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Open quantum systems (OQSs) cannot always be described with the Markov approxi-
mation, which requires a large separation of system and environment time scales. Here,
we give an overview of some of the most important techniques available to tackle the
dynamics of an OQS beyond the Markov approximation. Some of these techniques,
such as master equations, Heisenberg equations and stochastic methods, are based on
solving the reduced OQS dynamics, while others, such as path integral Monte Carlo or
chain mapping approaches, are based on solving the dynamics of the full system. We
emphasize the physical interpretation and derivation of the various approaches, explore
how they are connected and examine how different methods may be suitable for solving
different problems.
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I. INTRODUCTION

In most realistic situations, a quantum system shall be
considered as an open quantum system (OQS), coupled
to an environment that induces decoherence and dissipa-
tion. The dynamics of an OQS can be described, in many
cases, with a Markov approximation, which assumes that
the environment recovers instantly from the interaction,
leading to a continuous flow of information from the sys-
tem to the environment.

However, our increasing capability to fabricate new
materials and to observe and control quantum systems
at different times, length scales and energy ranges is con-
stantly revealing new scenarios where dissipation and de-
coherence play a fundamental role. In many of these
scenarios, a large separation between system and envi-
ronment time scales can no longer be assumed, leading
to non-Markovian behavior and eventually a back-flow of
information from the environment into the system. It is
therefore crucial to develop an accurate but efficient de-
scription of the system-environment interaction that goes
beyond the Markov approximation.

The main goal of the theory of OQSs is to avoid having
to integrate the full system, comprising both the OQS it-
self and its environment, by describing the dynamics of
the open system in its reduced Hilbert space. As it will
be discussed in Sec. III, the structure of the system-
environment initial state is fundamental to determine
the evolution for the reduced density matrix of the OQS,
ρs(t), defined by tracing out the environment degrees of
freedom from the full system density matrix. To com-
pute such evolution, many different master equations
have been proposed. In particular, within the Markov ap-
proximation, master equations can often be arranged in
the well-known Lindblad form (Gorini et al., 1976; Kos-
sakowski, 1972; Lindblad, 1976), which preserves com-
plete positivity of the OQS dynamics. This equation is
sometimes referred to as the Lindblad-Kossakowski equa-
tion. However, as discussed in Sec. IV, master equations
beyond the Markov approximation have also been derived
by considering different approximations and methods.

An alternative to master equations is to consider
stochastic Schrödinger equations (SSE) (Alonso
and de Vega, 2005; Diósi et al., 1998; Gaspard and Na-
gaoka, 1999a; Piilo et al., 2008; Stockburger and Grabert,
2002; Zoller and Gardiner, 1997), discussed in Sec. V.
SSE enable the calculation of all the dynamical quanti-
ties of a non-Markovian OQS by evolving a state vector
within its reduced Hilbert space. This state vector may
depend on one or two noises whose statistical properties
encode the relevant environmental information influenc-
ing the state vector dynamics. The reduced density ma-
trix or the multiple-time correlations of the system ob-
servables can then be obtained as a Monte Carlo average
over an ensemble of projectors of such stochastic trajecto-
ries. The closely related path-integral and quantum
Monte Carlo methods conform a broad and active
area of research that we do not intend to cover exhaus-
tively in this review. The interested reader can go for
instance to the excellent reviews by Pollet (2012) and
Gull et al. (2011) that discuss quantum Monte Carlo ap-
plications in the fields of ultra-cold gases and quantum
impurity models respectively. Besides that, the path in-
tegral representation is also the basis of different analyt-
ical derivations and approximations, that lead to Heisen-
berg, stochastic, and master equations similar to the ones
covered in this review. Three of the most important ap-
proaches of this type are discussed in Sec. VI, namely the
noninteracting blip approximation, the stochastic Liou-
ville von-Neumann equation, and the hierarchical equa-
tions of motion.

As discussed in Sec. VII, the Heisenberg represen-
tation, standard for describing the evolution of quantum
operators, can also be extended to tackle OQS dynamics,
as already shown by Ackerhalt et al. (1973); Kimble et al.
(1977); and Wodkiewicz and Eberly (1976). It allows one
to introduce the well-known input-output formalism, first
derived by Barchielli (1986, 1987); Gardiner and Collett
(1985); and Yurke (1984) (see also (Gardiner and Zoller,
2000)) under the Markov approximation. As discussed,
the input-output formalism was recently extended to
non-Markovian systems by Diósi (2012) in the context
of stochastic Schrödinger equations, and by Zhang et al.

(2012) in the context of non-Markovian cascaded net-
works. Furthermore, when no approximation is consid-
ered, the multiple-time correlations of OQS observables
follow a hierarchical structure when no approximation is
considered: quantum mean values depend on two-time
correlations, and in general N time correlations depend
on N+1 correlations. To truncate such a hierarchy, either
a Markov, a semiclassical or a weak coupling approxima-
tion has to be assumed. The Heisenberg approach is
particularly advantageous for many-body OQSs, where
the dimension, d, of the systems Hilbert space grows ex-
ponentially with the number of particles. The reason is
that it allows for an effective reduction of the problem
dimension, by considering a semiclassical truncation of
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correlations involving multiple-particle operators.

To describe OQSs, a second possibility is to integrate
the degrees of freedom of the total system. This is a
difficult task, due to the large number of degrees of free-
dom of the environment. In this regard, a judicious se-
lection of the relevant states of the full system is of pri-
mary importance; for instance, in the context of electron-
phonon interaction, this can be done by discarding states
with low probability, as in the density matrix approach
(Zhang et al., 1998), or by considering as relevant only
those states generated during the evolution, as in the
variational approach (Bonča et al., 1999; Vidmar et al.,
2010) (see also Fehske et al. (2008) for a review on ex-
act diagonalization methods). Another alternative is to
map the original problem of a system coupled to a set of
environment harmonic oscillators into a one-dimensional
structure, where the system is coupled to a chain of
transformed oscillators (Bulla et al., 2008; Prior et al.,
2010). Either in the original star configuration, or in
the chain form, the system can be solved with numer-
ical renormalization group (NRG) (Bulla et al., 2008),
or with time-dependent density matrix renormalization
group (t-DMRG) or matrix product states techniques
(Schollwöck, 2011; White, 1992, 1998). Some of these
ideas are briefly discussed in Sec. IX.

The first two sections, which discuss models and scales
of the problem (Sec. II) as well as the main concepts
of the theory of OQS (Sec. III), are meant to give an
overview of the subject. In contrast, Sec. IV, V, VI, and
VII, discuss different methods for solving the dynamics
of OQS that are to some degree independent from each
others, and therefore can be read independently. Also,
while most of the derivations of master equations, SSE
and Heisenberg equations rely on a perturbative expan-
sion, the path integral related derivations discussed in
Sec. VI, do not rely on such type of expansions, and
therefore in principle they do not share this limitation.
Finally, Sec. VIII discusses some exactly solvable models.

Before ending the introduction, we clarify our work-
ing use of the wording non-Markovian. Here, we refer
as Markovian those derivations that are based on as-
suming a vanishing environment correlation time, i.e.

a Markov approximation (discussed in Secs. II.F and
IV.B.1). Similarly, we denominate as non-Markovian

those derivations that are not based on using the Markov
approximation, and thus are in principle able to capture
the non-Markovian behavior that could occur in some
parameter regimes. Importantly, a different question
is whether the resulting dynamics is indeed Markovian
or non-Markovian according to the measures described
in Sec. III.B. In this regard, an equation can lead to
Markovian dynamics, even if it is not obtained through a
Markov approximation. An example of this is discussed
in Sec. IV.B.

In the reminder of this section, we discuss some of the
most relevant situations where a non-Markovian OQS

theory that goes beyond the Markov approximation be-
comes necessary.

A. Non-Markovian effects in different scenarios

Non-Markovian effects are present in many different
contexts, ranging from solid state physics to hybrid sys-
tems, quantum biology and quantum optics, as discussed
further.

1. Solid state and quantum information: Superconducting

flux-qubits and quantum control

Solid state physics is a broad arena where OQSs
exhibiting non-Markovian effects may appear (Weiss,
2008).

As derived by Feynman and Vernon Jr. (1963), when
the system is weakly coupled to its environment, the cou-
pling can be considered to be linear and the environment
described by a set of harmonic oscillators. In this con-
text, one of the best-known models is the one developed
by Caldeira and Leggett (1983a) and Weiss (2008), which
describes a harmonic oscillator linearly coupled through
its displacement coordinate q to a fluctuating dynamical
reservoir, which may represent, for instance, the phonons
of a lattice. This model will be analyzed in more detail
in Sec. II.B.

A Brownian motion type of system exhibiting non-
Markovian effects may also arise in the dynamics of a
Bose-Einstein condensate (BEC) in a trap, which is cou-
pled to a final atomic state outside of the trap. The
dynamics of the occupation number of the BEC exhibits
oscillations that can be interpreted as a quantum inter-
ference effect, and clearly displays non-Markovian behav-
ior and strong departures from the golden rule that pre-
dicts exponential decay (Breuer et al., 2001a; Hope, 1997;
Hope et al., 2000). This behavior can also be found when
a quantum dot is coupled to a superfluid reservoir via
laser transitions (Jaksch and Zoller, 2005; Recati et al.,
2005), when a quantum dot is coupled to a BEC in a
double-well potential (Sokolovski and Gurvitz, 2009), or
when atoms trapped in an optical lattice are coherently
coupled to an untrapped level, giving rise to a highly non-
Markovian dissipation (Navarrete-Benlloch et al., 2011;
de Vega et al., 2008).

A similar system, recently proposed and experimen-
tally realized by Hunger et al. (2010); Reichel et al.

(2001); and Treutlein et al. (2007) consists in a nanome-
chanical oscillator interacting with a BEC in a double-
well potential. The atoms of the condensate are confined
in a double well and can tunnel from one side of the po-
tential to another, depending on the position of the os-
cillator. As shown by Alonso et al. (2014) and Brouard
et al. (2011), if one considers the condensate as an envi-
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FIG. 1 (a) The experimental set-up consists of a laser, which
is split into a signal beam and a local oscillator (LO). The
signal beam acquires a phase from the motion of the mechan-
ical resonator, which is detected on two photodiodes after a
previous beating of the signal with a strong LO. (b) Scan-
ning electron microscope picture of the tested device. From
Groblacher et al. (2015).

ronment for the oscillator, highly non-Markovian effects
appear that can be observed in the nonexponential decay
of the oscillator coherences.
Quantum Brownian motion can also be observed in an

opto-mechanical resonator coupled to a heat bath. A
recent experiment by Groblacher et al. (2015) showed
that the spectral density of such an environment is highly
non-ohmic, which produces non-Markovian dynamics in
the resonator. The spectral density is characterized by
monitoring the mechanical motion of the resonator with
a high degree of sensitivity, which is achieved by weakly
coupling the mechanics to an optical cavity field whose
phase response encodes the mechanical motion (see Fig.
1).
A different system where a Markov approximation may

not be suitable is an OQS coupled to a fermionic os-
cillator environment. An example of this is a nonin-
teracting fermion coupled to a fermionic bath, analyzed
by Schön and Zaikin (1990). A more complex situation
is the one described by the Anderson impurity model
(Anderson, 1961). It describes clusters of interacting
electron impurities, coupled to a continuous conduction
band of noninteractingelectrons. The Anderson model
is the basis for dynamical mean-field theory (Georges
and Kotliar, 1992; Georges et al., 1996; Metzner and
Vollhardt, 1989), which is the most widely used numer-
ical method to describe strongly correlated systems in
higher than one dimensions (Kotliar et al., 2006; Maier
et al., 2005) and is popular also in quantum chemistry
(Zgid and Chan, 2011). This model can also be used
to describe electron transport in quantum dots inter-
acting with electron leads. It has been analyzed using
different approaches within the theory of OQSs, includ-
ing rate equations (Gurvitz and Prager, 1996), master
and Fokker-Planck equations (Büsser et al., 2014; Ghosh
et al., 2012; Harbola et al., 2006; Li et al., 2005; Pedersen
and Wacker, 2005; Timm, 2008), stochastic Schrödinger

equations (Zhao et al., 2012), or path integrals (Tu and
Zhang, 2008a) [see also (Brandes, 2005) for a review]. A
similar situation is the one described by the Hubbard-
Holstein model (Holstein, 1959; Hubbard, 1964), which
describes the electron-phonon interaction. This model
can be conveniently described with the theory of OQSs,
when considering that the phonons are characterized by
a narrow energy band in comparison to the electronic
band. This justifies treating the electrons as an environ-
ment, which evolve in a much faster time scale than the
phonons.

In other condensed-matter systems the dynamics of a
quantum system can be dominated by its coupling with
surrounding defects, impurity spins or nuclear spins, that
effectively lead to a spin environment (Prokof’ev and
Stamp, 1993, 2000; Saykin et al., 2002; Stamp, 1994).
The coupling of a system to a spin environment does
not scale with the number of environment particles as
1/
√
N , as occurs with oscillator environments, but rather

is independent of N . One of the most well-known exam-
ples of these systems is the central spin problem (Breuer
and Petruccione, 2002; Breuer et al., 2004; Prokof’ev and
Stamp, 2000), where the OQS itself is considered a spin
particle. An example of the central spin model is an
electron in a quantum dot coupled due to a hyperfine in-
teraction with the surrounding nuclear spins (Coish and
Loss, 2004; Kessler et al., 2012; Khaetskii et al., 2002;
Merkulov et al., 2002; Schliemann et al., 2003; Schuetz
et al., 2012). Another example is an electron spin of a sin-
gle nitrogen-vacancy (NV) center coupled to the spin en-
vironment of substitutional nitrogen defects known as P1
centers (Hanson et al., 2008). The central spin model also
appears in the context of quantum computation, when
analyzing the decoherence of a qubit, such as a super-
conducting qubit, produced by the coupling with other
qubits. Other important decoherence sources for each
different type of superconducting qubits (charge, flux and
phase) were recently discussed by Xiang et al. (2013). An
excellent review on OQS in mesoscopic systems and de-
vices can be found in (Rotter and Bird, 2015).

The dynamics of an OQS can be represented as a quan-
tum channel mapping an initial state to a final state.
This representation facilitates the use of quantum infor-
mation theory to analyze these systems and to explore
the effects and possible advantages of non-Markovian dy-
namics in the quantum channel capacity (Bylicka et al.,
2014; Maniscalco et al., 2007), and in preserving quan-
tum memory (Franco, 2015; Hinarejos et al., 2016; Man
et al., 2015a,b) [see a complete review of this subject by
Caruso et al. (2014)]. In addition, it was pointed out by
Alicki et al. (2002) that fault-tolerant quantum compu-
tation theory may not be applicable when the environ-
ment of the quantum computer has a long correlation
time. Nevertheless, a threshold analysis for some non-
Markovian error models was performed by Terhal and
Burkard (2005). Similarly, the quantum optimal control
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theory, which provides a framework for variationally cal-
culating the optimal choice of shape and parameters of
a succession of pulses to control a quantum system, has
been extended to deal with systems that are addition-
ally coupled to a non-Markovian environment (Hwang
and Goan, 2012; Rebentrost et al., 2009c). This is of
great importance when it comes to controlling decoher-
ence during the operation of a set of gates performing
quantum computational tasks. An excellent review on
the subject can be found in (Koch, 2016).

2. Quantum biology and chemical physics

In photosynthetic complexes, the transport of energy
between pigments is affected by a phononic environment
produced by surrounding vibrating proteins (Robert
E. Blankenship, 2011). Recent experiments showed the
existence of long-lasting interexciton coherences in sev-
eral types of photosynthetic complexes even at physio-
logical temperatures (Collini et al., 2010; Engel et al.,
2007; Panitchayangkoon et al., 2010). Because of these
relatively long-lasting coherences, pigments involved in
this energy transport should be considered in principle
as quantum systems (Caruso et al., 2009; Mohseni et al.,
2013; Plenio and Huelga, 2008; Rebentrost et al., 2009b)
coupled to the surrounding phononic environment. In ad-
dition, in a typical situation, the relaxation time of this
environment can be comparable to or even slower than
the electronic energy transfer dynamics within the pig-
ment complex, meaning that a Markov approximation is
therefore no longer accurate (Chin et al., 2010; Ishizaki
and Fleming, 2009b). The dynamics of these systems
has been studied beyond the Markov approximation, by
considering the full system dynamics (see Sec. IX), or by
calculating the reduced density operator with a hierarchy
approach (see Sec. VI.C). See also (Lambert et al., 2013)
for an excellent review on quantum biology.

Although not covered in this review, note that in the
context of molecular physics the problem of a quantum
system interacting with an environment has a long tra-
dition and there has been an intense research in deal-
ing with non-Markovian effects. Early examples can be
found for instance in (Bretón et al., 1984; Bretón et al.,
1984; Mukamel, 1979).

3. Quantum optics: Photonic band gap materials

Atomic emission is affected by the photonic density of
states (DOS) of the radiation field, a quantity that de-
pends critically on whether the field is in free space or
within a quantum cavity, waveguide, or nanostructured
material like photonic crystals (PC) or metamaterials.
The importance of the medium in the atomic emission
was first pointed out by Anonymous (1946). According

to this result, the spontaneous emission rate of an atom
in a quantum cavity is enhanced by a factor of Q with
respect to that of the vacuum if the atomic transition is
in resonance with the cavity. In the same way, if atomic
transitions are far from any cavity resonance, the sponta-
neous emission process will be inhibited. The same kind
of inhibition of spontaneous emission occurs if atoms are
located in a waveguide and their transition frequency is
below the waveguide’s fundamental frequency (Barut and
J.P. Dowling, 1987; Kleppner, 1981).

Atoms or impurities coupled to the modified radiation
field within a photonic crystal also exhibit strong de-
viations from their behavior in the vacuum. Photonic
crystals, which were first envisioned by John (1987) and
Yablonovitch (1987), are periodic optical nanostructures
that strongly modify the properties of the electromag-
netic field (EM), affecting the photons in a similar way
as ionic lattices affect the motion of electrons in solids.
The radiation field in this material presents a gap or
frequency range where the photonic DOS vanishes, and
no propagating photons are allowed. Atoms or impu-
rities coupled to such a modified radiation field exhibit
strong non-Markovian effects, like nonexponential decay,
or the formation of a photon-atom bound state when the
atomic frequency is within the gap (Florescu and John,
2001; John and Quang, 1994). In addition, the superra-
diant emission of a collection of atoms in PC is strongly
modified with respect to such emission in the vacuum
(John and Quang, 1995). Non-Markovian effects are also
present in impurities coupled to PC-nanocavities exhibit-
ing an ultrahigh quality factor (Tanaka et al., 2007), or to
waveguides. The non-Markovian character of the emis-
sion of a ferromagnetic sphere in a static magnetic field
in a PC, which behaves like a single atomic emitter, was
recently experimentally observed in (Hoeppe et al., 2012)
(see Fig. 2). Further, experimental progress in the con-
trol of spontaneous emission by manipulating optical cav-
ity modes and quantum dots within photonic crystals has
demonstrated that the spontaneous emission from light
emitters embedded in photonic crystals is not only sup-
pressed within the gap, but also enhanced in the direction
where optical modes exist (Englund et al., 2005; Noda
et al., 2007; Thompson et al., 2013). Also, recent pro-
posals (Goban et al., 2013; Gonzlez-Tudela et al., 2014;
Hung et al., 2013) explore the atom-atom interactions
that may be produced in these materials mediated by a
strong light-matter interaction.

The analysis of such phenomena requires the use of
tools that go well beyond the Markov approximation, in
order to capture the relevant aspects of the processes.
Among these are the weak coupling Heisenberg equations
in Sec. VII.B (Florescu and John, 2001), or the SSE in
Sec. V (de Vega et al., 2005a). In addition, the exact
spontaneous emission of an atom within a photonic crys-
tal was studied by Bay et al. (1997) and John and Quang
(1994) following variants of the exact method in Sec.
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FIG. 2 Side view (a) and top-view (b) photographs of the
photonic crystal (scale bar 10nm). The emission dynamics of
an emitter was measured considering two different positions:
position 1 close to a dielectric rod (left, red dot), and position
2, at a maximum distance from any dielectric rod (right, blue
dot). From Hoeppe et al. (2012).

VIII.A, i.e. within the single photon sector. This method
was extended in (Nikolopoulos et al., 1999; Nikolopoulos
and Lambropoulos, 2000) for two photons. Reviews of
these and related results can be found in (Lambropoulos
et al., 2000; Woldeyohannes and John, 2003).

II. CHARACTERIZATION OF THE PROBLEM

At low energies, OQSs can often be described using
a few canonical models, where a simple central system
(the OQS) is linearly coupled to an environment which
belongs to one of two different universal classes: spin en-
vironments, composed of a set of independent spins, or
harmonic oscillator environments composed of a set of
either fermionic or bosonic independent harmonic oscil-
lators. See also the discussion by Prokof’ev and Stamp
(2000).
In this review we focus mainly on OQSs coupled to a

harmonic oscillator environment. In general, a complex
environment can be mapped into an effective harmonic
environment following the linear response theory. This
approximation is often deemed to correctly capture qual-
itative behavior in many relevant situations. Particu-
larly, it describes light-matter interaction at low energies
(see Sec. II.D), and as argued by Feynman and Ver-
non Jr. (1963), describes several models in condensed-
matter physics corresponding to a central system weakly
coupled to its environment (Walls and Milburn, 1994).
In general, it is understood to be valid when aiming at
extracting the dynamics of the open quantum systems
only, and provided that the environment remains with an
approximately Gaussian behavior (Forsythe and Makri,
1999; Makri, 1999). We note also that many of the tech-
niques presented here can be (and in a few cases have
been) extended to deal with spin environments.
In the following section we present the most general

Hamiltonian describing a linear interaction between the
OQS and its environment. Following this, we introduce

the Caldeira-Leggett model, after which we show that
the light-matter interaction Hamiltonian leads to a simi-
lar model. In addition, we provide a qualitative analysis
of the characteristics of the system-environment interac-
tion, offering physical insight into the time scales involved
in the problem as well as an overview of the different
approximations and strategies available to tackle it. In
doing so, we introduce the concept of non-Markovianity
from a phenomenological point of view; a more quanti-
tative analysis is provided in the next section and also
reviewed by Breuer (2012); Breuer et al. (2015); and Ri-
vas et al. (2014).

A. General interaction Hamiltonian

The Hamiltonian of an OQS coupled to an environment
can always be written as the composition of two terms:

Htot = H0 +HI (1)

where H0 = HS +HB is the free Hamiltonian, consisting
of a sum of the system and the environment Hamiltoni-
ans, and HI is the interaction Hamiltonian that describes
the coupling between the OQS and the environment. A
general coupling Hamiltonian HI can be written as a
sum of many couplings between a set of M environment
{Bη} and system operators {Sη} (Gaspard and Nagaoka,
1999a)1,

HI =

2M
∑

η=1

BηSη, (2)

with Bη = B†η, Sη = S†η. The Hamiltonian (2) is in
fact the most general form of interaction Hamiltonian.
Nevertheless, our analysis is restricted to the case where
Bη are linear combinations of the creation and annihila-
tion operators, which is why we refer to the interaction
Hamiltonian (2) as linear. In addition, any Hamiltonian

of the type HI =
∑M
η=1(X

†
ηYη + XηY

†
η ), with Xη and

Yη system and environment operators respectively, can
be written as Eq. (2) and vice-versa. This is done by
just considering that any operator can be decomposed

as Xη = X
(a)
η + iX

(b)
η , in terms of the Hermitian oper-

ators X
(a)
η = (X†η + Xη)/2, and X

(b)
η = i(Xη − X†η)/2.

Considering a similar decomposition for Yη, we find that

HI =
∑M
η=1(X

†
ηYη + XηY

†
η ) is equal to Eq. (2) with

Sη = 2X
(a)
η , and Bη = 2Y

(a)
η for η = 1, · · · ,M , and

Sη = 2X
(b)
η−M , and Bη = 2Y

(b)
η−M for η = M + 1, · · · , 2M

1 Except for cases where a more precise notation is needed for clar-
ity, we denote the external product of system S and environment
operators B, S ⊗B, simply as SB.
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(Rivas and Huelga, 2011). For instance, if we replace in
Eq.(2),

S1 = L+ L† ; S2 = i(L− L†), (3)

with L as a linear operator of the OQS, and

B1 =
1

2

∑

λ

gλ(aλ + a†λ) ; B2 =
i

2

∑

λ

gλ(aλ − a†λ), (4)

we arrive at a form for the Hamiltonian in terms of the
operators L and L†,

Htot = HS +HB +
∑

λ

gλ(La
†
λ + L†aλ). (5)

As we seen in the following sections, for a harmonic en-
vironment, HB is quadratic in the environment modes,
which makes HS and L crucial in determining whether
the dynamics is exactly solvable or not. For instance, if
one assumes that the OQS is a harmonic oscillator with
annihilation operator b, and L = b, the full Hamilto-
nian (5) is quadratic and the system is exactly solvable
as a Brownian particle (see Sec. VIII.B). If HS is not
harmonic, containing, for instance, an interaction term
of the form ∼ Un2, with n = b†b, then the problem is
in general no longer exactly solvable, and the only way
to tackle it is either by assuming some approximations,
or by numerically solving the whole system and environ-
ment dynamics (see Sec. IX).

B. Caldeira-Leggett model

We consider the general Hamiltonian of a system with
1 or a few degrees of freedom coupled to an environ-
ment of harmonic oscillators as described by Caldeira
and Leggett (1983a,b); Leggett et al. (1987); and Weiss
(2008). The system Hamiltonian is written as Eq. (1)
with the full Hamiltonian having the form2

HS =
p2

2M
+ V (q), (6)

where q and p are, respectively, the system position and
momentum coordinates of the particle ([q, p] = i), and
M is its mass. The Hamiltonian of the environment is

HB =
∑

λ

1

2

[

p2λ
mλ

+mλω
2
λx

2
λ

]

, (7)

where pλ and xλ are the momentum and position co-
ordinates operators of the λ harmonic oscillator. The
interaction of the system with each mode of the reservoir
is inversely proportional to the volume of the reservoir,

2 In this review, except in the path integral method section, we
settle natural units with ~ = 1.

so that for a spatially large environment this coupling is
small. Therefore, it is a good approximation for macro-
scopic environments to consider that the system-reservoir
coupling is a linear function of the environment coordi-
nates, giving the interaction Hamiltonian the form

HI = −
∑

λ

Sλ(q)xλ +∆V (q). (8)

Here, a counter term has been added to renormalize the
potential V (q). Indeed, in the presence of the interaction,
the minima of the potential for a given q are displaced
by a certain quantity, in such a way that the effective
potential in Eq. (6) should be written as Veff(q) = V (q)−
∆′V (q). The renormalization consists of choosing in Eq.
(8) ∆V (q) = ∆′V (q), so that the minima of the potential
are placed at zero. For the special case of a separable
interaction (Weiss, 2008),

Sλ(q) = CλS(q). (9)

In the simplest case in which S(q) = q, the total Hamil-
tonian can be written as

Htot = HS +
1

2

∑

λ

[

p2λ
mλ

+mλω
2
λ

(

xλ −
qCλ
mλω2

λ

)2
]

,(10)

where the renormalization factor is identified as

∆V (q) =
∑

λ

C2
λ

mλω2
λ

q2. (11)

Replacing Eq. (9) in Eq. (8), the interaction term of the
Hamiltonian (10), without the renormalization term, is a
simplified version of the general Hamiltonian (2)

HI = BS, (12)

with B = −∑

λ Cλxλ and S = S(q). The Hamiltonian
(10) has been widely used to describe dissipation in OQSs
and is often referred to in the literature as the Caldeira-
Leggett model (Leggett et al., 1987; Weiss, 2008).

C. The spin-boson model

In many physical and chemical systems, the general-
ized coordinate q is associated with an effective potential
with two separate minima placed at the same energy.
Since only these two states are available, the Hilbert
space of the system is reduced to a two-dimensional
space. This situation, described with the well-known
spin-boson model, occurs, for instance, in the motion of
light particles in metals, in certain chemical reactions in-
volving electron transfer processes (see for instance the
review by Leggett et al. (1987)), or in a superconduct-
ing qubit, which can be coupled to propagating photons
within an open transmission line as described by Per-
opadre et al. (2013). In addition, OQSs such as vibrating
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molecules can be represented as an anharmonic oscilla-
tor, having an energy spectrum which is no longer infi-
nite and evenly spaced as in the harmonic case. Then,
provided that the interaction strength producing the an-
harmonicity, U , is sufficiently large, such spectrum can
be truncated at the lowest few energy levels. If the trun-
cation is at the first two levels, then the resulting OQS is
also a truncated two-level system. The systems described
above are often referred to as truncated two-state systems
(Leggett et al., 1987), as opposed to intrinsic two-state
systems, such as a nucleus of spin 1/2, or a photon with
two polarization states. The spin-boson model can also
be considered to describe dissipative energy transfer in
a pair of two-level systems (each of them representing a
molecule, for instance) within the one-excitation sector
(Gilmore and McKenzie, 2005; Nazir, 2009).
The spin-boson Hamiltonian can be written as (1),

with H0 = 1
2ω12σz − 1

2∆0σx +
∑

λ ωλa
†
λaλ, where σα

(α = x, y, z) are the standard Pauli matrices for a two-
level system, ω12 is the energy separation between the
two states, and ∆0 is the coupling energy, representing
the tunneling between them. Also, the interaction term
has the form (12), HI = σz

∑

λ Cλxλ, such that

Htot =
1

2
ω12σz −

1

2
∆0σx +

∑

λ

ωλa
†
λaλ

+

N
∑

λ=1

gλ(aλ + a†λ)σz, (13)

where we have explicitly written the environment opera-
tors in terms of creation and annihilation operators,

xλ =

√

1

2mλωλ
(aλ + a†λ), pλ = −i

√

mλωλ
2

(aλ − a†λ),

and the coupling parameter is

gλ =

√

1

2mλωλ
Cλ.

Note that alternatively the spin-boson model can be ex-
pressed as

Htot =
1

2
ω12σx −

1

2
∆0σz +HB + σx

∑

λ

Cλxλ,

by simply performing a unitary rotation of the previous
Hamiltonian.
In general, the dynamics and ground state properties

of the spin-boson model are both extremely rich, and
have been a continuous object of study during the past
decades. Regarding the dynamics, the main topic of this
review, for a weak coupling between the system and the
environment, the evolution of the system can be com-
puted with the master equation discussed in Sec. IV.B.2,
the SSE covered in Sec. V.B.1, and the Heisenberg ap-
proach explained in Sec. VII.B. In addition, as discussed
in Sec. IV.B.11, the Hamiltonian (13) can be unitarily

transformed with a polaron transformation that allows
using the perturbative methods of Sec. IV.B.2 to derive
a master equation that is valid also for strong coupling.
In addition, in close connection to this idea is the nonin-
teracting blip approximation discussed in Sec. VI, which
is also valid for strong coupling. These polaron based ap-
proaches are particularly accurate when ∆0 is small with
respect to all other energy scales of the problem. In situ-
ations where none of these methods are suitable, one may
consider alternatives such as the path integral or Monte
Carlo approaches briefly discussed in Sec. VI, that in-
clude in Sec. VI.C the hierarchy expansions (useful when
the environment spectral function is a Lorentzian or a
sum of Lorentzians), or the chain mapping approaches
discussed in Sec. IX.

D. Light-matter interaction Hamiltonian

The light-matter interaction Hamiltonian, which de-
scribes the radiation field and an electron wave field, is
written as (Walls and Milburn, 1994)

H̃tot =
1

2m

[

p− eA(r)
]2

+ eV (r) +HB , (14)

when discarding the spin of the electron. Here, e and m
are the electronic charge and mass, respectively, p = −i∇
is the momentum of the electron,

A(r) =
∑

λ

√

1

2ωλǫ0

[

aλAλ(r) + a†λA
∗
λ(r)

]

is the vector potential of the electromagnetic field, and
HB =

∑

λ ωλa
†
λaλ is the Hamiltonian of the free radi-

ation field. Both quantities are written in terms of the
field annihilation (creation) operators aλ (a†λ). Also, ǫ0
is the vacuum permittivity, while λ denotes the polar-
ization σ and the wave vector k. In addition, Aλ(r) are
the mode functions of the electromagnetic field, which in
free space may be expanded as Akσ(r) = υ−1/2eik·rêkσ,
with êkσ as the unit polarization vector, and υ as the
quantization volume.
We now consider the electric dipole approximation,

which replaces Akσ(r) by its value in the position of the
atomic nucleus r0. Considering this, the Hamiltonian
(14) can be written as3

Htot = Hel +HB +
∑

λ,j,l

gλ,j,lb
†
jbl

(

aλ + a†λ

)

, (15)

3 Here, we neglected the term ∼ q2A2

λ
(r)/2m, compared to ∼

ep · Aλ(r)/2m. To estimate their magnitude (Schulten, 2001),
one should consider that the magnitude of the vector poten-
tial is ||Aλ|| ∼

√

Nλ/(ωλυ), with Nλ the number of photons
of frequency ωλ in the field, and that for a hydrogen atom
||p2/(2m)|| ∼ e2/a0, with a0 the Born radius. In general, ne-
glecting ∼ q2A2

λ
(r)/2m is valid as long as the photon density in

the radiation field Nλ/υ is small, particularly for the resonant
frequencies of the field, ωλ = ωjl.
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where Hel =
∑

j Ejb
†
jbj corresponds to the electron field,

and we have considered fermionic annihilation (creation)

operators bj (b
†
j). The last term in Eq. (15) corresponds

to the interaction between them, HI , with the coupling
constants defined as

gλ,j,l = −i
√

1

2ωλǫ0
ωjlAk,σ(r0) · djl, (16)

such that gλ,j,l = g∗λ,l,j . Here, ǫ0 is the electric per-
mittivity, ωjl = Ej − El ≡ ωj − ωl (~ = 1), and
djl = e

∫

d3rφ∗j (r)x̂φl(r) is the atomic dipolar moment.
Here, we consider that p̂ = (im/~)[Hel, x̂], and also the
fact that {φj} are eigenfunctions of Hel with eigenvalues
Ej . For a two-level atom coupled to the radiation field,
we locate the atom at the origin of coordinates r0 = 0,
such that gλ,2,1 = gλ,1,2, and therefore

HI =
∑

λ

gλ,1,2

(

aλ + a†λ

) [

b†1b2 + b†2b1
]

, (17)

which is of the form of Eq. (2).

