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Dynamics of Networks if Everyone Strives
for Structural Holes1

Vincent Buskens
Utrecht University

Arnout van de Rijt
State University of New York at Stony Brook

When entrepreneurs enter structural holes in networks, they can
exploit the related benefits. Evidence for these benefits has steadily
accumulated. The authors ask whether those who strive for such
structural advantages can maintain them if others follow their ex-
ample. Burt speculates that they cannot, but a formal demonstration
of this speculation is lacking. Using a game theoretic model of net-
work formation, the authors characterize the networks that emerge
when everyone strives for structural holes. They find that the pre-
dominant stable networks distribute benefits evenly, confirming that
no one is able to maintain a structural advantage in the long run.

INTRODUCTION

The view that social networks are a form of capital because they can
facilitate economic activity is now generally accepted. The structure of
an individual’s social environment has been shown to matter in a number
of ways. Job search through weak ties is more successful (Granovetter
[1974] 1995). Nonexcludable trading parties have larger profit margins
(Cook and Emerson 1978; Willer 1999). Dense structures and closure in

1 The order of the authors is alphabetical. We thank the four AJS reviewers for ex-
traordinarily useful reviews. We thank Robb Willer, with whom we initially developed
the idea for this article. We also thank Ronald Burt, Michael Macy, Werner Raub,
Marcel van Assen, Erik Volz, Jeroen Weesie, and members of CREED, Amsterdam,
for helpful comments and suggestions. This article is part of the Polarization and
Conflict Project (CIT-2-CT-2004-506084) funded by the European Commission–DG
Research Sixth Framework Programme. Additional funding was provided by Utrecht
University through the High Potentials 2004 subsidy for the research program Dy-
namics of Cooperation, Networks, and Institutions. Direct correspondence to Vincent
Buskens, Department of Sociology, Faculty of Social Sciences, Utrecht University,
Heidelberglaan 2, 3584 CS Utrecht, Netherlands. E-mail: v.buskens@uu.nl
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networks facilitate trust (Coleman 1988; Raub and Weesie 1990; Buskens
2002). And ties between otherwise unconnected groups, spanning so-called
structural holes, benefit the broker (Burt 1992). This last example will be
the focus of this article.

From the realization that relationships have value follows an important
implication: it gives rise to incentives to relate to others for personal gain
rather than on the basis of liking or social obligation. In modern society,
then, people have not only the means for strategic partner choice, in the
form of increased mobility and information technology. They also have
the ends. There is a rationale for being selective when establishing per-
sonal and business relationships. If some networks are more beneficial
than others, actors can be expected to modify the less beneficial ones to
their advantage (Flap 2003, pp. 12–13). The network becomes a “device
to be manipulated consciously for an actor’s own ends” (Watts 1999, p.
495). People invest in new friendships with others who can give them
valuable information. Traders actively seek out alternative trading part-
ners so as to enhance their bargaining positions. The friendship and trad-
ing networks we observe, then, must be the ones to which no one has
found it worth making any further alteration.

This places strategic social networking on the agenda as an important
explanatory mechanism of changes in the social fabric and cohesion of
societies. The transformation from normatively to purposively constructed
patterns of formal relations that Coleman (1993) spoke of generalizes to
informal relations. Networking can help explain why traditionally sepa-
rate social circles are increasingly crosscutting (Blau and Schwartz 1984),
why the world is shrinking in terms of social distance (Watts 1999), or
why dense clusters of relationships, old bases of societal trust, erode (Put-
nam 1995).

Assessing the macrostructural consequences of strategic social net-
working at the microlevel is therefore critical to our understanding of
contemporary society, but at the same time is a daunting task. By the
mere nonatomic nature of networks, the type of action networking in-
volves is interdependent—one can only broker as long as two brokees
remain unconnected—and collective—it takes two to connect. Each choice
to connect or disconnect then becomes contingent upon another’s previous
choice and is a precursor of a following change (see also Willer 2007). An
initial network change may thus trigger nontrivial network evolution.
Sociologists have only recently begun to develop the methodological tools
that such an assessment requires (e.g., Doreian and Stokman 1997; Snij-
ders 2001, 2005). In this article, we contribute to the methodology needed
to explore this link between the ever-growing autonomy society is giving
its members to choose for themselves with whom to interact and the ever-
disintegrating group-based interaction patterns of the past. In doing so,
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we attempt to further develop theoretical insight into which networks can
be expected to emerge when actors purposively choose their relationships.
In particular, we introduce a model in which actors strive for structural
holes.

When Burt (1992) launched his idea of structural holes, he went beyond
structuralism. He did not assume that actors would simply reap the fruits
from structural advantages that they happened to have over others. He
suggested the possibility that entrepreneurs, just as they can strategically
put financial and human resources to work, exploit social resources and
turn them into profit: “You enter the structural hole between two players
to broker the relationship between them” (Burt 1992, p. 34). Burt even
went so far as to argue that social capital implies prior strategic net-
working: “I will treat motivation and opportunity as one and the same
. . . a network rich in entrepreneurial opportunity surrounds a player
motivated to be entrepreneurial. At the other extreme, a player innocent
of entrepreneurial motive lives in a network devoid of entrepreneurial
opportunity” (Burt 1992, p. 36). Burt’s “structural entrepreneur person-
ality index” (2005, p. 34) is an attempt to quantify this inclination to
exploit social resources.

Nevertheless, the agency component in Burt’s argument was never as
fully developed as the structure component. Burt proposed a precise mea-
sure of structural disadvantage, the “constraint” formula (Burt 1992, p.
54), but the network dynamics he sketched in his book are instructions
on how to unilaterally reduce one’s score on the constraint measure. He
thereby remained at the microlevel, showing how an ego network would
change with structural holes as the driving force, assuming cooperation
and passivity on behalf of all alters. Thus neutralizing the interdependence
between actors, he precluded possible cascades of subsequent network
adaptations by other actors. Burt (2005, chap. 5) dealt with some of these
issues informally. He speculated that as more and more people strategically
add and remove ties, less and less structural advantage is obtained in
equilibrium (Burt 2005, pp. 230–33). Although his considerations are very
insightful, they lack a strict theoretical deduction. For example, he spec-
ulated on the emergence of stable networks if network benefits are ex-
tended beyond brokerage to include closure, and if these benefits and also
the costs of ties are heterogeneous among actors. We think that such
speculations are unwarranted. We show that with much simpler as-
sumptions, analysis is already challenging.

We will limit ourselves to formalizing network dynamics with a single
type of benefit and with homogeneous actors. Clearly, these are strong,
simplifying assumptions. Strategic networking will be more salient or
feasible in some settings than in others, and in any particular setting, not
everybody will be equally interested in structural holes. Still, our model
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provides an insightful benchmark that can straightforwardly be modified
to accommodate more complex assumptions. In the discussion section, we
indicate which assumptions are crucial for our findings and which can
be relaxed without changing the substantive results.

In Burt’s typical example of a network after entrepreneurial activity,
the majority of benefits are held by a single individual. However, in most
of Burt’s examples, no one else is granted an opportunity to add and
delete ties. The environment around the focal actor is held fixed. We
consider series of network changes by interdependent actors who together
equilibrate toward or around a certain stable end network. It is not ob-
vious what this end network is. Nor is it obvious that if everyone wants
to follow the initial entrepreneur’s example, his structural advantage au-
tomatically disappears. Some economic studies of network dynamics in
information and communication settings have demonstrated that it is
possible for everyone to have perfectly identical preferences and abilities
to strategically alter the network and still equilibrate toward a highly
asymmetric network with both winners and losers. Jackson and Wolinsky
(1996), Bala and Goyal (2000), and Goyal and Vega-Redondo (2007) all
identified as a stable network the “star,” a network in which one central
actor brokers everyone else. In this article, we show that the star is not
stable if everyone tries to minimize his network constraint. We come to
this conclusion by pursuing the following aims.

Our first aim is to extend and improve the methodology for answering
questions about which networks can be expected to emerge, given that
we know how actors benefit from network positions in a certain context.
This involves the development of a model of network formation and a
comparison of existing and new stability concepts indicating to which
networks strategic actors will not make any further changes. In addition,
we develop a tool for determining which of the stable networks are more
or less likely to emerge. Our second aim is to apply this methodology to
answer the question, What networks would emerge if strategic actors, in
their choice of social contacts, were exclusively concerned with access and
control benefits from brokerage? Would these be dense or sparse, and full
or void of social closure? And in these networks, how would benefits from
brokerage be distributed? Would a minority broker the rest and claim a
majority of benefits, or would everyone share the profits?

Our specification of how actors benefit from brokerage is based on
extensive empirical research into the economic advantages of occupying
structural holes. Thus, we model network evolution, not employing a
stylized utility function, as the aforementioned economic studies have
done, but instead assuming a relationship between network structure and
profit that has solid empirical backing. Burt (1992) provides us with such
an empirically tenable measure of access and control benefits, as we will
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argue in the next section. In this way, we build bridges between the
sociological and economic literatures in this area.

