∑

j=0

ψj , (4.1)

µn = ψ0 − ψn, (4.2)
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(a) (b)

(c) (d)

Figure 23. Time evolution of self-similar solutions in intertwining ounter-rotating vor-

ties, with ψ1 (t, s) and ψ2 (t, s) shown in blue and red respetively. Numerial solutions of

(3.44), (3.45), and (3.42) are plotted over s ∈ [5, 15] with the initial onditions A (η = 3) = 1,
A′ (η = 3) = 0, A′′ (η = 3) = 0, θ (η = 3) = 0, θ′ (η = 3) = 1, θ′′ (η = 3) = −5, and ρ (η = 3) = 0.
Times shown are: (a) t = 0.1, (b) t = 1, () t = 2, and (d) t = 2.5. (Color online)

so that:

ψ0 =
1

N + 1



ν +

N
∑

j=1

µj



 , (4.3)

ψn =
1

N + 1



ν −Nµn +
N
∑

j=1

µj



 . (4.4)
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Using (4.3) and (4.4), we obtain the following system of N + 1 equations from (1.1):

i
∂ν

∂τ
+ αΓ

∂2ν

∂S2
= 0, (4.5)

i
∂µn

∂t
+ αΓ

∂2µn

∂s2
+

4Γµn

|µn|2
+ 2Γ

∑

j 6=n

[

µj

|µj |2
+

µn − µj

|µn − µj |2

]

= 0. (4.6)

The third term in (4.6) desribes the e�et of interations between the satellite vortex

ψn (t, s) and the entral �lament ψ0 (t, s). However there are additional vortex intera-

tions whih play a role in the shaping of an individual �lament; namely, those ourring

between the entral �lament and the other satellites (i.e. fourth term) as well as the

interations between the satellite vorties themselves (i.e. �fth term).

4.1. Plane wave solutions

To determine the role of these other interations, we onsider plane wave solutions to

(4.6) of the form:

µn = Bnexp (i (kns− ωnt+ θn)) , (4.7)

where Bn is the amplitude of the separation between the entral and satellite �laments,

kn is the wavenumber of osillation, ωn is its angular veloity, and θn is a onstant phase

o�-set speifying the initial angular separation from the positive x axis, all of whih are

onstant and real for n ∈ {1, ..., N}.
For the ase of Bn = B, kn = k, ωn = ω, and the vorties being evenly distributed

around the enter, we obtain the following dispersion relation (see Setion 8):

ω = αΓk2 − Γ

B2
(N + 1) , (4.8)

for N ≥ 2.

Setting α = Γ = 1, we note that the angular veloity of the vortex on�guration

depends on the wavenumber k, the distane of the satellite vorties from the entral

�lament B, and the number of satellite vorties N . Even though we have not spei�ed

the diretion in whih individual vorties rotate (i.e. we have only set their irulations

relative to one another and we have not resaled time), the vorties an rotate lokwise,

anti-lokwise, or not at all, depending only on the aforementioned parameters. The

inlusion of more satellite vorties will lead to the system rotating in a lokwise diretion

with inreasing angular veloity.

It is interesting to note that (4.8) has expliit dependene on the vortex ore size,

whih is absent from the dispersion relations found in Okulov (2004) and Boersma &

Wood (1999), who onsider in�nitesimally thin vortex �laments. However, their solutions

would be valid for larger values of wavenumber k

We determine the e�et of perturbations to the plane wave solutions for the simplest

ase of N = 2. In partiular, we use the ansatz:

µ1 (t, s) = B exp (i (ks− ωt)) + ǫλ1 (t, s) , (4.9)

µ2 (t, s) = B exp (i (ks− ωt+ π)) + ǫλ2 (t, s) , (4.10)

for λ1, λ2 ∈ C and ǫ≪ 1.

Substituting (4.9) and (4.10) into (4.6), we �nd that the O
(

ǫ0
)

terms give the disper-
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sion relation (4.8) for N = 2, whilst to O
(

ǫ1
)

:

i
∂λ1
∂t

+ αΓ
∂2λ1
∂s1

− Γ

2B2
(9λ∗1 + 3λ∗2) exp (2i (ks− ωt)) = 0, (4.11)

i
∂λ2
∂t

+ αΓ
∂2λ2
∂s1

− Γ

2B2
(9λ∗2 + 3λ∗1) exp (2i (ks− ωt)) = 0. (4.12)

We illustrate that suh vortex hierarhies are unstable to perturbations. To do so,

we numerially solve (4.6) for ν (t, s) = 0 over s ∈ [−5, 5] for two satellite vorties or-

biting as plane-waves around a straight entral �lament. We impose initial onditions