E. The rotating wave approximation for the interaction

Hamiltonian

The interaction Hamiltonian can often be simplified
by considering the rotating wave approximation (RWA),
which allows us to neglect processes that do not conserve
energy, i.e. those that correspond to the simultaneous
creation (annihilation) of a quanta in both the open sys-
tem and its environment. Let us consider for instance
the Hamiltonian (15), and reexpress it in the interaction
picture, eiH0tHIe

−iH0t. Then, it is found that the terms
that conserve the energy, also known as resonant terms,
oscillate with frequencies ωλ−ωjl, whereas those that do
not conserve energy oscillate with frequencies ωλ + ωjl.
Performing the RWA, which consists of neglecting such
energy nonconserving terms, is particularly suitable to
describe light-matter interaction with transitions at op-
tical frequencies (above 600 THz), since in this regime
the nonresonant terms oscillate so fast that they cancel
out along the evolution4. Thus, with the RWA the inter-
action Hamiltonian in (15) is expressed as

HI =
∑

γλ

gλ,γ

(

Lγa
†
λ + aλL

†
γ

)

, (18)

where we defined the coupling operators as Lγ = b†jbl,
with γ ≡ j, l, and j > l. For a two-level atom inter-
acting to a bosonic field with Hamiltonian (17), we have

4 Indeed, considering the dominant frequency of the field as the
resonant frequency, ωk0

= ωjl (such that k0 is the resonant
wave-vector), the dominant rotating phase of the energy non-
conserving terms is ωk0

+ ωjl = 2ωjl.

Lγ = L = σ− (similarly L†γ = L† = σ+), where we
expressed the electron operators in terms of the spin
ladder operators, σ+ = b†2b1 and σ− = b†1b2. Also,
gλ ≡ gλ,2,1 = gλ,1,2.

Note that the RWA is closely related to the secular
approximation discussed in Sec. IV.B.3. However, while
in the secular approximation the fast rotating terms are
eliminated after tracing out the environment degrees of
freedom, the RWA discussed here is introduced before the
trace, i.e. at the level of the Hamiltonian. As discussed
by Fleming et al. (2010) the RWA made before the trace
is more problematic than the secular approximation, and
may lead to incorrect values for the environmentally in-
duced shifts to system frequencies (see also (Eastham
et al., 2015)). Also, it is known that the RWA tends to
fail in the ultrastrong coupling regime, since although the
terms with phases 2ωjl rotate very fast, they might still
represent a significant contribution (Prior et al., 2013).
Such ultrastrong coupling limit can be achieved in su-
perconducting circuits (Niemczyk et al., 2010), super-
conducting qubits in open transmission lines (Peropadre
et al., 2013), coupled-cavity polaritons (Gunter et al.,
2009), or plasmon polaritons in semiconductor quantum
wells (Geiser et al., 2012).

With respect to the connection with non-Markovianity,
according to Mäkelä and Möttönen (2013) the rapidly
oscillating terms are responsible for the majority of the
non-Markovianity in a two-level system interacting with
a bosonic environment at zero temperature. In this re-
gard, in the limit of weak coupling and considering the
RWA, the non-Markovianity appears to be relevant only
at short times that are smaller than or of the order of
the environment correlation time, a quantity that will be
further discussed in the next section. However, without
the RWA the fast-rotating terms contribute significantly
to non-Markovianity during the whole evolution and not
only at short times. This and other effects that relate
the RWA with non-Markovianity were recently analyzed
by Mäkelä and Möttönen (2013); Wang et al. (2008); and
Zeng et al. (2012).

Note that a Hamiltonian of the form (18) can be ob-
tained in some cases without using the RWA, particularly
when the bosonic field is a massive particle field, and
the particle number shall be conserved. For many-body
OQSs, the most general linear interaction Hamiltonian
under the RWA is

HI =
∑

λ,j,k

(

gλ(rj)Lja
†
λ + g∗λ(rj)aλL

†
j

)

, (19)

where now Lj represents the coupling operator of the
particle j with the environment. In the case of atoms
coupled to the radiation field, Lj = σ−j and gλ(rj) =

gλe
−ik·rj , where k and rj represent respectively the wave

vector and the position of the particle j.
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F. Relevant scales of the problem

For environments described as a set of independent
harmonic oscillators, the interaction is characterized by
a spectral density,

J(ω) =
∑

λ

g2λδ(ω − ωλ) (20)

where gλ are the coupling strengths defined previously.
This function fully characterizes the action of the envi-
ronment on the OQS dynamics. Such action can also
be encoded in the environmental correlation function.
For most of the applications here, we are dealing with
an environment that has an infinite number of degrees
of freedom and that, at least initially, is in a thermal
equilibrium state. Such thermal reservoirs or baths are
characterized by the universality of their fluctuation-
dissipation relation, and the existence of detailed bal-
ance conditions and a Kubo-Martin-Schwinger relation
(Kubo, 1957; Martin and Schwinger, 1959). This relation
is further discussed in Sec. IV.B.2. For such thermal en-
vironments, considering also the case where L = L† (see
also Sec. IV.B.2) the correlation function can be written
as

αT (t) =

∫ ∞

0

dωJ(ω)

[

coth

(

ωβ

2

)

cos (ωt)− i sin (ωt)
]

,

(21)

where β = (κBT )
−1, with κB the Boltzmann constant

and T the environmental temperature. This function can
also be defined as

αT (t) =
1

π

∫ ∞

0

dωJ(ω)
cosh[ω(β/2− it)]

sinh (βω/2)
.

For T = 0 the correlation function becomes a partial
Fourier transform of the function J(ω)

α(t) =

∫ ∞

0

dωJ(ω)e−iωt. (22)

Note that in the limit of a large number of oscillators and
the frequency representation gλ → g(ω), so that Eq. (20)
in the case of a dispersion relation with a single branch
may be written in the continuum as

J(ω) = g2(h(ω))DDOS(ω), (23)

where h(ω) is the inverse of the dispersion relation (such
that h(ω) = k), and DDOS(ω) = |∂ω(k)/∂k|−1 is the
density of states of the field.
Thus, the behavior of the open system crucially de-

pends on the correlation function α(t), which is deter-
mined by the shape of J(ω). The correlation function is
an essential ingredient in every system dynamical equa-
tion, acting as the kernel of integral terms over past
times. Roughly speaking, the time-scale of its decaying
defines the environmental correlation or relaxation time,

τc, which corresponds to the time that the environment
takes to return to its initial (usually equilibrium) state. If
τc is much smaller than the evolution time of the system,
TS , then a Markovian approximation shall be considered
to derive the OQS evolution equations. Hence, one can
approximate Re[α(t− τ)] ∼ Γδ(t− τ), with Γ the decay
rate, which cancels out the dependency over the past in
the system evolution equations.

If the frequencies of the oscillators form a finite dis-
crete spectrum, the associated correlation function is pe-
riodic or quasiperiodic for commensurate and incommen-
surate frequencies, respectively. Then, there is another
time scale associated with the presence of a finite recur-

rence time τR on the correlation function. In general,
the denser the spectrum, the longer the recurrence time.
When reaching the recurrence time, the OQS suffers a re-
vival in its dynamics, regaining at least partially its lost
energy and coherence.

Here, we denote as environment the larger subsystem
with which the OQS is coupled having either a contin-
uous or a discrete spectrum, and as reservoir the envi-
ronment with a continuum or quasicontinuum spectrum.
In general, here we will deal with environments with a
spectrum that is sufficiently dense so as to assure that
τc ≪ TS ≪ τR. In accordance with (Breuer and Petruc-
cione, 2002), the expression bath is to be reserved for
those reservoirs in a thermal equilibrium state.

1. Derivations of the spectral density

There are two different possibilities to determine the
spectral density J(ω), depending on the particular sit-
uation. As noted previously, when the environment is
a reservoir of harmonic oscillators and the OQS can be
described by a single extended coordinate q, the spectral
density can be determined phenomenologically, particu-
larly from the knowledge of the coefficients of the classi-
cal equation of motion (Leggett et al., 1987; Weiss, 2008).
With complex environments such as those found in pho-
tosynthetic complexes, the spectral density may also have
to be built based on experimental evidence. For other
systems, a microscopic knowledge of the interaction may
be available, in particular of the coupling constants gλ
and the dispersion relation ω(k). Therefore, these quan-
tities can be used to derive J(ω) through the sum (20).
In the following we present an example of a microscopic
and a phenomenological derivation of J(ω).

In general, a microscopic derivation is possible for
atoms interacting with electromagnetic fields, since the
coupling constants are given by Eq. (16) for a dipolar
coupling between levels |j〉 and |l〉. Let us now take Eq.
(22) in its discrete version,

α(t) =
∑

λ

|gλ|2e−iωλt. (24)



11

In the continuum limit, we then have

∑

λ

≡
∑

σ

∑

k

→ 2
υ

(2π)3

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ ∞

0

dkk2,

where the factor of 2 in the last expression comes from a
sum in the two polarization modes, σ. Considering Eq.
(16) for a two-level system,

g∗λgλ =
1

2ωλǫ0υ
ω2
12d

2
12 cos

2 θ, (25)

where |êk,σ · d̂12|2 = cos2 θ, and θ is the angle between

the atomic dipole moment d̂12 and the electric field po-
larization vector êkσ. Solving the angular integrals, and
considering the dispersion of the electromagnetic field in
the vacuum, k = ω/c, the correlation function can be
rewritten as the result of an integral in frequencies as
(22), with DDOS(ω) = υω2/(2π)2c3, and the function
g2(ω) = ω2

12d
2
12/6υωǫ0. By virtue of Eq. (23) these

quantities allow us to recover the environmental spectral
density.
In many cases, the behavior of a system can be de-

scribed by considering a phenomenological modeling of
the spectral density at low frequencies. In this regard,
one of the most well-known models is the one by Leggett
et al. (1987) [see also (Caldeira and Leggett, 1983a;
Weiss, 2008)],

J(ω) = ηsω
sω1−s
c e−ω/ωc , (26)

for all s > 0, where ηs has the dimensions of a viscosity
and describes the coupling strength of the system and
the environment (Weiss, 2008).
The spectral density (26) constitutes a very general

model to describe many different types of reservoir, de-
pending on the choice of the parameter s. The expo-
nential factor in this model, modulated by the frequency
ωc, is generally added ad-hoc to provide a smooth regu-
larization for the spectral density. A hard cut-off can
also be considered at the characteristic frequency ωc,
J(ω) = ηsω

sω1−s
c θ(ωc−ω). The cut-off frequency should

be conveniently chosen in accordance with other scales
and parameters of the problem, and if it is sufficiently
large, the OQS dynamics does not depend on ωc for a vast
range of parameters. The environments with 0 < s < 1
are called sub-ohmic, while those corresponding to s = 1
and s > 1 are known as ohmic and super-ohmic, respec-
tively.
The case of Ohmic dissipation is important for charged

interstitials in metals. Also, an Ohmic model with a
Lorenz-Drude regularization instead of an exponential
one as in Eq. (26), describes quantum dissipation in
chemical and biophysical systems (see Sec. VI.C). A
sub-Ohmic spectral density describes the dominant noise
sources in solid state devices at low temperatures, such as
superconducting qubits (Shnirman et al., 2002), nanome-
chanical oscillators (Seoanez et al., 2007) and quantum

dots (Tong and Vojta, 2006). It also appears in the con-
text of glass dynamics (Rosenberg et al., 2003) or quan-
tum impurity systems (Si et al., 2001). In addition, spec-
tral densities with s = 1/2 and s = 3/2 describe the radi-
ation field in isotropic and anisotropic photonic crystals,
respectively (Florescu and John, 2001; de Vega et al.,
2005a). Other nonintegral values of s may be relevant
for fractal environments. Also, a phonon environment in
p spatial dimensions corresponds to the case s = p or
s = p+ 2, depending on the symmetry properties of the
field.
Interestingly, in the Ohmic and sub-Ohmic regimes

the ground state of the spin-boson model (13) displays
a quantum phase transition when tuning the coupling
strength between the system and the environment (An-
ders et al., 2007a,b; Chin et al., 2011b; Florens et al.,
2011) [see also the excellent review by Hur (2008)]. In
detail, the magnetization parameter given by 〈σz〉 dis-
plays a transition between a delocalized (with 〈σz〉 = 0)
and a localized (with 〈σz〉 6= 0) phase. This phase tran-
sition was studied by Vojta et al. (2005) with a density
matrix renormalization group, and in (Chin et al., 2011b)
with a variational model and a chain mapping. Both ap-
proaches are further discussed in Sec. IX.
The Ohmic dissipation is sometimes referred to as

Markovian, which refers to the fact that an Ohmic spec-
tral density leads to a constant friction kernel in the cor-
responding Langevin equation. However, as discussed
by Rivas et al. (2010a), an Ohmic dissipation may lead
to non-Markovian effects, when the coupling strength is
higher than a certain value.

2. The weak coupling approximation

One of the most important approximations used to de-
scribe the dynamics of an OQS is to consider that in the
general form (1), the magnitude of the coupling term
HI (often described with a parameter g) is much smaller
than the magnitude of the relevant energy transitions of
the system5. The validity of such a weak coupling limit
(van Hove, 1954) is also conditioned to the environment
correlation time τc [see also Sec. IV.B.2]. Indeed, as
discussed by Rivas and Huelga (2011), a necessary con-

dition for the existence of a weak coupling limit is that
the environment has to have a well-defined correlation
time. This means that it should have infinite degrees of
freedom, so that there are no recurrences or periodicities
in the environment correlation function. When τc is not

5 For instance, for a two-level system with energy transition ~ωs ∼
3eV , the term that describes its coupling to the light field is of
the order of ||qp · Aλs/m|| ∼ 10−3eV , where λs is the wave-
length corresponding to ωs, and we considered as a basis the
dimensional analysis of Sec. II.D [see also (Schulten, 2001)].
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even defined (e.g. because the recurrence time is smaller
than the correlation time), the coupling between system
and environment has to be zero in order to justify the
use of a perturbative expansion. A sufficient condition

for the existence of a well-defined weak coupling limit
was derived by Davies (1974, 1976) [see also (Rivas and
Huelga, 2011)]. It states that such a well-defined limit ex-
ists if there is an ǫ > 0, such that

∫∞
0
dt|α(t)|(1+t)ǫ <∞,

where as seen later, α(t) is of the order of g2.

III. CONCEPTS OF THE THEORY OF OQS

In this section we analyze several concepts of OQSs
that are independent from the tools to describe their dy-
namics, treated in Sec. IV, V, VI, and VII. We start
discussing the relevance of the system-environment ini-
tial state to determine the nature and properties of the
resulting OQS dynamics. Following this, in Sec. III.B
we introduce the different non-Markovianity measures
that have been proposed during the past few years. In
Sec. III.C we discuss the effect of having initial system-
environment correlations in the back-flow of information
from the environment into the system, and also explore
the relationship between the non-Markovianity and the
system-environment correlations that are built up dur-
ing the evolution. Thereafter, we discuss the effects of
temperature on the non-Markovianity of a process. To
end this part, we analyze in Sec. III.F the influence of
non-Markovianity to reach a particular steady state.

A. Initially correlated and uncorrelated states between the

system and the environment

The structure of the system-environment initial state
is fundamental to determine the nature of the evolution
for the reduced density matrix of the OQS, defined as
ρs(t) = TrB{ρ(t)}, where ρtot(t) is the density operator
of the full system. In this regard, the initial state is often
considered an uncorrelated state of the form

ρtot(0) = ρs(0)⊗ ρB , (27)

where ρB is the environment density operator having a
spectral decomposition ρB =

∑

q λq|Eq〉〈Eq|, in terms of
its eigenvectors |Eq〉, and with λq ≥ 0. The reduced den-
sity matrix at a time t, ρs(t) = TrB{U(t)ρs(0)⊗ρBU†(t)},
with U(t) = e−iHt, can then be written in terms of a
Kraus decomposition,

ρs(t) =
∑

l

El(t)ρs(0)E
†
l (t) = Λ(t)[ρs(0)], (28)

where El =
√

λq〈Eq′ |U(t)|Eq〉 (l ≡ {q, q′}) are Kraus op-

erators fulfilling the property
∑

lE
†
l El = 11S . Eq. (28)

shows that when the reduced density operator can be
written in terms of a Kraus decomposition, it can also be

written in terms of a map Λ(t) acting on its initial state
ρs(0). Such a map, often called universal dynamical map,
can be shown to preserve complete positivity (CP). Fol-
lowing the discussion by Rivas and Huelga (2011), CP
can be explained as follows. Imagine that apart from the
system S and the environment B, there is another com-
ponent W that interacts neither with S nor with B. The
partial dynamics of the subsystem SW can be written as

ρSW (t) =
∑

l

El(t)⊗ UW (t)ρSW (0)E†l (t)⊗ U
†
W (t)

= Λ(t)⊗ UW (t)[ρSW (0)] (29)

with UW (t)[A] = UW (t)AU†W (t), where UW (t) is the uni-
tary evolution operator on W . Then, we decompose

Λ(t)⊗ UW (t) = [Λ(t)⊗ 11W ][11s ⊗ UW (t)]. (30)

Here, Λ(t) is a universal dynamical map, and so Λ(t) ⊗
UW (t) is a universal dynamical map too, and is therefore
positive-preserving. The quantity 11s⊗UW (t) is a unitary
operator, which means that Λ(t)⊗11W should be positive-
preserving. Linear maps Λ(t) fulfilling this property are
CP maps.
When the system and the environment are initially

correlated, the situation is more complicated, and it is
still an open problem to understand the relationship be-
tween the structure of the initial system-bath states and
the nature of the resulting dynamics, including whether
or not the dynamics are CP. The requirement of com-
plete positivity for dynamical maps was first questioned
by Pechukas (1994), who pointed out that initially cor-
related states might not lead to CP dynamics. This idea
was subject of an intense debate with Alicki (1995), who
argued that all physically meaningful initial states lead
to CP dynamics. To show this, he considered the ini-
tially correlated state that is experimentally obtained as
a result of projective measurements on an OQS in equi-
librium with its environment,

ρtot(0) =
∑

n

λnPn ⊗
TrS{ρeqtot(0)Pn}
Trtot{ρeqtot(0)Pn}

(31)

with Pn = |ψn〉〈ψn| representing a projection on a system
orthogonal state |ψn〉 and ρeqtot(0) is a thermal equilibrium
state for the full system, and probed that it leads to CP
dynamics.
In general, initial states of the total system can be ex-

pressed in terms of the so-called assignment maps, which
map a certain system state ρs(0) to a (possibly corre-
lated) state in the system-environment space SB. As it
is now known, depending on their structure assignment
maps may preserve or not certain properties in the re-
duced dynamics, such as linearity, consistency or com-
plete positivity (Modi et al., 2012b; Rodŕıguez-Rosario
et al., 2010). In this regard, it was shown by Carteret
et al. (2008) and Jordan et al. (2004) that assignment
maps producing certain entangled initial system-bath
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states may indeed lead to non-CP dynamics. In addi-
tion, was proven by Rodriguez-Rosario et al. (2008) that
initial states with zero discord (Modi et al., 2012a; Ol-
livier and Zurek, 2001), such as (31), i.e. fulfilling the
property [ρs(0) ⊗ 11B , ρtot(0)] = 0, lead to completely
positive reduced dynamics. Shabani and Lidar (2009)
proposed that quantum discord is not only sufficient, but
also necessary for CP dynamics. Later, Brodutch et al.

(2013) and Buscemi (2014) showed that complete posi-
tivity may also be fulfilled for some particular states with
nonvanishing quantum discord, i.e. including quantum
correlations [see also (Shabani and Lidar, 2016)]. A com-
plete discussion on the subject can be found in (Dominy
et al., 2013).

B. Non-Markovianity measures

Many non-Markovianity measures have been proposed,
each of them having different strengths, i.e. a different
ability to capture the non-Markovian nature of a pro-
cess. Based on this, and on their conceptual basis, these
non-Markovianity measures can be classified in different
ways [see for instance (Rivas et al., 2014) and (Hall et al.,
2014)]. An exhaustive discussion of the different non-
Markovianity measures is out of the scope of this review,
and can be found in the reviews by Rivas et al. (2014) and
Breuer et al. (2015). Nevertheless, in the following we
give an account of the most important proposals which,
to our knowledge, have been presented up to date, and
organize them in an approximately chronological (rather
than conceptual) order.

According to Wolf et al. (2008) a map is Markovian if
it is a trace-preserving CP map and satisfies the semi-
group property,

Λ(t1 + t2) = Λ(t1)Λ(t2). (32)

In that case, Λ(t) = eLt, and it leads to a Markovian
equation in Lindblad form (48), also written as

dρs(t)

dt
= Lρs(t). (33)

Here, L is a Liouville operator or superoperator (since it
acts on the system density matrix flattened as a vector),
which generates a dynamical semigroup. The definition
(33) leads to a computable measure, which quantifies how
Markovian a snapshot of a quantum evolution is, thus
revealing the nature of the intermediate continuous time
evolution. This approach is particularly useful to under-
stand experimental results where input-output relations
are measured via quantum process tomography.

A less restrictive definition was proposed by Rivas et al.
(2010b) [see also (Rivas et al., 2014)], where a map is de-
fined as Markovian when it is a trace-preserving divisi-

ble map, so that6

Λ(t1 + t2, 0) = Λ(t1 + t2, t2)Λ(t2, 0), (34)

where Λ(t1+t2, 0) is completely positive for any t1, t2 > 0.
Let us consider the maximally entangled state between
two copies of the OQS, the system (S) and the ancilla (A),

|Φ〉 = (1/
√
d)

∑d−1
n=0 |n〉S |n〉A, where d is the dimension

of the OQS basis {|n〉}. Then, a map is CP if and only
if (Λ(t+ ǫ, t)⊗ 11d)(|Φ〉〈Φ|) ≥ 0. Hence, since the map is
trace preserving, ||(Λ(t+ ǫ, t)⊗ 11d)(|Φ〉〈Φ|)||1 = 1 if and
only if it is also CP, and higher than 1 otherwise. Here
|| · ||1 denotes the trace norm and 11d denotes an identity
map. With this idea at hand, we can define a function

g(t) = lim
ǫ→0+

||(Λ(t+ ǫ, t)⊗ 11d)(|Φ〉〈Φ|)||1 − 1

ǫ
(35)

Then, a system is non-Markovian, i.e. indivisible, when
g(t) > 0 for certain interval t ∈ I, so that the total
amount of non-Markovianity can be quantified by the
so-called RHP (the initials standing from the author’s
names) measure as

N (Λ) :=

∫

I

g(t)dt. (36)

Divisibility is crucial for the derivation of the quantum
regression theorem, studied in Sec. IV.C, and for the de-
termination of the properties of the steady state of the
system, as analyzed in the following section. As discussed
by Rivas and Huelga (2011) and Rivas et al. (2010b)
and Sec. IV.B, any divisible, invertible, and differen-
tiable completely positive map in the Hilbert space of a
d-level system leads to a master equation that is local in
time, having the form dρs(t)/dt = L(t)ρs(t), where L(t)
is a Liouvillian superoperator related to the generators as
L(t) = Λ̇(t)Λ(t)−1. When a Markov process is homoge-
neous, i.e. with a time-independent generator L(t) = L
as in (33), then its map is such that Λ(t + τ, t) = Λ(τ),
and the divisibility and semigroup properties are equiv-
alent.
Similarly, Breuer et al. (2009) developed an alterna-

tive derivation which considers as non-Markovian those
systems in which there is a back-flow of information from
the environment to the system during the dynamics. This
back-flow of information is characterized by an increase in
the distinguishability of pairs of evolving quantum states.
In detail, a system is non-Markovian if there is a pair of
system initial states ρ1s(0) and ρ

2
s(0), such that for certain

times t > 0 their distinguishability increases,

σ(ρ1s(0), ρ
2
s(0); t) =

d

dt
D[ρ1s(t), ρ2s(t)] > 0. (37)

6 Here, and when necessary for clarity, we make explicit the initial
time dependence of the map.
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Here D(ρ1s, ρ2s) = 1
2 ||ρ1s(t) − ρ2s(t)||1 is the distinguisha-

bility of ρ1s and ρ2s, and ρjs(t) = Λ(t, 0)ρjs(0). In this
criterion, the amount of non-Markovianity of a quantum
process can be quantified with the BLP measure (the
initials standing from the author’s names)

N (Λ) := maxρ1,2(0)

∫

σ>0

dtσ(ρ1s(0), ρ
2
s(0), t), (38)

which reflects the maximum amount of information that
can flow back to the system for a given process. As
proven by Wismann et al. (2012), for all finite dimen-
sional quantum systems the evaluation of Eq. (38) can
be optimized by considering initial states ρ1s(0) and ρ

2
s(0)

that are orthogonal and lie at the boundary of the subset
of physical states. An analogous definition of the BLP
measure based on the Bures metric was studied by Vasile
et al. (2011).
A relationship between the two non-Markovianity mea-

sures RHP and BLP can be derived from the fact that
all divisible maps continuously reduce the distinguisha-
bility of quantum states. Therefore, if a map is Marko-
vian according to the RHP measure, it is Markovian ac-
cording to the BLP measure, while the converse is in
general not true (Haikka et al., 2011; Rivas and Huelga,
2011). Zeng et al. (2011) performed a further comparison
between these two non-Markovianity measures, demon-
strating that both are equivalent to each other when they
are applied to open two-level systems coupled to environ-
ments via the Jaynes-Cummings or dephasing models.
Recently, the transition from Markovian to non-

Markovian dynamics was experimentally observed by Liu
et al. (2011) (see Fig. 3). In this proposal, the OQS
is the polarization degree of freedom of photons, de-
scribed with the horizontal |H〉 and vertical |V 〉 polar-
ization states. The environment is represented by the
photonic frequency degree of freedom, and it is pre-
pared initially in a one-photon state |ξ〉 =

∫

dωf(ω)|ω〉,
where the frequency distribution f(ω) is normalized as
∫

dω|f(ω)|2 = 1. Both degrees of freedom are coupled
with each other, and f(ω) can be experimentally con-
trolled to produce different initial states for the environ-
ment |ξ〉 =

∫

dωf(ω)|ω〉. In this way, initial states of the
form |ψ+,−〉 = 1√

2
(|H〉+ |V 〉)⊗|ξ〉 can be generated with

different |ξ〉. The non-Markovianity of the process is then
quantified through the non-Markovianity measure (38).

Another interesting application of non-Markovianity
mesaures is the one by Žnidarič et al. (2011) which an-
alyzes the non-Markovianity of a qubit strongly coupled
to an environment, considering the RHP and BLP mea-
sures. To this end, everything but the coupling operator
is neglected in Htot, which is chosen to be such that the
statistical properties of its eigenvectors can be described
by a random unitary matrix. This is a very good approx-
imation for quantum chaotic systems (Haake, 2010). By
analytically computing the quantum channel acting on
the qubit, it is shown that a non-Markovian behavior al-

ways occur in such a strong coupling limit, independently
of the environment dimension.

FIG. 3 Changes in the trace distance and the concurrence as
functions of the tilting angle θ. Such an angle determines the
structure of the frequency spectrum and, thus, the environ-
mental initial state |ξ〉. The positive values in the blue regions
give directly the non-Markovianity measure N (Λ) of the pro-
cess, while the negative values correspond to N (Λ) = 0, i.e.
Markovian dynamics. From Liu et al. (2011).

Other non-Markovianity measures are based on the
quantum Fisher information flow (Lu et al., 2010; Zhong
et al., 2013) and Bures distance (Liu et al., 2013b), a
quantification of the deviation from divisibility in terms
of the negative values of transition maps (Rajagopal
et al., 2010), or the non-monotonicity of the decay of
the mutual correlations between the OQS and an ancilla
(Luo et al., 2012). Also, a non-Markovianity measure
has been derived by Lorenzo et al. (2013) based on the
idea that the volume of physical states accessible to a
system decreases monotonically for Markov evolutions,
while non-Markovian evolutions may present some time
intervals where it increases. In addition, Chruściński and
Maniscalco (2014) propose a non-Markovianity measure
based on a formal analogy with the entanglement theory,
such that a Markov evolution corresponds to a separable
state, while a non-Markovian evolution is characterized
by the Schmidt number of an entangled state. A non-
Markovianity measure based on the concept of tempo-
ral steering and its quantification similar to that of the
original spatial EPR-steering has been developed (Chen
et al., 2015b). Also, the canonical form of time-local
master equations (see Sec. IV.B), is the basis of the non-
Markovianity mesaure presented in (Hall et al., 2014),
which also discuss the relative strength of this measure
and the previously proposed measures. More recently
Liu et al. (2015) quantifies the non-Markovianity of a
chromophore-qubit pair in a super-Ohmicbath, using the
distance between an evolved state and the steady state.
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C. System-environment correlations and non-Markovianity

It is apparent that during the decoherence process
there is an exchange of information between the system
and the environment. An initial flow of information from
the environment to the system has been found by Laine
et al. (2010) to be linked to the presence of initial corre-
lations between the system and the environment. In this
analysis, they have considered two initial states of the full
system, ρ1tot(0) and ρ

2
tot(0), concluding that an initial in-

crease of the trace distance of the reduced states implies
that there are initial system-environment correlations or
that the initial environmental states are different. Such
increase in trace distance is found to be upper-bounded
as

D(ρ1s(t), ρ2s(t))−D(ρ1s(0), ρ2s(0)) ≤
∑

j=1,2

D(ρjtot(0), ρjs(0)⊗ ρjB(0)) +D(ρ1B(0), ρ2B(0)),

(39)

where ρjs(t) = TrB{ρjtot(t)} (j = 1, 2). A more complete
discussion can also be found in (Breuer et al., 2015).
More recently, Mazzola et al. (2012) and Smirne et al.

(2013) have linked the Non-Markovianity with the occur-
rence of system-environment correlations created during
the interaction. The analysis is based on the consider-
ation that the total system-environment density matrix
can always be written as

ρtot(t) = ρs(t)⊗ ρB(t) + χSB(t), (40)

where χSB(t) describes the correlation between the sys-
tem and the environment at time t. Then, the difference
between density matrices of the total system at time t
that have departed from different initial states ρ1tot(0)
and ρ2tot(0) can be decomposed as

ρ1tot(t)− ρ2tot(t) = (ρ1s(t)− ρ2s(t))⊗ ρ1B(t)
+ ρ2s(t)⊗ (ρ1B(t)− ρ2B(t)) + (χ1

tot(t)− χ2
tot(t)), (41)

as a function of the system and environment operators
corresponding to the two initial conditions (denoted by
super-indexes 1 and 2). Computing the difference of
the trace distance between ρ1tot and ρ2tot at times t and
t + t′, ∆D(t′, t, ρ1,2tot) = D(t + t′, ρ1,2tot) − D(t, ρ1,2tot), it is
found that a sufficient condition for non-Markovianity,
i.e. ∆D(t′, t, ρ1,2tot) > 0, is that

B(t′, t, ρ1,2tot) > D(t, ρ1,2tot) + F (t′, t, ρ1,2tot). (42)

Here, B(t′, t, ρ1,2tot) keeps track of the effects of system-
environment correlations (i.e. it is originated by the
last two terms in Eq. (41)) at times t + t′. Also,
F (t′, t, ρ1,2tot) expresses how the distinguishability between
reduced states would be at t + t′ if the two total states
at time t were product states, and it is thus originated
by the first term in the rhs of (41). Hence, system-
environment correlations, given by B in (42), must ex-
ceed a threshold in order to produce an increase in the

distinguishability, and thus lead to a non-Markovian evo-
lution.

A different question is whether the information ex-
changed is of quantum or classical nature. In particu-
lar, there are circumstances where the system decoheres
without becoming entangled with the environment at any
time (Eisert and Plenio, 2002; Pernice et al., 2012; Per-
nice and Strunz, 2011).

Naturally, the former analysis refers to system-
environment correlations existing in the total density ma-
trix, which is obtained as a sum of the results of many
different experimental runs starting from the same initial
configuration. Hence, even if it is found that χSB = 0,
system-environment correlations could be (and in fact
are) present at each experimental run. In fact, system-
environment correlations are the basis of indirect mea-
surement techniques, in which, for instance, information
about the atomic state is obtained from scattered pho-
tons. As discussed in Sec. V, indirect measures may be
a basis for deriving stochastic Schrödinger equations.

D. Environment-environment correlations and

non-Markovianity

As proposed by Laine et al. (2011), non-Markovian
effects can emerge in a composite open system (for in-
stance a bi-partite open system with reduced state ρs),
when each OQS’s component interacts locally with a sub-
system of a composite environment. Then, provided that
the subsystems of the composite environment are initially
correlated, non-Markovianity can be observed in the re-
duced dynamics of the composite OQS state ρs, while the
local dynamics of the reduced density operator of each
member of the composite open system (ρ1s = Tr2{ρs}
and ρ2s = Tr1{ρs}) remains Markovian. Such nonlocal
memory effects have been shown to be a resource for
quantum information tasks, such as quantum communi-
cation (Laine et al., 2014; Liu et al., 2013a) and efficient
superdense coding in the presence of dephasing noise (Liu
et al., 2015).

Environment-environment correlations can be either
experimentally prepared as in (Liu et al., 2013a, 2015), or
emerge dynamically. As discussed by Chan et al. (2014),
a key aspect for the appearance of correlations among
multiple baths is the presence of non-Markovianity in
the interaction between the subsystems and their envi-
ronments. In more detail, only when such interaction is
non-Markovian quantum interference between the baths
emerge, as opposed to the Markovian limit where the ac-
tion of the different baths is additive. An OQS coupled
to multiple reservoirs can be found in different situations,
as in cavity quantum electrodynamics (Gea-Banacloche
et al., 2005), opto-mechanical cavities (Safavi-Naeini
et al., 2014), traveling-wave photon-phonon transduction
in nanophotonic waveguides (Shin et al., 2015), photo-
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active molecules coupled to a vibrating environment such
as photosynthetic complexes (Blankenship, 2002), or the
dynamical Casimir effect (Impens et al., 2014) just to
name a few.

E. Temperature and non-Markovianity

An insightful case study is to consider an initial uncor-
related state of the form (27) with the environment in a
thermal equilibrium,

ρeqB =
e−βHB

TrB{e−βHB} . (43)

In general, it is well known that temperature enhances
the decay and therefore tends to decrease the relaxation
time of the system (Affleck, 1981; Grabert et al., 1984;
Weiss and Haeffner, 1983). A different question is how
temperature affects the non-Markovianity of the evolu-
tion. It is generally believed that non-Markovian effects
are more important at low temperatures (Weiss, 2008).
In this regard, for a two-level system in a spin bath,
Zheng-Da et al. (2014) showed that the non-Markovianity
decreases close to the critical point of the system, and
that this decrease is indeed higher at higher tempera-
tures. In addition, Haikka et al. (2013) analyze a two-
level system subject to a dephasing bath with spectral
density (26), observing that there is a critical value of
s for the onset of non-Markovianity. This critical value
is higher for high temperatures. Also, Liu et al. (2015)
concluded that the non-Markovianity of a chromophore
qubit in a super-Ohmic bath, and thus the backflow of
information from the environment, is reduced when the
temperature increases.

However, as shown recently by Vasile et al. (2014)
for a bosonic noninteracting system, all quantities en-
vironment size, temperature, proximity of a cutoff fre-
quency ωc in the spectra, spectral density shape (sub-
Ohmic, Ohmic, super-Ohmic), and strength of the cou-
pling to the system are crucial factors in determining the
non-Markovianity of an evolution. Interestingly, Vasile
et al. (2014) determines that for certain parameter val-
ues, the non-Markovianity increases with the tempera-
ture. Along the same line, Chen et al. (2015a) also
showed that non-Markovianity can increase with tem-
perature and with the coupling to the environment. In
this proposal, both entanglement and non-Markovianity
measures are used to reveal whether second-order weak
coupling non-Markovian master equations (Sec. IV) un-
derestimate or overestimate memory effects. This is done
by comparing the approximated equations to the numeri-
cally exact hierarchical equations of motion (HEOM) dis-
cussed in Sec. VI.C. The entanglement measure consid-
ered is detailed in Fig. 4.

