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1. Introduction

The baryon asymmetry of the universe remains a mystery. Many ideas have been formu-

lated in the literature, yet much uncertainty remains as to how the baryon asymmetry could

arise. It is not even clear at what scale the initial asymmetry is produced. The Sakharov

conditions for baryogenesis are baryon number violation, C and CP violation, and a de-

parture from equilibrium. The Standard Model (SM) does not exhibit these conditions

at nearly the strength required to produce the observed asymmetry given our standard

cosmological assumptions, and thus it is expected that we must go beyond the SM in order

to explain the asymmetry.

The last Sakharov condition, departure from equilibrium, implies the necessity of a

strong first-order phase transition. Since we know that the electroweak symmetry must be

broken it is tempting to assume that the corresponding phase transition can satisfy this

condition. As noted above, the SM is inadequate, but how far beyond the SM must one

go to find the necessary out of equilibrium dynamics? This question has been addressed

by a number of authors (e.g., see [1] for studies of the dynamics of the electroweak phase

transition in various recent models). In ref. [2] it was shown that if the Higgs potential

is augmented merely by a H6 operator, it can generate a strong first-order electroweak

phase transition. As one can intuit, the scale suppressing this non-renormalizable operator

must be in the neighborhood of the electroweak scale in order to generate a substantive

effect on the phase transition dynamics. A tree-level analysis of this theory was conducted

in [2], with some further refinements in [3], and it was concluded that a strong first order

phase transition is possible even with a Higgs boson as massive as 200 GeV. Of course, for

the presence of this H6 operator to be compatible with electroweak (EW) precision data,

a higher scale should suppress other dimension six operators, in particular those leading

to oblique corrections. The analysis of [4] shows that the low energy effective theories of

strongly interacting models, where a light composite Higgs emerges as a pseudo-Goldstone

boson, have precisely this structure and single out H6 as one of the dominant dimension

six operators,1 being suppressed by the decay constant of the strong sector, parametrically

lighter than the cutoff scale of the model. For a fixed value of the strong decay constant,

the compatibility with precision EW data is ensured by pushing the masses of vector

resonances above 2.5 TeV [4]. In that case a decay constant as low as 300 GeV would

be compatible with precision measurements. Our analysis should also apply to study the

dynamics of electroweak symmetry breaking in Little Higgs models, and to the more general

cases where the H6 operator is generated by integrating out a heavy massive scalar field.

However, some extra fine-tunings might be needed in that case to evade EW precision data.

In this publication we extend the results of [2, 3] in several ways. First, we re-analyze

the theory using the full finite temperature effective (nonrenormalizable) Higgs potential at

1In the case of a strongly interacting light Higgs boson, the general effective lagrangian includes four

operators that are genuinely sensitive to the strong dynamics [4], i.e. suppressed by the strong decay constant

and not the masses of the heavy resonances or the cutoff scale of the strong sector. In this context we can

concentrate on the H6 operator since it is the only one that affects the shape of the potential at tree-level,

and thus it has significant effects on the dynamics of the phase transition as we shall see.
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one-loop. Second, we study the nucleation of broken phase bubbles and consider the effects

of supercooling on the electroweak phase transition (EWPT) within this more complete

analysis. This is an important dynamical consideration of the phase transition that can

in principle have dramatic consequences to when (and if) the phase transition happens.

Finally, we investigate whether or not the gravitational waves emitted at the nucleation time

can be detected by present and future interferometry experiments, which would provide

another way to study the origin of EW symmetry breaking and another way to test the

composite nature of the Higgs. We consider each of these points in the following three

sections, and then make some concluding remarks.

2. One-loop finite temperature effective potential

Once non-renormalizable interactions are allowed in the theory, as in our case, complete

renormalization requires that the infinite set of higher-order operators be considered. How-

ever, one is able to truncate the list of needed operators in a perturbative expansion of

the inverse cutoff scale. To study the effect of new physics on the Higgs potential in this

effective field theory context, it is sufficient to work at the order Λ−2 where Λ is the cutoff

scale suppressing the effective operators. Higher dimensional operators will be sufficiently

irrelevant to our problem and can be ignored.

Our analysis is focussed on operators that affect the Higgs self-interactions. These

effective interactions parametrize the new physics responsible for EW symmetry breaking

that become fully dynamical at about the scale Λ. Thus they can be used to generi-

cally constrain beyond-the-SM physics affecting the Higgs sector. Though EW precision

measurements put severe constraints on the set of operators affecting the weak bosons’

polarization tensors, the effective Higgs self-interactions are almost completely free param-

eters since the Higgs sector has not yet been probed directly by experiment. Thus the scale

suppressing the operator H6 we will focus on can be significantly lower than the cutoff scale

of the (strongly coupled) model. This is in particular the case of composite Higgs models

when the Higgs emerges from a strongly-interacting sector as a light pseudo-Goldstone bo-

son [4]. The scale suppressing the H6 operator is then f , the decay constant of the strong

sector, a quantity 4π smaller that the cutoff scale.