ψ0 (t = 0, s) = 0, ψ1 (t = 0, s) = exp (i (s/2 + 0.999π)), and ψ2 (t = 0, s) = exp (i (s/2 + 2π)),
so that the satellite vorties are evenly distributed around the enter, exept for ψ1 (t, s),
whih has a 0.001 perturbation in angular displaement. To de�ne the boundary on-

ditions, we introdue the position vetor of the �lament ψj (t, s) in the x − y plane as

rj = (xj , yj), and demand rj · (∂rj/∂s) = 0 and |∂rj/∂s|2 = B2k2 = 1/4, at s = {−5, 5}
for j ∈ {1, 2}. These onditions orrespond to the satellite vorties being able to freely

rotate on a irle, with the irle radius satisfying the seond ondition for all time. The

entral �lament ψ0 (t, s) is pinned so that ψ0 (t, s = 5) = ψ′
0 (t, s = 5) = 0. We plot the

numerial solutions in Fig. 24 for times t = {0, 1.7, 1.9, 2.1, 2.3, 2.4}.
We note that the entral �lament exhibits an instability, opposite to where it is pinned,

at t = 1.7 (Fig. 24(b)), whih grows and spirals inwards through the hierarhy. In

response, small wavelength perturbations develop in the satellite vorties (Fig. 24(d))

whih grow without bound leading to the eventual ollapse of the vorties. It is worth

noting that suh a hierarhy with two vorties is similarly unstable for this partiular

wavenumber k without a entral vortex, as shown in Okulov (2004).

4.2. Traveling wave solutions

To generalise the plane wave solution dynamis to the ase of non-onstant amplitudes,

we now onsider traveling wave solutions that exist for N = 2 satellite vorties around

a entral vortex. We onsider wave oordinates ξ = s− vt, for onstant v, and suppose

µ1 (ξ) and µ2 (ξ) have the ansatz

µj (ξ) = Aj (ξ) exp (iθj (ξ)) , (4.13)

for Aj , θj ∈ R and j = {1, 2}.
We transform (4.6) into ξ oordinates and substitute (4.13) into the result to obtain,

upon taking real and imaginary parts:

αΓ
d2A1

dξ2
+ vA1

dθ1
dξ

− αΓA1

(

dθ1
dξ

)2

+
4Γ

A1

+
2Γ

A2
cos (θ2 − θ1) +

2Γ (A1 −A2 cos (θ2 − θ1))

A2
1 − 2A1A2 cos (θ2 − θ1) +A2

2

= 0, (4.14)

αΓA1
d2θ1
dξ2

+ 2αΓ
dA1

dξ

dθ1
dξ

− v
dA1

dξ

+
2Γ

A2
sin (θ2 − θ1) +

2ΓA2 sin (θ2 − θ1)

A2
1 − 2A1A2 cos (θ2 − θ1) +A2

2

= 0, (4.15)
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(a) (b) (c)

(d) (e) (f )

Figure 24. Time evolution of plane-wave solutions in a perturbed o-rotating vortex hierarhy

featuring two satellite vorties orbiting around a entral �lament. Plots of ψ0 (t, s), ψ1 (t, s),
and ψ2 (t, s) (shown in green, blue, and red, respetively) were obtained by solving (4.6) with

ν (t, s) = 0 for the initial onditions ψ0 (t = 0, s) = 0, ψ1 (t = 0, s) = exp (i (s/2 + 0.999π)),
and ψ2 (t = 0, s) = exp (i (s/2 + 2π)). The boundary onditions rj · (∂rj/∂s) = 0 and

|∂rj/∂s|2 = B2k2 = 1/4, at s = {−5, 5} are imposed for j ∈ {1, 2}, with rj = (xj , yj) be-

ing the position vetor of the �lament in the x − y plane, whilst ψ0 (t, s) is pinned so that

ψ0 (t, s = 5) = ψ′

0 (t, s = 5) = 0. Times shown are: (a) t = 0, (b) t = 1.7, () t = 1.9, (d) t = 2.1,
(e) t = 2.3, and (f) t = 2.4 with α = Γ = 1. (Color online)

αΓ
d2A2

dξ2
+ vA2

dθ2
dξ

− αΓA2

(

dθ2
dξ

)2

+
4Γ

A2

+
2Γ

A1
cos (θ1 − θ2)−

2Γ (A1 cos (θ1 − θ2)−A2)

A2
1 − 2A1A2 cos (θ2 − θ1) +A2

2

= 0, (4.16)

αΓA2
d2θ2
dξ2

+ 2αΓ
dA2

dξ

dθ2
dξ

− v
dA2

dξ

+
2Γ

A1
sin (θ1 − θ2)−

2ΓA1 sin (θ1 − θ2)

A2
1 − 2A1A2 cos (θ2 − θ1) +A2

2

= 0. (4.17)

We numerially solve (4.14)-(4.17) for the initial onditionsA1 (ξ = 0) = 0.5, A′
1 (ξ = 0) =

0, θ1 (ξ = 0) = 0, θ′1 (ξ = 0) = 1, A2 (ξ = 0) = 0.5, A′
2 (ξ = 0) = 0, θ2 (ξ = 0) = π, and

θ′2 (ξ = 0) = 1.1 with v = 1 in Fig. 25 and show the orresponding �lament shapes in