FIG. 4 Schematic illustration of the entanglement measure,
which is closely associated with the non-Markovianity mea-
sure proposed by Rivas et al. (2010b). A system and an envi-
ronment isolated copy of it, acting as an ancilla, is considered.
Initially, they form a maximally-entangled state. When the
system starts to be coupled with its environment (denoted by
the gray shadow) it will evolve and the system-ancilla entan-
glement will be sensitive to the environment coupling. From
Chen et al. (2015a).

F. Asymptotic and equilibrium states in Markovian versus

non-Markovian dynamics

In order to characterize an OQS in the long time limit,
several concepts come into play. In the long time limit
the OQS may relax to a steady state, characterized by

a time-independent density matrix, limt→∞
dρS(t)
dt = 0.

Moreover, while relaxation describes the convergence of
the reduced density matrix of a system to a fixed but ar-
bitrary state, thermalization corresponds to a relaxation
or stabilization of the system to its thermal or Gibbs
state 7,

ρeqS =
e−βHS

ZS(β)
. (44)

In the limit of vanishing coupling strength, a system cou-
pled to a thermal reservoir relaxes to such thermal state
(Davies, 1976; van Hove, 1954; Laird et al., 1991),

lim
g→0

lim
t→∞

ρs(t) = ρeqS , (45)

irrespective of the initial state of the system, but only
if certain conditions are fulfilled (Geva et al., 2000;
Romero-Rochin and Oppenheim, 1989). However, this
may not be the case in the strong coupling limit, or for
specific spectral densities of the environment. A detailed
discussion of this is provided in Sec. IV.B.3.
In addition, as pointed out by Chruściński et al. (2010),

there is a crucial difference between the long time limit
states resulting from Markovian and non-Markovian evo-
lutions (Markovian evolutions are here understood as

7 In the context of isolated many-body systems, a generalization
of the Gibbs state was proposed (Rigol et al., 2007), which is
also valid for systems obeying conservation laws.
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those described by a divisible map). In order to appreci-
ate this difference, it is necessary to recall the following
definitions: first, for a Markov evolution a steady state
ρss is defined as

lim
t→∞

Λ(t, 0)ρ0 = ρss, (46)

for any arbitrary state ρ0, where the solution of the gen-
eral Markovian master equation is written as ρs(t) =
Λ(t, 0)ρ0; second, because a Markov evolution possesses
the divisibility property Λ(t+ t2, 0) = Λ(t, t2)Λ(t, 0), we
find

lim
t2→∞

Λ(t+ t2, 0)ρ0 = ρss. (47)

But also limt2→∞ Λ(t + t2, 0)ρ0 = Λ(t, 0)ρss. Hence,
Λ(t, 0)ρss = ρss, i.e. for a Markovian evolution the
steady state ρss is always invariant, wherein a state ρ0
is said to be invariant if Λ(t)ρ0 = ρ0 for any t ≥ 0. Be-
cause non-Markovian evolutions do not fulfill the semi-
group property, a non-Markovian evolution may lead to
a steady state that is not invariant. A non-Markovianity
measure based on this idea was proposed by Chruściński
et al. (2010).

A related question is whether an OQS relaxes to steady
state (either thermal or not) which is independent of the
initial condition. For the case of a Markov semigroup
map, as the one corresponding to the Lindblad equation,
the steady state is unique as long as the semigroup is
relaxing, in which case the equation Lρss = 0 admits
only one solution. A semigroup is relaxing when the zero
eigenvalue of the generator L is non-degenerate, and the
rest of the eigenvalues have negative real part. Other-
wise, the final state of the system might depend on the
initial state.

The dependency of the steady state on the spectral
density structure was extensively studied for the case
of the OQS being a harmonic oscillator (see also Sec.
VIII.B). In this case, the system annihilation operator
can be expressed as a(t) = A(t)a(0)+

∑

λ uλ(t)bλ(0) (Cai
et al., 2014; Louisell, 1990), and a nonvanishing asymp-
totic value of A(t) (which is solved through an integro-
differential equation that depends on the spectral den-
sity) is clearly identified with a non-thermal relaxation.
In this regard, Xiong et al. (2013) and Zhang et al. (2012)
concluded that when the spectral density has band gaps
or a finite band [so that J(ω) vanishes in a certain re-
gion], localized modes exist in the environment that give
rise to dissipationless dynamics (and hence nonthermal
relaxation) in the OQS. Remarkably, nonthermal relax-
ation also occurs for non-gapped spectral densities, pro-
vided that the coupling strength exceeds a certain thresh-
old (Cai et al., 2014; Xiong et al., 2013). Moreover, such
nonthermal relaxation was also explored by Iles-Smith
et al. (2014) by considering a two-level system coupled
to an environment with a Drude spectral density (see

also Secs. VI.C and IX for details on how to deal exactly
with this case).

The long time limit of an evolution is often difficult to
obtain, either because of inherent limitations of the ap-
proximations used, or because of the difficulty of perform-
ing numerical calculations at long times. Nevertheless, as
shown by Cerrillo and Cao (2014), the initial evolution
of an OQS up to τc, already contains all the relevant in-
formation of the multiple-time correlations of the OQS
observables. This information can be extracted to deter-
mine a set of non-Markovian transfer tensors, which can
be used to propagate the system state to arbitrary long
times.

1. Quantum correlations and entanglement in the steady state

The coupling of a multipartite open system with an
environment does not always produce decoherence and
decay of its quantum correlations. In fact, entanglement
may be preserved and even generated within the system
due to a combined action of environment noise with either
a driving source (Galve et al., 2010; Huelga and Plenio,
2007; Li and Paraoanu, 2009) a nonequilibrium situation
(Cai et al., 2010; Lambert et al., 2007), or a continuous
monitoring of the decay dynamics (Plenio et al., 1999),
for instance.

Entanglement generation has also been analyzed in sit-
uations where the systems involved are coupled to com-
mon or independent reservoirs (see discussion in Sec.
VII.E regarding the conditions for these two limits). In
more detail, entanglement may be generated by consid-
ering that the systems involved are coupled to a common
reservoir, Markovian in the case of (Benatti et al., 2003),
and non-Markovian in (Braun, 2002) where the dynam-
ics of HS is neglected. But even when considering the
systems coupled to independent Markovian reservoirs, a
careful design of the system-environment couplings can
lead to an entangled state as the unique stationary state
of a dissipative process (Kraus et al., 2008; Verstraete
et al., 2008).

A different situation is analyzed by Huelga et al. (2012)
who considered two spins with nearest-neighbor interac-
tions and locally coupled to two damped harmonic os-
cillators, showing that non-Markovianity is a resource
to support the formation of steady state entanglement
in situations where purely Markovian dynamics leads to
separable steady states. In a subsequent analysis of the
many-body generalization of this model, Cormick et al.

(2013) showed that long time limit entangled states can
also be achieved in the Markov case, and that the role of
non-Markovianity is just to allow for a faster convergence
to such steady state.

Regarding the dynamics from an initially entangled
state, the entanglement between a pair of two-level sys-
tems has been shown to vanish at short times compared
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to the usual spontaneous lifetime (Yu and Eberly, 2004).
However, if the reservoirs are non-Markovian, the dynam-
ics of a pair of two-level systems in an initial Bell-like
state (Bellomo et al., 2007), or Werner-like state (Bel-
lomo et al., 2008), or the dynamics of two oscillators (Paz
and Roncaglia, 2008, 2009), may show the presence of en-
tanglement oscillations and revivals after a finite period
of time of its complete disappearance. Other studies of
continuous variable systems coupled to non-Markovian
environments have suggested its relevance in the preser-
vation of two-mode (Cormick and Paz, 2010; Correa
et al., 2012; Estrada and Pachn, 2015; Hörhammer and
Büttner, 2008; Liu and Goan, 2007; Maniscalco et al.,
2007) and three-mode (Hsiang and Hu, 2015; Valido
et al., 2013a,b, 2014, 2015) entanglement. Revivals of
quantum correlations may also occur when the environ-
ment is classical (Bordone et al., 2012; Franco et al., 2012;
Lo Franco et al., 2012; Xu et al., 2013; Zhou et al., 2010)
and thus it does not have a back-action into the system.

IV. MASTER EQUATIONS

One of the most important approaches describing the
dynamics of an OQS is to compute the master equation
evolving the reduced density matrix of the system ρs(t).
Some of the most relevant master equations available are
discussed in this section.

A. Brief historical review: Rate equations and Markov

master equations

The theory for describing the dynamics of an OQS
is well developed under the Markov hypothesis, assum-
ing that the relaxation time of the environment is much
smaller than any relevant time scale of the system. One
of the first evolution equations was derived by Einstein
(1917), and describes the atomic population dynamics of
an atom emitting and absorbing light in a thermal field.
The generalization of this equation, made by Pauli (1928)
[see also (Gardiner and Zoller, 2000)], reads as follows:

dPn(t)

dt
=

∑

m>n

(Anm +BnmD)Pm(t) +
∑

m<n

BnmDPm(t)

−
∑

m<n

(Amn +Bmn D)Pn(t)−
∑

m>n

Bmn DPn(t),

where Pn(t) are the occupation probabilities of the en-
ergy levels. The coefficients Amn and Bmn represent the
transition rates from the atomic state n to the atomic
state m due to spontaneous and stimulated emission, re-
spectively. In this equation, D ≡ D(ωmn) is the energy
density of the electromagnetic field at the emitting fre-
quency, ωmn = (Em−En), where En is the energy of the
level n. The energy density is given by Plank’s radiation

law D(ωmn) = αω3
mn exp(−ωmnβ) 8.

The positive terms represent the gain of probabil-
ity from transitions into the state n, and the negative
terms represent the loss of probability by transitions from
the state n. The transition rates between populations
{Amn , Bmn } are given by the Fermi golden rule within the
weak coupling approximation (Cohen-Tannoudji et al.,
1977). When the Hamiltonian of the system is unknown,
transition rates can be calculated from experimental data
or chosen by a phenomenological ansatz. The use of a
quantum theory that only has to deal with probabilities
was justified by Pauli with the repeated random phase

assumption, which consists of assuming that the phase
relations between wave functions are always (repeatedly)
randomized, so that only the square of the wave func-
tion (i.e. the probabilities) are relevant. Nevertheless,
this assumption is not valid whenever the quantum co-
herences remain finite during the system evolution time
scale.
In the second half of the last century, the density op-

erator ρ(t) was introduced by Landau (1927); Lüders
(1951); and von Neumann (1955) [see also Breuer and
Petruccione (2002); Cohen-Tannoudji et al. (1977); Diósi
(1990); Gardiner and Zoller (2000); and L.D.Landau and
Lifschitz (1980)]. Such an object is more convenient for
describing systems where the repeated random phase as-
sumption cannot be applied. A good example of such
systems is lasers, which, as highly coherent fields, cannot
be described with the Pauli equation (nor can systems
interacting with them).
The best-known master equation, which is obtained

under the Born-Markov approximation, is the Lindblad
equation(Gorini et al., 1976; Lindblad, 1976), which cor-
responds a dynamical semigroup as discussed in Sec.
(III.B). For a Hamiltonian of the form (18) and consid-
ering an OQS having a d-dimensional Hilbert space (see
Sec. (IV.B) for a derivation)

dρs(t)

dt
= −i[Hs, ρs(t)] +

d2−1
∑

k=1

∆k

[

2Ckρs(t)C
†
k

− {C†kCk, ρs(t)}
]

, (48)

where Ck are system operators in the Lindblad form,
and ∆k is a constant and positive parameter. This mas-
ter equation represents one of the key elements of the
theory of OQSs, and is particularly suited to quantum
optics and quantum thermodynamic scenarios. In the
latter case it allows us to address the thermodynamic
processes taking place at a finite time (Campisi et al.,
2009; Correa et al., 2013, 2014a, 2015, 2014b; Esposito,

8 Let us recall here that we have set ~ = 1, so that ωmn =
(Em−En)/~ ≡ Em−En and D(ωmn) = αω3

mn exp(−~ωmnβ) ≡
D(ωmn) = αω3

mn exp(−ωmnβ).
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2012; Gelbwaser-Klimovsky et al., 2013; Kosloff, 2013;
Palao et al., 2016; Spohn and Lebowitz, 2007; Strasberg
et al., 2013; Szczygielski et al., 2013). The intimate con-
nection between quantum thermodynamics and the the-
ory of OQSs, and hence the thermodynamic consistency
of the latter, beyond the weak coupling condition remains
the subject of ongoing developments [see (Esposito et al.,
2009) for a review].

A critical analysis of the validity of the Markov ap-
proximation for a single oscillator and two interacting
harmonic oscillators coupled to a harmonic oscillator en-
vironment, which is exactly solvable problem (see Sec.
VIII.B), was performed by Rivas et al. (2010a).

B. Non-Markovian master equations

Even without the Markov approximation, the dynam-
ics of the reduced density operator of an OQS obey a
time-local master equation, as long as its map, given by
Eq. (28), is invertible and differentiable. To show this,
we compute the time derivative of this equation to get

dρs(t)

dt
=

∑

l

(

dEl(t)

dt
ρs(0)E

†
l (t) + El(t)ρs(0)

dE†l (t)

dt

)

.

(49)

If the map Λ(t) describing the evolution is invertible, then
we can always reexpress ρs(0) =

∑

m Fm(t)ρs(t)Qm(t),
where Fm and Qm are system operators. Conditions for
invertibility of a map have been discussed for instance
by Maldonado-Mundo et al. (2012), and consequences
on the complete positivity of the resulting equation are
further discussed by Breuer et al. (2015). Inserting this
expression in (49), this equation can be reformulated as

dρs(t)

dt
=

∑

k

Ak(t)ρs(t)B
†
k(t), (50)

where the label k = {η, l,m}, with η = 1, 2, such that
A1,l,m(t) = (dEl(t)/dt)Fm(t), A2,l,m(t) = El(t)Fm(t),

B†1,l,m(t) = Qm(t)E†l (t), B
†
2,l,m(t) = Qm(t)(dE†l (t)/dt).

Here we defined

Vt−t0X = U†0 (t, t0)XU0(t, t0), (51)

for any system or environment operator X, and also
ρItot = U0(t, t0)ρtot(t)U†0 (t, t0) with the free evolution op-
erator U0(t, t0) = e−iH0(t−t0). Following the techniques
developed by Gorini et al. (1976) for deriving the Lind-
blad equation, and further discussed by Hall et al. (2014)
for the non-Markovian case, we rewrite the system oper-
ators Ak(t) and Bk(t) in terms of the complete set of
N = d2 basis operators {Gi ; i = 0, · · · , N − 1}, with the

properties G0 = 11S/
√
d, Gi = G†i , Tr{Gi} = δi0, and

Tr{GiGj} = δij . Note that for a two-level system, these

are just the unit matrix 11S and the Pauli matrices, σi
with i = x, y and z. Then the expansion takes the form

Ak(t) =
∑

i

aik(t)Gi , Bk(t) =
∑

j

bjk(t)Gj , (52)

with aik(t) = Tr{Ak(t)Gi}, and bik(t) = Tr{Bk(t)Gi}.
In these terms, the general master equation (50) becomes

ρ̇s(t) =
∑N−1
ij=0 cijGiρs(t)Gj , with cij =

∑

k aik(t)b
∗
jk(t)

being the elements of an N × N matrix, which because
of the Hermiticity of ρs(t) shall be Hermitian too, such
that cij = c∗ji.
Separating out the terms i = 0 and j = 0, the master

equation can formally be written as

dρs(t)

dt
= −i[ĤS(t), ρs(t)] + Cρs(t) + ρs(t)C

†

+

N−1
∑

ij=1

cijGiρs(t)Gj , (53)

where we defined

C =
11S
2d
c00 +

N−1
∑

i=1

ci0√
d
Gi.

Trace preservation implies that C + C† =
−∑N−1

ij=1 cijGjGi. Rewriting Eq. (53) in terms of

combinations of C − C† and C + C†, we find that

dρs(t)

dt
= −i[ĤS(t), ρs(t)] +

d2−1
∑

ij=1

dij(t)

(

Giρs(t)Gj

− 1

2
{GjGi, ρs(t)}

)

, (54)

where ĤS(t) = (i/2)(C − C†), and dij = cij for i, j > 0.
Then, considering that the decoherence matrix d is Her-
mitian, it can be rewritten in its diagonal form dij(t) =
∑

k Uik(t)∆k(t)U
∗
jk, where ∆k(t) and Ujk(t) are, respec-

tively, its eigenvalues and unitary eigenvectors. Defining
the time-dependent operators

Ck(t) =

N−1
∑

i=1

Uik(t)Gi, (55)

we can rewrite (54) in the canonical form

dρs(t)

dt
= −i[ĤS(t), ρs(t)] +

d2−1
∑

k=1

∆k(t)

(

2Ck(t)ρs(t)C
†
k(t)

− {C†k(t)Ck(t), ρs(t)}
)

, (56)

which is the non-Markovian generalization of the Lind-
blad equation (48). Note that this equation corresponds
to the general time-local master equation previously de-
fined in (Breuer, 2004). In Eq. (56), complete positivity
can be ensured only when ∆k(t) ≥ 0 throughout the
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whole evolution. If this condition is not fulfilled, noth-
ing can be assured, and CP may or may not be pre-
served depending on the case. Moreover, according to
(Breuer et al., 2015; Hall et al., 2014), a time-local mas-
ter equation is Markovian if an only if the canonical de-
coherence rates are positive during the whole evolution.
Non-Markovianity can then be defined as a sum of all in-
tervals where the decaying rates ∆k(t) are negative. This
measure is shown to be equivalent in strength to the one
defined by Rivas et al. (2010b). Finally, in the Markov
case originally considered by Gorini et al. (1976), the co-
efficients are time independent, ∆k(t) = ∆k, and CP can
be assured provided that they are all positive.

Eq. (54), or its canonical version (56), formally de-
scribes the evolution of the reduced density matrix of
an OQS. Its coefficients can only be computed exactly
in the specific systems discussed in Sec. VIII, namely
for a quantum Brownian particle, in the dephasing case
L ∼ Hs, or when the full problem can be solved within
the one excitation sector. Nevertheless, in a recent
derivation Ferialdi (2016a) has provided the most gen-
eral form of non-Markovian map. Based on this, Ferialdi
(2016b) has shown that the coefficients of the master
equation for the spin-boson and Jaynes-Cummings mod-
els (the last one consisting on several spins coupled to a
common bosonic field) come in terms of an infinite se-
ries of mutually dependent terms. The convergence and
properties of this series for different spectral densities and
particle configurations (in the many-body case) remains
to be studied.

In the following sections, we analyze several approx-
imations to tackle the dynamics of a general OQS. In
this regard, the first non-Markovian master equation
was derived by Redfield (1957, 1965) within the context
of nuclear magnetic resonance. A more accurate non-
Markovian master equation, which allows us to recapture
the Redfield equation itself in a limit, was later derived
by considering a weak coupling approximation between
the system and the environment. This equation can be
obtained by means of two different methods, which are
explained in the following sections: the first is based on
assumptions made on the evolution time scales and on
the Born-Markov approximation, and the second is based
on an expansion in the coupling parameter between the
system and the environment. For both methods, a total
Hamiltonian of the form Htot = H0 + gHI is considered,
where g is a small parameter that, for simplicity, is ab-
sorbed here into HI , so that terms proportional to Hn

I

are at least of the order gn.

1. The Born-Markov approximation

The von-Neumann equation for the density operator of
the total system in the interaction picture, ρItot(t), reads

as follows:

dρItot(t)

dt
=

1

i
[VtHI , ρ

I
tot(t)], (57)

where we considered the definition (51). To simplify the
notation, we set ρItot(t) = ρ(t). We can integrate Eq.
(57) between t0 and t. After two iterations and a trace
over the environmental degrees of freedom, this leads to
the following equation,

∆ρs(t) =
1

i

∫ t

t0

dτTrB{[VτHI , ρ(t0)]}+
(

1

i

)2

×
∫ t

t0

dτ

∫ τ

t0

dτ ′TrB{[VτHI , [Vτ ′HI , ρ(τ
′)]]}, (58)

where ρs(t) = TrB{ρ(t)} is the system reduced density
operator and

∆ρs(t) = ρs(t)− ρs(t0). (59)

Equation (58) is exact, but some assumptions have to
be made in order to express it as a closed equation for
ρs(t). For an initially uncorrelated state of Eq. (27),
ρ(t0) = ρs(t0)⊗ ρB , and considering the case where

TrB{Vt0HIρ
eq
B } = 0, (60)

so that the first term in Eq. (58) can be eliminated.
Note that this occurs for instance when the environment
is initially in thermal equilibrium ρB = ρeqB given by (43).
After the change of variable T = τ and s = τ − τ ′, the

Eq. (58) becomes

ρs(t) = ρs(t0)−
∫ t

t0

dT

∫ T−t0

0

dsTrB {[VTHI ,

× [VT−sHI , ρ(T − s)]]}. (61)

The evolution equation for the reduced density operator
can be obtained by taking the derivative of Eq. (61) with
respect to t,

dρs(t)

dt
= −

∫ t−t0

0

dτTrB

{

[VtHI , [Vt−τHI , ρ(t− τ)]]
}

,

(62)
with initial condition ρs(t0). The density operator ap-
pearing in the rhs of Eq. (62) has the general form (40).
However, the integral in Eq. (62) contains a kernel, the
correlation function, that decays with τc. In addition, the
term χSB(t), which describes the correlations between
the system and the environment at time t, persists only
during a time approximately equal to τc. Hence, such
correlations can be neglected with the assumption that
τc ≪ TS . This is the Born approximation, which is valid
only up to the order g2 in the perturbation parameter
(Breuer et al., 1999; Cohen-Tannoudji et al., 1992). In or-
der to transform the resulting equation into a time-local
form, we further replace ρs(t−τ) = ρs(t) within the inte-
gral term. This approximation is valid provided that the
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system evolution time TS is much slower than the cor-
relation time of the environment, which settles the scale
in which the integrand decays to a certain value. This
is sometimes known in the literature as the first Markov

approximation.
Choosing t0 = 0, the evolution equation (62) then be-

comes, after a trivial change of variable t− τ → τ

dρs(t)

dt
= −

∫ t

0

dτTrB{[VtHI , [VτHI , ρB(t)⊗ ρs(t)]]},
(63)

where ρB(t) = TrS{ρ(t)}, and the initial condition is
ρs(0). As discussed later, a further approximation con-
sists of assuming that the integral limits can be extended
to∞, which is often known in the literature as the second
Markov approximation.

2. Perturbative approximation in the coupling constant

The equivalence between approximations on time
scales and the Born approximation and the weak cou-
pling assumption can easily be seen by returning to Eq.
(57) and performing a perturbative integration of ρ(t).
After tracing out the environment’s degrees of freedom,
we get an expression similar to Eq. (61),

ρs(t) = ρs(t0)−
∫ t

t0

dT

∫ T

t0

dτTrB{[VTHI ,

× [VτHI , ρ(t0)]]}, (64)

but now with ρ(t0) instead of ρ(τ) inside the integral
term. Taking the derivative of Eq. (64) with respect to
t, Eq. (63) is again obtained, where it has been used
that in the term of the order g2 of Eq. (64), ρs(t0) can
be replaced by ρs(t), so that the discarded terms are of
a higher order than g2. In summary, the assumptions
over the time-scale hierarchy (τc ≪ TS) are related to
the weak coupling limit (g ≪ 1)9. In order to obtain Eq.
(63) we considered an initial condition of the form (27),
with ρB fulfilling the property (60). More general initial
conditions are studied in Sec. IV.B.6.
A more specific form for the master equation can be

obtained by replacing in Eq. (63) the generalHI given by
Eq. (2), so that VtHI =

∑

η Vt {SηBη} =
∑

η VtSηVtBη,
with Vt specified in Eq. (51). In that way, we get

dρs(t)

dt
= −

∑

γ,η

∫ t

0

dτCγη(t− τ)[VtSγ , VτSηρs(t)]

−
∑

γ,η

∫ t

0

dτC∗γη(t− τ)[ρs(t)VτSη, VtSγ ], (65)

9 Indeed, when g → 0, TS → ∞ and the condition τc ≪ TS is
more easily fulfilled.

where we set t0 = 0 and defined

Cγη(τ) = TrB{VtBγVt−τBηρB}
Cγη(−τ) = C∗γη(τ) = TrB{Vt−τBηVtBγρB}, (66)

using the cyclic property of the trace, and considering C∗

as the complex conjugate of C.
For the choice (3) and (4) of coupling operators, and

considering that the environment is in a thermal state
ρB = ρeqB given by Eq. (43), we find that the cor-
relation functions in Eq. (65) combine as α±(t) =
2 [C11(t)± iC21(t)] (de Vega et al., 2005b), with

α−(t− τ) =
∑

λ

g2λ[n(ωλ) + 1]e−iωλ(t−τ), (67)

and

α+(t− τ) =
∑

λ

g2λn(ωλ)e
iωλ(t−τ), (68)

The function n(ωλ) = [exp(ωλβ) ∓ 1]−1 is the average
thermal number of quanta in the mode ω corresponding
to bosonic (−) and fermionic (+) reservoirs. In terms of
these, Eq. (65) can be expressed as (Yu et al., 1999)

dρs(t)

dt
=

∫ t

0

dτα+(t− τ)[VτL†ρs(t), VtL]

+

∫ t

0

dτα−(t− τ)[VτLρs(t), VtL†] + H.c.

(69)

Note that for zero temperature, n(ωλ) = 0, so that
α+(t− τ) = 0 and α−(t− τ) becomes equal to Eq. (24),
and the master Eq. (69) is further simplified. Yet a fur-
ther simplification can be obtained when L = L†, so that
the terms in Eq. (69) combine in such a way that the re-
sulting equation depends only on the correlation function
αT (t− τ) defined in Eq. (21).
Although the former master equation is valid only up

to g2, its form already suggests the result of the ther-
mofield approach proposed by Araki and Woods (1963);
Bargmann (1961); and Takahashi and Umezawa (1996)
[see (Blasone et al., 2011) for a review], i.e. that a
thermal environment can be expressed as two different
environments at zero temperature. This can be for-
mally described by introducing an auxiliary environment
with operators cλ and c†λ, so that the total Hamilto-

nian can be rewritten as H = Htot −
∑

λ ωλc
†
λcλ, with

Htot given by Eq. (5), and considering as initial state
|Ω0〉 ∝ e−βHB/2|I〉, with |I〉 =

∑

n |n〉a|n〉c. This is
the maximally entangled state between the real and the
auxiliary environments, defined in terms of their energy
eigenstates, |n〉a, |n〉c, and it is such that the reduced
state of each environment (physical B, and auxiliary C) is
a thermal state, TrC{|Ω0〉〈Ω0|} = TrB{|Ω0〉〈Ω0|} = ρeqB .
Then, a thermal Bogoliubov transformation is considered

a1λ = e−iGbλe
iG = cosh(θλ)aλ − sinh(θλ)c

†
λ
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a2λ = e−iGcλe
iG = cosh(θλ)cλ − sinh(θλ)a

†
λ, (70)

where G = i
∑

λ θλ(a
†
λc
†
λ − cλaλ), with θλ a function of

the temperature such that cosh(θλ) =
√

1 + n(ωλ). The
transformed Hamiltonian has the form (Diósi et al., 1998;
de Vega and Bañuls, 2015; Yu, 2004)

H̃tot = HS +
∑

λ

ωλ(a
†
1λa1λ − a

†
2λa2λ)

+
∑

λ

g1λ(L
†a1λ + a†1λL) +

∑

λ

g2λ(La2λ + a†2λL
†)(71)

where g1λ = gλ cosh(θk) and g2λ = gλ sinh(θλ). The key
point is that the transformed initial state, known as the
thermal vacuum, |Ω〉 = e−iG|Ω0〉, is the vacuum for the
transformed modes, a1λ|Ω〉 = a2λ|Ω〉 = 0. Hence, solving
the dynamics of the initial problem, given by the Hamil-
tonian (5) with an initial condition ρtot0 = ρS0 ⊗ ρB , is
equivalent to solving the dynamics with (71), but with
an initial condition ρtot0 = ρS0 ⊗ |Ω〉〈Ω|. Thus, the ther-
mofield approach permits one to treat a thermal state of
the environment as a vacuum state (i.e. the thermal vac-
uum) of two transformed environments, which therefore
does not contain any initial excitation. This enables the
use of the SSEs derived for an environment in the vacuum
state to describe thermal environments (Diósi et al., 1998;
Yu, 2004), and gives rise to a potentially better scaling of
the basis dimension needed for exact numerical calcula-
tions such as matrix product states (MPS) (de Vega and
Bañuls, 2015).

3. Markov limit and secular approximation of the weak

coupling master equation

When VtL evolves very slowly in time as compared to
the environment correlation time, the integration limits
in Eq. (65) [and also in (69)] can be extended to infin-
ity, leading to a Markovian master equation also referred
as the Redfield master equation (Redfield, 1957, 1965).
Nevertheless, in general this equation does not generate
a dynamical semigroup and therefore does not guarantee
CP (Davies, 1974; Dümcke and Spohn, 1979).
To get this property, and thus obtain an equation in the

Lindblad form, the secular approximation has to be con-
sidered. Following the discussion in (Breuer and Petruc-
cione, 2002) [see also (Rivas and Huelga, 2011)], the inter-
action Hamiltonian (2), written as an interaction picture,
can be expanded as

VtHI =
∑

η,ω

e−iωtSη(ω)Bη(t), (72)

where we considered the spectral decomposition of the
system operators

Sη(ω) =
∑

n,n′

ǫn−ǫn′=ω

Π(ǫn)SηΠ(ǫn′),

where Π(ǫn) represents a projection onto the eigenspace
belonging to the eigenvalue ǫn of HS , which is assumed
to have a discrete spectrum. Also, S+

η (ω) = Sη(−ω).
Previously considering a change of variable t − τ → τ ,
Eq. (65) can be rewritten in terms of these quantities as

dρs(t)

dt
=

∑

ηγ

∑

ωω′

ei(ω
′−ω)tΓγη(ω)

(

Sη(ω)ρs(t)S
+
γ (ω

′)

− S+
γ (ω

′)Sη(ω)ρs(t)

)

+H.c., (73)

where we defined Γγη(ω) =
∫∞
0
dτeiωτCγη(τ). If the

spectrum of the system Hamiltonian, HS =
∑

n ǫn|n〉〈n|
is nondegenerate, and the typical value for |ω − ω′|−1
defines a time scale that is much smaller than the dis-
sipation time scale, the terms in Eq. (73) with ω 6= ω′

lead to a vanishing contribution in the equation, and can
be discarded following the secular approximation. As
discussed earlier, this approximation is similar to the ro-
tating wave approximation in quantum optics. The re-
sulting equation is in the Lindblad form, with corrected
system Hamiltonian ĤS = HS +

∑

ω∆γη(ω)S
†
ηSγ , and a

dissipative term Lρs =
∑

ηγ

∑

ω γ̃γη(ω)[Sη(ω)ρsS
+
γ (ω)−

(1/2){S+
γ (ω)Sη(ω), ρs}], with ∆γη(ω) = Im{Γγη(ω)} the

Lamb shift, and γ̃γη(ω) = Re{Γγη(ω)}.
In addition, since ρB is a thermal equilibrium

state, the correlations (66) follow the Kubo-Martin-
Schwinger condition, and therefore can be written as
Cγη(t) = Cηγ(−t − iβ). This emerges from the prop-
erty n(ω) + 1 = eβωn(ω), and leads to γ̃γη(−ω) =
∫∞
−∞ dτe−iωτCγη(τ) = γ̃ηγ(ω)e

−βω. This, together with

the properties ρeqS Sη(ω) = eβωSη(ω)ρ
eq
S and ρeqS S

+
η (ω) =

e−βωS+
η (ω)ρ

eq
S , can be used to prove that the thermal

state ρeqS , given in Eq. (44) cancels the rhs of the Marko-
vian master Eq. (73) obtained after the secular approx-
imation, and therefore is a steady state of this equation
[see for instance (Breuer and Petruccione, 2002)]. Note
that as discussed in Sec. III.F, the uniqueness of such
steady state, and thus its independence of the initial
state, depends on whether the corresponding map is re-
laxing or not.

Equation (73), together with the secular approxima-
tion, gives rise to a closed equation of motion for the
populations P (n, t) = 〈n|ρs(t)|n〉 with a similar form as

the rate equation (48), dP (n,t)
dt =

∑

m[W (n|m)P (m, t) −
W (m|n)P (n, t)] (Breuer and Petruccione, 2002). This
equation is now governed by two types of rates,
W (n|m) =

∑

γ,η γ̃γη(ǫm − ǫn)〈m|Sγ |n〉〈n|Sη|m〉, and
W (m|n), defined similarly. From the Kubo-Martin-
Schwinger condition discussed previously, the de-
tailed balance condition follows W (m|n)e−βǫn =
W (n|m)e−βǫm , which leads to the conclusion that the
equilibrium populations P st(n) follow the Boltzmann dis-
tribution P st(n) ∼ e−βǫn .
This rough picture of spontaneous emission is equiv-

alent to the one that follows from the Fermi golden
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rule(Cohen-Tannoudji et al., 1992; Scully, 2002; Wold-
eyohannes and John, 2003). This rule determines that
the spontaneous emission rate corresponding to a process
driving the system from an initial state to a final state
with an energy difference ω is just given by Re[Γγη(ω)].

det ρ  > 0s

det ρ  < 0s

slippage

ρ (0)s

Sρ (0)s

ρ (t)s

e    Sρ (0)L  ts
R

s

e    ρ (0)s
L  tR

s

FIG. 5 The space of the reduced matrices ρs for a two-level
system is divided into the set of admissible density matrices
for which det(ρs) ≥ 0 so that all the eigenvalues of ρs de-
fine non-negative probabilities, and the set of non-admissible
density matrices for which det(ρs) < 0. From Gaspard and
Nagaoka (1999b).

As discussed previously, without the secular approxi-
mation, the Redfield equation cannot in general be writ-
ten in the Lindblad form and thus does not preserve pos-
itivity. For the case of a two-level system, the breaking
of positivity is related to having initial conditions near
the border of the space of physically admissible density
matrices, i.e. when det(ρs(0)) ≥ 0, but very close to
010. This issue occurs because the non-Markovian effects
that happen at the initial stage of the evolution are not
being taken into account when the integral limits of equa-
tion (69) are extended to infinity. The application of a
slippage (i.e. a displacement) of initial conditions, first
suggested by Surez et al. (1992) for the case of a spin-
boson model and then extended by Gaspard and Nagaoka
(1999b) for general systems, appears to solve this prob-
lem, at least within the domain of the weak coupling
approximation (see Fig. 5).