We first review the structural hole argument. Then we introduce a
model of structural entrepreneurship, explain the stability concepts we
use, and identify several classes of stable networks. Using simulation, we
show that networks of one particular class—balanced complete bipartite
networks—evolve with a much higher likelihood than any of the others.
These structures can be characterized as follows: everybody has a strong
network position in terms of structural holes, but no one has a structural
advantage over others. Our model thus predicts a network race in which
it is unlikely that anyone maintains an advantaged position. Thus, in
competitive environments in which many others employ social networking
strategies as well, such as in certain business environments, the intended
structural advantages of networking may never accrue despite the effort.
In addition to distributing benefits equally, the stable networks we identify
are rather dense, and distances between actors are small. Yet despite their
density and closeness, the emerging networks are void of closure; many
relationships are present, but there are no friendship cliques. Social circles
are perfectly crosscutting, and no triadic bases of trust exist.

STRUCTURAL HOLES

Structural holes are “disconnections or nonequivalencies between players”
and hence “entrepreneurial opportunities for information access, timing,
referrals, and control” (Burt 1992, pp. 1–2). There is a structural hole
between two players if there is a potential for beneficial information flow
between them. The word disconnections in the above definition refers to
the absence of a tie or path through which the information can flow.

A network rich in structural holes thus contains many exploitable bro-
kering opportunities: “The structural hole is an opportunity to broker the
flow of information between people and to control the form of projects
that bring together people from opposite sides of the hole” (Burt 1997, p.
340). The structural entrepreneur recognizes these opportunities and
places himself in the hole by initiating ties with both players. Just as the
investment banker and the human resource manager generate returns
from financial and human capital, so the structural entrepreneur seeks
profit in information structure. “When you take the opportunity to be the
tertius, you are an entrepreneur in the literal sense of the word—a person
who generates profit from being between others” (Burt 1992, p. 34). Oc-
cupying the hole and making himself essential to the information flow
between the two players, the entrepreneur can charge a brokering fee.

Burt introduced a formula for quantifying the benefits from spanning
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structural holes, the constraint measure. Your entrepreneurial opportu-
nities are considered to be constrained if there exists a feasible alternative
road along which the information you are intending to broker can travel:
“Contact j constrains your entrepreneurial opportunities to the extent that:
(a) you’ve made a large investment of time and energy to reach j, and
(b) j is surrounded by few structural holes with which you could negotiate
to get a favorable return on the investment” (Burt 1992, p. 54).2 The
constraint measure ci captures the extent to which this is the case for each
contact j of actor i:

2c { p � p p , (1)� �i ij ik kj( )
j(i k(i, k(j

where pij is the proportion of time that i has invested in contact j. Burt
assumes that an actor distributes his time equally over his contacts: if i
is connected to j, then , where di is actor i’s degree—that is, thep p 1/dij i

number of ties of i. If i and j are not connected, . The constraintp p 0ij

measure ci in equation (1) lies between 0 and 9/8 (see theorem 1 in app.
A). The constraint measure is not well behaved for isolates; it takes on a
value of 0 for isolates, which implies that actors without ties have the
lowest constraint. It is more plausible, though, that it is better to be
connected in some way than not to be connected at all, and we think
Burt did not intend isolates to be least constrained. Therefore, we ad-
ditionally assume that for isolates.3c p 2i

The higher the score on the constraint measure ci, the more structural
opportunities are constrained and, as a result, the lower the network
benefits. Compare, as an example, actor A’s positions in the three networks
displayed in figure 1. In the network on the left, actor A is essential for
all information flow. His constraint score is . In the1 12c p 4 # ( � 0) pA 4 4
middle network, B and C can also communicate directly rather than
through A. This constrains the relations between A and B as well as

2 In recent work (e.g., Burt 2005), Burt multiplies his index by 100 and rounds to
compare integer values of the index. We will use the original formulation in this article.
Of course, both formalizations are equivalent. As an alternative, we have found that
our results stay the same if we use a relative version of the constraint formula as a
measure of benefits, where an actor’s network benefits equal the reciprocal of his
constraint score divided by the sum of all actors’ constraint scores, representing the
idea that an entrepreneur wants a “better” position than the others in the network.
3 The precise value is irrelevant for the results of the model as long as the value is
larger than 9/8. The further consequence of this assumption is, as we will see below,
that actors always want to connect with isolates and isolates want this as well. This
property is in correspondence with the more general property that we will derive, that
actors are always willing to connect if the connection does not create any closed triads.
Note that this does not imply that they never want to connect if it does create closed
triads.
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between A and C. A’s constraint score is now 1 2c p 2 # ( � 0) � 2 #A 4
. A network without one of the two ties with B and1 1 1 2( � # ) p 13/324 4 2

C would be better for A. In the network on the right, A’s constraint is
lower, namely, . Therefore, actor A is will-1 12c p 3 # ( � 0) p ! 13/32A 3 3
ing to give up his relation with C in the middle network of figure 1 and
move to the network on the right. In this article, we search for networks
that are stable in the sense that if all actors consider their possible changes
in ties as actor A above does, no one wants to change a relationship.

The constraint formula has been found to be negatively related to a
wide range of objective indicators of success (see Burt 2000, 2002, and
2005 for extensive reviews). Producer profit margins are larger for firms
in buyer-supplier networks (Talmud 1994; Yasuda 1996; Burt et al. 2002).
Jobs are more desirable (Bian 1994; Leenders and Gabbay 1999; Lin 1999;
Lin, Cook, and Burt 2001). Salaries are higher (Burt 1997, 1998; Podolny
and Baron 1997; Burt, Hogarth, and Michaud 2000; Mehra, Kilduff, and
Brass 2001; Mizruchi and Sterns 2001). And negative correlations have
been found with positive performance evaluations, peer reputations, pro-
motions, and good ideas (Gabbay 1997; Burt 2001, 2004). Given that this
evidence indicates a (negative) association between the constraint formula
and network benefits, we use constraint as an (inverse) indicator for the
utility that actors can extract from a network.

A MODEL OF STRUCTURAL ENTREPRENEURSHIP

What the evidence above does not tell us is whether investments in bro-
kerage relations pay off. Burt has suggested that, in a passive environ-
ment, a structural entrepreneur can thrive by removing ties that are costly
and adding ties that are beneficial, eventually obtaining the returns on
these investments. In an active environment in which others similarly
strategize on partner selection, current network manipulations that lead
to an improved network position in the short run may trigger subsequent
changes by others that could ultimately make an entrepreneur worse off.
This temporal interdependence in decision making is not trivial, and its
examination requires an explicit model. Recently, some models have been
proposed to examine such dynamics. A number of reviews of models of
network dynamics already exist (e.g., Weesie and Flap 1990; Doreian and
Stokman 1997; Stokman and Doreian 2001; Breiger, Carley, and Pattison
2003; these all provide extensive overviews in sociology). But this line of
research has also been receiving more and more attention recently within
economics and physics (see Dutta and Jackson 2003; Jackson 2004; New-
man, Barabási, and Watts 2006; Goyal 2007).

We use a model that assumes that actors optimize a utility function
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through choices in their ego networks (for a similar approach, see also
Robins, Pattison, and Woolcock [2005]). We chose this modeling approach
because Burt’s structural entrepreneurs are precisely such optimizing ac-
tors with brokerage benefits as network-derived utility. One such model
has been independently proposed by Snijders (1996, 2001) in sociology
and by Watts (2001) in economics. We refer to this as the SW model. A
related model was introduced in sociology by Gould (2002) and in eco-
nomics by Myerson (1991, p. 448). To ensure the continuity of this text,
we describe the Gould-Myerson (GM) model in appendix B, in which we
also show how it can be unified with the SW model.

Let us first introduce the necessary notation. The number of actors is
indicated by , is the set of actors, and ij indicatesn ≥ 2 N p {1, 2, . . . , n}
a tie between actors i and j. In our model, actors cannot have ties with
themselves (ties are nonreflexive); if i has a relation with j, then j also
has a relation with i (ties are undirected); and ties are either present or
absent (ties are unvalued). Let gN denote the complete network of all
nonreflexive, undirected, and unvalued connections ij; g � ij denotes
network g with the tie ij added to it, and g � ij denotes network g with
tie ij removed; and ui(g) is the utility of the network g to actor i. Specifying
the model for the special case of Burt’s constraint-based utility, actor i’s
utility is a decreasing function of the constraint measure ci as indicated
above—for example, .4u (g) p �c (g)i i

The SW model asks what an actor would change, given the current
status of the network, if he were offered that possibility. An actor is
allowed to delete a tie or add a tie with permission from the new contact—
as long as it does not make this other actor worse off. Stability is reached
if no actor can profitably delete a tie or add an acceptable tie. Jackson
and Wolinsky (1996) call this pairwise stability:

Definition 1.—A network is pairwise stable if both (a) for allNg P g
, and (b) for all ,ij � g u (g) ≥ u (g � ij) ∧ u (g) ≥ u (g � ij) ij � g u (g �i i j j i

ij) 1 u (g) ⇒ u (g � ij) ! u (g) .i j j

Condition (a) states that no actor wants to sever a tie, and condition
(b) states that no pair of actors wishes to add a tie. On the one hand,
pairwise stability has the advantage that pairs of actors can add ties if
they both want to have a tie. On the other hand, the disadvantage of

4 We make the strong assumption here that reducing network constraint is the only
utility argument for all actors and that the utility derived from a lack of constraint is
the same for all actors. We thereby neglect other utility arguments related to, e.g.,
closure (Burt 2005, chap. 3) and indirect brokerage (Burt 2007). Neither do we inves-
tigate the effects of heterogeneity among actors (see Burt 2005, chap. 1.4). We will
consider these issues in more detail in the discussion section. Note that utility should
be interpreted here as the extent to which an actor is expected to be able to extract
benefits from the network. A network position is not considered beneficial in itself.
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pairwise stability is that it does not consider the simultaneous removal
of multiple ties. Networks can be pairwise stable despite profitable de-
viations that involve multiple ties, even though such deviations arguably
make a network less stable.