Fig. 26 for ν (t, s) = 0, α = Γ = 1, and times t = {0, 2, 4, 6}. We observe that the

result solutions are haoti in nature, exhibiting aperiodiity and a hypersensitivity to

the initial onditions imposed.
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Figure 25. Aj (ξ) and real and imaginary omponents of exp (iθj (ξ)) (shown in blak and red

respetively) alulated by the numerial solution of (4.14)-(4.17) for j = {1, 2}. The initial

onditions are A1 (ξ = 0) = 0.5, A′

1 (ξ = 0) = 0, θ1 (ξ = 0) = 0, θ′1 (ξ = 0) = 1, A2 (ξ = 0) = 0.5,
A′

2 (ξ = 0) = 0, θ2 (ξ = 0) = π, θ′2 (ξ = 0) = 1.1, with v = 1. (Color online)

(a) (b)

(c) (d)

Figure 26. Time evolution of traveling wave solutions in a o-rotating vortex hierarhy fea-

turing two satellite vorties orbiting around a entral �lament. Plots of ψ0 (t, s), ψ1 (t, s), and
ψ2 (t, s) (shown in blue, red, and green, respetively) were obtained by solving (4.14)-(4.17)

with ν (t, s) = 0 for the initial onditions A1 (ξ = 0) = 0.5, A′

1 (ξ = 0) = 0, θ1 (ξ = 0) = 0,
θ′1 (ξ = 0) = 1, A2 (ξ = 0) = 0.5, A′

2 (ξ = 0) = 0, θ2 (ξ = 0) = π, θ′2 (ξ = 0) = 1.1, with

v = α = Γ = 1. Times (a) t = 0, (b) t = 2, () t = 4, and (d) t = 6 are shown over the

arlength s ∈ [0, 5]. (Color online)
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4.3. Self-similar solutions

We study solutions for N = 2 satellite vorties around a entral �lament of the form

µj (t, s) = sχj (η), for η = s/
√
t and j = {1, 2}. By using the amplitude-phase ansatz

χj (η) = Aj (η) exp (iθj (η)) , (4.18)

with Aj , θj ∈ R, we transform (4.6) and take real and imaginary parts to obtain:

αΓη2
d2A1

dη2
− αΓη2A1

(

dθ1
dη

)2

+ 2η
dA1

dη
+
η3

2
A1

dθ1
dη

+
4Γ

A1

+
2Γ

A2
cos (θ2 − θ1) +

2Γ (A1 −A2 cos (θ2 − θ1))

A2
1 − 2A1A2 cos (θ2 − θ1) +A2

2

= 0, (4.19)

αΓη2A1
d2θ1
dη2

+ 2αη2Γ
dA1

dη

dθ1
dη

+ 2ηA1
dθ1
dη

− η3

2

dA1

dη

+
2Γ

A2
sin (θ2 − θ1) +

2ΓA2 sin (θ2 − θ1)

A2
1 − 2A1A2 cos (θ2 − θ1) +A2

2

= 0, (4.20)

αΓη2
d2A2

dη2
− αΓη2A2

(

dθ2
dη

)2

+ 2η
dA2

dη
+
η3

2
A2

dθ2
dη

+
4Γ

A2

+
2Γ

A1
cos (θ1 − θ2)−

2Γ (A1 cos (θ1 − θ2)−A2)

A2
1 − 2A1A2 cos (θ2 − θ1) +A2

2

= 0, (4.21)

αΓη2A2
d2θ2
dη2

+ 2αη2Γ
dA2

dη

dθ2
dη

+ 2ηA2
dθ2
dη

− η3

2

dA2

dη

+
2Γ

A1
sin (θ1 − θ2)−

2ΓA1 sin (θ1 − θ2)

A2
1 − 2A1A2 cos (θ2 − θ1) +A2

2

= 0. (4.22)

We numerially solve (4.19)-(4.22) for the initial onditionsA1 (η = 0.01) = 1, A′
1 (η = 0.01) =

0, θ1 (η = 0.01) = 0, θ′1 (η = 0.01) = 0.5, A2 (η = 0.01) = 1, A′
2 (η = 0.01) = 0, θ2 (η = 0.01) =

π, and θ′2 (η = 0.01) = 0.6 and plot the results in Fig. 27. Furthermore, we illustrate the

orresponding vortex �lament shapes with ν (t, s) = 0 and α = Γ = 1 in Fig. 28 for times

t = {0.05, 0.5, 5, 50, 500, 5000}. Again, the vortex �lament interations appear to yield

haoti dynamis. Additionally, the �lament pair with the larger initial twist θ′ (ξ), in
the present ase ψ0 (t, s) and ψ2 (t, s), tightly intertwine and form a marosopi �lament

that interats with the other satellite vortex.

5. Disussion

When studying the o-rotating vorties with large separation between the �laments,

we found self-similar solutions whih exhibited a onial-helix like struture (onial-type

solutions were previously seen for isolated vortex �laments (Van Gorder, 2016)) and also

traveling wave solutions. For this ase, the vortex pair repelled in opposite diretions.