10 A density matrix should obey three properties: (i) Tr{ρ} = 1,
(ii) ρ = ρ†, and (iii) 〈u|ρ|u〉 ≥ 0 for any state |u〉. From the
decomposition ρs =

∑

n λn|φn〉〈φn| in terms of eigen-states |φn〉,
these can be rewritten as: (i)

∑

n λn = 1, (ii) λn real, and (iii)
λn ≥ 0, which implies that det(ρs) =

∏

n λn ≥ 0. For a two-
level system, a trace-preserving and Hermitian density matrix
with det ρs ≥ 0 also fulfills (iii), since both eigenvalues cannot
be negative, and thus they should both be positive.

In simple cases, a relationship can be established ex-
plicitly between the correlation time τc, the weak cou-
pling parameter g, and the maximum time tm up to which
the evolution calculated with the second-order weak cou-
pling approximation gives rise to a positive density ma-
trix. This is calculated by formally solving the evolution
equation of the populations up to the second-order, and
calculating the maximum time tm up to which they are
still positive. For a two-level system with HS = ω12σz
coupled to the zero-temperature reservoir, this relation

can be simply written as 1/g2 = 2
∫ tm
0

dl
∫ l

0
dτℜ[α̂(l−τ)],

with α̂(t− s) = e−iω12(t−s)α(t− s). Considering a simple
exponentially decaying correlation α(t) = exp(−Γt), the
limiting condition is just tm = 1/τcg

2.

4. Coarse-graining approach to weak coupling master equations

An interesting alternative to derive a second-order
master equation is the coarse-graining approach dis-
cussed in (Alicki, 1989; Benatti et al., 2009; Schaller and
Brandes, 2008). Indeed, the formal solution of Eq. (57)
can be written as ρ(t+ τ) =W(t+ τ, t)ρ(t)W†(t+ τ, t),

with W(t + τ, t) = T exp(−i
∫ t+τ

t
dt1Vt1HI), and T a

time-ordering operator. Following Schaller and Brandes
(2008), one can perform the second-order perturbative
expansion of W(t + τ, t), and replace the result back in
the above definition of ρ(t + τ). Then, truncating at
second-order and considering the Born approximation,
we find

ρs(t+ τ) = ρs(t)−
1

2

∑

γη

∫ t+τ

t

dt1

∫ t+τ

t

dt2

× Cγη(t2 − t1)sign(t2 − t1)[Vt2SγVt1Sη, ρs(t)]
+

∑

γη

∫ t+τ

t

dt1

∫ t+τ

t

dt2Cγη(t2 − t1)

×
(

Vt1Sηρs(t)Vt2Sγ −
1

2
{Vt2SγVt1Sη, ρs(t)}

)

≡ ρs(t) + τLτc (t)ρs(t), (74)

where Lτc (t) represents the Liouville super operator spec-
ified above. Then, provided that τg2 is small with re-
spect to the time scale where ρs(t) varies, we can re-

place ρs(t+τ)−ρs(t)
τ ≈ ∂tρs(t). Therefore, Eq. (74) can

be rewritten as ∂tρs(t) = Lτc (t)ρs(t). As discussed in
the previous references, the coefficients of this equation
are positive for any τ ≥ 0. Without the need to in-
voke the secular approximation, the resulting equation
has the Lindblad form and thus preserves complete pos-
itivity. Also, the Lindblad equation which is obtained
after applying the secular approximation in Eq. (73) is
automatically recovered in the limit τ →∞.
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5. Weak-coupling master equations for time-dependent system

Hamiltonians

The characterization of OQSs additionally subject to
a time-dependent perturbation such that the system
Hamiltonian is time-dependent, is a long-standing topic
(Alicki, 1979; Davies and Spohn, 1978). Indeed, a rig-
orous derivation of Eq. (69) [and hence (65)], using
either projection methods or a perturbative expansion,
leads one to conclude that it is also valid for time-
dependent HS (Amin, 2009; Amin et al., 2008; Breuer,
2004; Sarandy and Lidar, 2005; de Vega et al., 2010).
Back in Schrödinger picture, Eq. (69) can be written, for
a time dependent system Hamiltonian HS as

dρs(t)

dt
= −i[HS(t), ρs(t)]

+

∫ t

0

dτα+(t− τ)[Vτ−tL†ρs(t), L]

+

∫ t

0

dτα−(t− τ)[Vτ−tLρs(t), L†] + H.c.

However, a practical use of this equation requires the
ability to rewrite it on a system basis. In detail, the
master equation depends on system operators with the
form V−τL† = U†s (−τ)L†Us(−τ), with

Us(t) = T e−i
∫ t
0
HS(τ)dτ , (75)

and T the usual time-ordering operator. Such evolu-
tion operators should be expressed in terms of the time-
dependent eigen-states of the system, |n(t)〉, correspond-
ing to the set of eigen-values En(t) that diagonalize in-
stantaneously HS(t).
A way to avoid this is to eliminate the explicit time de-

pendence of HS(t). This can be done for example when
the system is subject to a time-dependent perturbation
that is periodic in time, such as an atom in a laser field,
and the latter is considered in the semiclassical limit. In
this limit, the free part of the Hamiltonian can be written
as H0 = HB +HS + ~ǫ(σ+e−i(ωLt+φT ) + σ−ei(ωLt+φT )),
where ωL and ǫ = d21E are the laser frequency and the
Rabi frequency respectively, E is the laser electrical field
magnitude, and the factor φT = φL − π/2 groups all
phase contributions. Hence, a unitary can be considered
to transform the system into a rotating frame of reference
with respect to the laser, which effectively leads to a time-
independent Hamiltonian (see for instance (Florescu and
John, 2001; Law and Eberly, 1991; Scully, 2002)). Fol-
lowing this, it is often convenient to diagonalize the sys-
tem part of such Hamiltonian, thus reexpressing it in the
well-known dressed basis.
Nevertheless, in general a time-independent form of

the Hamiltonian cannot be obtained via a unitary trans-
formation, and thus it is unavoidable to express (75) in
terms of the system instantaneous eigen-states. This can
be done when the system is subject to a general peri-
odic time dependent perturbation, Hs(t) = H0

s +HL(t),

with HL(t + T ) = HL(t), and T = 2π/ωL where ωL is
the driving frequency. The instantaneous basis is then
the Floquet basis, obtained from the Floquet eigenvalue
problem (HS(t)− i ddt )|n(t)〉 = ǫn|n(t)〉, and obeying pe-
riodic boundary conditions in time |n(t)〉 = |n(t + T )〉
(Breuer and Petruccione, 2002). In this basis, we can
rewrite (75) as

Upe
s (t, t′) =

∑

n

e−iǫn(t−t
′)|n(t)〉〈n(t′)|, (76)

A second tractable situation is when the system un-
dergoes an exact adiabatic evolution, which allows us to
express (75) as (Albash et al., 2012; Mostafazadeh, 1997)

Uad
s (t, t′) =

∑

n

e−iµn(t,t
′)|n(t)〉〈n(t′)|, (77)

where µn(t, t
′) = ∆n(t, t

′) − γn(t, t
′), with ∆n(t, t

′) =
∫ t

t′
dsEn(s), and γn(t, t

′) = i
∫ t

t′
ds〈n(s)| dds |n(s)〉. Equa-

tion (77) is valid as long as the adiabatic condition
h≪ ∆2tf is fulfilled. Here t = tf is the maximum evolu-
tion time and ∆ = mint∈[0,tf ] (E1(t)− E0(t)) is the min-
imum ground state energy gap, with E0 and E1 as the
ground and the first excited eigen-energies of HS(t), and
h = maxs∈[0,1];n,m |〈n(s)|∂sHS(s)|m(s)〉|, with s = t/tf
as a dimensionless parameter. The adiabatic condition
provided earlier can be defined in alternative ways [see
for instance (Mostafazadeh, 1997)].
Let us now consider, for instance, a master equation

of the form (65), and reexpress it in terms of system
operators in the time-dependent basis for an adiabatic
evolution. To this end, following (Albash et al., 2012),
we need to adiabatically approximate Vt−τSη = U†s (t −
τ, 0)SηUs(t− τ, 0). Then, we first take into account that
Us(t−τ, 0) = Us(t−τ, t)Us(t, 0) = U†s (t, t−τ)Us(t, 0), and
then consider two approximations: first replace Us(t, 0) ≈
Uad
s (t, 0), and then replace U†s (t, t− τ) ≈ eiτHS(t), which

is justified by the fact that this term appears in an in-
tegral with a fast-decaying correlation function Cγη(τ).
With these considerations, we find that Us(t − τ, 0) ≈
eiτHS(t)Uad

s (t, 0), such that, for instance, one of the terms
of the interaction picture master equation (65) can be
rewritten as

∫ t

0

dτCγη(τ)Vt−τSηρs(t)VtSγ

≈
∑

nm

Γmnα,η(t)e
−iµmn(t,0)VtSn,m,ηΠnm(0)ρs(t)VtSγ ,

where Γmnα,η(t) =
∫ t

0
dτeiτEmn(t)Cγη(τ), with Emn(t) =

Em(t)−En(t), µmn(t, t′) = µm(t, t′)−µn(t, t′), Πnm(t) =
|n(t)〉〈m(t)| and Sn,m,η(t) = 〈n(t)|Sη|m(t)〉. Performing
a similar adiabatic approximation to Sγ(t), and express-
ing the other terms of Eq. (65) in a similar way, we
obtain an adiabatic interaction picture master equation
of the form

dρs(t)

dt
=

∑

nmpq

e−i(µqp(t,0)−µmn(t,0))
∑

γη

Γmnγη (t)
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× VtSp,q,γVtSn,m,η[Πnm(0)ρs,Πpq(0)] + H.c.

An excellent review on driven quantum systems, includ-
ing their dissipation can be found in (Grifoni and Hänggi,
1998).
Many-body OQS master equation– Following the same

procedure as in Sec. IV.B.2, it can be concluded that the
master equation for a many-body system with Hamil-
tonian (19) is, up to second-order in the perturbative
parameter and back in the Schrödinger picture,

dρs(t)

dt
= −i[HS , ρs(t)]

+

∫ t

0

dτ
∑

lj

α+
lj(t− τ)[Vτ−tL

†
jρs(t), Ll]

+

∫ t

0

dτ
∑

lj

α−lj(t− τ)[Vτ−tLjρs(t), L
†
l ] + H.c.

(78)

where we defined

α−lj(t) =
∑

λ

g∗lλgjλ(n(ωλ) + 1)e−iωλt,

α+
lj(t) =

∑

λ

glλg
∗
jλn(ωλ)e

iωλt. (79)

The previous master equation may also represent the evo-
lution of a multilevel OQS with j = 1, · · · , n decaying
channels, each of them represented by a coupling opera-
tor Lj .
The master equations (69) or (78) can be written in

the canonical form (56), by just expanding all system
coupling operators, Lj in terms of the complete set of
basis operators Gi, as VtLj =

∑

γ aij(t)Gi. The key is
that the time dependency is absorbed into the expansion
coefficients aij = TrS{VtLjGi}.

6. Weak coupling master equations for alternative initial

conditions and initially correlated states

In previous sections we analyzed several derivations of
master equations for an initially uncorrelated state be-
tween the system and the environment and considering
that the environment is at thermal equilibrium. However,
as discussed in Sec. III.A an experimentally realistic sit-
uation is that where the initial state is obtained when
the total system is in an equilibrium state [for instance
ρtot(0) ∼ e−βHtot ], and a set of projective measurements
on the system is performed, resulting in a state to the
form (31). This type of initial conditions was discussed
by Grabert et al. (1988) for the case of a quantum Brown-
ian particle, when considering the state prepared by mea-
suring a dynamical variable such as the position of the
particle q. More recently, Chaudhry and Gong (2013)
derived a weak coupling master equation from the initial
state obtained after a single measure that projects the

system to the state |ψ0〉. In such a case, the initial state
can be written as

ρtot(0) = |ψ0〉〈ψ0| ⊗
〈ψ0|e−βHtot |ψ0〉

Z
,

where Z is a normalization factor, such that the to-
tal trace is preserved. Such initial state may be sim-
plified by considering the Kubo identity, which states
that for all operators A and C, eγ(A+C) = eγA(1 +
∫ γ

0
dλe−λACeλ(A+C)), where γ is a parameter. Using

this expression, it is possible to expand e−βHtot in dif-
ferent orders of the coupling constant g, by consider-
ing γ = β, A = H0, and C = HI . At first order,

e−βHtot ≈ e−βH0(1−
∫ β

0
dλeλH0HIe

−λH0), and therefore

ρtot(0) = |ψ0〉〈ψ0| ⊗ (ρ
(0)
B + ρ

(1)
B + · · · ), (80)

where ρ
(0)
B = 〈ψ0|e−βHS |ψ0〉e−βHB , and ρ

(1)
B =

−ge−βHBE(β), with

E(β) =

∫ β

0

dλeλHBBe−λHB 〈ψ0|e−βHSeλHSSe−λHS |ψ0〉.

Here, the interaction Hamiltonian is considered of the
form (2), i.e. HI = AB. Inserting (80) in the perturba-
tive expansion (64), and diferentiating, we obtain

dρs(t)

dt
= i[ρs(t), HS ]− ifcorr(t)[ρs(t), S]

+

∫ s

0

ds([Vt−sSρs(t), S]C(t− s) +H.c.),

where, as usual, VtS = eiHStSe−iHSt, and fcorr(t) =
TrB{ρeqB E(β)VtB}/Z ′, with Z ′ = 〈ψ0|e−βHS |ψ0〉 −
gTrB{ρeqB E(β)}. Also, the quantity C(t − s) is defined
according to (66) as C(t − s) = TrB{ρeqB VtBVsB}. The
structure of this master equation preserves the trace and
the Hermiticity. However, CP is not ensured.
In addition, as argued by Liu et al. (2011); Meier

and Tannor (1999); Pechukas (1994); and Smirne et al.

(2011), there are situations that are experimentally rele-
vant where the system and the environment are initially
correlated. In this regard, Meier and Tannor (1999) de-
rived a master equation for such correlated initial states,
which is based on the Nakajima-Zwanzig projection-
operator approach, discussed in the next section, up to
second-order in the system-bath interaction. Chen and
Goan (2016) also extended this analysis to investigate
under which conditions the initial factorization approxi-
mation of the system-environment state is valid. Another
method for tackling this problem is the correlated pro-
jection operator, also discussed in the next section. In
addition, the reduced hierarchical equations of motion of
Sec. VI.C have been extended to deal with correlated
initial conditions (Tanimura, 2014). A stochastic prop-
agation similar to those discussed in Sec. V can also
be considered, based on expressing the initial state in a
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Bargmann coherent state representation for the environ-
ment (de Vega and Alonso, 2006). Based on this result, a
master equation for general initial conditions have been
derived by Halimeh and de Vega (2016).
Other initial conditions correspond to the OQS being

coupled to an environment that is initially in a squeezed
state. A master equation to describe such systems was
derived by Gardiner (1986) for the Markovian case. This
was recently extended to non-Markovian interactions by
Ali et al. (2010) to study bipartite entanglement dynam-
ics in the presence of dissipation.

7. Projection techniques

In the projection-operator techniques, a projection su-
peroperator P is defined such that Pρ captures the rel-
evant part of the total density matrix ρ ≡ ρItot, which
offers an approximate description of the OQS dynamics,
while the irrelevant part Qρ is defined by the comple-
mentary superoperator Q = 11− P, with 11 denoting the
unit map. The projection superoperator should: (i) be
a linear map ρ → Pρ which takes any operator of the
total state space H to an operator Pρ of H; (ii) have the
properties

P2 = P = P†, Q2 = Q = Q†
QP = PQ = 0, P +Q = 11; (81)

and (iii) be such that ρs = TrB{ρ} = TrBPρ.
In order to obtain a dynamical equation for Pρ(t),

there are basically two different possibilities (Breuer
et al., 2004). The first is to follow the Nakajima-Zwanzig
method (Nakajima, 1958; Zwanzig, 1960), which leads to
an equation for Pρ that contains a time integration over
the past history of the system. This equation reads as

d

dt
Pρ(t) =

∫ t

0

dsK̃(t, s)Pρ(s) + gPLtot(t)G(t, t0)Qρ(t0)
+ gPLtot(t)Pρ(t) (82)

where Ltot is the Liouvillian corresponding to the
von-Neumann equation for the total density operator

ρ(t),dρ(t)dt = −i[VtHI , ρ(t)] = Ltot(t)ρ(t). Also, we de-
fined the memory kernel as

K̃(t, s) = g2PLtot(t)G(t, s)QLtot(s), (83)

and

G(t, s) = T← exp

(

g

∫ t

0

ds′QLtot(s
′)

)

. (84)

Here, T← denotes the chronological time ordering, which
orders any product of superoperators such that the
time arguments increase from right to left. Also,

this quantity satisfies the evolution equation dG(t,s)
dt =

gQLtot(t)G(t, s), with G(s, s) = 1. As noted by Breuer
and Petruccione (2002) and Breuer et al. (1999), (82) is

an exact equation and therefore its resolution is as diffi-
cult as the resolution of the original von-Neumann equa-
tion. Nevertheless, it provides a good starting point for
considering different simplifications and approximations.
For instance, for a factorizing initial condition,
Pρ(t0) = ρ(t0), such that Qρ(t0) = 0, the second term of
Eq. (82) vanishes. Equation (82) can be further simpli-
fied by assuming that, in general, any string containing
an odd number of Ltot between factors of P vanishes

PLtot(t1)Ltot(t2) · · · Ltot(t2n+1)P = 0. (85)

This means that the term PLtot(t)P = 0 and the last
term of (82) vanishes too. The resulting equation, can
be rewritten as a time-local equation (Hall et al., 2014).
In this regard, considering that it describes an evolution
process given by a linear map ρs(t) = Λ(t)ρs(0), which
is invertible, such that Λ(t)−1Λ(t) = 11, we find

dρs(t)

dt
=

∫ t

0

dsK̃(t, s)ρs(s) = L(t)ρs(t), (86)

where we defined L(t) =
∫ t

0
dsK̃(t, s)Λ(s)Λ(t)−1.

Finally, the memory kernel K̃(t, s) can be expanded
in terms of the weak coupling parameter between sys-
tem and environment. For instance, up to second-
order in g, we can simply consider that K̃(t, s) =
g2PLtot(t)QLtot(s) +O(g3).
A second possibility for solving the dynamical equation

of Pρ(t) is the time-convolutionless projection-operator
technique (TCL), which departs from (82) to derive an
equation that is local in time (Chaturvedi and Shibata,
1979; Kubo, 1963; Royer, 1972) and has the general form
(Breuer and Petruccione, 2002; Breuer et al., 2006)

d

dt
Pρ(t) = K(t)Pρ(t) + J (t)Qρ(t0). (87)

Here, we defined

K(t) = gPLtot(t)[1− Σ(t)]−1 (88)

with Σ(t) = g
∫ t

0
dsG(t, s)QLtot(s)PG(t, s). We also con-

sidered the backward propagator of the total system as

G(t, s) = T→e
−g

∫ t
s
ds′Ltot(s

′), (89)

with T→ as the antichronological time-ordering operator.
The operator [1−Σ(t)]−1 written above can be expressed
as

[1− Σ(t)]−1 =

∞
∑

n=1

Σ(t)n. (90)

Inserting Eq. (90) in (88), it is possible to rewrite this
term as a perturbative expansion in g

K(t) = g

∞
∑

n=1

PLtot(t)Σ(t)
n =

∞
∑

n=1

gnKn(t). (91)
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Following the cumulant expansion approach by (Kam-
pen, 1974a,b; Kubo, 1963; Royer, 1972) of the equation
for Pρ(t), the n-th order coefficient can be defined as
(Breuer and Petruccione, 2002; Breuer et al., 2006)

Kn(t) =
∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−2

0

dtn−1

× 〈Ltot(t)Ltot(t1)Ltot(t2) · · · Ltot(tn−1)〉oc. (92)

Here, 〈Ltot(t)Ltot(t1)Ltot(t2) · · · Ltot(tn−1)〉oc ≡
∑

(−1)qPLtot(t) · · · Ltot(ti)PLtot(tj) · · · Ltot(tk)P · · · P
are ordered cumulants. These are built by inserting a
number q of Ps between one or more Ltot, and then
summing over all possible q. The first Ltot should be
evaluated at time t, and the others may carry any
permutation of time arguments, with the restriction
that these shall be chronologically ordered between
two successive P ′s. Note that because of (85), the odd
moments n vanish.
The expansion (91) can always be assumed, provided

that the map is continuous and with a zero initial con-
dition Σ(t0) = 0. However, a practical use of such an
expansion requires that it is truncated at relatively low
orders [see (Breuer and Petruccione, 2002) for the ex-
plicit expression of the first few terms of the expansion],
which may be accurate only at short times and within
the weak coupling regime. Also, after truncation, com-
plete positivity is no longer guaranteed. Higher orders
lead to increasingly complex equations, and to a solution
that might be more exact at short times, but still fails
at long times (Breuer et al., 2004). In this regard, an
optimal choice of the projection-operator P is of primary
importance, such that the first few terms of the expan-
sion accurately reproduce the OQS dynamics. The choice
should therefore be motivated by the specific characteris-
tics of the problem. In the following, we discuss the two
standard approaches described in the literature to choose
the projection operator, namely, the standard approach
and the correlated projection-operator approach.
In the standard approach (Breuer and Petruccione,

2002), the projection superoperator is chosen such that
Pρ = ρs(t) ⊗ ρB , where ρs(t) = TrB{ρ(t)}. This su-
peroperator satisfies the conditions (i)-(iii), and further-
more is suitable for those problems in which system-
environment correlations are small both initially and dur-
ing the evolution, so that they can be treated as small
perturbations of the reduced density matrix. With this
choice, the equation convoluted equation (82) with fac-
torized initial conditions leads to Eq. (63), but with ρs(s)
within the integral in the rhs term. In the convolution-
less technique, the second-order term of the expansion
(91), K2(t), leads to the time-local master equation (63).
Both convoluted and convolutionless equations are equiv-
alent in this order, since the reduced density matrix is al-
ready in a second-order term, and hence we can replace
ρs(s) ≈ ρs(t) +O(g2). However, the convoluted and the
convolutionless equations at the same order lead to com-

pletely different solutions that may differ with each oth-
ers in all orders of the coupling. A comparison between
these two perturbative schemes with respect to the exact
solution for a two-state system in an environment with
T = 0 (discussed in Sec. VIII.A) can be found in (Vac-
chini and Breuer, 2010).
An alternative to the standard approach is the cor-

related projection superoperator technique formalized
Breuer (2007) and Breuer et al. (2006), which consid-
ers the relevant part of the dynamics as a correlated
system-environment state, rather than a tensor prod-
uct state ρs(t) ⊗ ρB . This second approach is naturally
adapted to those situations in which system and environ-
ment states are non-negligibly correlated initially and/or
during the dynamics. The relevant part of the dynamics
is expressed in terms of a positively correlated projec-
tion superoperator P = 11S ⊗ Λ, where Λ maps opera-
tors in HB to operators in HB , and can be represented
in terms of environment operators Ai and Bi, such that
TrB{AjBi} = δij (Breuer, 2007). These operators should
fulfil certain properties so that Λ is a trace-preserving and
completely positive map. In this representation,

Pρ(t) =
∑

i

TrB{Aiρ(t)} ⊗Bi. (93)

An example of a projection superoperator is obtained
with the choice Ai = Πi and Bi = Πiρ0Πi

Zi
, where i =

1, · · · , n (n being the total number of operators in the
expansion), and Zi = TrB{Πiρ0}, and Πi are projection
operators on HB such that ΠiΠj = δijΠi, and

∑

iΠi =
11B ,

Pρ(t) =
∑

i

TrB{Πiρ} ⊗
Πiρ0Πi
Zi

, (94)

where ρ0 is any fixed environmental density matrix. The
reduced density matrix is described as a sum of a set of
unnormalized states ρi(t),

ρs(t) = TrB{Pρ(t)} =
∑

i

ρi(t), (95)

that should nevertheless be such that TrSρs(t) = 1. The
states ρi(t) = TrB{Πiρ(t)} belong to a subspace of the
total spaceH, and reflect correlations between the system
and the environment. Considering an initial condition
of the form ρ(0) =

∑

i ρi(0) ⊗ Bi and using the TCL
technique, a system of equations for each ρi is obtained,
each with the general form

d

dt
ρi = Ki(t)(ρ1, · · · , ρn), (96)

where the time-dependent generators Ki(t) can be ap-
proximated as time-independent ones Ki following a
Markov approximation. Note that while in the stan-
dard approach this is linked to the Born approximation
at second order, implying zero system-environment cor-
relations, this is not the case in this derivation. After
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this approximation, a generalized Lindblad equation can
be obtained (Breuer, 2007; Budini, 2006),

d

dt
ρi = −i[Hi, ρi] +

∑

jλ

(

Rijλ ρjR
ij†
λ −

1

2
{Rji†λ Rjiλ , ρi}

)

,

(97)

which ensures complete positivity. Here Hi and R
ij
λ are

system Hermitian operators.
This derivation formalizes (and generalizes) the pre-

vious derivations by Esposito and Gaspard (2003) and
Budini (2005, 2006) to derive master equations up to
second-order in perturbation theory. The proposal by
Esposito and Gaspard (2003) is based on choosing the
projectors in (94) as projectors to environment subspaces
corresponding to a given energy, i.e. Πǫ. Following this
choice, an evolution equation was derived for the quantity
ρǫ(t), based on a weak coupling expansion up to second-
order in the coupling parameter between the system and
the environment. Despite it is also based on a weak cou-
pling expansion, considering an environment described
by Gaussian random matrices this approach gives was
shown to give more accurate results than the usual Born
approximation Pρ = ρs(t)⊗ρB . Here, the projection (94)
is made into a large region of the total Hilbert space cor-
responding to states where the environment has a given
energy, and considers the fluctuations in the environment
energy states as a non-relevant part of the density ma-
trix, so that they can be neglected. According to this
derivation, the reduced density matrix of the system is
computed as a sum of all possible environment states,
considered as a quasi-continuum, ρs(t) =

∫

dǫρǫ(t).
The interesting aspect of the resulting equation is that

it takes into account the principle of conservation of the
total system energy. Following this principle, when the
OQS gains a quantum of energy, this should be lost in
the environment and vice-versa. This is in contrast with
the Lindblad equation (48), which is derived under the
assumption that despite the coupling with the system,
the environment remains in the same energy state. This
contradiction with the energy conservation principle is
acceptable provided that the environment is sufficiently
large compared to the system. In that case, it is pos-
sible to assume that the environment quantities do not
vary significantly on energy scales of the order of the sys-
tem energy. Hence, if the environment is initially in a
microcanonical state of energy ǫ, it will remain in such
an energy state without being much affected by the en-
ergy exchange with the system. Any situation beyond
this case is more accurately described with the equation
proposed in (Esposito and Gaspard, 2003).
The proposal by Budini (2006) considers a projection

of the form (94), with ρ0 being the stationary state of
the bath, and uses the notation ΠR to refer to the pro-
jections to each subspace (hence i ≡ R). The projectors
ΠR =

∑

{ǫR} |ǫR〉〈ǫR| decompose the Hilbert space of the

environment into different sub-reservoirs, each spanned
by the base of eigenvectors |ǫR〉. Hence, this projec-
tion corresponds to splitting the environment into a set
of sub-reservoirs, such that the interaction Hamiltonian
can be written as a direct sum of Hamiltonians HI =
∑

R,R′ HIRR′ , with HIRR′ = ΠRHIΠR′ . This choice gives
rise, in the long time limit, to the same general equation
(97), which connects each ρR to the other ρR′ (R′ 6= R).
A simpler situation is discussed in a previous paper (Bu-
dini, 2005) by considering the case in which HIRR′ = 0
for R 6= R′. In this case, the interaction Hamiltonian
can be written as a direct sum of sub-Hamiltonians for
each subspace HI = HI1⊕HI2 · · ·⊕HIR⊕HIR+1

· · · , and
each ρR(t) follows a Lindblad type of evolution equation
of the form (48) induced by the coupling with the corre-
sponding sub-reservoir, and independently of other ρR′

(R′ 6= R). Each ρR evolves with a rate γR(t), and the
reduced density operator of the system is obtained as

ρs(t) = TrB [Pρ(t)] =
∑

R

PRρR(t), (98)

where the weight is given as PR = TrB [ρRB ] =
∑

{ǫR}〈ǫR|ρB |ǫR〉, and therefore
∑

R PR = 1. The fact
that each ρR follows a Markovian evolution does not
mean that ρs will also do so. Indeed, the evolution of
ρs has the form of a convoluted master equation as long
as the weights PR are different. In the effective approxi-
mation (Budini, 2005), the equation can be written as

d

dt
Pρ(t) = LSρs +

∫ t

0

dsK̃(t, s)e(t−s)LSLρ(s). (99)

Here LS and L are the free evolution and Lindblad su-
peroperators, respectively, and K̃(t, s) is a superoperator
that depends on the rates γR and the probabilities PR.
Its Laplace transform is given by k(p) = f(p)/g(p), in
terms of the Laplace transform of the waiting time dis-
tribution and survival probabilities, f(p) and g(p) respec-
tively, which in this case take the form f(p) = 〈 γR

p+γR
〉,

and g(p) = 〈 1
p+γR

〉, with 〈· · · 〉 = ∑

R PR · · · denoting an
average over all subenvironments. As described previ-
ously, the rates γR are obtained by applying the Fermi
golden rule to each reservoir, which provides a connec-
tion between the waiting time distribution and the spec-
tral density of the environment. Thus, the choice of the
different PR and γR depends on the specific structure of
the environment.
Similarly, Harbola et al. (2006) derived a master equa-

tion to analyze electron transport through quantum dots
and single molecules weakly coupled to two metal leads.
To this end, they define projection operators Pn onto the
Fock state, with n electrons in the quantum dots. The to-
tal density matrix can then be expanded as Eq. (94), but
now with a sum that extends over all n states, and with
ρR(t) ≡ ρn(t) being the many-body density matrix of the
quantum system with n electrons. Also, consistent with
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the weak coupling assumption, the leads are assumed to
remain in thermal equilibrium so that ρRB = ρB . Under
these conditions, a set of equations for ρn(t) are obtained,
and found to be coupled in a hierarchy to ρn−1 and ρn+1.
A similar hierarchy of quantum master equations was
originally derived by Gurvitz and Prager (1996), which
keeps track of the number of electrons transferred from
the source-lead to the collector-lead.
The projection superoperator techniques have also

been applied to scenarios in which all the parts of the
system have similar sizes and characteristic dynami-
cal times, so that there is no clear distinction between
system and environment. In particular, the recently-
developed self-consistent Mori projector (c-MoP) tech-
nique (Degenfeld-Schonburg and Hartmann, 2014), in
which the Nakajima-Swanzig equations for the reduced
state of all parts of the system are solved in parallel un-
der different approximations, was applied to many-body
scenarios (Degenfeld-Schonburg and Hartmann, 2014), as
well as to few-body bosonic quantum-optical problems
(Degenfeld-Schonburg et al., 2015a,b). In the latter case,
further Gaussian approximations render this approach a
very efficient way of dealing with problems in which one
needs to check consistently whether non-Markovian and
back-action effects can be neglected between the different
parts of the bosonic system.
The TCL technique has been applied to many differ-

ent problems, ranging from spin relaxation (Blanga and
Despósito, 1996; Chang and Skinner, 1993) to the spin-
boson model (Breuer et al., 2001b), the spin star model
(Barnes et al., 2012; Breuer et al., 2004) for the standard
case and (Fischer and Breuer, 2007) for the correlated
one, and to atomic lasers (Breuer et al., 2001a).

8. Master equations derived from dynamical maps and a

measurement approach

In order to ensure that complete positivity is preserved,
another possibility is to derive master equations from dy-
namical maps that are known to preserve this property.
A recent derivation in this direction is the one by Vacchini
(2013), which defines a time-evolved state of the reduced
density matrix according to the following dynamical map:

Λ(t)ρs = p0(t)F(t)ρs +
∫ t

0

dtn · · ·
∫ t2

0

dt1pn(t; tn, · · · t1)
× F(t− tn)E · · · EF(t1)ρs. (100)

Also, the quantities F(t) and E are time-dependent and
time-independent completely positive maps. In addition,
pn(t; tn, · · · , t1) is the exclusive probability density for
the realization of n events up to time t, at given times
t1, · · · , tn with no events in between. This probability
density relates to the waiting time distribution f(t) as

pn(t; tn, · · · , t1) = f(t− tn) · · · f(t2 − t1)g(t1),(101)

where g(t) = 1−
∫ t

0
dsf(s) is its associated survival prob-

ability. The evolution equation associated with the map
Λ(t) can be written as

dρs(t)

dt
=

∫ t

0

dsK(t− s)Eρs(s) + I(t)ρs(0), (102)

where the integral kernel is K(t − s) =
d
dt [f(t)F(t)] + f(0)δ(t) and the inhomogeneous term

I(t) = d
dt [g(t)F(t)].

If we now consider F(t) = etL, with L as a Lindblad
generator, then the following equation is obtained:

dρs(t)

dt
= Lρs(t) +

∫ t

0

dsk(t− s)e(t−s)L(E − 11)ρs(s),

(103)

where the memory kernel k(t) is related to the waiting
time and survival probabilities through its Laplace trans-
form as in Eq. (99), or alternatively f(τ) =

∫ τ

0
dtk(τ −

t)g(t). With the choice L = LS = −i[HS , ρs] for the first
term of Eq. (103), and the Lindblad generator (ǫ−1) = L
for the second term, the master equation (99) is regained.
Considering now that L = 0 in Eq. (103), a quantum
semi-Markov equation is obtained,

dρs(t)

dt
=

∫ t

0

dsk(t− s)(E − 11)ρs(s), (104)

This type of equation was introduced by Breuer and Vac-
chini (2008), and its non-Markovian character was fur-
ther analyzed by Vacchini et al. (2011). The interesting
thing about the quantum semi-Markov process is that
the solution of the corresponding equation has a rela-
tively simple form

ρs(t) = Λ(t, 0)ρs(0) =

∞
∑

n=0

pn(t)Enρs(0), (105)

which represents that the reduced density operator at
time t is the result of the repeated action of the map
E , where pn(t) =

∫ t

0
dτf(t − τ)pn−1(τ) is the probabil-

ity that at time t there has been n of such projections,
with a given waiting time distribution f(t). Finally, the
case where we consider in (103) that E = 11 allows us to
recover the Lindblad equation.
Another master equation that preserves complete pos-

itivity, and at the same time includes environment mem-
ory effects is the so-called post-Markovian master equa-
tion derived by Shabani and Lidar (2005) from a mea-
surement approach.