Gilles et al. (2006) introduce the stronger concept of strong pairwise
stability for the SW model. Strongly pairwise stable networks are net-
works in which (1) no actor can become better off by deleting any subset
of his ties and (2) no pair of actors wants to add a tie between them.

However, there is an asymmetry here: an actor can delete any number
of ties but can add only one tie—and only if that tie does not make the
other actor worse off. Even more problematic is the assumption that actors
do not simultaneously add and delete ties. For example, strong pairwise
stability implies that an actor does not contemplate improving his network
position by replacing one contact with another. This, however, seems a
rather straightforward change in a network.

To resolve the problems of asymmetry and nonsimultaneity in the de-
letion and addition of ties, we introduce unilateral stability. We first define
unilateral obtainability:

Definition 2.—A network g′ P gN is unilaterally obtainable from g
by i through S P N\{i} if (a) all ties that are in g′ but were not in g involve
actor i and an actor in S, and (b) all ties that are not in g′ but were in g
involve actor i.

In words, one network is unilaterally obtainable from another by a
proposing actor i and through a subgroup S if each tie that is added or
deleted involves actor i and if each tie that is added also involves a
member of S. Now we can define unilateral stability.

Definition 3.—A network g P gN is unilaterally stable if for all i, S
P N\{i}, and g′ P gN unilaterally obtainable from g by i through S, ui(g

′)
1 ui(g) ⇒ uj(g

′) ! uj(g) for some j � S.
In words, a network is called unilaterally stable if no actor i can change

the ties that he is involved in himself such that two conditions are fulfilled:
(1) i is strictly better off, and (2) none of the actors in S to whom actor
i proposes a new tie is worse off than in the original network. The def-
initions above imply that as we move from pairwise stability to strong
pairwise stability and on to unilateral stability, we must render additional
changes in a network undesirable before considering it stable. It follows
that all unilaterally stable networks are strongly pairwise stable, and all
strongly pairwise stable networks are pairwise stable.
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NETWORKS OF STRUCTURAL ENTREPRENEURS

We now identify networks to which no entrepreneur can profitably make
any further change. Our first result states that two actors will always
connect if they have no shared contacts.

Theorem 2.—Adding a tie without creating closed triads is always
beneficial for both actors involved in the new tie.

For purposes of legibility, we moved all proofs to appendix A.
Theorem 2 establishes the unconditional benefits from brokerage. If an

actor adds a tie without creating a closed triad, then this actor will be
on the shortest path between the new contact and all the contacts the
actor already had. And vice versa: the new partner comes to mediate the
information the focal actor receives and passes this along to his old con-
tacts. Scores on the constraint measures of both actors drop. The added
value of an additional tie decreases as more ties are added, because an
actor has to distribute his time among more neighbors and can thus broker
less information per pair of neighbors, but this marginal utility never
becomes zero. As we will see below, the reverse of theorem 2 is not true.
Sometimes actors want to add ties that close triads, and networks with
closed triads can even be pairwise stable.

Corollary 1.—The shortest path between any pair of actors in a pair-
wise stable network has length less than or equal to 2.

The shortest path between two actors can be of length 2 or less only
if both actors are directly connected or can reach each other through a
broker. If neither condition obtains for some pair of actors, then these
actors can add a tie without creating a closed triad, which is profitable,
by theorem 2. Note that since pairwise stability is a weaker stability
concept than unilateral stability, corollary 1 also holds for unilaterally
stable networks.

Corollary 2.—A network of disconnected parts cannot be pairwise
stable.

A network of disconnected parts contains many brokerage opportu-
nities. Every entrepreneur wants to add a tie to someone in another part,
because that tie will never create a closed triad. Such networks can there-
fore not be pairwise stable (nor, consequently, strongly pairwise stable or
unilaterally stable, either). The following set of definitions describes a
family of networks that includes important stable networks:

Definition 4.—
(a) An m-partite network is a network in which the actors can be di-

vided into m groups such that there are no ties within these groups.
(b) The complete m-partite network is the m-partite networkKn ,n ,. . .,n1 2 m

in which all the possible ties between the actors in the m groups,
which have sizes n1, n2, . . . , nm (see Wasserman and Faust 1994,
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p. 120), are present. (The complete tripartite network K2,2,2, or oc-
tahedron, is shown on the right-hand side of fig. 2.)

(c) A balanced m-partite network is an m-partite network such that the
difference between the number of actors in the largest group and the
number of actors in the smallest group is at most 1—that is, groups
are as equal as possible given the number of actors in the network.

(d) If m p 2, m-partite networks are called bipartite networks. (The
balanced complete bipartite network K3,3 is shown in fig. 2.)

(e) If m 1 2, m-partite networks are called multipartite networks.
(f) The complete bipartite network K1,k is also called the k-star.
Now we can formulate the following corollary of theorem 2:
Corollary 3.—Pairwise stable networks that are bipartite networks

are necessarily complete bipartite networks (otherwise, some actors are at
a distance greater than 2 and one can add ties without creating closed
triads).

Corollary 3 says that in order for a bipartite network to be stable, it
will have to be complete. Otherwise, there would be a brokerage oppor-
tunity. As the reader can verify, eliminating any tie in the first network
in figure 1 would make both actors involved in that tie worse off: actor
A would have constraint 1/3 instead of 1/4, and the other actor would
become an isolate. The next result implies that the first network in figure
1 is not strongly pairwise stable, despite its completeness.

Theorem 3.—A complete bipartite network of size n is strongly pairwise
stable, unless it is a k-star with k 1 3. The k-star with k 1 3 is also not
pairwise stable.

Theorem 3 identifies an important class of strongly pairwise stable
networks, and thus also of pairwise stable networks. As soon as both
groups in a bipartite network consist of at least two actors and the network
is complete, it is strongly pairwise stable. The reasoning behind this result
is as follows. No pair of actors wants to add a tie, because it would cause
many closed triads to form. Moreover, no removal of any number of ties
is beneficial, as we know from theorem 2. No bipartite network contains
any closed triads, so no subnetwork of a bipartite network can contain
any closed triads either. As a result, no actor wishes to delete any number
of ties, because there are no closed triads.

If, by contrast, one of the groups consists of only one actor, only net-
works with at most three peripheral actors can be stable. The first network
in figure 1 is a 4-star, and by theorem 3 it is not pairwise stable. The
reason is that any two peripheral actors wish to connect: B and C lower
their constraint from 1 to 61/64 if they connect, even though this tie creates
a closed triad. In some cases, when the broker has many ties and can
therefore spend little time passing information, it is better to establish a
direct connection. This is what happens in this example network. Actors
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Fig. 2.—Examples of a balanced complete bipartite network and a multipartite network

B and C connect because A spends too much time with D and E. The
middle network in figure 1 evolves. Given the argument for the instability
of larger stars, it is surprising that in other unbalanced complete bipartite
networks, actors in the larger groups never have an incentive to connect.
If one broker can be too busy, then why is it that two cannot? This is
one of a number of idiosyncrasies of Burt’s constraint measure that we
discuss in the last section.

Complete bipartite networks have another nice property—namely, that
they are efficient in the Pareto sense.

Definition 5.—A network is Pareto efficient if there is no other net-
work in which no actor is worse off and at least one actor is better off.

If our actors could cooperate and enforce agreements—which we have
assumed they cannot—then they would not be able to leave a Pareto-
efficient network. There would always be some actor vetoing a transition.
The following theorem tells us that the class of stable networks identified
in theorem 2 is Pareto efficient:

Theorem 4.—Complete bipartite networks are Pareto efficient.
We could not prove the reverse of theorem 4—namely, that complete

bipartite networks are the only efficient networks. We verified that there
do not exist other Pareto-efficient networks that involve eight or fewer
actors.

We now specify a necessary and sufficient condition under which com-
plete bipartite networks are not only strongly pairwise stable but also
unilaterally stable.

Theorem 5.—A complete bipartite network is unilaterally stable if and
only if it is balanced.