In the self-similar ase, the rotation of the vortex helies was suh that they rotated in

the same diretion, with the orientation of one helix being a re�etion of the other. In

Fig. 4, both vorties have irulation Γ > 0, however the helies rotated in a lokwise

diretion, with the diretion of a helix's rotation being opposite to an individual �lament's

irulation.
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Figure 27. Aj (η) and real and imaginary omponents of exp (iθj (η)) (shown in blak and red

respetively) alulated by the numerial solution of (4.19)-(4.22) for j = {1, 2}. The initial

onditions are A1 (η = 0.01) = 1, A′

1 (η = 0.01) = 0, θ1 (η = 0.01) = 0, θ′1 (η = 0.01) = 0.5,
A2 (η = 0.01) = 1, A′

2 (η = 0.01) = 0, θ2 (η = 0.01) = π, and θ′2 (η = 0.01) = 0.6. (Color online)

In the ase of ounter-rotating �laments with large separation between the �laments,

we found that the position of the vortex pair's enter and the deviations from this enter

were strongly oupled, unlike what was shown for the o-rotating vortex �laments, where

these two terms deoupled. This somewhat ompliates the solution proedure. For the

ounter-rotating traveling wave solutions with large separation between the �laments,

there was no seular vortex repulsion or attration, ontrary to what was previously seen

with the o-rotating pair; rather, deviations of the vortex pair had a onstant o�set, whih

was determined by the speed of the traveling wave. The enter of the vortex pair will

move from its initial position over time; that is to say, the �laments will move together

at a onstant veloity through the 3D �ow. Furthermore, we found that the wave speed

of the traveling wave ould stabilize the vortex pair so that they remain together. There

was an additional e�et that was not predited by the 2D theory, namely osillations

in the deviations of the two �laments from the enter. These vibrations aused the

amplitude of the helies to periodially vary in a manner suh that the individual helies

were out of phase with eah other. We observed that as time evolved, the �lament

initially had a helial shape (Fig. 6(a)), whose amplitude shrunk (Fig. 6(b)), before

returning to its original shape (Fig. 6()). The other helix grew in amplitude as the

�rst �lament dereased. Meanwhile, for the ounter-rotating self-similar solutions with

large separation between the �laments, we found that the helies rotated in the opposite

diretion to the vortex's respetive irulation, as was also seen in the o-rotating ase.

Regarding traveling wave solutions for intertwined vortex �laments in the o-rotating

ase, as the �laments approahed eah other, their attration ourred on a very fast
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(a) (b)

(c) (d)

(e) (f )

Figure 28. Time evolution of self-similar solutions in a o-rotating vortex hierarhy featur-

ing two satellite vorties orbiting around a entral �lament. Plots of ψ0 (t, s), ψ1 (t, s), and

ψ2 (t, s) (shown in blue, red, and green, respetively) were obtained by solving (4.19)-(4.22) with

ν (t, s) = 0 for the initial onditions A1 (η = 0.01) = 1, A′

1 (η = 0.01) = 0, θ1 (η = 0.01) = 0,
θ′1 (η = 0.01) = 0.5, A2 (η = 0.01) = 1, A′

2 (η = 0.01) = 0, θ2 (η = 0.01) = π, and

θ′2 (η = 0.01) = 0.6, with α = Γ = 1. Times (a) t = 0.05, (b) t = 0.5, () t = 5, (d) t = 50, (e)
t = 500, and (f) t = 5000 are shown over the arlength s ∈ [2, 10]. (Color online)

time-sale, for γ ≪ 1, until the pair reahed their minimum separation, at whih point

they repelled one another. The orientation of the vorties at this moment hanged almost

instantaneously, as γ tan−1
(

c1c2 + c1ξ/γ
2n−1

)

dominated in the expression (3.16). As

the �laments separated, with their amplitudes A → O (1), the time-sale slowed down

and the orientation of the pair evolved aording to the vξ/2 term, whih now dominated

in (7.6). The �laments then reahed their maximum separation before attrating eah

other again and repeating the yle.

For the intertwined rotating planar �laments in the o-rotating ase, we observed

a ouple of behaviors, depending on the parameter value ω. When ω > 0, A → 0+ as

s→ ±∞, and the vortex pair was found to ollapse if the �laments' respetive irulations

were in the same diretion as the pair rotated. On the other hand, if ω < 0, then A→ ∞
as s→ ∞. Considering a vortex pair with irulations in the opposite diretion, rotating

pairs with ω < 0 would also ollapse or, if ω > 0, may also repel without bound. The

strong dependene of solutions on the sign of the spetral parameter ω was previously

disussed for single, isolated planar vortex �laments under the LIA (Van Gorder, 2013)

and Biot-Savart (Van Gorder, 2015b) dynamis.

When intertwined self-similar �lament strutures in the o-rotating ase ame into lose

proximity, the orientation of separation hanged rapidly. In the large time limit t→ ∞,

the amplitude and wavelength of the �lament separation funtion beame larger and
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variations in the orientation beame slower. As t → ∞, the separation of the �laments

themselves grew to in�nity, and their orientation beame planar along a single diretion.

This smoothing out of an originally rapidly varying �lament was exatly seen even in

models of isolated self-similar �laments (see Van Gorder (2016) and referenes therein).