9. Collisional models

Collisional models give rise to a visual and intuitive
way of deriving master equations (Rau, 1963). In these
models, it is assumed that the environment is a collec-
tion of M harmonic oscillators or ancillas organized in a
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chain. Then, it is assumed that the system S interacts,
or collides, at each time step with each ancilla, such that
at t1 there is a collision S ↔ 1, at t2 there is a collision
S ↔ 2, and so on. It was shown by Scarani et al. (2002);
Ziman et al. (2002); and Ziman and Bužek (2010) that
when no initial correlation is assumed between the ancil-
las and no correlations are created between them along
the process, a Lindblad master equation can be derived.
More recently, it was realized in (Rybar et al., 2012) that
introducing correlations in the initial state of the ancil-
las allows one to recover the dynamics of any indivisi-
ble and therefore non-Markovian channel. An alterna-
tive to introducing a non-Markovian evolution is to con-
sider, as proposed by Ciccarello and Giovannetti (2013)
and Ciccarello et al. (2013), that between system-ancilla
collisions there are also ancilla-ancilla collisions [see Fig.
(6)]. These are assumed to occur at a rate Γc, which can
be interpreted as the memory of the environment, such
that the probability that an interancilla collision occurs
at time τ is given by p = e−Γcτ . While the system-
ancilla collisions are defined by a map which acts over an
operator ρ as ρ→ USi[ρ] = USiρU

†
Si, with USi = e−iHSiτ

corresponding to a unitary evolution at the collision time
τ , the ancilla-ancilla collisions are defined as a nonuni-
tary map that, with probability p, exchanges the ancilla
states,

ρ→ Si+1[ρ] = (1− p)ρ+ pSi+1,iρSi+1,i. (106)

Here Si+1,i is the swap operator defined as Si+1,i =
|φj ⊗ φk〉〈φk ⊗ φj | in terms of an arbitrary orthonormal
basis {φj} of the ancillas that interchanges the states
of the ancillas j and j + 1. The sequential repetition

FIG. 6 Schema showing the first steps of the collisional model
in the (a) Markovian case, and in the (b) non-Markovian case.
In the second case, ancilla-ancilla collisions occur in between
system-ancilla collisions. From Ciccarello et al. (2013).

of this system-ancilla, ancilla-ancilla collisional process
gives rise in the continuum limit to a master equation of
the form

dρs
dt

=

∫ t

0

dse−ΓsE(t)[ρ̇s(t− s)] + e−ΓtĖ(t)[ρs(0)].
(107)

This equation is rather similar (but not exactly equal)
to Eq. (102), and it also preserves complete positivity.
Here, E(t) is a completely positive time-dependent map
related to the system-ancilla collisions. It corresponds to
the continuous analog of

Ej [ρs] = TrB{U jSn[ρs ⊗ |0〉B〈0|]}, (108)

where U jSn[σ] = e−iHSnjτσeiHSnjτ is the unitary evolu-
tion at the collision time, jτ , between the system and
the ancilla, n. A more recent work relating quantum
memory effects to ancilla-ancilla collisions can be found
in (Kretschmer et al., 2016). In addition, a general-
ization of Eq. (107) that is not restricted to the case
in which the system-environment coupling is mediated
via the ancillary degrees of freedom, but applies to a
broader class of non-Markovian dynamics, was recently
derived by Lorenzo et al. (2016). Interestingly, this non-
Markovian master equation is originated from a class of
bipartite Lindblad master equations when tracing out
one of the two subsystems. The idea of obtaining a non-
Markovian equation by tracing a Markovian one corre-
sponding to a larger Hilbert space is at the heart of the
embedding methods presented in the following section.

10. Embedding methods

Embedding methods consist of adding fictitious modes
to the non-Markovian system in such a way as to make
the enlarged hypothetical system dynamics Markovian.
This idea was first proposed by Imamoglu (1994), Gar-
raway (1997) and Garraway and Knight (1996) and Bay
et al. (1997). Garraway (1997) and Garraway and Knight
(1996) described the decay of an atom strongly coupled
to a reservoir by considering an enlarged system that
includes a set of pseudomodes. Such pseudomodes are
related to the poles of the spectral density of the envi-
ronment, and are calculated by considering its analytical
continuation in the complex plane. The enlarged system
obeys a Lindblad equation, and the dynamics of the OQS
can be recovered by tracing out the pseudomodes. This
method provides an exact solution and is particularly
convenient when there is only one excitation in the total
system, although generalizations to tackle the multiple-
excitation case have also been developed (Dalton et al.,
2001; Dalton and Garraway, 2003).
Embedding methods have been more recently extended

by Breuer (2004) and Breuer et al. (1999). In the most
recent work, Breuer proposed an enlarged system with
density operatorW , composed of the original system and
a three-level system with basis states |a〉, |b〉, |c〉 belong-
ing to a space C3. The key point of the method is to
consider that the enlarged density operator W obeys a
time-local equation of the form of Eq. (56). Here, the
coupling or jump operators Ck are chosen such that the
reduced density matrix of the original system ρs(t) can
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be written as a certain set of coherences Wab of the den-
sity matrix W of the extended system. As argued in
Sec. IV.B, this equation may not be completely posi-
tive, but equations with this form can be derived from
first principles, for instance by considering a projection-
operator method with an expansion up to second-order
in the coupling parameter between the system and the
environment.

Similarly, Budini (2013) derives a master equation by
considering that the system is combined with an ancilla,
and that both system and ancilla evolve according to the
Lindblad equation (48). In this derivation, the reduced
density matrix of the system is recovered by tracing out
the ancilla’s degrees of freedom from the total density
operator W . Another important difference with respect
to the former scheme is that here, the Lindblad operators
Ck are chosen in such a way that they lead to an uncor-
related system-ancilla state. Thanks to this condition,
the system’s reduced density matrix evolves according to
an equation that is closed, without making any further
approximations. This ensures that such an equation pre-
serves complete positivity. However, the equation does
not necessarily comply with the form of any master equa-
tion obtained from a microscopic derivation, as occurs in
the previous derivation.

Finally, in the context of Anderson impurity models,
Arrigoni et al. (2013) and Dorda et al. (2014) recently
derived an approach that is based on representing the
original problem (the impurity coupled to the leads) as
an equivalent one, consisting of the impurity coupled to
an auxiliary discrete system, which in turn is coupled to
a Markovian reservoir. The parameters of the auxiliary
system are chosen by optimization as those that most
faithfully represent the original spectral density, written
in terms of the hybridization function.

11. Master equations derived from variational methods

As proposed by McCutcheon et al. (2011), it is pos-
sible to derive a master equation for the spin-boson
model (13) which is valid in the strong coupling regime.
The key ingredient of such derivation is to consider a
variational polaron transformation for this Hamiltonian
(Leggett et al., 1987; Silbey and Harris, 1984), H =
eVHtote

−V , with exp(±V ) = |0〉〈0| + |1〉〈1|∏kD(±αλ),
where D(±αλ) = exp(±αλ(a†λ − aλ)) is a displacement
operator, and αλ = fλ/ωλ is assumed to be real and de-
pendent on certain parameters fλ to be determined vari-
ationally. The transformed Hamiltonian can be written
as H = H0 +HI , with

H0 =
1

2
ω12σz +

∑

λ

ωλa
†
λaλ

HI =
1

2
∆0(σ

+B− + σ−B+) + |1〉〈1|Bz, (109)

where we defined B± = exp(±∑

λ gλ(aλ − a†λ)), and

Bz =
∑

λ(gλ− fλ)(a
†
λ+ aλ). The variational parameters

{fλ} are obtained by imposing that the free energy as-
sociated with the transformed Hamiltonian is minimized.
Then, as discussed in (McCutcheon et al., 2011), two lim-
iting situations occur: (a) when ∆0 ≪ ωλ, then fλ = gλ
and the variational polaron transformation is identical to
a simple polaron transformation; and (b) when ∆0 ≫ ωλ,
fk becomes very small and the displacement produced
by the transformation is almost negligible. A master
equation can be obtained by considering the perturba-
tive methods discussed in Secs. IV.B.2 and IV.B.7, by
performing an expansion up to second-order in the in-
teraction Hamiltonian of the transformed system (109),
which is therefore considered as a small perturbation.
Naturally, if the system is strongly coupled to the en-
vironment, the resulting master equation will be a par-
ticularly convenient approach in a situation close to the
case (a) above discussed, i.e. when the tunneling energy
∆0 is sufficiently small. A master equation in the simple
polaron limit fλ = gλ was previously obtained in (Jang
et al., 2008; Nazir, 2009) in the context of coherent res-
onant energy transfer between two chromophores. This
problem can also be described with a spin-boson model,
by interpreting the states |0〉 and |1〉 as the state cor-
responding to the excitation in the first and the second
chromophores respectively. In this context, the analysis
provided by Nazir (2009) allowed to analyze the transi-
tion between a regime where energy is coherently inter-
changed between such states and a regime where energy
is interchanged incoherently.

A closely related method based on the above discussed
polaron transformation has been put forward by Dı́az-
Camacho et al. (2015) to analyze the dynamics of a col-
lection of quantum emitters interacting with a one di-
mensional EM field, and without considering the RWA
(see Sec. (II.E) for other examples where the RWA is
no longer valid). This method extends upon the polaron
variational ansatz originally derived to study the ground
state properties of the spin-boson model. In more de-
tail, it defines a dynamical variational ansatz (i.e. estab-
lishes a model structure for the system wave function),
by creating spin and photonic excitations over such po-
laron transformed ground state. The method appears to
be accurate for relatively strong couplings, as shown by
direct comparison with matrix product states.

C. Multiple-time correlation functions: The quantum

regression theorem

The Markovian approximation allows one to derive a
formula which permits the evaluation of two-time cor-
relations (and even N -time correlations) using the mas-
ter equation for the reduced density operator. This re-
sult, which was first obtained by Lax (1963, 1967), is
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called quantum regression theorem (QRT) 11. It should
be noted here that there is a classical hypothesis by On-
sager (1931a,b) which leads to the same formula as the
QRT for two-time correlations (see a discussion of this
by Carmichael (2002)).

We follow here the derivation of the QRT presented in
(Gardiner and Zoller, 2000). Analogous derivations may
be found in the original paper by Lax, and also in several
books on quantum optics, for instance (Carmichael, 2002;
Cohen-Tannoudji et al., 1992; Scully, 2002).
Let us consider the two-time correlation function of

operators A1 = A and A2 = B (Gardiner and Zoller,
2000),

〈A(t1)B(t2)〉 = TrSB [U†(t2, 0)U†(t1, t2)AU(t1, t2)
×U(t2, 0)U−1(t2, 0)BU(t2, 0)ρ(0)], (110)

where the unitary evolution operator from t2 to t1 =
t2 + τ , which is assumed to be in interaction picture, is

U(t1, t2) = eiH0t1e−iHtot(t1−t2)e−iH0t2 . (111)

Considering the unitarity of the evolution operators
U(t, 0)U†(t, 0) = 1 and the cyclic property of the trace,
we can write Eq. (110) as

〈A(t1)B(t2)〉 = TrS{ATrB{ξ(t1, t2)}}, (112)

where ξ(t1, t2) = U(t1, t2)Bρ(t2)U−1(t1, t2), and ρ(t2) =
U(t2, 0)ρ(0)U†(t2, 0). Let us now consider the evolution
equation of ξ(t1, t2) with respect to t1 and in interaction
picture,

dξ(t1, t2)

dt1
=

1

i
[Vt1HI , ξ(t1, t2)]. (113)

The form of Eq. (113) is identical to the von-Neumann
equation for ρ(t2) in interaction picture, (57). Hence,
in order to obtain a closed evolution equation for
TrB {ξ(t1, t2)}, we follow the same procedure we used
in Sec. IV.B.2 for obtaining the master equation up to
the second-order in g to get

dξ(t1, t2)

dt1
= −i[Vt1HI , ξ(t2, t2)]

−
∫ t1

t2

dτ [Vt1HI , [Vt1−τHI , ξ(t2, t2)]] , (114)

with ξ(t2, t2) = Bρ(t2). We now proceed to trace out
the environmental degrees of freedom, so that the final
equation for TrB{ξ(t1, t2)} = ξS(t1, t2) can be written in
a similar way as Eq. (62),

dξS(t1, t)

dt1
= −

∫ t1

t

dτTrB{[Vt1HI , [Vt1−τHI , ξ
B(t, t)]]}

11 Although as noted by Carmichael (2002) it would be more ap-
propriate to use the word formula instead of theorem.

× ξS(t, t), (115)

where we assumed an initially uncorrelated state
ξ(t2, t2) = ξB(t2, t2) ⊗ ξS(t2, t2), which is equivalent to
assuming the Born approximation. Assuming that the
ξS(t1, t2) = ξS(t2, t2) + O(g), we can approximate the
last equation up to second-order as

dξS(t1, t2)

dt1
= −

∫ t1

t2

dτTrB{[Vt1HI , [Vt1−τHI ,

ξB(t2, t2)]]}ξS(t1, t2), (116)

which is not equal to the master equation (63), because
of the limits of integration. Only in the Markovian case
does the former equation become local in time and the
evolution equation of ξS(t1, t2) become equal to the Lind-
blad master equation (48), but with the initial condition
ξS(t2, t2) = TrB{Bρ(t2)} = Bρs(t2). In other words, the
evolution equation has the same form as an ordinary mas-
ter equation, but considering a modified initial condition.
This procedure can be repeated to show that, in general,
N -time correlation functions are computed by consider-
ing the N − 1-time correlations as the initial condition,
and using the evolution equation of 1-time correlations,
namely the Markovian master equation.

The last derivation can be reexpressed in terms of the
evolution superoperators, Λ(t1, t2), which define the fol-
lowing mapping of the operator ξS(t1, t2) (Breuer and
Petruccione, 2002; Gardiner and Zoller, 2000),

ξS(t1, t2) = Λ(t1, t2)ξ
S(t2, t2). (117)

The evolution equation of Λ(t1, t2) has the same form as
the evolution of ξS(t1, t2) which, as derived above, turns
out to be equal to the evolution for ρs(t1), but with a dif-
ferent initial condition. Because of its Lindbland form,
the evolution superoperators have the divisibility prop-
erty Λ(t1, t2)Λ(t2, t0) = Λ(t1, t0), and hence, the two-
time correlation (112) can be written as

〈A(t1)B(t2)〉 = TrS{AΛ(t1, t2)TrB{Bρ(t2)}}. (118)

The theory of stochastic Schrödinger equations, initially
elaborated to compute the expectation values of system
observables, has been extended by many groups (Brun
and Gisin, 1996; Gisin, 1993) to calculate multiple-time
correlation functions (MTCFs) for the Markovian case.
Such stochastic methods agree with the results expected
from the QRT.

V. STOCHASTIC SCHRÖDINGER EQUATIONS

In this section, we analyze the SSEs that evolve the
system wave function |ψt(z∗)〉, i.e. a vector that evolves
in the Hilbert space of the system following a stochastic
trajectory. As shown, the reduced density matrix can be
recovered as a sum of projectors of stochastic trajectories.
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Depending on the method used in the derivation, there
are many different SSEs that recover the reduced density
matrix of the OQS; these are called unravelings of the
reduced density matrix (Carmichael, 1993b). A review
of quantum stochastic methods was given by Gardiner
and Zoller (2000).

An advantage of SSEs is that since the reduced density
matrix is the result of a positive definite sum of projec-
tors, it preserves positivity, a fundamental property dis-
cussed in Sec. III.B. A second advantage is that their
non-Markovian version does not rely explicitly on a Born
approximation that neglects the second-order system-
environment correlations at all times, which allows us-
ing them to describe the evolution from initially system-
environment correlated states (see Sec. V.B.1). Also,
non-Markovian SSE (for instance those derived with ex-
pansion methods) allow one to obtain not only system dy-
namical quantities, but also environment ones. Finally,
the size of the wave function to be evolved grows with the
system basis dimension d and not with d2 as the reduced
density operator.

A. Markovian SSEs

Stochastic Schrödinger equations were introduced in
the context of dynamical reduction models (Bassi and
Ghirardi, 2003; Ghirardi et al., 1990, 1986; Pearle, 1976,
1989). In these schemes (particularly in the continu-

ous localization models), a modified Schrödinger equa-
tion is generated which, besides the standard Hamil-
tonian, contains stochastic terms acting at every time
step of the evolution, as well as nonunitary or dissipa-
tive terms. These new terms induce a diffusion process
for the state vector which is responsible for its reduction
to a particular subspace in the system’s Hilbert space.
Thus, as noted by Bassi and Ghirardi (2003), the goal
of dynamical reduction models is to formally account for
the wave-packet reduction process by building a modi-
fied Schrödinger equation that describes the spontaneous
suppression of the superpositions observed in a macro-
system, while at the same time still accounts for all the
known properties of microscopic quantum systems.
Following a different strategy, the continuously diffu-

sive nonlinear stochastic Schrödinger equation derived by
Gisin (1984) departs from the von-Neumann-Lüders pos-
tulate (von Neumann, 1955). Thus, the resulting stochas-
tic trajectory of the system is reduced due to a sequence
of projective measurements performed by an external ap-
paratus. In addition, a real-valued noise Markovian SSE
was presented by Ghirardi et al. (1990), also from a dy-
namical reduction model,

d|ψt〉
dt

= −iHS |ψt〉+ Lξt|ψt〉 −
dtΓ

2
L†L|ψt〉 (119)

where ξt is a real-valued Gaussian white noise. Equation
(119) is still linear, since it represents the evolution of

a non-normalized state. In order to write the density
operator as a mixture of pure state vectors, it has to
be transformed into a nonlinear equation for normalized
states |ψ̃t〉. This transformation is formally made as

d|ψ̃t〉
dt

=
d|ψt〉
dt

1√
N

+ |ψt〉
d

dt

1√
N
,

where N = 〈ψt|ψt〉. Belavkin (1989, 1990) presented a
new SSE that was very similar to the former one but
driven by a complex white noise, z∗t = ζt = ξ1,t + iξ2,t,
where ξi,t with i = 1, 2 is a real-valued Gaussian white
noise process.

d|ψt〉
dt

= −iHS |ψt〉+ Lz∗t |ψt〉 −
1

2
L†L|ψt〉, (120)

Here the complex white noise has the following statistical
properties,M[ztz

∗
τ ] = Γδ(t− τ) andM[ztzτ ] =M[zt] =

0, where Γ is the dissipative constant andM[· · · ] denotes
an average over many realizations of zt. A nonlinear ver-
sion of this SSE was later derived by Gisin and Percival
(1993),

d|ψ̃t〉
dt

= −iHS |ψ̃t〉+ (L− 〈L〉t)
(

z∗t + 〈L†〉t
)

|ψ̃t〉

−Γ

2

(

L†L− 〈L†L〉
)

|ψ̃t〉+O(g3),
(121)

in Stratonovich form (Gardiner and Zoller, 2000). The
mean value appearing in Eq. (121) is 〈L†〉 = 〈ψ̃t|L†|ψ̃t〉.
Several models of Markovian SSE have been derived

in the framework of theories of continuous observation
(Belavkin, 1989, 1990; Belavkin and Staszewski, 1992;
van Kampen, 2006). In these models, contrary to those
involving dynamical reduction, a particular measuring
device is chosen, which determines the kind of trajec-
tory or unraveling that will be obtained. Also, in order
to minimize the perturbation caused to the system by the
measuring device, the measurement is performed not di-
rectly on the system but on its environment. Since they
are entangled, a measurement of the environment selects
the particular state of the mixture compatible with the
measurement result. In that way, the quantity that is
continuously measured, which is not necessarily the en-
vironmental state but a combination of its eigenvalues, is
related to the stochastic variable zt that drives the SSE.
A sequence of measurement results zt then corresponds
to a single trajectory of a Markovian SSE. In other words,
the trajectory |ψt(z∗)〉 represents the system state condi-
tioned to the sequence of measurements which have given
the result zt.
The SSEs generated by dynamical reduction models

and continuous measurement theories are of a quantum
state diffusion type, since the stochastic element acts
on every time step of the trajectory. Particularly, in the
framework of quantum optics Carmichael shows that the



34

real noise SSE (119) derived by Ghirardi et al. (1990) cor-
responds to continuous homodyne detection (Carmichael,
2002). In addition, Wiseman and Milburn (1993) showed
that the complex noise linear SSE (120) corresponds to
a continuous heterodyne detection of the environment.
The bases chosen for homodyne and heterodyne detection
are the quadrature and the coherent basis, respectively.
A formal derivation of Eqs. (119) and (120), as well as
their correspondence to homodyne and heterodyne detec-
tion, was performed by Gambetta and Wiseman (2002)
from the measurement theory. This is discussed in more
detail in Sec. V.B.4.

Apart from diffusive trajectories, which depend on a
continuous noise variable acting over the trajectory at
each time step, there are also quantum trajectories in
which the stochastic influence occurs in sudden jumps,
interrupting a deterministic nonunitary evolution. The
quantum jumps formalism was first developed by Zoller
et al. (1987) for Markovian systems, as a theory to calcu-
late density operators conditioned to a different number
of photon emissions. The density operator correspond-

ing to the emission of n photons, ρ
(n)
S (t), is related to the

total density operator by

ρ
(n)
S (t) = TrB{Pnρ(t)}, (122)

where Pn is the projection-operator onto the state of
the quantized radiation field that contains n photons.
A formulation of quantum jumps as a stochastic equa-
tion was later proposed by Hegerfeldt and Wilser (1991),
Carmichael (1993a); Dalibard et al. (1992); and Mølmer
et al. (1993) and Gardiner et al. (1992); Gardiner and
Zoller (2000); and Zoller et al. (1987) [see (Plenio and
Knight, 1998) for more details]. In all these methods, a
non-Hermitian term and a white noise term are added to
the Schrödinger equation. Because of the non-Hermitian
term, the trace of the reduced density operator is no
longer conserved, but is restored by stochastically cho-
sen quantum jumps.

For instance, in the algorithm by Dalibard et al.

(1992), the total wave function of an atom coupled to
its environment, computed at time t+ dt is |Ψ(t+ dt)〉 =
|Ψ(0)(t+dt)〉+ |Ψ(1)(t+dt)〉, where |Ψ(1)〉 represents the
product state of the atom in the ground state |g〉 and a
photon in the field, and |Ψ(0)〉 = |ψt〉⊗ |0〉 represents the
product of a atomic state |ψt〉 and no photon in the field
|0〉. When a photon is detected, the total state is pro-
jected into |Ψ(1)〉, and when no photon is detected it re-
mains in |Ψ(0)(t+dt)〉. The probability of a spontaneous
emission occurring during dt is given by dp = 〈Ψ(1)|Ψ(1)〉.
The randomness in the detection or non-detection of a
photon is simulated by numerical generation of a ran-
dom number ǫ chosen from the interval [0, 1]. Thus, when
ǫ > dp, it is assumed that no photons are detected, so
that |Ψ(t+dt)〉 = |Ψ(0)(t+dt)〉 = µ(1−idtHeff)(|ψt〉⊗|0〉),
where µ = (1 − dp)−1/2, and Heff is a non-Hermitian

Hamiltonian in HS . The norm of this state is no longer
1, but is given by 1−dp. As a consequence, the quantity
dp represents the loss of norm of the total state when no
photon is detected. When ǫ < dp, a photon is detected
and the total state is projected into the normalized state
|Ψ(1)〉, where it is assumed that there has been no time
for the atom to be re-excited after having emitted a pho-
ton. The reduced density matrix is computed as a sum of
the projectors |ψt〉〈ψt| corresponding to a large ensemble
of stochastic trajectories.

As shown by Carmichael (1993b), the jump-like
Markov SSE corresponds to direct photon detection,
where the experimental setup consists of a photon
counter and the environmental state is expressed in the
number basis. An extended review of the quantum jump
approach in the Markovian regime is found in (Plenio
and Knight, 1998).

B. Non-Markovian SSEs

Among the first proposals to describe non-Markovian
effects with SSEs is that offered by Imamoglu (1994),
who approximated memory effects in electron-phonon in-
teractions by embedding the system into a larger one
that could be described with a Markovian SSE. In addi-
tion, Kleinert and Shabanov (1995) derived an exact non-
Markovian quantum-Langevin equation to describe the
evolution of the position operator of a harmonic oscilla-
tor. However, the first extension of a quantum state diffu-
sion SSE to a non-Markovian environment was proposed
by Diósi et al. (1998) and Diósi and Strunz (1997), and
later complemented by the works of Alonso and de Vega
(2005); Cresser (2000); Gaspard and Nagaoka (1999a);
Jack and Collett (2000); and Strunz (2001). An exten-
sion of the quantum jump approach to non-Markovian
interactions came a decade later with the proposal of
Piilo et al. (2009). In the following section we discuss
some of these equations, with an emphasis on the differ-
ent derivation techniques that exist in the literature.

1. Expansion method

In the last few decades, several methods have been de-
rived for obtaining diffusive non-Markovian SSEs, where
the noise acts continuously along the trajectory.

Some methods are based on expanding the total state

vector into the environmental basis. The coefficients of
such an expansion are in principle deterministic, but be-
cause the environment has a large number of degrees of
freedom, it is often convenient to consider these coeffi-
cients as stochastic and compute their evolution with a
stochastic Schrödinger equation. As shown, deriving an
SSE with the expansion method provides an excellent
way to understand the origin of the stochasticity in the
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evolution of an OQS, as well as the connection between
the noise and environment states.
The wave function corresponding to the total Hamil-

tonian (5) evolves from its initial value | Ψ0〉 as | Ψt〉 =
UI | Ψ0〉, where UI(t, 0) is the evolution operator in in-
teraction picture given by

UI(t, 0) = eiHBte−iHtott. (123)

The expansion method consists of representing the state
| Ψt〉 in an environmental basis. Choosing the Bargmann
coherent state basis (Bargmann, 1961, 1962; Glauber,
1963), and an initial state |Ψ0〉 = |ψ0〉|0〉, the total sys-
tem state at a time t can be expressed as (Strunz, 2001),

| Ψt〉 =
∫

dµ(zi)G(z
∗
i 0|t0)|ψ0〉|zi〉. (124)

In Eq. (124) we used the Gaussian measure

dµ(zi) =
∏

λ

d2zi,λ
π

e−|zi,λ|
2

, (125)

and the notation | zi〉 =| zi,1〉 | zi,2〉... | zi,λ〉... for the
state of the environment, given by a tensor product of the
states of all the λ environmental oscillators. The basis
states for each oscillator are | zi,λ〉 = exp(zi,λa

†
i,λ) | 0〉.

The system operator

G(z∗i 0|t0) = 〈zi | UI(t, 0) | 0〉, (126)

with UI(t, 0) given by Eq. (123), is the vacuum reduced
propagator that was interpreted by Strunz (2001) as a
stochastic propagator. In a sense, they correspond to
the Kraus operators in Eq. (28), considering the inter-
action picture and a Bargmann coherent basis. Vacuum
reduced propagators give rise to a displacement of the
wave function from its initial value | ψ0〉 to the value
|ψt(z∗i )〉 = G(z∗i 0|t0)|ψ0〉 at time t, provided that the en-
vironment oscillators have evolved from the vacuum state
| 0〉 to the state | zi〉. The reduced density matrix of the
system can then be recovered as

ρs(t) =

∫

dµ(zi)|ψt(z∗i )〉〈ψt(zi)|. (127)

A generalized version of Eq. (126), G(z∗i zi+1|titi+1) =
〈zi | UI(t, 0) | zi+1〉, corresponding to an arbitrary ini-
tial state of the environment zi+1, is useful to com-
pute the OQS dynamics from any arbitrary total initial
state ρ(0) =

∫

dµ(z0)
∫

dµ(z′0)|z0〉|ψ0(z
∗
0)〉〈ψ0(z

′
0)|〈z′0|.

Its evolution can be derived as ∂G(z∗i zi+1|titi+1)/∂ti =
〈zi|∂UI(ti, ti+1)/∂ti|zi+1〉, where UI(ti, ti+1) satisfies the
Schrödinger equation in the partial interaction picture

∂UI(ti, ti+1)

∂ti
=

(

− iHS − i
∑

n

gλ(L
†aλe

−iωλti

+ La†λe
iωλti)

)

UI(ti, ti+1). (128)

Hence, the evolution equation for the reduced propagator
is (Alonso and de Vega, 2005)

∂G(z∗i zi+1|titi+1)

∂ti
=

(

− iHS

− iL
∑

λ

gλe
iωλtiz∗i,λ

)

G(z∗i zi+1|titi+1)

−iL†
∑

λ

gλe
−iωλti〈zi|aλUI(ti, ti+1)|zi+1〉, (129)

where we used the property 〈z|a†λ = 〈z|z∗λ.
To proceed further it is convenient to deal with

the matrix element 〈zi|aλUI(ti, ti+1)|zi+1〉 that equals
to 〈zi|UI(ti, ti+1)aλ(ti, ti+1)|zi+1〉, with aλ(ti, ti+1) =
U−1I (ti, ti+1)aλUI(ti, ti+1). Integrating the Heisenberg
equations of motion for aλ(ti, ti+1),

d
dti
aλ(ti, ti+1) =

−igλe−iωλtiL(ti, ti+1), it follows that

aλ(ti, ti+1) = aλ(ti+1, ti+1)− igλ
∫ ti

ti+1

dτL(τ, ti+1)e
iωλτ ,

(130)

with L(ti, ti+1) = U†I (ti, ti+1)LU(ti, ti+1).
Gathering the results, Eq. (129) becomes

∂G(z∗i zi+1|titi+1)

∂ti
=

(

− iHS + Lz∗i,ti − L†zi+1,ti

)

×G(z∗i zi+1|titi+1)− L†
∫ ti

ti+1

dτα(ti − τ)〈zi|UI(ti, ti+1)

× L(τ, ti+1)|zi+1〉, (131)

where we defined the functions

zi,t = i
∑

λ

gλzi,λe
−iωλt, (132)

and

α(t− τ) =M[zi,tz
∗
i,τ ] =

∑

λ

|gλ|2e−iωλ(t−τ). (133)

Note that the last term of Eq. (131) can also be written
as

〈zi|UI(ti, ti+1)L(τ, ti+1)|zi+1〉 =
δG(z∗i zi+1|titi+1)

δz∗i,τ
,

In the above equation we defined the average
M[zi,tz

∗
i,τ ] =

∫

dµ(zi)zi,tz
∗
i,τ , with the Gaussian mea-

sure defined in Eq. (125), which leads to the envi-
ronmental correlation function introduced in Sec. II.F,
α(t − τ). Since the environment is usually very large,
and the coherent state variables zi,λ form a continuum,
it is convenient to consider them as a complex Gaussian
white noise, with the properties M[z∗λzλ′ ] = δλ,λ′ , and
M[zλ] = 0. In that case Eq. (132) becomes a complex
Gaussian noise with the properties,

M[zi,t] = 0;
M[zi,tz

∗
i,τ ] = α(t− τ), (134)
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Hence, the only information needed about the environ-
ment is its correlation function, or equivalently its spec-
tral density J(ω). In other words, if α(t) is at our dis-
posal, we can generate a Gaussian distributed set of com-
plex random numbers in such a way that they have the
required properties (134). Also, such environmental func-
tion is indeed responsible for the dependency of the evo-
lution of the system over its past history, as it is the
kernel of an integral term from the initial time ti+1 to
the actual time ti. Note that once interpreting Eq. (132)
as a noise, Eq. (131) leads to a SSE for the wave function
|ψt(z∗, z0)〉 = G(z∗z0|tt0)|ψ0〉.

Similarly, for the case zi+1 = 0 the evolution equation
of the system state vector can be written as (Strunz,
2001)

d|ψt(z∗)〉
dt

= −iHS |ψt(z∗)〉+ Lz∗t |ψt(z∗)〉

− L†
∫ t

0

dτα(t− τ) δ

δz∗τ
|ψt(z∗)〉. (135)

The same equation was first derived by Diósi and Strunz
(1997) without using an expansion, but considering
the equation for state vectors depending on a Wiener-
stochastic process that depends on a complex colored
Gaussian noise. An alternative derivation of the former
equation was given by Cresser (2000). An extension of
the SSE (135) for fermionic environments has recently
been derived in (Zhao et al., 2012). Such an extension
can also be a useful tool for studying OQSs coupled to
a spin-chain environment, when this can be transformed
into an effective fermionic environment.

From Eq. (131) [similarly (135)], we could inte-
grate the reduced propagators with the initial conditions
G(z∗i zi+1|titi) = exp(z∗i zi+1). However, the time depen-
dency of the operator appearing in the last term of Eq.
(131), L(τ, ti+1) = U†I (τ, ti+1)LUI(τ, ti+1) is over the to-
tal Hamiltonian operator, so that Eq. (131) is still not
a closed equation over the reduced Hilbert space of the
system, but is merely a particular representation of the
Schrödinger equation for the system and the environ-
ment. In general, it is not always possible to exactly com-
pute the last term and only in very exceptional cases can
this be done. Particularly, when L(τ, ti+1) ∝ HS(τ, ti+1),
then [L,Htot] = 0 and therefore HS(τ, ti+1) = HS , so
that 〈zi|L(τ, ti)UI(ti, ti+1)|zi+1〉 = HSG(titi+1|z∗i zi+1).
Also, as will be further discussed in Sec. VIII.B, (Ferialdi
and Bassi, 2012) derives the exact analytical solution of
an SSE similar in form to Eq. (135), for the particular
case when the system is a harmonic oscillator and the
environment is in a thermal state.

In other situations, a perturbative expansion of L(τ, 0)
is needed, which up to the second-order leads to ex-

pressing 〈z|UI(t, 0)L(τ, 0)|z0〉 = δG(z∗z0|τ0)
δz∗τ

≈ Vτ−tL.

Similarly, it can be considered, as an ansatz, that
the matrix element can be written as (Diósi et al.,

1998; Yu et al., 1999), 〈zi|UI(ti, ti+1)L(τ, ti+1)|zi+1〉 =
O(zi+1z

∗
i , t, τ)G(z

∗
i zi+1|titi+1) where the operator O be-

longs to the systems Hilbert space and shall be obtained
for each case. For zi+1 = 0, the above ansatz has
been complemented with the consistency condition (Diósi
et al., 1998),

d

dt

δ | ψt(z∗)〉
δz∗τ

=
δ

δz∗τ

d | ψt(z∗)〉
dt

, (136)

to obtain O(z∗i , t, τ) systematically. Also, the ansatz and
the consistency condition have been used in the many-
body case to analyze the dynamics of energy transport in
quantum aggregates (Roden et al., 2009). In this context,
the validity of the SSE approach is confirmed by compar-
ing its solution to the one provided by the pseudomode
approach discussed in Sec. IV.B.10.

An alternative to the consistency condition was re-
cently proposed by Suess et al. (2014), and consists of ob-

taining the evolution equation of δ|ψt(z
∗)〉

δz∗τ
= ψ1

t . For the

case of a correlation function of the form α(t) = ge−Ωt,
this equation becomes simply

dψ1
t

dt
= (−iH − Ω+ Lz∗t )ψ

0
t + α(0)Lψ0

t − L†ψ2
t ,

where ψkt = δk|ψt(z
∗)〉

δz∗kτ
. In general, for exponential cor-

relation functions the evolution equation for the k − th
functional derivative of the system wave-vector can be
written as

dψkt
dt

= (−iH − kΩ+ Lz∗t )ψ
k−1
t + α(0)Lψk−1t − L†ψk+1

t ,

with ψ0
t=0 = |ψ0〉 and ψkt=0 = 0 for k > 0. To make

practical use of this hierarchy, one may truncate it at a

certain order k, by using a terminator ψk+1
t = α(0)

Ω Lψkt .