Theorem 5 can be intuitively grasped by considering a particular type
of network change. In any unbalanced complete bipartite network, a
member of the larger group can give up all relations to the other group
and initiate new relations to all actors in his own group. In this way, this
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actor leaves the large group to become a member of the smaller group.
This actor strictly increases his number of ties, while keeping the number
of closed triads at zero. This network change is therefore profitable to
that actor, as we know from theorem 2. Moreover, the new contacts—
the remaining members of the larger group—are happy to connect, be-
cause they also each gain a contact without the creation of closed triads,
and so their utility increases as well. The members of the smaller group
are worse off, but they do not have a say in this network change because
no ties need to be added to the members of the smaller group. In balanced
complete bipartite networks, by contrast, such a network change does not
result in an increase in the number of ties and is therefore not a utility-
increasing change.

Theorems 4 and 5 together identify a class of networks that are efficient
and stable under the strictest stability condition. In a balanced complete
bipartite network, no actor can profit from deleting and adding permitted
ties to other actors in any combination without making at least one of
the new contacts worse off. These stable networks contain no closed triads.
This suggests the intuitive conclusion that the striving for structural holes
by all actors should eliminate closed triads from the network. Actors
terminate all contacts they are already indirectly connected to and initiate
contacts they do not indirectly have. One would intuitively expect that
if everyone followed this example, no closed triads would remain. This
intuition turns out to be wrong. We now identify a second class of pairwise
stable networks that are not unilaterally stable. Surprisingly, this class of
stable networks contains many closed triads.

Theorem 6.—All complete multipartite networks are pairwise stable if
the groups are of equal size and contain more than one actor.

One example of a network that meets the requirement of theorem 6 is
the six-actor complete tripartite network K2,2,2 (see fig. 2). This network
is neither unilaterally stable nor strongly pairwise stable. If an actor deletes
two ties, then the actor’s constraint drops from 9/16 to 1/2. The network
is nevertheless pairwise stable because if an actor is allowed to delete only
a single tie, he prefers to keep it. His constraint then increases to 43/72.
The limited gain actors get from removing one tie is mainly due to the
fact that removing one tie will not remove all closed triads with any of
their neighbors. As a result, the gain from removing some closed triads
is relatively small. However, by removing multiple ties, actors can gain
some neighbors with whom they do not have any closed triads. Because
the deletion of two ties makes an actor better off, this is also an indication
that pairwise stability might be a bit too weak as a stability concept.
Moreover, the K2,2,2 is extremely inefficient. All actors would fare better
in the K3,3, which gives each actor constraint 1/3. More generally, this
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class of complete multipartite networks consists of Pareto-inefficient pair-
wise stable networks.

SIMULATION

We have identified two main classes of pairwise stable networks to which
structural entrepreneurship might give rise. The first class consists of
complete bipartite networks in which there are no closed triads, and, if
Burt’s constraint formula correctly quantifies brokerage benefits, they are
Pareto efficient. No alternative network makes one actor better off without
making another worse off. We have also shown that a subset of these
networks satisfy stronger stability requirements. Second, in the multi-
partite networks of theorem 6, all pairs are brokered, and in addition, the
majority of pairs are directly connected. The latter networks contain many
closed triads and are Pareto inefficient. Every actor would fare better in
the balanced complete bipartite network of the same size. Yet these mul-
tipartite networks are pairwise stable. No entrepreneur can profitably
delete a single tie, and no pair of actors can profitably add a single tie.

On the basis of our analysis, we might expect either type of network—
or yet another—to arise in a world in which entrepreneurs pursue access
and control benefits by changing ties one by one. Simulating such a world
enables us to investigate which of the two types of networks is more likely
to emerge. Such simulations also help us identify potential pairwise stable
structures that the two classes of networks mentioned above do not cover.

The simulation we built executes the following steps:
1. Start from some network.
2. Randomly order all actors in the network. Pick the first actor in this

ordering and continue with step 3.
3. The chosen actor considers, in a random order, for each absent or

existing tie whether he can or cannot decrease his constraint by
changing the status of the tie. If he cannot decrease his constraint,
he will stick to the present situation. Otherwise, he decreases his
constraint either by adding the tie because he wants to have it and
the other actor involved also wants to have it, or by removing the
tie because he prefers not to have it. If the actor does not change
this tie, step 3 is repeated until either the actor finds a tie that he
can profitably change or he has considered all his ties without seeing
any opportunity to decrease his constraint. After a tie change, the
simulation returns to step 2. If the actor has considered all his ties
without making a change, the process proceeds to step 4.

4. Pick the next actor in the ordering created in step 2 and return to
step 3. If all actors have had their chance to make a change and no
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one has made a change, the process stops.
Networks that are formed after this simulation process stops are nec-

essarily pairwise stable; otherwise, they could not have passed the stopping
rule in step 4.

The analysis of the simulation consists of two parts. First, we investigate
to what extent the analytic results above exhaust the pairwise stable
networks that exist. As we will see, some other stable networks exist.
Second, we study the likelihood that given network size, a particular
pairwise stable network emerges.

We ran simulations starting with each of the 13,597 nonisomorphic
networks of sizes 2–8. This allowed us to identify all pairwise stable
networks for these network sizes, since simulations starting from pairwise
stable networks end instantly. We drew a sample of all networks stratified
on density for network sizes 9–25. We decreased the number of networks
per network density for larger network sizes, in order to have comparable
numbers of networks per network size. In this way, we attempt to min-
imize bias toward networks of a particular density while keeping the set
feasibly small (for a complete overview of the sampling procedure, see
Buskens and Snijders [2008]). For each emerging pairwise stable network,
we checked whether it was strongly pairwise stable or unilaterally stable
as well.

Table 1 shows the numbers of stable networks by network size and
stability concept. Figure 3 displays the pentagon, the wheel, and other
pairwise stable networks that do not belong to one of the two general
classes derived from the theorems analytically. For , we have then p 2
connected pair (or 1-star) as the only pairwise stable network. For n p

, the 2-star is the only pairwise stable network. For , the K2,2 and3 n p 4
the 3-star are the pairwise stable networks. For , there are twon p 5
pairwise stable networks, the pentagon (see fig. 3) and the K2,3, which are
both unilaterally stable. For , there are four pairwise stable net-n p 6
works: the K2,4 and the K3,3, as well as the bag (see fig. 3) and the K2,2,2.
The K2,2,2 is not strongly pairwise stable, and only the K3,3 is unilaterally
stable. For , there are three pairwise stable networks: the K2,5, then p 7
K3,4, and the PS2

1
, 3

6 (see fig. 3; the name indicates the degree-distribution—
i.e., there is one actor with two ties and six with three ties). The K3,4 is
also unilaterally stable. For , there are 10 pairwise stable networks:n p 8
the K2,6, the K3,5, the K4,4, the wheel (see fig. 3), the K2,2,2,2, and the five
remaining networks in figure 3 that have not yet been mentioned. The
three densest networks, including the K2,2,2,2, are not strongly pairwise
stable. The wheel is the second unilaterally stable network for , inn p 8
addition to the K4,4. It is a regular structure in which everyone has three
ties and occupies a regularly equivalent (Wasserman and Faust 1994, pp.
473–74) position with all the others.
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TABLE 1
Number of Networks (Found) for Various Stability Criteria

n Nonisomorphic Connected
Pairwise
Stable

Strongly Pairwise
Stable

Unilaterally
Stable

2 . . . . 2 1 1 1 1
3 . . . . 4 2 1 1 1
4 . . . . 11 6 2 2 1
5 . . . . 34 21 2 2 2
6 . . . . 156 112 4 3 1
7 . . . . 1,044 853 3 3 1
8 . . . . 12,346 11,117 10 7 2
9 . . . . 274,668 261,080 9 7 1
10 . . . 12.01 # 106 11.72 # 106 14 9 2
11 . . . 10.19 # 108 10.07 # 108 15 10 1
12 . . . 16.51 # 1010 16.41 # 1010 27 12 1
13 . . . 50.50 # 1012 50.34 # 1012 14 7 1
14 . . . 29.05 # 1015 29.00 # 1015 20 10 1
15 . . . 31.43 # 1018 31.40 # 1018 26 13 2
16 . . . 64.00 # 1021 63.97 # 1021 28 16 2
17 . . . 24.59 # 1025 24.59 # 1025 25 14 1
18 . . . 17.88 # 1029 17.87 # 1029 33 21 1
19 . . . 24.64 # 1033 24.64 # 1033 35 18 1
20 . . . 64.55 # 1037 64.55 # 1037 40 25 2
21 . . . 32.22 # 1042 32.22 # 1042 43 24 1
22 . . . 30.71 # 1047 30.71 # 1047 48 26 1
23 . . . 55.99 # 1052 55.99 # 1052 58 31 1
24 . . . 19.57 # 1058 19.57 # 1058 58 28 1
25 . . . 13.13 # 1064 13.13 # 1064 68 31 2

Note.—For , we checked all possible structures; for n 1 10, we report the networks as foundn ≤ 10
in our simulations.