For traveling wave solutions to the ounter-rotating intertwined �laments, some dif-

ferenes existed ompared to the o-rotating ase. If γ = 0, then the orientation of the

ounter-rotating pair did not hange and the osillation remained ompletely planar for

all time, with the pair no longer ollapsing as t→ ∞. For any value of v (the wave speed)
or γ, the ounter-rotating vorties would not meet. If the veloity of the traveling waves

was v = 0, orresponding to standing or stationary waves, the �lament pair repelled.

If the wave speed v was non-zero, then periodi solutions in the wave amplitude were

found for all values of γ. As suh, the ounter-rotating vortex �laments had a di�erent

asymptoti struture that no longer depended on γ, in ontrast to what was found for

the orresponding o-rotating traveling wave solutions.

For the ounter-rotating intertwined planar vortex �laments, we imposed boundary

onditions so that the quantity denoting the separation of the vortex �lament pair was

osillatory along the ar-length parameter. The �lament shapes were therefore asym-

metri when ompared to the symmetrial o-rotating �laments; a diret result of the

oupling of the position of the vortex pair's enter and the deviations from this enter.

In ontrast with the self-similar solutions in earlier setions, the self-similar intertwined

ounter-rotating �laments were never in very lose proximity, so that the orientation of

the pair did not rapidly hange aording to the dependene of 1/A in (3.44). The vortex

pair remained separated, but as t → ∞, the enter of the vortex pair moved suh that

the �laments began to intertwine and rotate around eah other.

All of the above onlusions orrespond to two mutually interating vortex �laments.

To extend suh results, we onsidered the o-rotating vortex hierarhy with satellite

vortex �laments surrounding a entral vortex. In the ase in whih all vortex �laments

had plane wave struture, the angular veloity of the vortex on�guration depended on

the wave number, k, the distane of the satellite �laments from the entral �lament,

B, and the number of satellite �laments, N . In our numerial simulations, the entral

�lament exhibited an instability, whih grew and spiralled inwards through the hierarhy.

In response, small wavelength perturbations developed in the satellite �laments, and these

then grew without bound, leading to the eventual ollapse of the struture.

For the more general traveling wave ase, numerial simulations for the o-rotating

vortex hierarhy allowed us to �nd solutions whih appeared to be haoti in nature,

exhibiting aperiodiity and a strong sensitivity to the initial onditions imposed. In the

ase of self-similar vortex �lament strutures arranged in this hierarhy, we again ob-

served what appeared to be haoti dynamis as the system evolved in time away from

the initial on�guration and, furthermore, the �lament pair with the larger initial twist

tightly intertwined to form a marosopi �lament that interated with the other vortex.

Suh results are interesting, as they show that haoti dynamis are possible in on�g-

urations with relatively small numbers of vortex �laments. Chaos, either deterministi

(Nemirovskii & Baltsevih, 2001) or stohasti (Nemirovskii, 2008), has previously been

disussed in relation to quantum turbulene. Chaoti dynamis from Kelvin waves along

quantised vortex �laments (orresponding to plane wave solutions, or generalisations

suh as traveling wave solutions we have onsidered) arrying energy to small sales and

leading to a asade has been suggested (Nemirovskii, 2013) as one route for the transi-

tion to turbulene in super�uid Helium. This diretion is partiularly promising in light

of the fat that Kelvin waves have reently been observed experimentally in super�uid

Helium (Fonda et al., 2014).
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6. Appendix: Asymptoti solutions of vortex pair on�gurations

6.1. Asymptoti solutions for Setion 2.1.1

6.1.1. Fast wave-sale dynamis

We de�ne a small parameter ǫ = 1/d≪ 1 and expand the nonlinear interation terms

in (2.7) to give:

d2µ

dξ2
− iv

dµ

dξ
+ 4

∞
∑

n=0

(−1)n ǫn+1 (µ∗)n = 0. (6.1)

where ( )
∗
is the omplex onjugate of the variable.

We make use of the fat that we are studying large separation distanes and expand

µ (ξ) as a series in ǫ. In partiular, µ =
∑∞

m=0 ǫ
mµ(m)

, so that, for inreasing orders of ǫ:

O
(

ǫ0
)

: 0 =
d2µ(0)

dξ2
− iv

dµ(0)

dξ
, (6.2)

O
(

ǫ1
)

: 0 =
d2µ(1)

dξ2
− iv

dµ(1)

dξ
+ 4, (6.3)

O
(

ǫ2
)

: 0 =
d2µ(2)

dξ2
− iv

dµ(2)

dξ
− 4

(

µ(0)
)∗

, (6.4)

the exat solutions of whih give the seond order asymptoti solution (2.8).