2. Nonlinear SSEs

As noted by Diósi et al. (1998), the linear equation ob-
tained with the previous methods has one major draw-
back. During the evolution of the trajectories, the so-
lutions |ψt(z∗)〉 may lose their norm and therefore their
statistical relevance. This problem comes from not hav-
ing considered the fact that the interaction between the
system and the environment not only affects the system,
but also the environment itself.
To see this more clearly, a Husimi function (or Q-

function) (Scully, 2002) of the environment is considered
(Strunz, 2001),

Qt(z, z
∗) =

e−|z|
2

π
〈z|Trs [|Ψt〉〈Ψt|] |z〉, (137)

where |z〉 denotes a coherent state of the environment
in the Bargmann basis. Since each of these states cor-
responds to a certain value of the noise, the function
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Qt(z, z
∗) may be interpreted as the probability distri-

bution of the noise. The substitution of |ψt(z∗)〉 =
∫

dµ(z)|ψt(z∗)〉〈ψt(z)| ⊗ |z〉〈z| into Eq. (137) gives the
following expression:

Qt(z, z
∗) = 〈ψt(z)|ψt(z∗)〉Q0(z, z

∗), (138)

with Q0(z, z
∗) as the initial Gaussian distribution of co-

herent states Q0(z, z
∗) = e−|z|2

π . In terms of Eq. (138),
the density operator can be defined as a mixture of pure
normalized states weighted by Qt(z, z

∗),

ρs =

∫

d2z Qt(z, z
∗)
|ψt(z∗)〉〈ψt(z)|
〈ψt(z)|ψt(z∗)〉

. (139)

With Eq. (139) it is clearer to see that once the inter-
action is switched on’ and the environmental oscillators
start to move away from the origin according to the dis-
tribution Qt(z, z

∗), the states |ψt(z∗)/〈ψt(z)|ψt(z∗)〉1/2,
which according to Q0(z, z

∗) correspond to small z, will
have a decreasing weight in the sum (139).
The Husimi function shows a closed time evolution of

Liouville form for the set of oscillators zλ composing the
quantity zt, corresponding to the phase space flow (Diósi
et al., 1998)

ż∗λ = igλe
−iωλt〈L†〉t. (140)

In terms of the trajectories z(t) that follow this flow, the
Husimi function Qt(z, z

∗) at time t can be expressed as

Qt(z, z
∗) =

∫

d2z0Q0(z0, z
∗
0)δ

2(z − z(t)), (141)

where somewhat symbolically z(t) represents the set of
solutions of the different trajectories of the oscillators
starting from the set of initial values {z∗λ(0) = z∗λ,0}.
In this way, we can now replace (139) by an integral of
wave functions evaluated in the dynamical states z∗(t) ≡
{z∗λ(t)} as

ρt =

∫

d2z0Q0(z0, z
∗
0)
|ψt(z∗(t))〉〈ψt(z∗(t))|
〈ψt(z∗(t))|ψt(z∗(t))〉

=

∫

d2z0
π

e−|z0|
2 |ψt(z∗(t))〉〈ψt(z∗(t))|
〈ψt(z∗(t))|ψt(z∗(t))〉

. (142)

Now to perform the integral (142) with a Monte Carlo
method, a new stochastic variable z̃∗t is defined, which
corresponds to z∗(t) with a random selection of the initial
values for the environmental oscillators {z∗λ(0)}. From
the flow equation (140), one obtains

z̃∗t = z∗t + g

∫

dτα∗(t− τ)〈L†〉τ . (143)

Here, the variable z∗t is the noise as it appears in the lin-
ear stochastic Schrödinger equation, which corresponds
to the stationary statistics with distribution function
Q0(z, z

∗). The last term represents a dynamical shift

or displacement of each zt, which depends on the history
of the interaction with the system. The stochastic equa-
tion for the wave function |ψ(z(t))〉 with a shifted noise
in the driving term is (Diósi et al., 1998)

|ψt(z∗(t))〉
dt

= −iHS |ψt(z∗(t))〉+ gLz̃∗t |ψt(z∗(t))〉

− g2(L† − 〈L†〉t)Ō(t, z∗(t))|ψt(z∗(t))〉 ,(144)

with Ō =
∫ t

0
dτα(t − τ)O(t, τ, z∗(t)). By evolving Eq.

(144) we ensure that the wave functions |ψt(z∗(t))〉 cor-
respond to those realizations that contribute with a sig-
nificant probability, which is ensured by the shift term
in Eq. (143). This is because the equation depends on
a noise (143) that dynamically follows the motion of the
center of the Gaussian distribution in the environment
state space. As shown by de Vega et al. (2005b), the
probability function for the noise corresponding to an
environment at high temperature, evolves quite signifi-
cantly in time, so that a nonlinear equation needs to be
considered. Conversely, for low temperatures the state
distribution of the environment (i.e. the noise distribu-
tion) remains quite close to a Gaussian distribution cen-
tered at the origin during the interaction, and the linear
equations provide an accurate description of the problem.

3. Projection method

Using the Feshbach projection-operator method, Gas-
pard and Nagaoka (1999a) derive a non-Markovian SSE
that is identical to the one obtained with the expansion
method up to the second-order in the perturbative pa-
rameter. The projection-operator method is based on
the same idea as the Nakajima-Zwanzig method, but is
applied to the Schrödinger equation instead of the mas-
ter equation. As in Sec. V.B.1, the evolution equation
of the total system wave function is considered. This
wave function is expressed in the coordinate representa-
tion for both the system {xs} and the environment {xb},
as Ψt(xs, xb) =

∑

n φn(xs, t)χn(xb), where {φn(xs, t)}
is the set of coefficients of this linear expansion. The
χn(xb) functions depend only on the environmental de-
grees of freedom, so that the dependency of the total
wave function over the system degrees of freedom is en-
tirely encoded in the coefficients φn(xs, t) of the linear
decomposition.
The normalized version of these coefficients,

φ̂n(xs; t) = φn(xs; t)/‖φn(xs; t)‖, (145)

can be considered as a statistical set of wave functions
of the system. In terms of these, the reduced den-
sity matrix can be written as ρs =

∑

n pn(t)|φ̂n〉〈φ̂n|,
where φ̂n(xs; t) = φn(xs; t)/‖φn(xs; t)‖ and pn(t) =
∫

dxs|φn(xs, t)|2 = ‖φn(xs; t)‖2 is the probability for the
environment to be observed in a certain state χn(xb).
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The statistical character of φ̂n(xs; t) appears through
its dependency on the environmental state (of index n).
Then the probability of each system wave function is
given by the probability pn(t) of observing the environ-
ment in the corresponding basis state χn(xb). Thus, the
quantum system can no longer be described through a
single wave function, but through a collection of them,
and the dynamics of the system is conditioned on the
dynamics of its environment.
In order to obtain an evolution equation for these co-

efficients, the Schrödinger equation of the total system
is decomposed in two equations, using the projectors P
and Q that act over the total Hilbert space, with prop-
erties (81), and such that PΨ(xs, xb) = φl(xs; t)χl(xb)
and QΨ(xs, xb) =

∑

n( 6=l) φn(xs; t)χn(xb). The time de-
pendency of PΨ is entirely encoded in the coefficient
φl(xs; t). Its evolution in the total interaction picture
is

i
ϕl(t)

dt
= fl(t)− ig2

∫ t

0

dτ
∑

ηγ

VtSη〈l|VtBηVτBγ |l〉VτSγ

× ϕl(τ) +O(g3). (146)

Here, an interaction Hamiltonian of the form (2) has been
considered, representing a sum of system Sη and environ-
ment Bη Hermitian operators. In addition, an expansion
up to the second-order in the weak coupling parameter
g has been performed. Equation (146) has two differ-
ent terms. The first originates from the initial condition
QΨ(0) of all the coefficients except PΨ, and has the form

fl(t) = g
∑

η

∑

m( 6=l)
VtSη〈l|VtBη|m〉ϕm(0)− ig2

∫ t

0

dτ

×
∑

ηγ

∑

m( 6=l)
VtSη〈l|VtBηVτBγ |m〉VτSγϕm(0) +O(g3)

with the assumption that 〈l|Bη|l〉 = 0. This term will
be identified later with the stochastic forcing over the
system due to the environmental fluctuations. The sec-
ond term corresponds to the damping of the coefficient
or wave function PΨ (or ϕl) due to its coupling with
the other coefficients QΨ, which is produced through the
interaction with the environment. As it is an integral
up to the actual time t, this term is responsible for the
non-Markovian character of the equation.
In order to use the former equation to derive a stochas-

tic Schrödinger equation, it is necessary to assume that
the coefficient ϕl(t) statistically represents each of the
coefficients ϕn(t) of the decomposition of the total wave
function. In other words, it is necessary to assume that
all the coefficients evolve in a similar way, so that ϕl(t)
is a typical representative of the rest of the statistical en-
semble. This hypothesis, known as statistical typicality,
has been justified for classically chaotic systems, but is
not necessarily valid for every environmental state basis
χl(xb) chosen. However, it is reasonable to assume that

this hypothesis is fulfilled for most of the environmental
states, since it has its origins in the fact that the typical
eigenfunctions of high quantum numbers are statistically
irregular.
Thanks to statistical typicality, and following a con-

jecture of Berry (1977), the quantum mean value of an
environmental operator C over a typical eigenstate χl is
equivalent to the quantum mean value over a representa-
tive state of the micro-canonical ensemble with the corre-
sponding energy el. In addition, since the environment is
large, following Srednicki (1994), it can also be supposed
that such a mean over the state of the micro-canonical
ensemble is essentially equivalent to a mean over a typ-
ical state of the canonical ensemble. As a consequence,
a quantum average of an environmental operator B over
a typical environmental eigenstate χl is approximately
equal to a thermal mean,

〈l|B|l〉 ≈ TrB

{

e−βHB

Zb
B

}

≡ TrB{ρeqBB}, (147)

where Zb = TrB{exp(−βHB)}. The inverse temperature
β should be fixed for a given environmental eigen-energy
el. Also, the variation of such environmental energy due
to the interaction with the system is assumed to be neg-
ligible, since such variation is very small in comparison
with its energy el. Taking Eq. (147), the damping term
(146) can be written in terms of the environment corre-
lation function

〈l|VtBηVτBγ |l〉 ≈ TrB{ρeqB VtBηVτBγ} ≡ Cηγ(t− τ),
a form which, thanks to statistical typicality, is indepen-
dent of the particular choice of the coefficient |l〉. Also,
in order to find the typical behavior of the forcing term,
it is necessary to assume that the initial state is a tensor
product of the system ψ and the mixed canonical state
of the environment.
Assuming all these approximations over Eq. (146), the

following stochastic differential equation is obtained for
a typical coefficient ϕl:

i
ϕl(t)

dt
= g

∑

η

ζη(t)Sηϕl(t)− ig2
∫ t

0

dτ
∑

ηγ

Cηγ(t− τ)

× VtSηVτSγϕl(τ) + θ(g3). (148)

Here we reexpressed the stochastic forcing as fl(t) ≈
g
∑

η ζη(t)Sηϕl(t), up to the second-order in g, defining
a term

ζη(t) ≡
∑

m( 6=l)
〈l|VtBη|m〉e−β(em−el)/2ei(θm−θl) (149)

which may be interpreted as the stochastic forcing that
acts on the system due to its interaction with the envi-
ronment. Indeed, when the environment is large enough,
the quantity defined in Eq. (149) is given by a sum of
a large number of oscillating complex terms that, follow-
ing the central limit theorem (Watson, 1952), gives rise
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to random variables of a Gaussian type. In summary, the
random variables appearing in Eq. (149) can be taken as
Gaussian noises characterized by a zero mean value and
a correlation function Cηγ(t − τ), i.e. following similar
properties as (134).

The following step is taken to obtain an evolution from
a general initial condition ρs(0) =

∑

λ |ψk(0)〉〈ψk(0)|, de-
fined in terms of the system wave functions ψk and their
probabilities {pk}, so that

∑

λ pk = 1. In such a case, we
consider the following statistical set of coefficients:

ϕl(t) ≈ |ψk(xs; t)〉
√

e−βwl

Zb
eiθl (150)

where l is the index appearing in Eq. (148), k speci-
fies the member of the statistical mixture. Replacing Eq.
(150) in Eq. (148), and eliminating the factor that multi-
plies ψk on both sides, the following equation is obtained
up to the second oder in g :

i
d|ψk(t)〉
dt

= −iHS |ψIk(t)〉+ g
∑

η

ζη(t)Sη|ψk(t)〉

− ig2
∫ t

0

dτ
∑

ηγ

Cηγ(t− τ)SηVτ−tSγe−iHS(t−τ)|ψk(τ)〉,

(151)

where ψk(xs; t) = 〈xs|ψk(t)〉. In this equation, the Gaus-
sian noises ηβ(t) satisfy

ζη(t) = 0, ζη(t)ζγ(τ) = 0,

ζ∗η (t)ηγ(τ) = Cηγ(t− τ) = C∗γη(τ − t). (152)

Inserting e−iHS(t−τ)|ψk(τ)〉 = |ψk(t)〉+O(g2) in the last
term of Eq. (151), which is already of second-order in g,
leads to a a time-local equation in |ψk〉. This time-local
equation is equivalent to Eq. (135) when approximating
δ|ψt〉
δz∗τ

≈ Vτ−tL, and considering the equivalences in Eq.

(3).

4. Continuous measurement theory method, and measurement

of a quantum evolution

Non-Markovian SSEs can also be derived based on con-

tinuous measurement theories. For instance, Jack and
Collett (2000) and Jack et al. (1999) presented a for-
mulation of non-Markovian quantum trajectories which
describes the real-time spectral detection of the light
emitted from a localized system. In this case, the non-
Markovian behavior is not intrinsic to the interaction of
the system with its environment, but arises from the un-
certainty in the time of emission of particles that are later
detected. More recently, Gambetta and Wiseman (2002)
propose a formal way to obtain non-Markovian SSEs
from a continuous measurement scheme. They discussed
all the mathematical ingredients to describe a continu-
ous measurement (Davies, 1976; Kraus, 1983; Wiseman,

1996). This includes a probability-operator-measure ele-
ment, or effect, F̃{qλ} = |{qλ}〉〈{qλ}|, where |{qλ}〉 is the
environmental basis, and {qλ} is the result of the mea-
surement. A set of measurement operators M̃qλ is also

necessary, with the constraint F̃{qλ} = M̃†qλM̃qλ . For
example, we can decompose the measurement operators
as M̃qλ = |{nλ}〉〈{qλ}|, where the final state of the en-
vironment after a measurement {nλ} can be chosen as
the vacuum, since in most detection situations the mea-
surement generally results in annihilating the detected
field. A noise operator Ẑ(t) is also defined in such a way
that Ẑ(t)|{qλ}〉 = ẑt|{qλ}〉, where ẑt is the noise func-
tion from which the conditioned state after a measure-
ment depends. With these definitions at hand, two kinds
of such conditioned system states can be obtained after
measurement. The first state |ψqλ(t)〉 is such that: a) it
depends linearly on the premeasurement state |ψt〉, and
b) it depends on an environmental state {qλ}, which is
distributed according to a probability Λ({qλ}) that does
not take into account the effects of the interaction of
the environment and remains constant in time. In such
terms, the linear state after the measurement of {qλ} is
written as

|ψqλ(t)〉 =
〈{qλ}|ψt〉
√

Λ({qλ})
. (153)

Because it is not normalized, they argued that the linear
conditioned system state does not have a clear physical
interpretation, but is useful to derive the actual proba-
bility P ({qλ}, t) that the environmental states have, con-
sidering their interaction with the system as

P ({qλ}, t) = 〈ψqλ(t)|ψqλ(t)〉Λ({qλ}) (154)

Such probability is obtained through a Girsanov transfor-
mation of the variables {qλ} (Gatarek and Gisin, 1991).
This actual probability allows for the derivation of a

second kind of conditioned state |ψ̃qλ(t)〉 that: a) evolves
in a nonlinear way and b) depends on an environmen-
tal state {qλ} that is sampled according to the actual
distribution (154),

|ψ̃qλ(t)〉 =
〈{qλ}|ψt〉

√

P ({qλ}, t)
. (155)

A linear SSE can be derived from Eq. (153) as

d|ψ{qλ}(t)〉
dt

=
∂|ψ{qλ}(t)〉

∂t
+
∑

λ

dqλ
dt

∂|ψ{qλ}(t)〉
∂t

,(156)

and provided that a Girsanov transformation can be
made, a nonlinear SSE results in

d|ψ̃{qλ}(t)〉
dt

=
1

|ψ{qλ}(t)|
d|ψ{qλ}(t)〉

dt
+ |ψ{qλ}(t)〉

× d

dt

1

|ψ{qλ}(t)|
, (157)
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where |ψ̃{qλ}(t)〉 = 1
|ψ{qλ}(t)| |ψ{qλ}(t)〉, and |ψ{qλ}(t)| =

〈ψ{qλ}(t)|ψ{qλ}(t)〉. Since it is normalized, the former
state represents, with a probability equal to 1, the condi-
tioned state of the system after a measurement of output
{qλ} has been performed at time t in the environment.
This statement is true whether the interaction is Marko-
vian or non-Markovian. However, the linking of such a
state with earlier states obtained by evolving Eq. (157)
is possible only in the first type of interaction. Once a
measurement of the environmental state has been made
at time t, a future measurement performed at time t+∆t
is altered if ∆t < τc. In other words, the measurement
at time t + ∆t is performed before the environment has
recovered from the last measurement, since the recovery
time is of the order of τc. Considering that ∆t → 0 for
a continuous measurement, only in the Markovian case
in which the correlation time τc = 0 do the sequences
of measurements that monitor a trajectory not affect
each other. Thus, according to Gambetta and Wiseman
(2002) and Wiseman and Gambetta (2008), there are
no genuine non-Markovian quantum trajectories: mon-
itoring the field feeds back into the system and this can
change the average evolution of its state. The result is
that an average over such a monitored trajectory would
not reproduce on average the non-measurement evolu-
tion that a non-Markovian SSE does. However, Diósi
(2008a,b) has concluded that the non-Markovian SSE
describes a time-continuous measurement that includes
delay and retrodiction (i.e. an account of the past).

As shown by Barchielli and Gregoratti (2012) (see also
(Barchielli and Holevo, 1995)), another way to include
non-Markovian effects, but which permits to maintain
at the same time the continuous measurement interpre-
tation is to start from the linear SSE and to generalize
it by considering the presence of stochastic coefficients.
This allows us to describe the non-Markovian evolution
of a quantum system continuously measured and con-
trolled, thanks to a measurement-based feedback, and in
a mathematically consistent way.

In this context of measurement, a result by Galve et al.
(2014) and Giorgi et al. (2015) described how the non-
Markovian character of an evolution inhibits quantum
Darwinism. Such quantum Darwinism explains the emer-
gence of a classical objective reality by the fact that a sys-
tem that dissipates spreads to its environment multiple
redundant copies of the same information (Zurek, 2009).
As a result, each small fraction of the environment con-
tains almost all information classically accessible on the
system, which can then be observed by multiple observers
without perturbing the system. The existence of an in-
formation flow-back produced by the non-Markovianity
of the system evolution (which also prevents the exis-
tence of genuine trajectories), reduces such redundancy,
and hence the emergence of an objective classical reality.

5. Embedding methods

Similar to the embedding methods described in Sec.
IV.B.10 for master equations, Breuer et al. (2004) pro-
pose a stochastic unraveling of states living in an ex-
tended space. Just as in the master equation case, such
an extended state is given by a tensor product of the
original system state space H and C3. Then, states |Φt〉
in this extended space have the general form

|Φt〉 = |ϕa(t)〉|a〉+ |ϕb(t)〉|b〉+ |ϕc(t)〉|c〉, (158)

where |ϕk〉 ǫH (k=a,b,c). Also, the coherences can be
expressed as Wab =M [|ϕa(t)〉〈ϕb(t)|], in terms of wave
functions of the extended space |ϕk〉, which obey a
Markovian evolution and therefore have the physical in-
terpretation of continuous measurements. In this way,
a reduced density matrix that is equivalent to the one
obtained with the master equation (56) can be recovered
by considering

ρs(t) =
M [|ϕa(t)〉〈ϕb(t)|]
M〈ϕb(t)|ϕa(t)〉

. (159)

Thus, an unraveling is constructed for non-Markovian
dynamics, which consists of two wave functions, each of
which is described by a particular Markovian SSE in the
extended Hilbert space. Note that similar to the SLN
method, which is presented in Sec. VI, a reduced den-
sity matrix with non-Markovian evolution is recovered
with an average of two memoryless system wave func-
tions. However, contrary to SLN, this method has the
limitation that it starts from the general form of the
time-convolutionless Eq. (56), which may not be valid
for strong couplings. Similar considerations were made
by Budini (2013), where a quantum jump unraveling is
constructed to describe the dynamics of the OQS and an
ancilla.

6. Quantum jumps

One of the main obstacles to unraveling a non-
Markovian master equation of the form (56), into a set of
quantum jump trajectories, is the appearance of negative
quantum jump probabilities during the evolution. These
occur precisely at the times when the decay rates ∆k(t)
become negative. This problem was tackled by Piilo et al.
(2009, 2008), who realized that when the decay rates be-
come negative, the direction of the information flow be-
tween the system and the environment is reversed. In this
picture, at times when the rates are positive, the system
loses its information to the environment, and quantum
jumps have a similar effect and structure as for Marko-
vian dynamics. In turn, when rates become negative,
the system may regain some of the information it lost
earlier, which means that the seemingly lost superposi-
tions in the ensemble can be restored. Between jumps,
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the system undergoes a deterministic evolution according
to the Hamiltonian

H = HS −
i

2

∑

k

∆k(t)Ck(t)
†Ck(t). (160)

It is in the jump dynamics where the non-Markovian
character introduces a difference between forward jumps

that take place in channels k+ when decay rates are pos-
itive, and backward jumps, that take place in channels
k− when decay rates are negative. The forward jump
process occur when ∆k(t) > 0 and is very much like the
Markovian case, corresponding to transitions

|ψα〉 → |ψα′(t+ δt)〉 ≡ Ck(t)

||C†k|ψα(t)〉||
|ψα(t)〉, (161)

with probability

P k+α (t) = ∆k(t)δt〈ψα(t)|C†k(t)Ck(t)|ψα(t)〉. (162)

A backward jump occurs when ∆k < 0 and produces the
transition

|ψα′(t+ δt)〉 ← |ψα(t)〉 ≡
Ck−(t)

||Ck− |ψ′α(t)〉||
|ψ′α(t)〉, (163)

with probability

P k−α (t) =
Nα′(t)

Nα(t)
|∆k(t)|δt〈ψα′(t)|C†k(t)Ck(t)|ψα′(t)〉,

(164)

where Nα is the number of ensemble members in
state |ψα(t)〉 at time t. The reduced density oper-
ator of the system can be constructed as ρs(t) =
∑

α Pα(t)|ψα(t)〉〈ψα(t)|, with Pα(t) = Nα(t)
N , and N as

the ensemble size.
Note that the non-Markovian quantum jump method

has certain differences with respect to the Markovian
quantum jumps. While fully Markovian trajectories are
uncorrelated with each other, here one should in princi-
ple [although not in practice, as discussed by Piilo et al.

(2009)] simultaneously propagate the ensemble of N tra-
jectories. The reason is that the quantity Nα′/Nα neces-
sary to determine the negative jump probability should
be known, and this depends on the actual number of tra-
jectories Nα(t) at a certain state |ψα〉. Hence, the N tra-
jectories should be propagated in a self-consistent way,
such that Nα(t) vary at times when one of the trajecto-
ries performs a quantum jump. As a result of this, the
different realizations of the process are correlated, since
the quantity P γ−α will change according to quantities that
depend on the ensemble.
As mentioned earlier, the master equation (56) with

time-dependent rates does not guarantee positivity of the
density matrix, particularly if the rates become negative
at some times. The non-Markovian quantum jumps de-
tect when positivity is about to be violated, based on the

presence of a singularity in the negative jump probability
(164) Breuer, H.-P. and Piilo, J. (2009). In particular,
when the number of source members entering in the de-
nominator of such a quantity becomes zero, and the rate
is negative at the same time, the master equation violates
positivity. This corresponds to the unphysical situation
in which the environment tries to undo an event that has
not happened.

In order to further understand the method, let us con-
sider a three-level system with states {|0〉, |1〉, |2〉} and
energies E0 < E1 < E2, as discussed by Piilo et al.

(2009). We now assume that there are only two decay
channels k = 1, 2 corresponding to the coupling operators
L1 = |0〉〈1| and L2 = |1〉〈2|. To build the state vector
ensemble, we start by considering the normalized state
|ψ0〉 = c0|0〉 + c1|1〉 + c2|2〉. The two states, |ψ1〉 = |1〉
and |ψ2〉 = |0〉, can be reached from |ψ0〉 with a for-
ward jump. If a further forward jump occur, the state
|ψ1〉 might jump to |ψ2〉. Hence the only states explored
in the forward process are {|ψ0(t)〉, |ψ1〉, |ψ2〉}, which is
then the reference ensemble of states. For negative de-
cay rates different channels open backward. If at time t,
∆2(t) < 0 for the channel L2, then the target state for
|ψ1〉 will be |ψ0(t+ δt)〉 and no other jumps are allowed.
However, if at time t what we find is that ∆1(t) < 0, the
target states for |ψ2〉 will be either |ψ0(t + δt)〉 or |ψ1〉.
In this case, the target state is not unique although there
are different probabilities to be reached from |ψ2〉.
Non-Markovian quantum jumps have been successfully

applied to study, for instance, exciton dynamics in photo-
chemistry Ai et al. (2014) and Rebentrost et al. (2009a).

VI. PATH INTEGRAL METHODS

The path integral representation, first derived by Feyn-
man and Vernon Jr. (1963) and Feynman (1948), consti-
tutes a very convenient framework for performing nu-
merical simulations of quantum dynamics and equilib-
rium quantum statistical mechanics, considering real
and imaginary time evolution respectively (Weiss, 2008).
Most of the applications are based on using a coordi-
nate representation of the OQS, which is assumed to be
coupled with one or few degrees of freedom to an envi-
ronment as described by Caldeira and Leggett (1983a,b);
and Leggett et al. (1987) (see also Sec. II.B). In ad-
dition, the path integral approach generally considers a
factorized initial condition between environment and sys-
tem, and the environment in thermal equilibrium. Under
these conditions, the path integral representation of the
reduced density matrix of the system reads as (Weiss,
2008)

ρ(xf , x
′
f , t) =

∫

dxidx
′
iJ (xf , x′f , t;xi, x′i, ti)ρ(xi, x′i, ti),
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where

J (xf , x′f , t;xi, x′i, ti) =
∫

D[x1]D[x2]

× e i
~
(SS [x1]−SS [x2])F [x1, x2], (165)

is the propagator of the reduced density matrix, and x
represents the OQS’s degree of freedom. The propagator
presents a sum over all real-time paths x1 and x2 that
run in time from xi and x

′
i at an initial time ti, to xf and

x′f at a final time tf . The influence functional F [x1, x2]
couples these two paths, and can be written in terms of
the difference and sum paths y = (x1 − x2) and r =
(x1 + x2)/2 (Weiss, 2008)

F [y, r] = exp

(

− 1

~

∫ t

0

duW[u, y, r]

)

, (166)

where W [u, y, r] =
∫ u

0
dvy(u)[αRT (u − v)y(v) + 2iαIT (u −

v)r(v))] + iµ
∫ t

0
duy(u)r(u). The functions αIT and αRT

correspond respectively to the imaginary and real parts
of the environment correlation function (21). Also µ =
2
~

∫∞
0
dω J(ω)ω corresponds to the static susceptibility of

the environment.

The influence functional (166) introduces long-range
non-local interaction among the system paths, so an ex-
plicit evaluation of (165) is possible only numerically.
Numerical developments to evaluate the path integrals
include the iterative tensor propagator scheme Makarov
and Makri (1994) and Makri (1995), originally intro-
duced in terms of a quasiadiabatic propagator (Makri,
1992) and hence often referred to as the quasiadiabatic
propagator path integral (QUAPI) algorithm, and the
path integral Monte Carlo schemes (PIMC) derived by
Egger and Mak (1994) and Mak and Egger (1996).

The QUAPI algorithm relies on a Trotter decompo-
sition of the evolution operator within a time slice ∆t,
which is based on the partitioning of the full Hamiltonian
into a so-called adiabatic contribution HS , which can be
treated exactly, and a non-adiabatic reminder H − HS .
As a result of such decomposition, and considering also
a discretization in the OQS configuration space, a dis-
cretized version of the path integral (165) is obtained,
which includes the non-adiabatic corrections through the
influence functional. The discretization is based on the
choice of two parameters: a time-related parameter K,
which settles a memory time window τk = ∆tK up to
which the environment correlations are included (such a
window larger or of the order of the environment cor-
relation time, τc), and a parameter M that settles the
number of OQS basis states. After the discretization,
the evolution of the reduced density operator is obtained
through a temporal iterative procedure. As discussed by
Nalbach et al. (2011), the summation over all possible
paths within the memory time window τk is exact (up
to the error produced by the Trotter decomposition of

the evolution operator) and deterministic. A further im-
provement in the implementation of iterative algorithms
is the filtered propagation functional developed by Sim
(2001) and Sim and Makri (1996), which takes into con-
sideration only path segments that contribute in the path
integral with significant weight. The QUAPI algorithm
was successfully applied to study quantum transport be-
tween two particles (Nalbach et al., 2010), and for such
a model, its performance has been compared to that of
a time-nonlocal perturbative master equation (see Sec.
IV.B.7) (Nalbach et al., 2011), and to a variational mas-
ter equation [discussed in Sec. IV.B.11](McCutcheon
et al., 2011). In addition, the iterative path integral
procedure has been developed for calculating equilib-
rium two-time correlation functions of quantum dissipa-
tive systems (Shao and Makri, 2001, 2002). Other vari-
ants of iterative algorithms were developed to compute
real-time path integral expressions for quantum transport
problems out of equilibrium (Weiss et al., 2008).

For more details of the iterative path integral algorithm
see (Makri, 1995; Makri and Makarov, 1995) and the dis-
cussion by Thorwart et al. (1998). Also, a review of the
most recent advances in the field, including a Matlab li-
brary to implement iterative tensor propagator scheme
was given by Dattani (2013).

As described by Mühlbacher and Ankerhold (2005) and
Mühlbacher et al. (2004), the PIMC algorithm is also
based on a discretization of the path integral represen-
tation (165). However, as opposed to the QUAPI algo-
rithm, PIMC relies on performing a stochastic sampling
of the path integral, which is approximated by consider-
ing a finite ensemble of randomly chosen paths. In addi-
tion, the PIMC technique is usually focused on comput-
ing the diagonal part of the reduced density matrix, but
it has recently been extended to simulate coherences as
well (Kast and Ankerhold, 2013). In general, the PIMC
is one of the most powerful means of exploring the non-
perturbative range including strong coupling and high
temperatures. Although the method was introduced to
analyze the dynamics of spin-boson systems (Egger and
Mak, 1994), it has also been used to analyze dynamical
quantities of larger systems, like single and correlated
charge transfer along molecular chains (Mühlbacher and
Ankerhold, 2005; Mühlbacher et al., 2004), also includ-
ing external driving fields (Mühlbacher and Ankerhold,
2009). The PIMC method is particularly efficient to de-
scribe quantum systems coupled to a thermal reservoir
with Ohmic spectral densities, but it has also been ex-
tended to sub-Ohmic reservoirs, a situation where en-
tanglement between the system and the environment be-
comes more important (Winter et al., 2009). Motivated
by the success of the PIMC algorithm, Mühlbacher and
Rabani (2008) combined such a technique with the di-
agrammatic Monte Carlo approach (initially derived for
the imaginary time evolution), in order to analyze the dy-
namics of a quantum dot coupled to two fermionic reser-
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voirs and to a bosonic bath representing a photon envi-
ronment. These diagrammatic Monte Carlo algorithms
are the basis for the so-called continuous time quantum
Monte Carlo methods, discussed in detail by Gull et al.
(2011).

One of the drawbacks of Monte Carlo methods in gen-
eral is that the number of sample paths needed to achieve
a sufficient signal-to-noise ratio increases exponentially
with the simulated system time, which hinders their per-
formance over long times. This dynamical sign problem

has been shown to be relieved if the sampling space is
reduced by integrating out exactly large parts of the con-
figuration space (Egger and Mak, 1994; Mühlbacher and
Ankerhold, 2005; Mühlbacher et al., 2006). Also, Cohen
et al. (2015) recently presented a solution to the dynam-
ical sign problem with a new algorithm whose computa-
tional cost scales quadratically rather than exponentially
with the simulation time.

Based on the observation that for harmonic oscilla-
tor environments the Feynman path integrals have a
quadratic functional form, Cao et al. (1996) presented an
alternative method based on performing the environment
average by directly sampling paths of the discretized har-
monic modes and then propagating the system under the
influence of a quantum Gaussian force. While the influ-
ence functional methods are based on a cutoff in the num-
ber of discretized time slices, the method by Cao et al.

(1996) introduced a cutoff in the number of discretized
bath frequencies, which makes it particularly amenable
for environments with narrow spectral densities.

As noted in the introduction, the path integral repre-
sentation is the basis of different analytical derivations
and approximations that do not rely on a weak coupling
approximation between the system and the environment.
Three of these derivations, the noninteracting blip ap-
proximation, the stochastic Liouville von-Neumann equa-
tion, and the hierarchical equations of motion, are dis-
cussed in the following.

A. The noninteracting blip approximation

Within the two-level approximation leading to a
Hamiltonian of the form (13), the variables x1 and x2
can take only two discrete values |±〉 = ± 1

2q0, where q0
is the center of the double well. Therefore Eq. (165) be-
comes an integral over all possible pairs of paths, each of
which jumps between these two states. Alternatively, it
can be considered as a single path integral jumping be-
tween four states A = {+,+}, B = {+,−}, C = {−,+},
and D = {−,−}, corresponding to populations (diagonal
states A and D) and coherences (off-diagonal states B
and C). Periods in which the system is in a diagonal
state are called sojourns, and periods between diagonal
states are called blips. Within this picture, the nonin-
teracting blip approximation (NIBA) is used to calculate

the probability of the system to be at a certain state
at time t, by assuming that the average time spent by
the system in a diagonal state is very large compared to
the average time spent in an off-diagonal state. This as-
sumption leads to certain prescriptions being considered
for performing the path integral (165) (Leggett et al.,
1987; Weiss, 2008), in particular to compute the func-
tional (166). These prescriptions turn out to be valid
at high temperatures (so that a strong decoherence sup-
presses the off-diagonal terms), for the super-Ohmic case,
and for a situation in which the Fermi golden rule applies,
i.e. the Markovian case. With respect to the Hamil-
tonian (13), the NIBA corresponds to an expansion in
terms of the tunneling matrix element ∆0, which can also
be performed with projection-operator techniques (Mo-
rillo et al., 1991). The result of the NIBA approximation
is that the evolution of P (t) = 〈σz〉 is given by

dP (t)

dt
= −

∫ t

−∞
dsf(t− s)P (s), (167)

with f(s) = ∆2
0 cos[Q1(s)/(π~)]e

−Q2(s)/(π~), and

Q1(s) =

∫ ∞

0

sin(ωs)J(ω)dω/ω2

Q2(s) =

∫ ∞

0

(1− cos(ωs)) coth(~βω/2)J(ω)dω/ω2.