In addition, we checked which of the more than 12 million noniso-
morphic networks of sizes 9 and 10 fulfilled a specific stability condition.
In this way, we found nine pairwise stable networks for and 14n p 9
pairwise stable networks for . The unilaterally stable structuresn p 10
for are the K5,5 and another network in which every actor hasn p 10
four ties. Finally, for sizes 11–25, we checked whether the networks that
resulted from the simulations were strongly pairwise stable or unilaterally
stable as well. The results are also summarized in table 1. For network
sizes larger than 10, it is not guaranteed that every stable network has
been found, because not all starting networks were considered.5 In fact,
we know from the analytical results that some networks that we did not
find in the simulations are nevertheless pairwise stable. Still, these results

5 Checking all structures for n p 10 took about five days with our software and
computers, which implies that for n p 11 it would take about 500 days.
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Fig 3.—Pairwise stable networks not belonging to the class of complete bipartite net-
works nor the class of multipartite networks.

show that the number of pairwise stable networks per network size is
very small and increases only slowly with network size. There is no net-
work size for which we identified more than two unilaterally stable
networks, which suggests that the relative number of unilaterally stable
networks increases even less with network size than the number of pair-
wise stable networks.

The additional unilaterally stable networks that we found fall into two
classes that the simulation enabled us to discover. The first of these classes
comprises networks with a number of actors that is a multiple of five—
say, 5m—and that are generalizations of the pentagon. The actors are
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divided into five equally sized groups, and the groups are organized in a
pentagon. There are no ties within these groups, but all actors are con-
nected with all actors in the two neighboring groups around the pentagon.
The second network in figure 4 is the example of a generalized pentagon
with 10 actors. In these networks, every actor has 2m ties, which makes
them inefficient. By comparison, in the balanced complete bipartite net-
work of the same size (the first network in fig. 4), which is also void of
closed triads, an actor has approximately 2.5m ties and therefore a lower
score on the constraint measure. The second additional class of unilaterally
stable networks are networks with a number of actors that is a multiple
of eight, say, 8m actors. The actors are divided into eight groups of size
m, and these groups are ordered along a circle. All actors are then con-
nected to all actors in the two neighboring groups as well as to all actors
in the group right across the circle. There are no ties within the groups.
The third network in figure 4 is the example of such a network with 16
actors. These networks are generalizations of the wheel in figure 3. Each
actor has 3m ties in these networks, which is clearly inefficient in com-
parison with the balanced complete bipartite network, in which each actor
has 4m ties. We found the cases and as results of simulationsm p 1 m p 2
on which we report below, but not the 24-actor network with .6m p 3

Now we turn to the analyses about the likelihood that a certain stable
network emerges in the simulation. We introduced noise to investigate
the extent to which our results depend on whether actors sometimes make
mistakes in their decisions.7 We ran more noise levels and more replica-

6 The formal proof that these two classes of networks are unilaterally stable is even
more laborious than the proof of theorem 4, because more different situations have to
be distinguished. The proof is available from the authors, but was not added to app.
A because it does not provide substantially new insights. We thank Jurjen Kamphorst
for assistance in completing this proof.
7 Step 3 in the simulation is a bit more complicated in the case of noise. For each
absent or existing tie an actor considers, there are now two possibilities: (a) The actor
makes a mistake with probability 1 � (1 � noise)1/(n-1). This implies that he increases
his constraint either by adding the tie while he does not want to have it, by removing
the tie while he would like to keep it, or by staying in the situation in which he already
is while he would be better off otherwise. Mistaken additions do not require consent.
If a tie is proposed by mistake, it is always accepted. After any mistake, the simulation
returns to step 2 of the simulation process. (b) With probability (1 � noise)1/(n�1), the
actor does not make a mistake. In this case, if he cannot decrease his constraint by
changing the status of the tie, he will stick to the present situation. Otherwise, he
decreases his constraint either by adding the tie because he wants to have it and the
other actor involved also wants to have it, or by removing the tie because he prefers
not to have it. If the actor does not change this tie, step 4 is repeated until either the
actor finds a tie that he can profitably change, or he makes a mistake, or he has
considered all his ties without seeing any possibility to decrease his constraint. As soon
as the actor changes a tie or makes a mistake, the process returns to step 2. If the
actor has considered all his ties without making a change or a mistake, the process
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Fig. 4.—Representatives of three classes of unilaterally stable networks: balanced com-
plete bipartite network, generalized pentagon, and generalized wheel.

tions of the same starting network and noise level for small networks to
obtain more reliable estimates of the likelihoods to converge to a specific
structure. To maintain feasibility, we reduced the number of repetitions
as well as the noise levels for larger networks. One can see from the results
that variations with noise are smaller for larger networks. The complete
overview is provided in table 2. Convergence to pairwise stability always
occurs, and it does so reasonably fast, although time to convergence in-
creases quickly with noise. For , the maximum number of iterationsn p 25
to reach a pairwise stable network is 347 without noise, but the iterations
exceed 3,000 for and a noise level of 0.2.8n p 16

Examining the entire range of n from size 2 through 25 in table 3, we
can make several important observations. The number of pairwise stable
networks increases as n increases, although not entirely monotonically.
For any size, the number of pairwise stable networks is small compared
to the total number of networks of that size. The balanced complete
bipartite network is by far the most likely to emerge from the simulations.
The less equal the group sizes of a complete bipartite network are, the
less likely it emerges in the simulation. Table 3 shows the proportions of
simulations from which the most equal and the second most equal com-
plete bipartite networks emerge as pairwise stable networks. These two
networks cover more than 90% of the resulting networks for withoutn 1 9

proceeds to step 4. We chose the probability for a mistake such that an actor does not
make a mistake with probability [(1 � noise)1/(n�1)](n�1) p 1 � noise after considering
all his ties. Thus, he makes a mistake with a probability noise, which we will call the
noise level. The noise level is varied from 0 (no mistakes) to 0.3, in steps of 0.1.
8 We did not extend the analyses to larger networks for two reasons. First, the patterns
of the results are clear and change only gradually while network size is increasing.
Therefore, increasing size to networks with 30 or even 40 actors would not lead to
substantially new insights. Second, simulation time increases exponentially with net-
work size, which makes running a considerable number of starting networks with 50
or more actors infeasible.
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TABLE 2
Simulation Design

n Repetitionsa Noise Levels

2–3 . . . . . . . 4 0, 0.1, 0.2, and 0.3
4–5 . . . . . . . 250 0, 0.1, 0.2, and 0.3
6 . . . . . . . . . . 25 0, 0.1, 0.2, and 0.3
7–8 . . . . . . . 4 0, 0.1, 0.2, and 0.3
9–16 . . . . . . 2 0, 0.1, and 0.2
17–25 . . . . 2 0 and 0.1

a Per network and per noise level.

noise and for all n except and if there is enough noise. If nn p 5 n p 7
is odd, the balanced complete bipartite network alone even accounts for
over 80% of the resulting pairwise stable networks, except for .n p 7
There are no other pairwise stable networks that obtain in a large pro-
portion of simulations (especially with noise) except for the pentagon (19%)
and the PS2

1
,3

6 for n p 7 (32%). For , no other network occurs inn ≥ 8
more than 4% of the simulations, although the complete bipartite net-
works that are two steps from balanced gain some territory for larger
even-sized networks. The other unilaterally stable networks that are not
bipartite do not emerge in substantially larger percentages than other
pairwise stable networks (except for the pentagon). The wheel, for ex-
ample, occurs in only 1% of the simulations for n p 8. Complete multi-
partite networks are obtained in only a negligible number of cases. It
turns out that adding noise to the dynamical process increases the like-
lihood that a network converges to a complete bipartite network, mostly
to a balanced complete bipartite network.

Additional analyses show that it is very unlikely that our main results
depend on the set of starting networks. Since we used all possible struc-
tures for , we reweighed our results by counting every network withn ! 9
the number of isomorphic structures that exist for the network.9 In this
way, we obtain statistics that resemble statistics for starting from a random
network. It turns out that table 3 would hardly change despite such a
rather drastic reweighing of cases. In addition, the correlation that does
exist between the density of the starting networks and the density of the
resulting networks is small for simulations without noise and completely
disappears when noise is added.

Although only a bit more than half of the pairwise stable networks we
discovered in the simulations are also strongly pairwise stable, it turns
out that virtually all simulations (98.5% without noise and up to 99.8%

9 Numbers of isomorphisms were determined using Nauty 2.2 (see McKay 1990).
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with noise p 0.3) end in a strongly pairwise stable network. The dominant
stable network is the balanced complete bipartite network—an efficient
and egalitarian network. This result is robust throughout all analyzed
network sizes and all noise levels.