6.1.2. Slow wave-sale dynamis

Let ǫ = 1/d ≪ 1. We note that β = 2 in (2.9) from balaning the vortex interation

term in (6.1). However, in order for θ (ξ) to satisfy initial onditions on µ (ξ), the per-

turbation expansion must begin at O
(

ǫ−1
)

. Therefore, we set θ (ξ) =
∑∞

n=0 ǫ
n−1θ(n) (ξ),

whih gives, upon extrating orders of ǫ:

O
(

ǫ0
)

: 0 = i
d2θ(0)

dξ2
+ v

dθ(0)

dξ
, (6.5)

O
(

ǫ1
)

: 0 = i
d2θ(1)

dξ2
−
(

dθ(0)

dξ

)2

+ v
dθ(1)

dξ
+ 4, (6.6)

O
(

ǫ2
)

: 0 = i
d2θ(2)

dξ2
− 2

dθ(0)

dξ

dθ(1)

dξ
+ v

dθ(2)

dξ
, (6.7)

the solution of whih results in the slow wave-sale solution (2.10).

6.2. Asymptoti solutions for Setion 2.1.2

Making use of the fat that ǫ = d−1 ≪ 1, we expand the nonlinear interation term in

(2.11) as a power series to obtain:

d2χ

dη2
− iη

2

dχ

dη
+

i

2
χ+ 4

∞
∑

n=0

(−1)
n
ǫn+1 (χ∗)

n
= 0, (6.8)

and further expand χ (η) as a power series in ǫ, so that χ (η) =
∑∞

n=0 ǫ
nχ(n)

, to �nd:

O
(

ǫ0
)

: 0 =
d2χ(0)

dη2
− iη

2

dχ(0)

dη
+

i

2
χ(0)

(6.9)

O
(

ǫ1
)

: 0 =
d2χ(1)

dη2
− iη

2

dχ(1)

dη
+

i

2
χ(1) + 4, (6.10)

the solutions of whih gives the �rst order asymptoti expansion in (2.12).
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6.3. Setion 2.2.1

6.3.1. Fast wave-sale dynamis

We expand the interation term in (2.18) as a series in ǫ = 1/d≪ 1 to obtain:

d2µ

dξ2
+ v2µ− 4

∞
∑

n=0

(−1)
n
ǫn+1 (µ∗)

n
= δ, (6.11)

and split µ (t, s) into real and imaginary omponents, so that µ (ξ) = X (ξ) + iY (ξ),
whereX,Y ∈ R are the omponents of the vortex pair's deviation in the x and y diretion
respetively.

Separating the real and imaginary omponents of (6.11), we �nd:

d2X

dξ2
+ v2X − 4ǫ+ 4ǫ2X +O

(

ǫ3
)

= δ1, (6.12)

d2Y

dξ2
+ v2Y − 4ǫ2Y +O

(

ǫ3
)

= δ2, (6.13)

where δ = δ1 + iδ2 for δ1, δ2 ∈ R.

Given that neither (6.12) nor (6.13) have dependene on the �rst derivative, both

equations omprise of onservative systems for whih the potential funtions V1 (X) and
V2 (Y ), that onstrains the trajetories of X (ξ) and Y (ξ), an be written:

V1 (X) =
X2

2

(

v2 + 4ǫ2
)

−X (δ1 + 4ǫ) + b1 +O
(

ǫ3
)

, (6.14)

V2 (Y ) =
Y 2

2

(

v2 − 4ǫ2
)

− δ2Y + b2 +O
(

ǫ3
)

, (6.15)

where b1, b2 ∈ R.

Compared to the o-rotating ase, (6.14) and (6.15) suggest that the traveling wave

solutions of the ounter-rotating vortex pair remain �nite for all time and along the entire

arlength to O
(

ǫ2
)

, provided the veloity of the traveling wave v is suh that v2 > 4ǫ2.
As a result, we look for asymptoti solutions to (6.12) and (6.13) of the Poinaré-

Lindstedt form to suppress seular terms that would exist using the regular perturbation

expansion. In partiular, we introdue two separate resaled wave oordinates Ξ1 = ω1ξ

and Ξ2 = ω2ξ, where ω1 = 1+ǫ2ω
(2)
x and ω2 = 1+ǫ2ω

(2)
y for ωx, ωy ∈ R, and perturbation

expansions for X (Ξ1) =
∑∞

p=0 ǫ
pX(p)

and Y (Ξ2) =
∑∞

q=0 ǫ
qY (q)

, to �nd the �rst-order

general solutions:

X (Ξ1) = c1 cos (vΞ1) + c2 sin (vΞ1) +
δ1
v2

+
1

d

(

c3 cos (vΞ1) + c4 sin (vΞ1) +
4

v2

)

+O

(

1

d2

)

,

(6.16)

Y (Ξ2) = c7 cos (vΞ2) + c8 sin (vΞ2) +
δ2
v2

+
1

d
(c9 cos (vΞ2) + c10 sin (vΞ2)) +O

(

1

d2

)

,

(6.17)

where all cn ∈ R.

At O
(

ǫ2
)

, we �nd:

d2X(2)

dΞ2
1

+ v2X(2) = −2

(

ω(2)
x

d2X(0)

dΞ2
1

+ 2X(0)

)

, (6.18)

d2Y (2)

dΞ2
2

+ v2Y (2) = −2

(

ω(2)
y

d2Y (0)

dΞ2
2

− 2Y (0)

)

, (6.19)
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whih implies ω
(2)
x = 2/v2 and ω

(2)
y = −2/v2 to remove the seular terms. The same

result follows if we apply a multiple-sales analysis of the problem.