Dekker (1987) found a different way to obtain this ex-
pression for the evolution of the OQS population by
performing a polaron transformation on the spin-boson
Hamiltonian (13). As discussed in Sec. IV.B.11, the po-
laron transformation has the form U = exp(−iσzΩ/2),
with Ω =

∑

λ(cλ/mλω
2
λ)pλ, and the transformed Hamil-

tonian can be written as Eq. (109) with Bz = 0,
H ′ = − 1

2∆0(σ
+e−iΩ + σ−eiΩ) +HB , so that the Heisen-

berg evolution of σz has the exact form

dσz(t)

dt
= −1

2
∆2

0

∫ t

−∞
ds

(

e−iΩ(t)eiΩ(s)σz(s) + H.c.

)

.

Equation (167) is recaptured simply by considering that
Ω(t) evolves according to the free environment dynam-
ics, and then assuming that the quantum average of the
spin, σz(s), and the environmental exponentials e−iΩ(t)

is decoupled.

Henriet and Le Hur (2016); Henriet et al. (2014); Orth
et al. (2010, 2013) have developed an alternative method
to perform a stochastic unraveling of the influence func-
tional similar to the one proposed by (Stockburger and
Grabert, 2002) discussed in the following section, but
which is made after rewriting of the influence functional
in the blip-sojourn language. Based on this, they have
obtained a stochastic equation for the density matrix in
the vector space of states A, B, C and D.
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B. Stochastic Liouville von-Neumann equation

Path integral formulations may also give rise to the
SLN equation, first proposed by Stockburger and Grabert
(2002). According to this formulation, the double time
integral appearing in Eq. (166) can be reduced to a sin-
gle time integral by introducing a Gaussian integral over
two complex functions ξ(t) and ν(t), and redefining the
functional in a Hubbard-Stratonovich form

F [y, r] =

∫

D2[ξ]

∫

D2[ν]W [ξ, ξ∗, ν, ν∗]

× exp(
i

~

∫ t

t0

dt′ξ(t′)y(t′) + iν(t′)r(t′))

× exp(− iµ
~

∫ t

t0

dt′y(t′)r(t′)), (168)

where W [ξ, ξ∗, ν, ν∗] is a Gaussian functional. The two
newly defined complex functions can be considered Gaus-
sian noises with the following statistical properties:

Mξ,ν [ξ(t)ξ(t
′)] = αR(t− t′);

Mξ,ν [ξ(t)ν(t
′)] = −iαI(t− t′)θ(t− t′);

Mξ,ν [ν(t)ν(t
′)] = 0, (169)

where Mξ,ν [· · · ] =
∫

D2[ξ]
∫

D2[ν]W [ξ, ξ∗, ν, ν∗] · · · is
the Gaussian average over two noises ξ and ν. In this
definition, αR(t) and αI(t) correspond, respectively, to
the real and imaginary parts of the correlation function
given by Eq. (21). Having decoupled the two paths of
(165), and following a procedure similar to the one given
in (Feynman and Vernon Jr., 1963), a stochastic differen-
tial equation can be obtained for the reduced density op-
erator, the stochastic Liouville von-Neumann equation,

dPξ,ν
dt

= − i
~
[HS , Pξ,ν ] +

i

~
ξ(t)[q, Pξ,ν ] +

i

2
ν(t){q, Pξ,ν}

(170)

where considered a system coupling operator q and ne-
glected a re-normalization term. Eq. (170) valid for en-
vironments at thermal equilibrium, allows one to com-
pute different stochastic trajectories for the density ma-
trix sample Pξ,ν , such that the reduced density operator
can be obtained as ρs(t) = Mξ,ν [Pξ,ν ]. Eq. (170) can
be rewritten as two stochastic equations for two different
stochastic state vectors |ψ1

t 〉 and |ψ2
t 〉,

d|ψ1
t 〉

dt
= −iHS |ψ1

t 〉+ iξ(t)q|ψ1
t 〉+ i

1

2
ν(t)q|ψ1

t 〉,
d|ψ2

t 〉
dt

= −iHS |ψ2
t 〉+ iξ∗(t)q|ψ2

t 〉 − i
1

2
ν(t)∗q|ψ2

t 〉.(171)

such that Pξ,ν = |ψ1
t 〉〈ψ2

t |. The drawback of this method
is that beyond the case of the OQS being a harmonic
oscillator, the convergence of the stochastic average for
relatively long times is difficult. One of the problems
is that even though ρs(t) is normalized, the individual
samples Pξ,ν do not stay normalized, which slows down

convergence. To overcome this, Stockburger and Grabert
(2002) and Stockburger (2004) proposed an exact map-
ping of Eq. (170) to an equation that preserves the trace
of each resulting density matrix sample P̂ξ,ν . This formu-
lation, similar to a Girsanov transformation that leads to
the shifted noise of Eq. (143), results in a transformed
noise

ξ → ξ̂ = ξ −
∫ t

0

duχ(t− u)r̂u, (172)

where r̂u = TrS{qP̂ξ,ν}and χ(u) = −θ(u)αI(u)/2~, with
θ(u) as the Heaviside step function. Similarly as in Eq.
(143), this new noise improves the statistics, such that
the number of stochastic trajectories needed to obtain
the reduced density matrix is smaller. A subtle point
about the shift (172) is the fact that the quantity r̂u is
itself defined in terms of the normalized state, which can
be a source of numerical instability (Stockburger, 2004).
As proposed in (Koch et al., 2008), this limitation can
be overcome if one considers that the term r̂u in the shift
follows a reference path given by the classical trajectory
according to the classical Langevin equations of motion.
We saw previously that SSEs generally require some

approximation or ansatz to handle the integral term in
order to obtain a closed equation, while the SLN stochas-
tic equations are exact. The differences between the SLN
and SSE unravelings are that the former depends on two
correlated noise variables and recaptures ρs as an average
of two different stochastic state vectors, while the latter
depends on a single noise variable and recaptures ρs with
an average over a single stochastic vector. The path in-
tegral approach underlines the close connection between
the path integral representation and the stochastic de-
scription of OQS. As pointed out by Diósi and Strunz
(1997) and Strunz (1996), the density matrix propagator
(165) can also be expressed as

J (xf , x′f , t;xi, x′i, ti) =Mz[Gz(xf , t;xi, ti)G
∗
z(xf , t;xi, ti)],

where the stochastic propagator in the path integral rep-
resentation has the form

Gz(xf , t;xi, ti) =

∫ xf ;tf

xi;ti

D[xs] exp
(

i

~
SS +

∫ tf

ti

dsxszs

−
∫ tf

ti

ds

∫ s

ti

ds′xsα
∗(s− s′)xs′

)

(173)

with the noise zt obeying the statistical properties (134).

C. Hierarchical equations of motion

A variant of path integrations in the real position space
consists of using a coherent state representation, charac-
terized by a variable φ and its conjugate φ′. This is the
basis to derive the HEOM for the reduced density opera-
tor, first proposed by Tanimura (1990) and Tanimura and
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Kubo (1989). In terms of coherent states, the path inte-
gral representation of the reduced density matrix of the
system reads as ρs(t) =

∫

dφf
∫

dφ′fρ(φf , φ
′
f ; t)|φf 〉〈φ′f |,

with the coefficients given by

ρs(φf , φ
′
f ; t) =

∫

D[Q(τ)]

∫

D[Q′(τ)]e
i
~
SS(Q;t,ti)

× F (Q,Q′; t, ti)e−
i
~
SS(Q′;t,ti), (174)

where φf and φ′f are the final states of the system,
and Q(t) represents the set of coherent state variables
{φ∗(t), φ(t)}. Here, the functional SS is an action of HS

and
∫

D[Q(τ)] represents the functional integral of Q(τ).
In addition, we defined the influence functional

F (Q,Q′; t, ti) = exp

(−i
~

∫ t

ti

dτ ′Sx(Q,Q′; τ ′)Π

)

,

(175)

where we have omitted the dependencies of the func-

tion Π, which is defined as Π = − i
~

∫ τ ′

ti
dτ [αR(τ

′ −
τ)Sx(Q,Q′; τ) − iαI(τ

′ − τ)So(Q,Q′; τ)]), in terms of
the functionals Sx(Q,Q′; τ) = S(Q(τ)) − S(Q′(τ)) and
So(Q,Q′; τ) = S(Q(τ)) + S(Q′(τ)), which represent dif-
ference and sum paths similar to those appearing in Eq.
(166). Here S(Q(τ)) corresponds to the coherent state
representation of the coupling operators appearing in Eq.
(9).
For systems having Ohmic dissipation with a

Lorentzian cutoff (Drude dissipation), characterized by
a spectral density

J(ω) =
~λγ2

2π

ω

ω2 + γ2
,

where λ is the reorganization energy, which is pro-
portional to the system-environment coupling strength,
the correlation function (21) can be written as α(t) =
∑∞
m=0 cm exp(−µmt), in terms of the Matsubara frequen-

cies. These are defined as µ0 = γ and µm = 2πm/~β
when m ≥ 1, while the coefficients are

c0 =
~γ2λ

2
(cot(β~γ/2)− i),

and

cm≥0 =
γ2λ

β

µm
µ2
m − γ2

.

For a high-temperature environment, β~γ ≪ 1, this re-
duces to

α(t) ≈ λγ2

2
(cot(

~βγ

2
)− i) exp(−γt). (176)

In this case, it is possible to reexpress the element Π in
the functional (175) as

Π = − iλγ
2

2

∫ τ ′

ti

dτe−γ(τ
′−τ)[cot(

~βγ

2
)Sx(Q,Q′; τ)

− iSo(Q,Q′; τ)]). (177)

Then in terms of this quantity we can define the following
elements

ρn(φf , φ
′
f ; t) =

∫

D[Q(τ)]Πne
i
~
SS(Q;t,ti)

× F (Q,Q′; t, ti)e−
i
~
SS(Q;t,ti), (178)

and the corresponding operators ρn(t) =
∫

dφf
∫

dφ′fρn(φf , φ
′
f ; t)|φf 〉〈φ′f |. The element n = 0

corresponds to the reduced density matrix (178).
The time differentiation of these operators leads to
(Tanimura, 2006, 2015)

dρn
dt

= −( i
~
HX
s − nγ)ρn −

i

~
SXρn+1 − i

n

~
Θρn−1,(179)

where ρ0 = ρs, Θ = (~λ/2)[cot(~βγ/2)SX − iSo], with
Aoρ = Aρ+ ρA and AXρ = Aρ− ρA.
Hierarchical expansions have the advantage that they

allow one to obtain the reduced density matrix of
the OQS while including all orders of the system-
environment interactions. The fact that the different
levels of the hierarchy include all orders in the cou-
pling between the system and the environment ren-
ders the method particularly useful for strong system-
environment coupling. In addition, under certain con-
ditions, the hierarchy can be systematically truncated
(Tanimura, 2006, 2015). This approach has been used,
for instance, to describe the quantum dynamics of chem-
ical and biophysical systems, in which other approaches
based on the weak coupling approximation are not valid.
An example of such systems are light-harvesting com-
plexes, where theN molecules in the complex are affected
by a local Drude spectral density (Ishizaki and Fleming,
2009a), Jj(ω) = ~λjγ

2
jω/2π(ω

2 + γ2j ), at each molecu-
lar site j. The resulting hierarchical structure describing
the problem is more complex than the previous one. In
this case, each member of the hierarchy ρn is now labeled
by a set of non-negative integers n = (n1, n2, · · · , nN ),
each corresponding to a molecule j. Then, the evolution
equation is given by

ρn(t)

dt
= −( i

~
HX
s −

N
∑

j=1

njγj)ρn(t)−
i

~

N
∑

j=1

[SXj ρn+(t)

+ njΘjρn−(t)]. (180)

Here, n±j differs from n by changing the specified nj to

nj + 1, i.e. n±j = (n1, n2, · · · , nj ± 1, · · · , nN ). Here,
Θj is defined similarly as Θ0, but depends on λj , γj ,
SXj and Soj . In addition, one can also consider the low-
temperature case, by defining a hierarchy that depends
on two indexes, one of which relates to the level n of
the hierarchy, and the other which is settled by the in-
dex m corresponding to each of the Matsubara frequen-
cies. Naturally, the number of Matsubara frequencies
must be truncated Han et al. (2006); Ishizaki and Tan-
imura (2005); and Xu et al. (2005). This situation was
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tackled in (Ishizaki and Tanimura, 2005) for the case
of a single molecule and in (Li et al., 2012) for more
than one molecule comprising a light-harvesting photo-
synthetic complex. Extending the dimension of the hier-
archy, the method is able to describe a number of spectral
densities leading to correlation functions that are com-
binations of exponentials (Ma et al., 2012; Tanaka and
Tanimura, 2009; Tanimura, 2012).

A more recent proposal for low-temperature environ-
ments consist of splitting the functional into a term, FR,
that depends on the real part of the correlation func-
tion and thus carries the temperature dependency, and a
term, FI , that depends on the imaginary part of the cor-
relation function αI . Then, FR is written as a function of
a colored real noise ξ(t) using the Hubbard-Stratonovich
transformation discussed in Sec. VI.B, and FI is used as
a basis for deriving HEOM. Considering a Drude model
for the spectral density, such that αI(t) ∼ e−γt, the pro-
cedure results in a stochastic version of (179), which de-
pends on the real noise ξ(t) (Moix and Cao, 2013). Previ-
ous proposals in this direction were put forward by Tan-
imura (2006) and Zhou et al. (2005)).

This description can also be extended to deal with ini-
tially correlated states between the system and the en-
vironment, and to obtain thermal equilibrium quantities
of the system (Tanimura, 2014). A similar hierarchical
structure was recently derived by de Vega (2015), by de-
parting from the SLN Eq. (170) of the previous section.

VII. HEISENBERG REPRESENTATION

Early developments in the application of the Heisen-
berg representation to the OQS problem were made
to describe the spontaneous emission (Ackerhalt et al.,
1973) and strong-field resonance fluorescence (Kimble
and Mandel, 1975) of a two-level atom. A non-Markovian
extension of the theory was proposed by Wodkiewicz and
Eberly (1976) and Wodkiewicz (1979) for the sponta-
neous emission and the resonance fluorescence respec-
tively. As shown in the next section, the difficulty of solv-
ing the Heisenberg equations for OQS is that they comply
with a hierarchical structure. Thus, the evolution of one-
time correlations (i.e. quantum mean values) depends on
two-time correlations. Furthermore, the evolution equa-
tion of two-time correlations depends on three-time corre-
lations, while three-time correlations show a dependency
on fourth order correlations. In summary, the evolution
of non-Markovian N -time correlations of system opera-
tors, when no approximations are made, depends on the
N + 1-time correlations. This hierarchy appears only
in non-Markovian interactions, and vanishes when the
environment correlation function α(t) is Markovian, i.e.
α(t) ≈ Γδ(t).

A. Computing multiple-time correlation functions

To derive MTCF with the Heisenberg equations, the
idea is to express dA1(t1) · · ·AN (tN )/dt1 in such a way
that the environmental operators aλ(0) are placed on the

right-hand side of the terms, while the a†λ(0) appear on
the left-hand side. Thus, when we compute the MTCF
as the quantum mean value of A1(t1) · · ·AN (tN ), i.e.

as CA(t|Ψ0) = 〈ψ0|〈0|A1(t1) · · ·AN (tN )|0〉|ψ0〉, where
we considered ρ(0) = |ψ0〉〈ψ0| ⊗ |0〉〈0|, those terms are
zero, and only system operators appear in the equa-
tions. Let us consider the Heisenberg evolution equa-
tion for a system observable A(t, 0) = U†I (t, 0)AUI(t, 0) =
U†(t, 0)AU(t, 0), where UI(t, 0) is defined in Eq. (123)
and U(t1, t2) = exp(−iHtot(t1 − t2)), with Htot the total
Hamiltonian (5). Reexpressing A(t, 0) = A(t) for sim-
plicity, we find

dA(t1)

dt1
= iU−1(t1, 0)[Htot, A]U(t1, 0)

= −i[HS(t1), A(t1)] + i
∑

λ

gλ(a
†
λ(t1, 0)[L(t1), A(t1)]

+ [L†(t1), A(t1)]aλ(t1, 0)), (181)

where L is a system coupling operator. We can re-
place in (181) the formal solution of the evolution equa-
tion of the environmental operators, daλ(t1, t2)/dt1 =
i[Htot(t1, t2), aλ(t1, t2)] = −iωλaλ(t1, t2)− igλL(t1, t2),

aλ(t1, t2) = e−iωλ(t1−t2)aλ(t2, t2)

− igλ
∫ t1

t2

dτe−iωλ(t1−τ)L(τ, t2), (182)

for t2 = 0. The single evolution equation (181) becomes
as follows:

dA(t1)

dt1
= i[HS(t1), A(t1)]− ν†(t1)[L(t1), A(t1)]

+

∫ t1

0

dτα∗(t1 − τ)L†(τ)[A(t1), L(t1)] + [L†(t1), A(t1)]

× ν(t1) +
∫ t1

0

dτα(t1 − τ)[L†(t1), A(t1)]L(τ), (183)

where we used the definition (133) of the en-
vironment correlation function. In the last ex-
pression, we also defined the environment opera-
tors ν†(t1) = −i∑λ gλa

†
λ(0, 0)e

iωλt1 , and ν(t1) =
i
∑

λ gλaλ(0, 0)e
−iωλt1 . In a similar way, the evolution

equation of a two-time correlation can be written as

dA(t1)B(t2)

dt1
= i[HS(t1), A(t1)]B(t2)

− ν†(t1)[L(t1), A(t1)]B(t2) + [L†(t1), A(t1)]B(t2)ν(t1)

−
∫ t1

0

dτα∗(t1 − τ)L†(τ)[L(t1), A(t1)]B(t2)

+

∫ t1

t2

dτα(t1 − τ)[L†(t1), A(t1)]L(τ)B(t2)
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+

∫ t2

0

dτα(t1 − τ)[L†(t1), A(t1)]B(t2)L(τ). (184)

From this equation, the evolution of the quantum mean
value 〈A(t1)B(t2)〉 is again obtained by applying the total
initial state | ψ0〉 on both sides of the former expression.
The generalization to an N -time correlation function was
given by Alonso and de Vega (2007).

Note that for the quantum Brownian particle described
further in Sec. VIII.B, the Heisenberg equations of the
form (181) for system observables may be reduced to
the quantum Langevin equation for the system position
coordinate, A = q, (Sun and Yu, 1995; Yu and Sun,
1994). Building on these results and formally calcu-
lating the solution of the Heisenberg equations, Yang
et al. (2013) obtained the reduced density matrix for a
bosonic and a fermionic open system, and analyzed the
non-Markovianity of its dissipation.

B. Computing multiple-time correlation functions with the

weak coupling expansion

The open Hierarchy described previously can be trun-
cated by assuming a semiclassical approximation which
decouples quantum mean values of products of operators
at different times. An alternative is based on assuming
weak coupling between system and environment. For in-
stance, as proposed by Wodkiewicz and Eberly (1976)
[see also (Florescu and John, 2001) for a more recent ap-
plication], the two-time operator product of Eq. (183)
can be linearized by re-writing it as an equal time prod-
uct. This can be done by considering a perturbative ex-
pansion of the left Liouville operator of the system

L(t) = e−iL(t−τ)L(τ) =
∞
∑

n=0

[−i(t− τ)]n
n!

LnL(τ),

GnL(τ) = [[· · · , [L(τ), Htot], Htot], · · · , Htot], (185)

where L is the Liouvillian associated with the total
Hamiltonian. In general, it is possible to rewrite L =
L0 + Lint, where L0 and Lint are of order 0 and g re-
spectively in the perturbative parameter. Then, keeping
contributions in the equations of motion up to order g2

corresponds to replacing L ≈ L0. In general, a perturba-
tive expansion in the operators L(τ) that appear in Eqs.
(183) and (184), leads to

L†(τ) {[L,A]} (ti) = U−1I (ti0)L(τ, ti)[L,A]UI(ti0)
=

{

Vτ−tiL
†[L,A]

}

(ti) +O(g). (186)

In a similar way, L(τ)B(ti+1) =
U−1I (ti+10)L(τ, ti+1)BUI(ti+10) =

{

Vτ−ti+1
LB

}

(ti+1) +
O(g). Hence, inserting such terms in Eq. (183), we find
that the evolution of quantum mean values is given by
a master equation of the form (69), while the two-time

correlation Eq. (184) can be expressed as

d

dt1
〈A(t1)B(t2)〉 = i〈{[HS , A]} (t1)B(t2)〉

+

∫ t1

0

dτα∗(t1 − τ)〈
{

Vτ−t1L
†[A,L]

}

(t1)B(t2)〉

+

∫ t1

t2

dτα(t1 − τ)〈
{

[L†, A]Vτ−t1L
}

(t1)B(t2)〉

+

∫ t2

0

dτα(t1 − τ)〈
{

[L†, A]
}

(t1) {BVτ−t2L} (t2)〉.(187)

up to second-order in g. A general N -time correlation
function can also be derived (Alonso and de Vega, 2007).
The first three terms of Eq. (187) are analogous to the

non-Markovian evolution of the 〈A(t1)〉, so that when
the last term vanishes, i.e. provided that [L†, A] = 0 or
[B, Vτ−t2L] = 0, the QRT applies. This term is zero in
the Markovian case, since the corresponding correlation
function α(t1 − τ) = Γδ(t1 − τ) is zero in the domain
of integration from 0 to t2. A similar result was previ-
ously given by Swain (1981), where the master equation
approach is used to relate the calculation of correlation
functions to the calculation of single-time expectation
values. The theory of non-Markovian MTCFs was also
recently analyzed by Fleming and Hu (2012).
There are particular conditions in which, even though

the interaction is non-Markovian, the QRT is valid in the
stationary regime. This was analyzed by Budini (2008)
for systems that can be described with a reduced den-
sity operator (98), where ρR is obtained with a Lindblad
type of equation according to a certain rate γR. It was
determined in particular that whenever the evolution of
ρR satisfies the detailed balance condition (Carmichael
and Walls, 1976), then a QRT is valid in the asymp-
totic regime. This condition is automatically not satis-
fied when ρR(∞) depends on γR. The fact that the QRT
is fulfilled in the stationary regime means that

lim
t1→∞

〈A(t1)B(t2)〉 = lim
t1→∞

〈A(t1)B(t2)〉, (188)

where 〈A(t1)B(t2)〉 is computed by using the master
equation with initial condition ρ̂0 = B(t2)ρ0.

C. Input-output formalism

The Heisenberg approach allows for the introduction
of the input-output formalism, first derived by Gardiner
and Collett (1985) and Yurke (1984) [see also (Gardiner
and Zoller, 2000)] using the Markov approximation. This
formalism was used in the context of cavity quantum elec-
trodynamics (Gardiner and Zoller, 2000; Koshino, 2008;
Yurke, 1984), for systems driven by the output of another
system (Gardiner, 1993), to describe cascaded open sys-
tems (Carmichael, 1993b), or to characterize quantum
memories based on atomic ensembles (Muschik et al.,
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2013, 2006), to name just a few examples. Recently, it
was also extended to describe few-photon transport, con-
sidering a waveguide with a single atom (Fan et al., 2010)
and many spatially distributed atoms (Caneva et al.,
2015). Although it was initially derived for bosonic fields,
it has also been extended to fermion fields (Gardiner,
2004). In general, it is particularly useful in situations
where it is relevant to keep track not only of the dynam-
ics of the OQS, but also of the environment operators.
This approach was recently extended to non-Markovian
systems by Diósi (2012) and Zhang et al. (2012) in the
context of stochastic Schrödinger equations and cascaded
networks, respectively.
The first step in the input-output formalism is to re-

express the environment and coupling Hamiltonians in
the continuum limit, HB =

∫∞
−∞ dωωa(ω)†a(ω), and

HI =
∫∞
−∞ dωG(ω)[a(ω)†L + L†a(ω)]. Here the lower

limit can be extended to −∞ provided that the prob-
lem is translated into a rotating frame with respect to
the system resonant frequency ωs, which is considered to
be very large ωs → ∞ as is justified in quantum optics
(Gardiner and Collett, 1985).
Then, considering the interaction picture with respect

to the environment, we can write H = HS + i[â†in(t)L−
L†âin(t)], where

âin(t) = i

∫ ∞

−∞
dωG(ω)a(ω)e−iωt = i

∫ ∞

−∞
dτκ(t− τ)ain(τ),

(189)

with âin(t) = 1√
2π

∫∞
−∞ dωa(ω)e−iωt, and κ(t) =

1√
2π

∫∞
−∞ dωG(ω)e−iωt. Also, these operators satisfy

[âin(t), â
†
in(s)] = γ(t− s), where γ(t− τ) =

∫∞
−∞ dsκ∗(t−

s)κ(τ − s). Similar to Eq. (182), it is possible to write
the evolved environment operator as

âout(t) = âin(t) +

∫ t1

0

dτκ(t− τ)L(τ). (190)

In terms of Eq. (190), the evolution of an arbitrary sys-
tem observable is written as (Zhang et al., 2012)

dA(t)

dt
= i[HS(t), A(t)] + â†in(t)[L(t), A(t)]

+

∫ t

0

dτγ∗(t− τ)L†(τ)[A(t), L(t)] + [L†(t), A(t)]

× âin(t) +
∫ t

0

dτγ(t− τ)[L†(t), A(t)]L(τ), (191)

which is very similar to Eq. (183). Thus, the second-
order perturbative version of this equation can be derived
similarly as in Sec. VII.B. In addition, the traditional
input-output expressions are obtained by considering the
Markov limit in Eqs. (190) and (191). In this limit,
G(ω) =

√
γ, and hence α(t−τ) = √γδ(t−τ), so that Eq.

(190) becomes simply âout(t) = âin(t)+i
√
γL(t), which is

the well-known expression in the Markovian input-output
formalism.

D. Heisenberg equations in many-body problems

Let us consider, for instance, a system of M particles
interacting with a harmonic field through a Hamiltonian
of the form (19), with Lj = σ−j a spin ladder operator

corresponding to the particle j, and gλ(rj) = gλe
ik·rj .

Then, the Heisenberg equations for some of the main
quantum mean values of the system observables have the
following form:

d〈σ−i (t)〉
dt

=
∑

j

∫ t

0

dταij(t− τ)〈σ3
i (t)σ

−
j (τ)〉

d〈σ3
i (t)〉
dt

= −4ℜ[
∑

j

∫ t

0

dταij(t− τ)〈σ+
i (t)σ

−
j (τ)〉]

d〈σ+
i (t)σ

−
j (t)〉

dt
=

∑

l

∫ t

0

dτα∗li(t− τ)〈σ+
l (τ)σ

3
i (t)σ

−
j (t)〉

+

∫ t

0

dταlj(t− τ)〈σ+
i (t)σ

3
j (t)σ

−
l (τ)〉, (192)

with σ3
i = 2σ+

i σi − 1, and the two-particle correlation
function given by αlj(t) =

∑

k g
2
ke
irlj ·(k−kL)−i∆kt, with

rlj = rl − rj as the distance between the two particles.
Indeed, for many-body problems the Heisenberg equa-

tions of system operators comply with a hierarchical
structure in two different ways: first, as was explained,
for non-Markovian cases one-time correlations (i.e. quan-
tum mean values) are dependent on two-time correla-
tions, which are in turn dependent on three-time cor-
relations, etc.; second, even in the Markovian case, the
quantum mean value of a single operator 〈Aj(t)〉 corre-
sponding to the particle j depends on the quantum mean
value of two particle operators, i.e. 〈Bj(t)Cl(t)〉 where
Bj and Cl are operators corresponding to the particles j
and l.
The first hierarchical structure can be removed by as-

suming, for instance, a weak coupling approximation up
to the second-order in the system-environment coupling
parameter. The second hierarchical structure appears
because of the many-particle nature of the OQS. For sys-
tems with many particles, the reduced density matrix
often becomes too large to be computed, and Heisenberg
equations become particularly convenient. The reason is
that they allow for the use of a truncation method (An-
dreev et al., 1993; Christ et al., 2007) to express corre-
lations of three operators into correlations of two opera-
tors, enabling the calculation of a smaller set of the most
relevant system quantities. As it is not based on any
systematic perturbative expansion, the accuracy of this
truncation has to be tested in each case, for instance by
comparing it to the exact result obtained for a smaller
version of the particular system under study. We will
discuss this idea in the following section, and also the
application of the mean-field or Hartree approximation

(Breuer and Petruccione, 2002) to the Heisenberg equa-
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tions which under certain conditions allow one to describe
the dynamics of a system beyond the weak coupling ap-
proximation.

E. Relevant scales involved in the dynamics of many-body

OQSs: Independent and collective limits

The Markovian approximation is very useful to obtain
information about the relevant time scales of the problem
and to derive simplified effective Hamiltonians. In addi-
tion, it allows us to define two different limits relevant
to discuss the dynamics of many-body OQSs: the limit
of independent emitters, where particles evolve as if they
were coupled to independent reservoirs, and the collec-
tive limit where the evolution of each particle is affected
by the presence of the other particles interacting with the
same reservoir. To see this, let us consider that the sys-
tem evolution time scale, TS ∼ 1/Γ0 is much smaller than
τc, where Γ0 is the dissipative rate Γij for ri − rj = 0,
and τc is given by the decaying of the correlation function
αij(τ) for ri − rj = 0. The dissipative rates are defined
as

Γij =

∫ ∞

0

dταij(τ). (193)

In this limit, the evolution Eqs. (192) can be re-

duced to
d〈σ3

i 〉
dt = −4ℜ[∑j Γji〈σ+

i σ
−
j 〉] and

d〈σ+

i σ
−
j 〉

dt =
∑

l Γ
∗
li〈σ+

l σ
3
i σ
−
j 〉 + Γlj〈σ+

i σ
3
jσ
−
l 〉. Here, all the opera-

tors are evaluated at time t. The quantities Γij describe
the dipolar interactions between the sites i and j, and
in physically realistic situations decay with the distance
rij = ri− rj . A calculation of such coefficients for atoms
interacting with the radiation field in the vacuum was
originally given by Lehmberg (1970), where it was found
that the rates can be written as a sum of three compo-
nents that decay with the distance as |rij |−1, |rij |−2, and
|rij |−3, respectively.
A physically intuitive form for the decay rates was ob-

tained by Navarrete-Benlloch et al. (2011) and de Vega
et al. (2008) for the case of atoms trapped by an op-
tical lattice of M sites and coupled to a field of non-
trapped atoms. In this system, the decay rates are given

by Γ|i−j| ∼ |ξ| e
−|i−j|/ξ

|i−j| , where ξ = 1/(|k0|d0) is a parame-

ter that quantifies the range of the interactions, with k0
as the resonant wave-vector of the field, and d0 the in-
teratomic separation. Here, because the lattice is cubic,
we use the notation rj = d0j, where j is the position of
the lattice site j ∈ Z

3. The rate of emission in all direc-
tions, which is given by R(t) ≈ −∑

j d〈σ3
j 〉/dt, depends

crucially on the different values of ξ. If particles evolve
independently, R(t) decays exponentially. This corre-
sponds to the limit of independent emitters, achieved
when ξ ≪ 1. In this range, the rates Γ|i−j| ∼ δij , and
the correlation function is such that αij(τ) = δijα(τ).
Cooperative effects in the emission start to occur when

ξ > 1 leading to a R(t) that no longer decays expo-
nentially and, furthermore, presents positive slopes at
initial times. The limit where ξ ≫ 1 gives rise to an
enhanced emission rate characteristic of Dicke superrra-
diance, Γdiss = MΓ0. This enhancement corresponds to
a situation where the correlation function is site indepen-
dent, i.e. αij(τ) = α(τ), and the system can be properly
described by the effective interaction Hamiltonian

Heff =
∑

λ

gλ

(

a†λJ
− +H.c..

)

. (194)

Here, J− =
∑

i σ
−
i (J+ =

∑

i σ
+
i ) is a collective atomic

spin operator, with properties [J−, J+] = 2Jz = 2
∑

j σ
j
z.

In the limit of an environment with a single mode, this
Hamiltonian corresponds to the well-known multimode
Dicke model, which for the single mode case was the first
system in which super-radiance was described (Dicke,
1954). Although the Hamiltonian (194) appears to be
formally equivalent to that of a single spin coupled to a
harmonic oscillator environment, its resolution is obvi-
ously more involved, since the size of the reduced system
Hilbert space is not 22, but rather 22M , where M is the
number of atoms. For this type of system, it is often
convenient to consider the Holstein-Primakoff approxi-
mation (Holstein and Primakoff, 1940), such that

Jz = S − b†b ≈ S,

J− =
√
2Sb

√

1− b†b

2S
≈
√
2Sb†,

and similarly J+, where S is the quantum number of the
operator Ŝ2. Having transformed the original problem
of M two-level atoms to that of a single harmonic oscil-
lator, the system becomes exactly tractable even when
the interaction presents strong non-Markovian features
as discussed in Sec. VIII.B.
Although the arguments used to obtain the effective

Hamiltonian (194) are based on the Markov approxima-
tion, the dynamics given by this Hamiltonian can be
solved without invoking such an approximation. In fact,
for non-Markovian couplings, the collective decay rate
can vary significantly with respect to the Markovian case.
This was shown by Vats and John (1998) by considering a
collection of M two-level atoms coupled to the radiation
field within a photonic crystal according to Eq. (194).
In this work, the aforementioned Holstein-Primakoff ap-
proximation was used, and it was found that the collec-
tive decay rate scales as M2/3 instead of M , as occurs
for radiation in the vacuum.
In situations where the quantum fluctuations of sys-

tem observables are not significant, because, for instance,
there is a large number of particles M ≫ 1 within
a space of dimension D > 1, we may use the mean-
field or Hartree approximation (Breuer and Petruccione,
2002). The original Eqs. (192) can be written as
y(t) =

∑

j〈σ−j (t)〉/M and z(t) =
∑

j〈σ3
j (t)〉/M can be
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written as

dy(t)

dt
=M

∫ t

0

dτα(t− τ)y(τ)z(t);

dz(t)

dt
= −4Mℜ

[
∫ t

0

dτα(t− τ)y∗(τ)y(t)
]

. (195)

As discussed by John and Quang (1995), the non-
Markovian structure of the equations, together with the
limit of a large number of atoms or particles, gives rise
to a steady state where yst 6= 0, even though y(0) = 0.
An analysis of this phenomenon, which is very similar
to the spontaneous symmetry breaking described in the
semiclassical theory of the laser (Breuer and Petruccione,
2002), beyond the semiclassical approximation is still an
open problem. It is hard to tackle with current tech-
niques, because it combines three different conditions
that are difficult to deal with even independently: a
large number of particles, a highly non-Markovian sit-
uation (with long correlation times), and strong coupling
(enlarged by the collective effects of a large number of
particles M).
An alternative to these derivations is to consider the

Heisenberg equations for both system and environment
operators, and then perform a mean-field approximation.
Based on this idea is the cluster expansion method, intro-
duced in (Gies et al., 2007) and later applied by del Valle
and Laussy (2011) to deal with the dynamics of quantum
dots embedded in microcavities. The Heisenberg equa-
tions for system and environment operators, 〈σ+

j (t)σj(t)〉
and 〈a†λ(t)aλ(t)〉, are found to depend on correlations of
the form 〈σ+

j (t)aλ(t)〉, which in turn depend on higher

order correlations like 〈σ+
l (t)σj(t)a

†
λ(t)aλ(t)〉, and so on.