DISCUSSION

We have attempted to illuminate the relationship between, on the one
hand, the increased autonomy actors have in the selection of interaction
partners in modern society and, on the other hand, contemporary changes
in societal cohesion. We have done so by characterizing the networks that
a simple model of strategic networking produces. We chose actors in this
model to be of an ideal-type. They are “structural entrepreneurs” in the
way Burt (1992) intended: they optimize relationships in terms of bro-
kerage opportunities, initiate relationships with others who are otherwise
unconnected, and resolve relationships if they are not cost effective in
terms of access and control benefits. More specifically, we have assumed
that everyone tries to minimize his network constraint, Burt’s measure
for brokerage. We then answered the question, What networks will
evolve?

The answer we found is that most of the time, balanced complete
bipartite networks evolve. These networks consist of two groups of similar
size with all intergroup ties and no intragroup ties present. Such networks
meet the unilateral stability criterion, most simulations generated such
networks, and this result was robust across noise levels and network sizes.
The balanced complete bipartite network strongly contrasts with the out-
come of strategic networking activity, where one actor brokers multiple
dense, otherwise separated groups. Moreover, it contrasts with some eco-
nomic models of network dynamics in information and communication
settings that identify stars as the stable networks. It confirms Burt’s (2005)
speculation that when the monopoly on structural entrepreneurship is
lifted, structural advantages most likely disappear.

The difference between our predicted networks and more star-like net-
works is considerable not only in terms of structure, but also in the
distribution of benefits among the entrepreneurs. Burt’s single-broker
structure and the star are both winner-take-all networks. Balanced com-
plete bipartite networks, by contrast, are egalitarian. They benefit each
entrepreneur equally. The reason is that everyone is as little a broker as
anyone else. Even though each entrepreneur attempts to occupy a bro-
kering position, two-step information flow between any two people travels
through at least (n � 1) third parties in balanced complete bipartite1

2
networks. Thus, betweenness centrality (Freeman 1979; Wasserman and
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Faust 1994, pp. 189–91) is not particularly high for any single actor.
Although unbalanced complete bipartite networks emerge with a smaller
likelihood than the balanced ones, it is important to realize that, in these
strongly pairwise stable networks, the actors in the smaller group do have
a comparative advantage. The smaller the small group is, the larger this
advantage.

As for global network properties, we have proven that all stable net-
works necessarily have a maximal path length of 2. It should be noted
that had we introduced some stricter form of budget or time constraint
in the model, networks would have been less dense and distances between
actors would have been larger. Notwithstanding the density of the stable
networks, our simulations overwhelmingly produced networks void of
social closure. Strategic social networking can thus explain decreased clo-
sure in certain economic spheres of society where networking is prevalent
(Putnam 1995). And last, clustering is minimal in all of the stable networks
we found. The mechanism of structural entrepreneurship thus eliminates
any signature of social groups. Socioeconomic circles of the type consid-
ered here become maximally crosscutting (Blau and Schwartz 1984).

We identified three other classes of stable networks, namely, symmetric
multipartite networks, generalizations of the pentagon, and generaliza-
tions of the wheel. These classes are all egalitarian as well. Every actor
is equally well off. In addition, these networks are inefficient in terms of
their network constraint. Especially the even-sized multipartite networks
that are divided in n/2 groups of size 2 contain numerous closed triads
despite their pairwise stability. The generalizations of the pentagon and
the wheel, by contrast, are inefficient because of sparseness. Balanced
complete bipartite networks of the same size give each actor more ties
without adding closed triads.

Another property of balanced complete bipartite networks is that they
are not stars. Economists have also recently modeled network dynamics
as a process in which actors maximize information-based utility. Jackson
and Wolinsky (1996), Bala and Goyal (2000), and Goyal and Vega-
Redondo (2007), using three distinct utility functions, all find the star to
be the dominant equilibrium network. Goyal and Vega-Redondo even
contend that their utility function is a measurement for the richness of
structural holes in someone’s network. Their model does not use the
constraint measure as proposed by Burt (1992). A theoretical reason for
the difference between the two models is that control benefits are not
subject to decay over longer paths in Goyal and Vega-Redondo’s model.
This implies that brokerage of indirectly received information is as val-
uable as brokerage of directly received information. By contrast, Burt’s
constraint measure implies that brokerage of indirectly received infor-
mation is worthless, and only brokerage of directly received information
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creates value. Although both assumptions are quite extreme, we choose
to insist strictly on using the constraint measure for three reasons. First,
actors who take indirect brokerage benefits into account must have in-
formation on the structure of the entire network. Their model is thus
scope-limited to settings in which such information is readily available.
The actors in our model need to know only which of their contacts are
in contact with one another and which are not, and how many relations
their direct contacts have in the network. Second, the constraint measure
has empirically been shown to explain success (see the evidence discussed
at the start of this article). And third, Burt (2007) demonstrates in a recent
paper that the returns on indirect brokerage are in some contexts not
visible at all, and if they are found, they are considerably smaller than
returns on direct brokerage. This provides empirical evidence for an as-
pect of the constraint measure that is quite crucial for our results—namely,
that additional routes to indirect contacts are always cost effective. The
other studies do not have a body of empirical evidence to back up their
utility functions.

Still, the fact that different formalizations of theoretically the same
concept yield such different results raises the question, How robust are
our results for changes in assumptions on the utility function? Three
properties of the network constraint are crucial for our finding. First,
network ties are in principle cheap, so if they are well chosen, an actor
wants as many ties as possible. Second, closed triads are bad, so that an
actor almost never wants to create a tie if it closes a triad. Third, alter-
native information channels to distant others are never superfluous.

These three properties are maintained if we change the utility function
to be decreasing not in the absolute but in the relative constraint score—
the absolute constraint of an actor divided by the sum of the absolute
constraints of the other actors. This alternative measure would be ap-
plicable to settings in which benefits are arguably zero-sum, as in Burt’s
(1992) example of promotions, where only one out of a pool of candidates
can be promoted. We analyzed and simulated a model with this alternative
utility function. Results were very similar. Also under this utility function,
the balanced complete bipartite networks are the dominant stable net-
works. They are pairwise stable and emerge in the majority of simulations.

In Burger and Buskens (2008) and Kleinberg et al. (2008), the utility
function is reduced to its basic principles. In Burger and Buskens (2008),
there are (marginally decreasing) benefits of ties and linear costs for ties
and closed triads. This much simpler utility function, which also has the
three properties mentioned above, led to complete bipartite networks’
being the most prominent class of networks to emerge and also to a higher
likelihood for balanced complete bipartite networks. Kleinberg et al.
(2008) consider linear benefits and costs of ties, as well as linear benefits
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of direct brokerage that decrease in the number of brokers. This utility
function satisfies the first and third property but is open-triad seeking
rather than closed-triad avoiding. Interestingly, Kleinberg et al. (2008)
find the multipartite networks of our theorem 6 to be equilibrium
networks.

In addition, Robins et al. (2005) find in a stochastic network evolution
context that networks converge to the networks we also predict if they
introduce a low probability that closed triads are formed and relatively
small costs for having ties in general. Their figure 12 (Robins et al. 2005,
p. 931) shows two representations of a complete bipartite network (the
top one is balanced), which indicates that even with changed other pa-
rameters, as long as triads are unlikely enough and direct relations are
likely enough, complete bipartite networks also emerge in this set-up. Our
conclusions would also not change if we added indirect constraint, as is
done by Burt (2007; an actor’s indirect constraint is the average of the
constraints of his neighbors)—we would still find the same networks to
be stable because indirect constraint is optimized, given that each indi-
vidual constraint is optimized.

The main results of our article will change if we change one of the
three crucial properties mentioned above. First, results change if we take
into account that there is limited new information in multiple contacts if
these are linked to many of the same third parties (see Reagans and
Zuckerman, in press). Complete bipartite networks are full of such re-
dundancies over two steps and, therefore, are unlikely to be stable if such
redundancies are taken into account. Second, if relations are so expensive
that actors do not want to connect to at least half of the group, complete
bipartite networks will no longer be stable. If this were the only change
to the utility function, networks would remain to stabilize in bipartite
structures, but these structures would not be complete. Third, stability
results will—obviously—change if we assume not that closed triads are
costly but rather that actors value closed triads in a positive way. This
will lead to either complete networks or, if direct ties are relatively ex-
pensive, networks that segment into different complete subnetworks (see
Burger and Buskens 2008).

An important next question is how we can empirically test the impli-
cations of our theoretical results. The settings to which Burt’s structural
entrepreneurship (and thus also our results) apply are competitive settings
where firsthand information is important. We can imagine two examples
of settings that fulfill these conditions to some extent. The first example
is colleagues within firms in which the competition for promotion is very
high. For instance, consider a firm like the one in Burt and Ronchi (2007),
in which a large group of employees is trained in structural hole theory.
We would expect performance to increase after training because of more
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efficient information flows, but we would expect the effects on promotion
changes to be less striking (as is also found by Burt and Ronchi), given
that if everyone strives for structural holes, structural advantages can be
expected to disappear. A second example can be firms in competitive and
innovative sectors in which well-chosen alliances with other firms are an
important precondition for securing competitiveness within the sector. A
testing of the theory does not need to concentrate only on whether the
ultimate stable networks emerge. Looking at the microlevel, our model
also provides predictions for which relations are more likely to be estab-
lished or broken than others. Using longitudinal network data, we could
investigate the extent to which the model predicts changes in the network
even when a stable network is not yet formed. This would imply testing
whether the network constraint has an effect on tie formation, using
statistical models such as those developed by Snijders (2001, 2005). In a
laboratory experiment, Burger and Buskens (2008) show that if the in-
centive structure resembles the one related to structural holes, networks
are very likely to emerge as balanced complete bipartite networks. Al-
though this is a test in a rather artificial setting, it creates some confidence
that if we know the incentives at the individual level well, models such
as the one presented in this article are able to predict the emerging
structure.