Solving (6.18) and (6.19) and ombining the result with (6.16) and (6.17), we �nd the

seond order general solutions (6.18) and (6.19).

6.3.2. Slow wave-sale dynamis

Substituting (2.23) into (2.20), we obtain the slow solution of the vortex pair's deviation

from this enter:

µslow (ξ) = − ǫ
β+1

v

dθ

dξ
exp

(

iǫβθ (ξ)
)

+
4ǫ

v2
, (6.20)

whih, upon substitution into (6.11), anels with the O (ǫ) interation term, giving:

− ǫ
β+1

v
exp

(

iǫβθ
) d3θ

dξ3
− vǫβ+1 exp

(

iǫβθ
) dθ

dξ
+

16ǫ3

v2
+O

(

ǫ2β+1
)

= 0, (6.21)

implying that β = 2 by balaning. We note that the osillation of µslow (ξ) would be

O
(

ǫ3
)

, whih explains why there was no slowly varying solution evident in the Fig. 7(a).

We suppose that θ (ξ) =
∑

q=0 ǫ
2q−2θ(q) (ξ), with the O

(

ǫ−2
)

term required to impose

the initial ondition on νslow (ξ), and �nd upon separating powers of ǫ in (6.21):

O
(

ǫ1
)

: 0 = −1

v

d3θ(0)

dξ3
− v

dθ(0)

dξ
, (6.22)

O
(

ǫ3
)

: 0 = −1

v

d3θ(1)

dξ3
− v

dθ(1)

dξ
+

16

v2
, (6.23)

the solution of whih is (2.24).

7. Appendix B: Exat impliit solutions and asymptoti regimes

7.1. Asymptoti results for Setion 3.1.2

Equation (3.12) an be integrated one to give:

dθ

dξ
=

γ

A2
+
v

2
, (7.1)

where γ ∈ R is an integration onstant that quanti�es the oupling between the separa-

tion of the vortex and hanges to its orientation.

Using this result, we deouple (3.11) and write it in terms of the vortex separation:

d2A

dξ2
+
v2

4
A+

4

A
− γ2

A3
= 0. (7.2)

Given that (7.2) has no �rst derivatives, we multiply it through by A′ (ξ) and integrate

one with respet to ξ to �nd:

1

2

(

dA

dξ

)2

+ V (A) = E, (7.3)

where E ∈ R is an integration onstant analogous to the total mehanial energy of the

system and V (A) is the potential funtion, given by:

V (A) =
v2

8
A2 + 4 lnA+

γ2

2A2
. (7.4)
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Furthermore, for γ ≪ 1, (7.2) has three asymptoti regimes, the �rst of whih is

detailed in Setion 3.1.2), whilst the other two are given by:

• A (ξ) = O (γp) for p ∈ (0, 1). The initial layer has width γp and A′′ ∼ −4/A so that

the dominant terms are:

A

(

ξ

γp

)

∼ exp







1

8






c3 − 8



erf−1



±

√

8

π

(

ξ

γp
+ c4

)2

exp
(

−c3
4

)









2











, (7.5)

θ

(

ξ

γp

)

∼ ± γ
√
π

2
√
2
(

ξ
γp + c4

)

√

8

π

(

ξ

γp
+ c4

)2

exp
(

−c3
4

)

× erfi



erf−1



±

√

8

π

(

ξ

γp
+ c4

)2

exp
(

−c3
4

)







+
v

2

ξ

γp
+ θ1, (7.6)

for c3, c4, θ1 ∈ R.

• A (ξ) = O (γq) for q = 0. The region has width of O (1) so that A′′ ∼ −4/A−v2A/4.

7.2. Asymptoti results for Setion 3.1.3

For non-zero ω, there are two noteworthy asymptoti regimes in (3.19):

• A (s) = O (ωn) for n 6= −1/2. In this ase, there exists an initial layer of width ωn

so that A′′ ∼ −4/A and the leading-order behavior is given by (7.5) with the saling

s→ s/ωn
.

• A (s) = O (ωn) for n = −1/2. The width of the region is ωn
giving the balane

A′′ ∼ −A− 4/A.

7.3. Asymptoti results for Setion 2.2.1

Equation (3.37) an be integrated one with respet to ξ to give:

dθ

dξ
− γ

A2
= 0, (7.7)

where γ ∈ R is an integration onstant that has the same physial meaning as in Se-

tion 3.1.2, measuring the oupling between the vortex pair's separation and its hange

in orientation, the result of whih we use to deouple (3.36):

d2A

dξ2
+ v2A− 4

A
− γ2

A3
= 0. (7.8)

Following the treatment of Setion 3.1.2, (7.8) an be integrated to obtain (7.3) with

V (A) =
v2A2

2
− 4 ln (A) +

γ2

2A2
, (7.9)

and an exat impliit solution given by (3.13).