Then, if the system is additionally driven by some clas-
sical source (e.g. an incoherent field) that destroys
high-order quantum fluctuations, such high-order corre-
lations can be approximated as 〈σ+

l (t)σj(t)a
†
λ(t)aλ(t)〉 ≈

〈σ+
l (t)σj(t)〉〈a

†
λ(t)aλ(t)〉, and the whole system of equa-

tions is truncated at lower orders.

VIII. EXACT CASES

Throughout this review many different approaches
have been discussed, most of which give rise to approxi-
mated equations or equations that are somehow limited
numerically. This section is dedicated to describing two
different non-trivial situations in which an exact solution
is known. The first is when the full dynamics can be
described within one excitation sector, because only one
excitation is present in the initial state, and the Hamil-
tonian of the total system conserves the number of parti-
cles. The second case deals with what is known as quan-
tum Brownian motion, corresponding to the situation in
which the OQS is a harmonic oscillator coupled to an
environment of harmonic oscillators. Another exactly

solvable case that will not be dealt with here, is when
L ∼ HS , a case often referred in the literature as the
purely dephasing noise (Breuer and Petruccione, 2002).

A. Calculations in the one excitation sector

Let us consider a single two-level quantum system
with frequency ωs coupled to a bosonic environment.
The wave function of the total system has the form
|Ψ(t)〉 = C0|0, 0〉+A(t)|1, {0}〉+∑

λBλ(t)|0, 1λ〉, where
|1, {0}〉 describes the excitation in the two-level system
and no excitations in the environment, and |0, 1λ〉 repre-
sents no excitations in the two-level systems and a single
excitation in the bosonic mode λ. The time-dependent
Schrödinger equation projected on the one-excitation sec-
tor of the Hilbert space takes the form, dA(t)/dt =
−∑

λ gλBλ(t)e
−i∆λt and dBλ(t)/dt = gλA(t)e

i∆λt, with
∆λ = ωλ − ωs.
Assuming that Bλ(0) = 0, and inserting the formal

solution of the latter equation into the former, we have

dA(t)

dt
= −

∫ t

0

dτα(t− τ)A(τ), (196)

where α(t) =
∑

λ g
2
λe
−i∆λt is the correlation function of

the environment. An analytical solution can be obtained
using the Laplace transform method A(t) = L−1(A(s)) =
L−1K(s), where K(s) = ( A(0)

s+α(s) ). Indeed, according to

the residue theorem
∫ ǫ+i∞
ǫ−i∞ dsK (s) est +

∫

C
K (s) est =

2πi
∑

j Rj , where the sum of the two terms on the left-
hand side represents a closed contour integral around the
poles of the kernel, excluding its branch cuts, and Rj are
the residues in such poles. Therefore, the general solution
of (196) is

A(t) =

∫ ǫ+i∞

ǫ−i∞
dsK (s) est = 2πi

∑

j

Rj −
∫

C

K (s) est.

(197)
The last term of (197) vanishes for Markovian interac-
tions, and gives rise to an initial nonexponential decaying
in the non-Markovian case. The first term gives rise to
a contribution that is proportional to exjt, where xj is a
pole of K(s). This pole is in general a complex quantity
with a non-zero real part, and therefore gives rise to a
decaying of the amplitude A(t) at long times. However,
steady state solutions of the type As = Aeiω0t, where
now A is an amplitude, may exist, and they correspond
to imaginary poles of K(s).
From the former result, we can write the reduced den-

sity operator as (Breuer and Petruccione, 2002; Vacchini
and Breuer, 2010)

ρs(t) = Λ(t)ρs(0) =

(

P (t) C∗0A(t)
C0A

∗(t) 1− P (t)

)

ρs(0)

where P (t) = |A(t)|2 and Λ(t) represent an exact dynam-
ical map. In terms of this map, a time-convolutionless
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generator for an equation of the type (86) can be defined
by means of

L(t) = dΛ(t)

dt
Λ−1(t), (198)

as long as Λ(t) is always 6= 0, i.e. as long as the map is
invertible. In terms of this generator, a master equation
can be written as

dρs(t)

dt
= −i∆(t)[σ+σ, ρs(t)] + γ1(t)(2σρs(t)σ

+

− σ+aρs(t)− ρs(t)σ+σ) (199)

where

∆(t) = −Im[u̇(t)u−1(t)];
γ1(t) = −Re[u̇(t)u−1(t)]; (200)

and u(t) satisfy the following equation

du

dt
+ iω0u(t) +

∫ t

0

dsα(t− s)u(s) = 0, (201)

with initial condition u(0) = 1. This equation is well-
defined only when the generator is well-defined, which
means that that for all times we should have Λ(t) 6= 0.
Hence, a condition for the former master equation to
make physical sense is that Λ(t) shall not change from
positive to negative values. The master equation (199)
has a form similar to Eq. (69) obtained within the
second-order in perturbation theory.
As described by Bellomo et al. (2007), the dynamics of

N−independent bodies interacting with their own reser-
voirs (i.e. in the limit of independent emitters discussed
in Sec. VII.E) can be expressed in terms of the dynamics
of a single-body. As discussed in this section, such single
body dynamics is exactly known in the one excitation
sector.

B. The quantum Brownian motion model

The dynamics of a harmonic oscillator linearly cou-
pled to a thermal environment has been analyzed for
many years (Feynman and Vernon Jr., 1963; Ullersma,
1966), and it has also been known for some time that
such a system exhibits Brownian motion (Ford et al.,
1965). Such equivalence between a damped harmonic os-
cillator and quantum Brownian is very nicely explained
in (Cohen-Tannoudji et al., 1992). Additionally, exact
solutions to the problem have been developed since the
eighties with the works by Haake and Reibold (1985)
and Riseborough et al. (1985). The system can be de-
scribed with the Hamiltonian presented in Sec. (II.B)
but considering that the OQS is a harmonic oscillator
with Hamiltonian HS = ωsa

†a, which corresponds to

choosing V (q) = 1
2mω

2
sq

2, with q =
√

1
2mωs

(a + a†) and

p = i
√

mωs

2 (a† − a) being the space and the momentum

coordinates of the harmonic oscillator. A master equa-
tion describing this quantum Brownian motion (QBM)
model was derived early on by Haake and Reibold (1985)
and (Talkner, 1986), and later by Hu et al. (1992) (see
also (Karrlein and Grabert, 1997), which recovers and
discusses both results). In more detail, while the first
derivation is based on Wigner functions, the one by Hu
et al. (1992) is based on the Feynman-Vernon influence
functional theory derived for the QBM in (Feynman and
Vernon Jr., 1963). Following a more recent derivation by
An et al. (2009); An and Zhang (2007); Jin et al. (2010);
and Tu and Zhang (2008b) this equation reads as

dρs(t)

dt
= −i∆(t)[a†a, ρs(t)] + γ1(t)(2aρs(t)a

†

− a†aρs(t)− ρs(t)a†a) + γ2(t)(±aρs(t)a† + a†ρs(t)a
− a†aρs(t)∓ ρs(t)aa†),

where ∆(t) and γ1(t) are given by Eq. (200), and

γ2(t) = v̇(t)− 2v(t)Re[u̇(t)u−1(t)], (202)

where u(t) follows Eq. (201), and v(t) is given by

v(t) =

∫ t

0

ds

∫ t

0

ds′u(t− s)α+∗(t− s)u∗(t− s′),

with initial condition u(0) = 1, and α+(t) given by Eq.
(68). Here, the ± and ∓ in the above master equation
correspond respectively to the reservoir being bosonic or
fermionic. As shown by Jin et al. (2010) and Lei and
Zhang (2012), the coefficients γi(t) can be determined
exactly using nonequilibrium Green’s functions, which
include non-perturbatively all environment effects. The
derivation above has recently been extended to describe
the evolution of the reduced density matrix departing
from an initially correlated state between the system and
the environment (Tan and Zhang, 2011). For zero tem-
perature γ2(t) = 0, and Eq. (202) is identical to Eq.
(199). For a system of N harmonic oscillators the above
equation can be written as (Tu and Zhang, 2008b; Zhang
et al., 2012)

dρs(t)

dt
= −i[H̃S(t), ρs(t)] +

∑

ij

{γ1ij(t)(2ajρs(t)a†i

− a†iajρs(t)− ρs(t)a†iaj) + γ2ij(t)(±ajρs(t)a†i + a†iρs(t)aj
− a†iajρs ∓ ρs(t)aja†i )}, (203)

where H̃S(t) =
∑

ij ∆ija
†
iaj , and we have defined the

N ×N matrices

∆(t) = −Im[u̇(t)u−1(t)];
γ
1(t) = −Re[u̇(t)u−1(t)];

γ
2(t) = v̂(t, t)− 2Re[u̇(t)u−1(t)v(t, t)], (204)

where u(t) and v(t) are also N × N matrices with

elements uij(t) = 〈[ai(t), a†j(0)]±〉 and vij(t, t) =

〈a†j(t)ai(t)〉, respectively, which are related to the
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nonequilibrium Green’s functions of the system in the
Schwinger-Keldysh nonequilibrium theory (Schwinger,
1961; Zhang et al., 2012). They obey the equations

du

dt
+ iωsu(t) +

∫ t

0

dsα(t− s)u(s) = 0;

dv(s, t)

ds
+ iωsv(s, t) +

∫ t

0

ds′α(s− s′)v(s′, t)

=

∫ t

0

ds′α+∗(s− s′)u†(s′), (205)

with conditions u(0) = 11 and v(0, t) = 0, with 0 ≤ s ≤ t,
and ωs as a N × N diagonal matrix with the bare
single-particle energy levels of the system. The evolu-
tion of u(t) is very similar in structure as the one in
Eq. (196). Hence, it can be solved with the Laplace
transform method, giving rise to a solution which has a
similar structure as Eq. (197), with a first term that cor-
responds to the exponential contribution of the residues
of the Laplace transform of α(t − s), and a second term
corresponding to a nonexponential decaying originated
by the contour integral (Zhang et al., 2012).

There is also an exact stochastic Schrödinger equation
to describe quantum Brownian motion. Indeed, as re-
cently shown in (Ferialdi and Bassi, 2012) by comput-
ing the Green’s function associated with Eq. (135), the
functional derivative of the last term of such an equa-
tion can be written exactly. Finally, the QBM master
equations above discussed correspond to an interaction
Hamiltonian of the form (12), i.e. containing a single bi-
linear term. Based on the results by Diósi and Ferialdi
(2014), Ferialdi (2016a) has provided a generalization of
the QBM master equation valid for a more general inter-
action Hamiltonian of the form (2) that includes several
bilinear terms.

IX. SOLVING THE DYNAMICS OF THE FULL SYSTEM

Most of the approaches described above are based on
calculating the reduced dynamics of the system under
the assumption that the environment evolves much faster
than the OQS itself. Hence, the environmental degrees
of freedom are either traced out, like in the master equa-
tion approach, or their action is considered statistically
through a Monte Carlo-like method, like in the stochastic
Schrödinger equations or in the path integral methods.
Naturally, a different approach to dealing with OQSs is
to integrate the dynamics of the total system. This can
be made following either standard or more elaborated ex-
act diagonalization methods (Fehske et al., 2008). In this
regard, an important aspect to consider when describing
the full system dynamics is that in general, the envi-
ronment oscillators in the Hamiltonian (5) form a quasi-
continuum. Hence, the interaction and field parts of such

a Hamiltonian can also be written as
∫ 1

0
dkg(k)(a(k)L†+

a(k)†L) +
∫ 1

0
dkω(k)a(k)†a(k), where g(k) are the cou-

pling strengths, and a(k) (a(k)†) are harmonic oscilla-
tor operators with commutation relations [a(k), a(k′)†] =
δ(k−k′). Here, the index k labels the modes, which have
also been re-scaled to the maximum momentum, kmax,
as k = k/kmax. In the frequency representation, these

terms can be rewritten as
∫ 1

0
dωDDOS(ω)g(ω) (a(ω)L

† +

a(ω)†L) +
∫ 1

0
dωDDOS(ω)ωa(ω)

†a(ω), where we have
also introduced an effective upper frequency ωmax and
rescaled accordingly.
When the environment is initially in a Gaussian state,

its effect on the OQS dynamics is fully described by the
spectral density J(ω). As a consequence, a variety of
Hamiltonians, given by different pairs of g(k) and ω(k)
that lead to the same spectral density, give rise to the
same OQS dynamics. This provides us with the free-
dom of using an arbitrary dispersion relation, which is
chosen for simplicity as ω(k) = ωck, with ωc as an ar-
bitrary coefficient is taken to be equal to one. In this
case, DDOS(ω) = 1, and the resulting Hamiltonian can
be rewritten as

H = HS +

∫ 1

0

dωĝ(ω) (a(ω)L† + a(ω)†L)

+

∫ 1

0

dωωa(ω)†a(ω), (206)

with ĝ(ω) =
√

J(ω). From now on we will just write ĝ(ω)
as g(ω) for simplicity. One possible approach to solving
the dynamics given by Eq. (206) is to build a finite repre-
sentation of the environment in terms of a smaller set of
states. This problem was tackled by Burkey and Cantrell
(1984) by choosing the relevant frequencies as those that
optimally discretize the integral of the spectral density
according to a Gaussian quadrature method. According
to this, for a given measure J(ω), a set of orthogonal
polynomials πn(ω) exists, such that

∫ 1

0

dω J(ω)πn(ω)πm(ω) = ρ2nδnm, (207)

with n = 0, 1, · · · , and ρ2n = ||πn||2 =
∫ 1

0
dωπ2

n(ω). Then,
any integral with the weight J(ω) can be approximated

by
∫ 1

0
dωf(ω)J(ω) ≈ ∑N

p=1Wpf(ωp), where ωp are the
N roots of the orthogonal polynomial, πN (ω), and Wp

are the corresponding quadrature weights. One way to
compute such roots and weights is by taking into account
the recurrence relations (Golub and Welsch, 1969)

πn+1(ω) = (ω − αn)πn(ω)− βnπn−1(ω), (208)

where π−1(ω) = 0, and π0(ω) = 1. Consider-
ing now the normalized version of the polynomials,
pn(ω) = πn(ω)/ρn, this recurrence relation reads as
√

βn+1Pn+1(ω) = (ω − αn)Pn(ω) −
√
βnPn−1(ω). The

matrix representation of this relation can be written in
terms of aN×N symmetric tri-diagonal matrix, T , where
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the diagonal elements are formed by the αn and the off-
diagonal elements are formed by the βn. The eigenvalues
of such a matrix are precisely the N roots corresponding
to the most representative oscillators in the environment
ωp, and the Gaussian weights are Wp = ρ0q

2
1,j , where

q1,j is the j−th element of the first eigenvector of T , and
ρ0 =

∫∞
0
dωJ(ω).

As a result of the Gaussian discretization, an opti-
mized discrete version of Eq. (206) is obtained, H =
HS +

∑

p ωpa
†
pap +

∑

p

√

Wp(a
†
pL + L†ap). The recur-

rence coefficients (208), as well as the Gaussian quadra-
ture parameters {ωp,Wp}, can be obtained numerically
with standard algorithms and libraries (Gautschi, 2005).
Similar proposals are based on using sparse polynomi-
als (Alvermann and Fehske, 2009). An interesting vari-
ation of the latter idea is that proposed by Kazansky
(1997) and recently optimized by Shenvi et al. (2008),
which consists of performing analytical continuation of
the integral weighted by the spectral density and then
applying complex Gaussian quadrature to generate com-
plex eigen-energies and couplings {ωp,

√

Wp}. The re-
sulting non-Hermitian Hamiltonian provides a suitable
representation of the continuum with an accuracy that
nevertheless depends on the choice of the contour form
in the complex plane. Due to the complex nature of the
system eigenvalues, the OQS decays irreversibly without
suffering revivals, as occurs with previous discretization
methods leading to Hermitian Hamiltonians.

Related to the aforementioned problem of discretiza-
tion are the approaches used to map the original problem
to that of a system coupled to a one-dimensional chain,
which allows for the use of powerful numerical techniques
to analyze the system ground state and dynamics.

The numerical renormalization group (NRG) approach
(Anders et al., 2007a; Bulla et al., 2008; Vojta et al.,
2005), for instance, was initially derived in (Wilson,
1975) to analyze the problem of a quantum impurity
coupled to a reservoir of noninteracting electrons (the
Kondo problem). This method is based on first per-
forming a coarse-grained approximation of the contin-
uous environment spectral density in energy space (as
described above), which leads to a discrete environment
that can be mapped onto a semi-infinite tight-binding
chain (Krishna-murthy et al., 1980) by using a Lanc-
zos tri-diagonalization method. Hence, the initial prob-
lem characterized by a Hamiltonian of the form (5),

Htot = HS +HB +
∑

λ gλ(La
†
λ + L†aλ) is mapped onto

a tight-binding linear chain

Htot = HS + g(b0L
† + Lb†0) (209)

+
∑

n=0,··· ,M

[

Anb
†
nbn +B1,n+1(b

†
n+1bn + b†nbn+1)

]

which depends on new transformed modes bn, and certain
coefficients An and Bn. An important aspect of the NRG
approach is that the coarse graining of the continuum is

made through a logarithmic discretization, such that the
couplings in the resulting chain decay exponentially, and
hence the chain can be truncated in a systematic way af-
ter performing an iterative diagonalization (Bulla et al.,
2008). Interestingly, the states obtained by iterative di-
agonalization can be expressed as matrix product states
(Weichselbaum et al., 2009).

Another renormalization group approach is the surro-
gate Hamiltonian method, which also consists in mapping
the real Hamiltonian (which have an infinite number of
environment degrees of freedom), into a simpler one that
reproduces exactly the dynamics for finite times. The
idea is that the evolution time induces a dynamical renor-
malization over the system-bath interaction, i.e. the sys-
tem interacts progressively with the environment degrees
of freedom rather than with all of them at once. The sur-
rogate Hamiltonian method was first introduced to study
processes in surface science (Asplund and Klüner, 2011;
Baer and Kosloff, 1997; Koch et al., 2003) and solutions
(Gelman et al., 2004; Koch et al., 2002). Interestingly, as
discussed by Gualdi and Koch (2013), the required size
of the surrogate system Hilbert space can be determined
a priori by considering a Lieb-Robinson bound argument.

An alternative proposal is the one by Chin et al.

(2011a) and Prior et al. (2010), which considers the or-
thogonal polynomials πn(ω) in Eq. (207) to define a uni-
tary transformation of the environment into a new set
of oscillators an, such that bω =

∑

n Un(ω)an, where
Un(ω) = g(ω)πn(ω)/||πn||. Thanks to the orthogonal
property (207) and the normalization of the polynomials,
the transformation is unitary

∫

dωU∗n(ω)Um(ω) = δnm.
The unitary transformed Hamiltonian derived from Eq.
(206) can be written as Eq. (210), with An = ωcαn, and
Bn = ωc

√
βn, such that αn and βn are precisely the coef-

ficients of the recurrence relation (208). Such coefficients
depend effectively on the particular set of monic poly-
nomials that are orthogonal with respect to the weight
function according to the relation (207). As shown in
Fig. 7 for most spectral densities, αn and βn are rela-
tively small and highly dependent on n for the first few
sites of the chain, giving rise to an eventual backscatter-
ing of the excitation to the system, while they become
large and homogeneous for higher values of n, leading for
an irreversible loss of the excitation.

Written as Eq. (210), the whole system constitutes
a one-dimensional structure with only nearest-neighbor
interactions. This Hamiltonian can be solved with pow-
erful numerical techniques such as matrix product states
(Schollwöck, 2011; Vidal, 2003; White, 1992, 1998). In
addition, the system is now directly coupled to the most
relevant (transformed) oscillator of the environment, and
since the consecutive chain oscillators only become rele-
vant at increasingly longer times, a systematic truncation
is possible. However, both NRG and DMRG approaches
can also be used to solve the system’s dynamics in its
original original star configuration of Eq. (206). This



54

configuration has been proven by Wolf et al. (2014) to
be more convenient for tackling the Anderson impurity
model. Indeed, in contrast to what had been commonly
believed, the star configuration can become much less
entangled during the dynamics than the chain represen-
tation, which favors its numerical implementation.

Similar in spirit is the effective modes approach by
Hughes et al. (2009), also based on the construction of a
hierarchy of coupled effective environmental modes that
is terminated by coupling the final member of the hier-
archy to a Markovian bath. Closely related to this is the
derivation in (Iles-Smith et al., 2014), where the OQS is
enlarged by including the first mode of the chain, such
mode being in turn coupled to a new bath conformed by
the remainder oscillators. The enlarged system Hamilto-
nian is thus H̃S = HS+g(a0L

†+La†0), and a perturbative
master equation can then be derived for its reduced den-
sity operator ρS̃ . To test the accuracy of this approach,
Iles-Smith et al. (2014) consider a Drude model for the
spectral density of the original bath, and compare the re-
sults of the perturbative master equation for ρS̃ to those
obtained by the HEOM described in Sec. VI.C, obtain-
ing an almost perfect fit between both results. The idea
of enlarging the system with the first few oscillators of
the chain is further discussed by Woods et al. (2014), who
derive the general expression of the residual spectral den-
sity Jm(ω) describing the reminder environment when an
increasing number of chain oscillators m are included in
the system.

Recently, a multiple-chain-bath model has been de-
rived by Huh et al. (2014), to transform the noninter-
acting star-bath into a set of weakly coupled multiple
parallel chains. The transformation is based on a par-
titioning strategy of the bath modes that leads to the
multiple parallel chains in such a way that as the num-
ber of chains is increased, the coupling strengths between
the OQS and the first (primary) mode of each chain is
reduced, and the lengths of each chain is shortened. Fi-
nally, a general analysis on how different connectivities
in a chain (and more generally in a network) of environ-
ment oscillators may give rise to different shapes of the
corresponding spectral density can be found in (Nokkala
et al., 2015).

X. PERSPECTIVES

The theory of OQSs presents many challenges to be
further developed in the future, which we summarize in
the following.

Recent advances in experimental techniques and in the
fabrication of novel materials allow us to access regimes
where non-Markovian effects become crucial, leading to
new arenas for further exploration. Strongly correlated
systems, for instance, constitute a broad class of elec-
tronic materials that display unusual and intriguing prop-

FIG. 7 Partially based on Chin et al. (2011a). (a) When
the system injects excitations into the inhomogeneous part
of the chain, some backscattering occurs, reflecting the non-
Markovian effects that mainly occur at initial stages of the
evolution. (b) At long times the excitations penetrate into
the homogeneous region and propagate away from the system
irreversibly.

erties. Their intrinsic interest, as well as their many
applications, have led to the development of powerful
numerical tools to analyze them, such as the density
matrix renormalization group (DMRG), time-dependent
DMRG, or matrix product states (Cazalilla and Marston,
2002; Perez-Garcia et al., 2007; Schollwöck, 2005, 2011;
White, 1998), and of advanced experimental techniques
to measure, control and observe their properties. Ex-
tending the theory of OQS to describe the interaction of
impurities with such strongly correlated environments, is
an interesting research topic.

In addition, the possibility of using non-Markovianity
as a resource to build the desired quantum state may
open new avenues for developing further the concept of
dissipative quantum computation and state preparation
proposed in (Diehl et al., 2008, 2010; Verstraete et al.,
2008) and experimentally realized in (Subasi et al., 2012).

Another almost unexplored topic is to understand the
role of non-Markovianity in the relaxation and thermal-
ization in few or many-body quantum systems (see Fig.
8). Moreover, as briefly discussed in Sec. III.D in some
realistic scenarios the open system is coupled to more
than one environment. In this regard, for small sys-
tems interacting with several thermal baths it is possi-
ble to give a full characterization of their dynamics as
quantum thermal machines within the Markov approx-
imation (Kosloff, 2013). A thermal machine obtained
by coupling alternatively a confined ion to hot and cold
reservoirs has been experimentally realized in (Ronagel
et al., 2015). However, the study of the quantum thermo-
dynamics when non-Markovian effects are present raises
fundamental questions that are still subject of debate (for
recent progress see (Bylicka et al., 2015)).

An interesting possibility is that of characterizing the
relatively unknown environment properties of quantum
artificial devices such as nano-resonators or quantum cir-
cuits and junctions, by measuring OQS dynamics. This
idea has been developed in the pioneering experiment
by Groblacher et al. (2015) that monitors the motion of
an opto-mechanical resonator to determine the spectral
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FIG. 8 An idealized view of a many-body open quantum sys-
tem consisting of a set of confined ions or atoms interacting
with a thermal field.

density of its condensed-matter heat bath. Furthermore,
this type of analysis may be useful to characterize the
environment of certain biological systems and molecular
ensembles like those found in photosynthetic complexes.
Indeed, the ability to understand energy transport in the
presence of a well-characterized environment and beyond
the Markov limit may lead to important insights in the
analysis of photosynthetic systems, which may also pave
the way to the design of artificial light-harvesting devices
(Schorles et al., 2011).

From a methodological point of view, deriving a com-
putable form for the coefficients of the formally exact
master equation (56) beyond the one excitation sector
and the Brownian particle case discussed in Sec. VIII.B
is an interesting research goal. Another challenging task
is extending the hierarchical equations of motion of Sec.
VI.C to arbitrary spectral densities and beyond the low
temperature regime. As we have discussed, some ad-
vances for tackling finite temperatures have been made
by increasing the dimensionality of the hierarchy as in
(Han et al., 2006; Ishizaki and Tanimura, 2005; Xu et al.,
2005), or by using an hybrid method (Moix and Cao,
2013). In addition, a very interesting research problem
would be to import some of the numerical advances and
achievements in Monte-Carlo methods (for instance the
taming of the dynamical sign problem as reported in (Co-
hen et al., 2015)) to improve the sampling of stochastic
Schrödinger and SLN equations.

From a more fundamental perspective, a full mathe-
matical characterization of non-Markovian quantum dy-
namical maps is still an open problem, although promis-
ing advances in this direction has been recently made
by Ferialdi (2016a,b). Similarly, it would be interest-
ing to analyze whether there is a connection between
the non-Markovianity measures in Sec. III.B and the
computational complexity for solving the OQS dynam-
ics. In addition, despite the advances reviewed in Sec.
III.A, it is still a challenge to understand further the rela-
tionship between the structure of the initial system-bath
states (which may include system-environment correla-
tions) and the nature of the resulting dynamics, which
includes addressing the question of whether or not such
dynamics are completely positive and can be described

by a map.
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Bylicka, B., D. Chruściński, and S. Maniscalco (2014), Sci.

Rep. 4.
Bylicka, B., M. Tukiainen, J. Piilo, D. Chruscinski, and

S. Maniscalco (2015), arXiv preprint arXiv:1504.06533.
Cai, C. Y., L.-P. Yang, and C. P. Sun (2014), Phys. Rev. A

89, 012128.
Cai, J., S. Popescu, and H. J. Briegel (2010), Phys. Rev. E

82, 021921.
Caldeira, A. O., and A. J. Leggett (1983a), Physica A 121,

587.
Caldeira, A. O., and A. J. Leggett (1983b), Ann. Phys. N.Y.

149, 374.
Campisi, M., P. Talkner, and P. Hänggi (2009), Phys. Rev.

Lett. 102, 210401.
Caneva, T., M. T. Manzoni, T. Shi, J. S. Douglas, J. I. Cirac,

and D. E. Chang (2015), New Journal of Physics 17 (11),
113001.

Cao, J., L. W. Ungar, and G. A. Voth (1996), The Journal
of Chemical Physics 104 (11), 4189.

http://dx.doi.org/10.1103/PhysRevLett.98.210402
http://dx.doi.org/10.1103/PhysRevLett.98.210402
http://dx.doi.org/10.1103/PhysRevLett.98.210402
http://dx.doi.org/10.1103/PhysRevLett.98.210402
http://dx.doi.org/ 10.1103/PhysRev.124.41
http://dx.doi.org/10.1103/PhysRev.69.674.2
http://dx.doi.org/ 10.1103/PhysRevLett.110.086403
http://dx.doi.org/ 10.1103/PhysRevLett.110.086403
http://dx.doi.org/10.1103/PhysRevLett.106.140404
http://dx.doi.org/10.1103/PhysRevLett.106.140404
http://dx.doi.org/ http://dx.doi.org/10.1063/1.473950
http://dx.doi.org/ http://dx.doi.org/10.1063/1.473950
http://dx.doi.org/ 10.1103/PhysRevA.34.1642
http://stacks.iop.org/0305-4470/20/i=18/a=034
http://stacks.iop.org/0305-4470/20/i=18/a=034
http://dx.doi.org/ 10.1098/rsta.2011.0515
http://dx.doi.org/ 10.1098/rsta.2011.0515
http://dx.doi.org/ 10.1098/rsta.2011.0515
http://dx.doi.org/ http://dx.doi.org/10.1016/0304-4149(95)00011-U
http://dx.doi.org/ http://dx.doi.org/10.1016/0304-4149(95)00011-U
http://dx.doi.org/ 10.1002/cpa.3160140303
http://dx.doi.org/ 10.1002/cpa.3160140303
http://dx.doi.org/10.1103/PhysRevLett.109.140403
http://dx.doi.org/10.1103/PhysRevLett.109.140403
http://dx.doi.org/ http://dx.doi.org/10.1016/S0370-1573(03)00103-0
http://dx.doi.org/ http://dx.doi.org/10.1016/S0370-1573(03)00103-0
http://dx.doi.org/10.1103/PhysRevLett.79.2654
http://dx.doi.org/10.1103/PhysRevLett.79.2654
http://dx.doi.org/ 10.1103/PhysRevA.45.1347
http://dx.doi.org/ 10.1103/PhysRevA.45.1347
http://dx.doi.org/10.1103/PhysRevLett.99.160502
http://dx.doi.org/10.1103/PhysRevLett.99.160502
http://dx.doi.org/10.1103/PhysRevA.77.032342
http://dx.doi.org/10.1103/PhysRevA.77.032342
http://stacks.iop.org/0295-5075/88/i=2/a=20011
http://stacks.iop.org/0295-5075/88/i=2/a=20011
http://dx.doi.org/10.1103/PhysRevLett.91.070402
http://dx.doi.org/10.1103/PhysRevLett.91.070402
http://dx.doi.org/ http://dx.doi.org/10.1016/0378-4371(95)00472-6
http://dx.doi.org/ http://dx.doi.org/10.1016/0378-4371(95)00472-6
http://dx.doi.org/10.1142/S0219477512420035
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/S0219477512420035
http://dx.doi.org/ http://dx.doi.org/10.1016/j.physrep.2004.12.002
http://dx.doi.org/ 10.1103/PhysRevLett.89.277901
http://dx.doi.org/10.1103/PhysRevA.30.542
http://dx.doi.org/ 10.1103/PhysRevA.70.012106
http://dx.doi.org/ 10.1103/PhysRevA.75.022103
http://stacks.iop.org/0953-4075/45/i=15/a=154001
http://stacks.iop.org/0953-4075/45/i=15/a=154001
http://dx.doi.org/10.1103/PhysRevB.70.045323
http://dx.doi.org/10.1103/PhysRevB.70.045323
http://stacks.iop.org/0295-5075/54/i=1/a=014
http://dx.doi.org/10.1103/PhysRevE.73.016139
http://dx.doi.org/10.1103/PhysRevE.73.016139
http://dx.doi.org/10.1103/PhysRevA.59.1633
http://dx.doi.org/10.1103/PhysRevA.59.1633
http://dx.doi.org/ http://dx.doi.org/10.1006/aphy.2001.6152
http://dx.doi.org/ http://dx.doi.org/10.1006/aphy.2001.6152
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://arxiv.org/abs/1505.01385
http://arxiv.org/abs/0809.1501
http://dx.doi.org/10.1209/0295-5075/85/50004
http://dx.doi.org/10.1103/PhysRevA.87.042301
http://dx.doi.org/10.1103/PhysRevA.84.012114
http://dx.doi.org/10.1103/PhysRevA.84.012114
http://dx.doi.org/ 10.1103/PhysRevE.72.056106
http://dx.doi.org/ 10.1103/PhysRevA.74.053815
http://dx.doi.org/ 10.1007/s10955-007-9476-9
http://dx.doi.org/ 10.1007/s10955-007-9476-9
http://dx.doi.org/ 10.1103/PhysRevA.88.012124
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/ 10.1364/JOSAB.1.000169
http://dx.doi.org/ 10.1364/JOSAB.1.000169
http://dx.doi.org/ 10.1103/PhysRevLett.113.140502
http://dx.doi.org/ 10.1103/PhysRevB.90.205118
http://dx.doi.org/10.1038/srep05720
http://dx.doi.org/10.1038/srep05720
http://dx.doi.org/ 10.1103/PhysRevA.89.012128
http://dx.doi.org/ 10.1103/PhysRevA.89.012128
http://dx.doi.org/10.1103/PhysRevE.82.021921
http://dx.doi.org/10.1103/PhysRevE.82.021921
http://dx.doi.org/10.1103/PhysRevLett.102.210401
http://dx.doi.org/10.1103/PhysRevLett.102.210401
http://stacks.iop.org/1367-2630/17/i=11/a=113001
http://stacks.iop.org/1367-2630/17/i=11/a=113001
http://dx.doi.org/ http://dx.doi.org/10.1063/1.471230
http://dx.doi.org/ http://dx.doi.org/10.1063/1.471230


57

Carmichael, H. (2002), Statistical Methods in Quantum Op-

tics 1. Master Equations and Fokker-Planck Equations

(Springer-Verlag).
Carmichael, H., and D. Walls (1976), J. Phys. B 9, L43.
Carmichael, H. J. (1993a), An Open Systems Approach to

Quantum Optics, Lecture Notes in Physics, Monographs
Series, Vol. 18 (Springer-Verlag).

Carmichael, H. J. (1993b), Phys. Rev. Lett. 70, 2273.

Carteret, H. A., D. R. Terno, and K. Życzkowski (2008),
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V. Bužek (2002), Phys. Rev. Lett. 88, 097905.

Schaller, G., and T. Brandes (2008), Phys. Rev. A 78, 022106.
Schliemann, J., A. Khaetskii, and D. Loss (2003), Journal of

Physics: Condensed Matter 15 (50), R1809.
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123010.

de Vega, I., D. Porras, and J. Ignacio Cirac (2008), Phys.
Rev. Lett. 101, 260404.

Verstraete, F., V. Murg, and J. Cirac (2008), Advances in
Physics 57 (2), 143, 0907.2796.

Vidal, G. (2003), Phys. Rev. Lett. 91, 147902.
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