To conclude, we want to emphasize that this article provides a bench-
mark for research on the emergence of networks. Using a combination
of stability and simulation analysis, we have shown how one can derive
stable networks and study the likelihood of the emergence of these net-
works, and thus how one can derive hypotheses on the structures that
can be expected given specified network benefits. The theoretical meth-
odology allows for many possible extensions. A seemingly obvious one
would be adding explicit costs for maintaining ties, as is common in the
literature. This would be particularly interesting if we assumed hetero-
geneity between actors in costs of bridging ties. Some actors might be
natural entrepreneurs, while others may not have the inclination or cour-
age to step up to strangers and build bridging ties, or they just may not
observe these brokerage opportunities. Another way to include hetero-
geneity among actors in the model might be to assume that structural
holes are not the only things that matter. In many settings, other competing
incentives will be present, such as balance in friendship networks. As
Burt (2005, chap. 5) notes in the last chapter of his recent book, stability
might emerge in networks even with many brokerage opportunities still
open, since a considerable number of actors are not interested in brokerage
or are not able to observe these structural holes. Finally, considering the
two types of social capital that Burt (2005, chap. 3) distinguishes, it may
be fruitful to use a utility function that is a hybrid of a brokerage-based
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utility function and a closure-based utility function. One could then make
the relative importance of closure a parameter and study the consequences
for network stability. Sato (1997) has already taken a first step in this
direction. Results would change, because complete bipartite networks do
not include any closed triads. Likely, actors who care little about structural
holes but a lot about friendship and trust end up in networks full of
unexploited brokerage opportunities, but such speculations are unwar-
ranted in the absence of a formal foundation.

APPENDIX A

Proofs

For the convenience of the reader, the theorems are reproduced here along
with their proofs.

Theorem 1.—For the Burt constraint measure, it holds that c ≤ 9/8i

if di 1 0 for all actors i in the network.
Proof. We can rewrite the constraint measure as

21 1
c p 1 � ,� �i ( )2d dj ki k

where j is the index for neighbors of i, and k is the index for neighbors
of i that are also connected to j. This constitutes the product of with21/di

a sum of squares of di numbers that are greater than or equal to 1. Consider
the sum of these numbers:

1
d � .��i( )dj k k

We rearrange the terms in this double summation, realizing that for each
neighbor j of i, the term 1/dj is included exactly once for each common
neighbor k. In addition, the number of neighbors that j shares with i is
smaller than or equal to dj � 1 and smaller than or equal to di � 1.
Therefore,

� 1k1 min (d ,d ) � 1i jd � p d � ≤ d ��� � �( )i i i( ) [ ]d d dj k j jk j j

≤ [d � (d � 1)] p 2d � 1.i i i

We maximize a sum of squares of nonnegative numbers while holding
the sum constant by assigning a value as close to 0 as possible to all
elements but one and assigning the remainder to this last element. Since
the sum of the di numbers is smaller than or equal to 2di � 1, and the
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numbers are always larger than or equal to 1, the maximum sum of
squares is . Hence, we can write2 2 2d � (d � 1) # 1 p d � d � 1i i i i

2 21 1 d � d � 1 5i ic p 1 � ≤ ≤ .� �i ( )2 2d d d 4j ki k i

For di p 2, we know that ci reaches a maximum when the two neighbors
are connected: ci p 9/8 ! 5/4. Since the previous formula tells us that for
di 1 6, ci is strictly lower than 9/8, inspecting all seven-actor networks
and not finding a value for ci of at least 9/8 implies that 9/8 is indeed the
maximum value for ci. The argument for this last implication is that every
network position for a focal actor with six or fewer neighbors that can
occur will occur in a seven-actor network. In larger networks, this can
only be complemented with neighbors who have more neighbors them-
selves outside the original seven actors, but this will only decrease the
constraint of the focal actor. Q.E.D.

Theorem 2.—Adding a tie without creating closed triads is always
beneficial for both actors involved in the new tie.

Proof. We rewrite the constraint of actor i as

21 1
c p 1 � ,� �i ( )2d dj qi q

where di is the number of actors i is linked to, j is the index for neighbors
of i, and q is the index for neighbors of i that are also connected to j.
This can be done because pij p 1/di for all neighbors j of i. Suppose that
two actors i and r can add a tie without creating a closed triad. Neither
before nor after tie addition are there any actors q who are connected to
both i and r. Let ci denote the network constraint of i before and ci* that
after the initiation of the new tie, and let j continue to stand for the index
of neighbors before tie addition. Then,

21 1∗c p 1 � 1 � .� �i ( )[ ]2(d � 1) dj qi q

Using straightforward calculations, this implies that

2 21 1 1 1∗c � c p 1 � 1 � � 1 �� � � �i i ( ) ( )2 [ ] 2( )d � 1 d d dj q j qi q i q

2 2 2 2
2( ) ( )d � 1 � d d � 1 � di i i i1 1 1

p � 1 � ≤ �� �( )2 2 2 2 2( ) ( ) ( ) ( )d � 1 d d � 1 d d � 1 d d � 1j qi i i q i i i

�d � 1 1ip p � ! 0.2( ) ( )d d � 1 d d � 1i i i i
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Thus, the addition of the new tie necessarily decreases actor i’s network
constraint and hence increases his utility. Similarly, the constraint de-
creases for actor r. Q.E.D.

Theorem 3.—A complete bipartite network of size n is strongly pairwise
stable, unless it is a k-star with k 1 3.

Proof. We proceed by showing that no change to such a network is
profitable and feasible. Removing one or more ties is not an option in a
Kk,l because that would create a shortest path longer than 2, and hence
it cannot be an improvement, by corollary 1. Therefore, we need to con-
sider only conditions under which group members create a tie within their
group. Without loss of generality, assume . The constraint in thek ≤ l
complete bipartite network equals for actors in the group of size l and1/k
1/l for actors in the group of size k. Creating a tie in the larger group of
l actors changes the constraint of the two actors involved in that tie to

2 2k 1 1 k
1 � � 1 �[ ] ( )2 2(k � 1) (k � 1) (k � 1) l

2 21 k(k � 2) (l � k)
p � ,[ ]2 2 2(k � 1) (k � 1) l

because these actors now have one common neighbor with all the actors
in the group of size k and k common neighbors with each other. In order
for the network to be strongly pairwise stable, this expression must be
larger than , or1/k

2 2 2k(k � 2) (l � k) (k � 1)
2 2 2 2 2 4 2� 1 ⇔ k l (k � 2) � k(k � 1) (k � l) 1 (k � 1) l[ ]2 2(k � 1) l k

2 2 2 2⇔ k(k � 1) (k � l) 1 (2k � 4k � 1)l . (A1)

Thus, if k p 1, should hold. Therefore, stars2 24 # (l � 1) 1 7l ⇔ l ! 4
are stable only if there are fewer than four peripheral actors. If k 1 1,
then the inequality above is always implied by 2 2k(k � 1) 1 2k � 4k �

, and this condition is always fulfilled for k 1 1.31 ⇔ k � 3k � 1 1 0
The same expression should hold for actors in the small group, but

then with k and l reversed:

2 2 2l(l � 2) (l � k) (l � 1)
� 1 . (A2)[ ]2 2(l � 1) k l

Inequality (A2) is satisfied for any l 1 1, , by reason of symmetry,l ≥ k ≥ 1
because (A1) holds for all k 1 1. Note that the case l p k p 1 is irrelevant
because no tie can be added. Q.E.D.

Theorem 4.—Complete bipartite networks are Pareto efficient.
Proof. Consider an actor i from the smaller group of actors.k ≤ l
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The network constraint of i can be lower in another network than in the
focal complete bipartite network only if he has more than l ties in that
other network. This is so because the minimal constraint one can have
with l ties, namely, in the absence of closed triads, is

21 1 1 1
c p 1 � p l p .� �i ( )2 2d d l lj qi q

Let be this additional number of ties of actor i; let j be the indexa ≤ k � 1
for neighbors of i in the new network, and q the index for actors that i
and j share as neighbors; and let pj indicate the proportion ties of j with
other neighbors of i out of all ties of j, and the average of all l � ap̄j

proportions . Then, for i to have a lower network constraint in the newpj

network, the following inequality must hold:

21 1 1 1 1
1 1 � ≥ 1 �� � � �( ) ( )2 2l (l � a) d (l � a) dj q j qq q

1 1
p 1 �� �( )2(l � a) dj q j

1 1 a
¯p (1 � p ) p (1 � p ) ⇒ p ! for some j.� j j j2(l � a) (l � a) lj

The most difficult step in the derivation above is the first equality, which
is implied by the fact that for each j the number of times 1/dj should be
added on account of closed triads is equal to the number of common
neighbors that j has with i.