We onsider the asymptoti struture of (7.8) as being dependent on v, given that

periodi solutions in A are guaranteed for all values of γ. For A (ξ) = O (vn) with any

nonzero n, there are three initial layers:

• One with width vn, whih orresponds to the balane A′′ ∼ 4/A, giving the leading-
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order behavior:

A

(

ξ

vn

)

∼ exp







1

8






−c1 − 8



erf−1



±i

√

8

π

(

ξ

vn
+ c2

)2

exp
(

−c1
4

)









2











, (7.10)

θ

(

ξ

vn

)

∼ ∓ iγ
√
π

2
√
2
(

ξ
vn + c2

)

√

8

π

(

ξ

vn
+ c2

)2

exp
(

−c1
4

)

× erfi



erf−1



±i

√

8

π

(

ξ

vn
+ c2

)2

exp
(

−c1
4

)







+ θ0, (7.11)

for c1, c2, θ0 ∈ R.

• Another with width vn/2, whih gives the balane A′′ ∼ γ2/A3
, leading to the

dominant terms:

A

(

ξ

vn/2

)

∼ ±1√
c3

√

γ2 + c23c
2
4 + 2c23c4

ξ

vn/2
+ c23

ξ2

vn
, (7.12)

θ

(

ξ

vn/2

)

∼ tan−1

(

c3
γ

(

ξ

vn/2
+ c4

))

+ θ1, (7.13)

for c3, c4, θ1 ∈ R.

• The last with width v−1
, so that A′′ ∼ −A, giving the leading-order behavior:

A (vξ) ∼ c5 cos (vξ) + c6 sin (vξ) , (7.14)

θ (vξ) ∼ 2γ sin (vξ)

vc5 (c5 cos (vξ) + c6 sin (vξ))
+ θ2, (7.15)

for c5, c6, θ2 ∈ R.

7.4. Asymptoti results for Setion 3.2.3

Equation (3.39) has the following asymptoti struture in ω for A = O (ωn) for any n:
• An initial layer of width ωn

, for n 6= 1/2 leading to the balane A′′′′ ∼ (4/A)
′′
. For

the partiular ase of ν (0, s) = 0 and having boundary onditions suh that c1 = c2 = 0,
we have A′′ (s = 0)− 4/A (s = 0) = (A′′ (s = 0)− 4/A (s = 0))

′
= 0, so that the balane

an be solved exatly:

A
( s

ωn

)

∼ exp





1

8



c3 − 8

(

erf−1

[

±
√

8

π

( s

ωn
+ c4

)2

exp
(

−c3
4

)

])2






 , (7.16)

for c3, c4 ∈ R.

• An initial layer of width ω−n−1
, for n 6= 1/2 whih gives the balane (4/A)

′′ ∼ −A,
leading to the dominant term:

A
(

ωn+1s
)

∼ exp

(

−2c5 +

(

erf−1

[

± 1√
2π

(

ωn+1s+ c6
)2

exp (−2c5)

])2
)

, (7.17)

for c5, c6 ∈ R.

• The last initial layer has width ω−1/2
, so that A′′′′ ∼ A+ (4/A)

′′
.
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8. Appendix C: Dispersion relation for o-rotating hierarhy

The substitution of (4.7) into (4.6) produes a system of N oupled equations, the

form of whih is most generally given by:

ωn − αΓk2n +
4Γ

B2
n

+ 2Γ
∑

j 6=n

[

exp (iφjn)

BnBj
+

Bn −Bj exp (iφjn)

B3
n − 2B2

nBj cos (φjn) +BnB2
j

]

= 0, (8.1)

where φjn = (kj − kn) s− (ωj − ωn) t+ (θj − θn) is the di�erene between the phases of

µj and µn. However, given that kn and ωn are assumed to be onstant, this implies that

kn = k and ωn = ω for every µn in order for φjn to be independent of s and t. In this

ase, the only degrees of freedom are the plane wave amplitudes Bn and phase o�sets

θn, so that φjn simpli�es to θjn = θj − θn.
Taking the real and imaginary parts of (8.1), we �nd:

ω − αΓk2 +
4Γ

B2
n

+ 2Γ
∑

j 6=n

[

Bj + Bn cos (θjn)− 2Bj cos
2 (θjn)

Bj

(

B2
n − 2BnBj cos (θjn) +B2

j

)

]

= 0, (8.2)

∑

j 6=n

sin (θjn)

[

1

BnBj
+

Bj

B3
n − 2B2

nBj cos (θjn) +BnB2
j

]

= 0. (8.3)

By the onstraint that ωn = ω and (8.3) must hold true for all n ∈ {1, 2, ..., N}, we
obtain 2N−1 equations for 2N unknowns. We have a single free parameter that spei�es

either the initial separation B or orientation θ of a single satellite vortex �lament. All

other Bn and θn are solved using (8.2) and (8.3).

One suh solution whih satis�es these onstraints is Bn = B and θn satisfying:

θn =
2π (n− 1)

N
, n ∈ {2, ..., N + 1} , (8.4)

whih physially orresponds to the vorties being evenly distributed around the enter,

so that the vortex on�guration exhibits polygonal symmetry.

Substituting this result into (8.2), we obtain the dispersion relation given in (4.8).
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