Note that for each j, in order to be at least as well off in the new
network as in the complete bipartite network considered, his degree dj

must be at least k. Only k � a � 1 of j’s connections can be to actors to
whom actor i is not connected, thereby excluding i himself. For each j,
pj may therefore be no less than a/k:

d � k � a a aj
p ≥ ≥ ≥ for all j.j d k lj

We have reached a contradiction. Thus, to lower i’s network constraint,
at least one actor j must be given fewer than k neighbors, and this actor
is consequently strictly worse off in the new network than in the complete
bipartite network considered.

A potential Pareto improvement must therefore leave the network con-
straints of all actors with l ties unchanged, giving them precisely l ties
and no closed triads. However, this can be done only in the complete
bipartite network considered or, in the case of k p l, in another complete
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bipartite network with two groups of size k. This renders the assumed
Pareto improvement impossible. Q.E.D.

Theorem 5.—A complete bipartite network is unilaterally stable if and
only if it is balanced.

Proof. If. Consider an actor i from the group of k actors. We know
from the proof of theorem 3 that we cannot make this actor better off
without letting one of his neighbors have a degree lower than k. But
leaving the ties that do not involve actor i unchanged, all his neighbors
have at least degree k. Actor i can therefore not lower his constraint by
only changing his own ties. In the even case, in which , by symmetry,k p l
this impossibility of unilateral improvement extends to actors of the group
of size l. The single remaining possibility for unilateral improvement is
therefore a permitted decrement of the constraint of actor i from the group
of l actors in the odd case, in which . Let be thek p l � 1 0 ≤ b ≤ kk

number of ties actor i has with actors from the group of size k in the new
network, and let be the number of ties he has with actors from0 ≤ b ≤ kl

the group of size l. Again, leave the ties that do not involve actor i
unchanged. Because these ties constitute the balanced complete bipartite
network with k p l � 1 actors in each group, the following inequality
must hold:

2 2
2 2 ( ) ( )b b � k � 1 � b b � k � 1k l l k1 1 b bl k

1 b 1 � � b 1 � pk l( ) ( )[ ]2 2 2( ) ( ) ( )k b � b k � 1 k � 1 b � b k � 1k l k l

2 2 2 2 2( ) ( ) ( )⇔ b k � 1 � 2b b k � 1 � b k � 1l k l k

2 2 2 2( ) ( ) ( ) ( )1 b k k � 1 � 2b b k k � 1 �b b k � b k k � 1 � 2b b k k � 1 �b b kk k l k l l k l l k

2 2 2 2( ) ( )( ) ( )⇔ b k � 1 � 2b b k � 1 k � 1 �b k � 1l k l k

2 2 2 2( ) ( )1 b k k � 1 � b b k � b k k � 1 � b b kk k l l l k

2( ) ( ) ( )⇔ b b � k �b b � k k � 1[ ]k k l l

( ) ( )( )1 b b b � b k � 2 k � 1 k � 1 .[ ]k l k l

The left-hand side of this last inequality is never strictly positive, and the
right-hand side is never strictly negative. Hence, it cannot be satisfied.

Only if. If l � k 1 1, an actor from the larger group of l actors can
delete all her ties with actors from the smaller group of k actors and add
l � 1 ties to the other actors from the larger group of l actors. By doing
so, she decreases her constraint from to . By permitting this1/k 1/ (l � 1)
change, the l � 1 actors see their constraint fall from to .1/k 1/ (k � 1)
Q.E.D.
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Theorem 6.—All complete multipartite networks are pairwise stable if
the groups are of equal size and contain more than one actor.

Proof. Let n2 p n/m 1 1 be the size of each group. Then, for a complete
m-partite network with equal groups of size n2 with constraint ci, the
following inequality should hold such that no one wants to sever a tie to
obtain a network with constraint ci* (note that we need to confirm only
one inequality because all actors have automorphically equivalent posi-
tions):

21 n � 2n2∗c � c p (n � n ) 1 �i i 2 ( )2(n � n ) n � n2 2

2 21 n � 2n � 1 n � 2n2 2� (n � 2n ) 1 � � (n � 1) 1 � ! 0.2 2( ) ( )2 [ ](n � n � 1) n � n n � n2 2 2

Multiplying the inequality above by , and after some2 3(n � n � 1) (n � n )2 2

tedious rearranging of terms, one obtains

2( ) ( ) ( )n � 2n (4n � 6n � 1) n � n � n � n � 1 (2n � 3n ) ! 0,2 2 2 2 2

which is equivalent to

23 1 3
4(n � 2n )(n � n ) n � n � � 4(n � n � 1) n � n ! 0.2 2 2 2 2( ) ( )2 4 2

This is always true, because and3 2(n � 2n ) (n � n ) ! (n � n ) (n �2 2 22
if n2 ≥ 2.3 1n � ) ! (n � n � 1)2 22 4

For no actor to benefit from adding any of his equivalent potential ties
in this complete n/n2-bipartite network with equally sized groups, the
following inequality must hold:

21 n � 2n2(n � n ) 1 �2 ( )2(n � n ) n � n2 2

2 21 1 n � 2n n � n2 2� (n � n ) 1 � � � 1 � ! 0.2 ( ) ( )2 [ ](n � n � 1) n � n � 1 n � n n � n2 2 2 2

Multiplying by , we derive that the above inequality4 3(n � n � 1) (n � n )2 2

is equivalent with 4 3 2x (7 � 6n ) � x (12 � 18n ) � x (4 � 16n ) � 4xn �2 2 2 2

where x p n � n2. Since n2 ! x p n �3 2 2 2 2 22x n � 5x n � 4xn � n ! 0,2 2 2 2

n2, the inequality above is implied by (replacing with xn2)
2 4n x (7 �2

which is true because3 24n ) � x (12 � 13n ) � x (4 � 12n ) � 3xn ! 0,2 2 2 2

and x 1 0. Q.E.D.n ≥ 22
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APPENDIX B

The Gould-Myerson Model

In the Gould-Myerson (GM) model, each actor simultaneously proposes
the complete set of other actors he wants to be connected to. We use si

� {0, 1}n to indicate a strategy of actor i in which sij indicates whether
or not i proposes a link with j. Because actors cannot connect to them-
selves, sii p 0. The utility function ui(s) assigns a numerical value to each
set of strategies . Gould considers Nash equilibrium to bes p {s F i � N}i

the stability concept.
Definition.—A set of strategies is a Nash equilib-∗ ∗s p {s F i � N}i

rium if for all i and si, where s*�i is the set of all strategies∗ ∗u (s ) ≥ u (s , s )i i i �i

in s* excluding the one of i.
We say that the set of strategies s induces the network g if ij � g ⇔

; that is, only ties that are proposed by both actors are parts p s p 1ij ji

of the network. Given that ties are costless, the utility function ui(s) is the
same for combinations of strategies that induce the same network. For-
mally, the utility function has the property that if and′ ′′ ′u (s ) p u (s ) si i

induce the same network g. With some abuse of notation, we can also′′s
write ui(g) as the utility of a certain network g, given that it does not
matter what strategies induce this network. Now, we can also define a
stability concept related to networks rather than strategies:

Definition.—A network g* is a Nash network if some s* inducing g*
is a Nash equilibrium.

The GM model shortcuts any network dynamics. Instead of repre-
senting network evolution as a continuous process in which one actor can
react to changes by other actors elsewhere in the network, as in the SW
model, it assumes that all actors make their decisions simultaneously and
that these decisions are binding. A Nash network is a rather weak stability
concept for undirected networks. There are often numerous equilibria,
and the lack of a specification of the network evolution process then leaves
us unable to identify the network that is most likely to evolve. From an
evolutionary viewpoint, many of these equilibria can hardly be considered
stable networks. If one actor does not propose a tie to another, the second
actor has no incentive to propose a tie to the first, because a tie is formed
only if it is proposed by both actors at the same time. No one can increase
his utility through any proposal if no one else is proposing ties, which
makes “nobody proposing any tie” a Nash equilibrium. The network
induced by this set of strategies is the empty network, and this is a Nash
network. Given our utility function, every pair of actors wants to initiate
the first tie in the empty network, because isolates have the lowest possible
utility. Thus, many networks are Nash because of trivial coordination
problems.
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The good news, however, is that the intersection of pairwise stable
networks in the SW model and Nash networks in the GM model can
easily be characterized. It is exactly the set of strongly pairwise stable
networks (see Cálvo-Armengol 2004). Therefore, unilateral stability, being
a refinement of strong pairwise stability, can also be recast as a refinement
of Nash equilibrium in the GM model (see Van de Rijt and Buskens 2008).
By using unilateral stability, we can analyze stability in both models while
considering only the SW model in the main text.
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