We start with the following classical effective potential for the SM Higgs [5]:

V (H) = m2|H|2 + λ|H|4 + κ|H|6 (2.1)

where HT = (χ1 + iχ2, ϕ + iχ3) /
√

2 which develops a vacuum expectation value (VEV)

equal to v0 ≃ 246GeV. κ−1/2 is identified at tree level with the decay constant of the

strong sector — the details of this identification at one-loop are described later. We choose

a vacuum configuration where only the real part of the neutral component has a constant

background value: ϕ = φ + h. The physical Higgs boson is h, and we use the traditional

background field method [6] to evaluate the quantum potential for φ at one-loop. We focus

on the main relevant contributions coming from the SU(2)L ×U(1)Y gauge bosons, the top

quark, and the Higgs and Goldstone scalars.
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As we briefly review in appendix C, the quantum potential for the background value

up to one-loop order at finite temperature in the Landau gauge (where ghosts decouple) is

Veff(φ, T ) ≡ Vtree(φ) + ∆V1(φ, T ) (2.2)

with

Vtree(φ) =
m2

2
φ2 +

λ

4
φ4 +

κ

8
φ6, (2.3)

∆V1(φ, T ) =
∑

i=h,χ,W,Z,t

niT

2

+∞∑

n=−∞

∫
d3~k

(2π)3
log
[
~k2 + ω2

n + m2
i (φ)

]
(2.4)

where kE = (ωn, ~k) is the euclidean loop 4-momentum, ωn are the Matsubara frequencies

in the imaginary time formalism, where ωn = 2nπT for bosons (periodic on the euclidean

time circle) and ωn = (2n + 1)πT for fermions (anti-periodic on the euclidean time circle).

The numbers of degrees of freedom for the relevant fields are n{h,χ,W,Z,t} = {1, 3, 6, 3,−12}.
We include the fermion-loop minus sign in the definition of nt.

Note that in the Landau gauge one must count all three degrees of freedom of each

massive vector boson and the one degree of freedom of each Goldstone scalar. This may be

qualitatively understood be recalling that the χi Goldstone fields are independent quan-

tum fluctuations away from the zero-temperature minimum. We present a quantitative

argument showing this is not double counting in appendix C.

We obtain the background-dependent masses appearing in (2.4) by expanding the

theory about the background value φ and reading off the quadratic terms for the various

quantum fluctuations. In our dimension-six model the masses are

m2
h(φ) = m2 + 3λφ2 +

15

4
κφ4, (2.5)

m2
χ(φ) = m2 + λφ2 +

3

4
κφ4, (2.6)

m2
W (φ) =

g2

4
φ2, m2

Z(φ) =
g2 + g′2

4
φ2, m2

t (φ) =
y2

t

2
φ2, (2.7)

where g,g′ and yt are the SU(2)L, U(1)Y and top Yukawa couplings respectively. At the

zero-temperature minimum one recovers m2
h(v0) = m2

h and m2
χ(v0) = 0. Note that the

expressions for the masses of the weak bosons (from the Higgs kinetic term) and the top

quark (from the Yukawa coupling) are unchanged compared to the SM, and (2.7) are

written to confirm our conventions.

The one-loop correction (2.4) splits into a zero-temperature part and a T -dependent

part [7, 8] which vanishes as T → 0:

∆V1(φ, T ) ≡ ∆V 0
1 (φ) + ∆V T

1 (φ, T ) (2.8)

with

∆V 0
1 (φ) =

∑

i=h,χ,W,Z,t

ni

2

∫
d4kE

(2π)4
log
[
k2

E + m2
i (φ)

]
(2.9)

∆V T
1 (φ, T ) =

∑

i=h,χ,W,Z,t

niT
4

2π2

∫ ∞

0
dkk2 log

[
1 ∓ e

“

−
√

k2+m2
i (φ)/T 2

”]
. (2.10)
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∆V 0
1 (φ) is precisely the ordinary zero temperature effective potential (note that

∆V T
1 (φ, T ) → 0 as T → 0). The T = 0 part, being UV-divergent, will be considered

first in order to properly determine the renormalized parameters of the quantum theory.

The finite temperature corrections will be treated afterwards.

2.1 Zero temperature corrections

At zero temperature the correction (2.4) reduces to the first term of (2.8),

∆V1(φ, T = 0) ≡ ∆V 0
1 (φ) =

∑

i=h,χ,W,Z,t

ni
m4

i (φ)

64π2

[
log

m2
i (φ)

µ2
− Ci − CUV

]
(2.11)

which has been regularized in 4 − ǫ dimensions, Ci = 5/6 (3/2) for gauge bosons (scalars

and fermions) and CUV ≡ 2
ǫ − γE + log 4π + O(ǫ).

We work in the MS scheme to renormalize and evaluate our potential (see the ap-

pendix A for an alternative, but ultimately equivalent, on-shell scheme approach). The full

one-loop effective potential is

Veff(φ) =
m2

2
φ2 +

λ

4
φ4 +

κ

8
φ6 + ∆V 0

1 (φ) (2.12)

where the parameters of this potential (m2, λ, κ) are bare parameters, but an implicit δVCT

will cancel their infinite pieces, leaving the finite pieces as the renormalized parameters.

To determine the parameters of the lagrangian in terms of physical quantities, we must

impose renormalization conditions at some chosen scale µ∗. The renormalization conditions

are

V ′
eff(φ = v0, µ∗) = 0 (2.13)

V ′′
eff(φ = v0, µ∗) = m2

h (2.14)

V ′′′
eff(φ = v0, µ∗) = ξ (2.15)

The left side of each equation is the theory computation, and depends on the parameters

of the theory (m2, λ, κ). The right side of each equation is a measurement (mh and ξ) or

related to a measurement (V ′(v0) = 0 is a requirement that the potential is at a minimum

which recovers the correct Z boson mass). The VEV depends on the choice of scale as well.

We define v0 to be equal to the VEV of the Higgs field in the Landau gauge at µ = mZ such

that the MS Z mass is recovered. Performing our computations with the latest electroweak

precision measurements [9], we find v0 = 246.8GeV to a good approximation for a Higgs

mass in our range of interest (115GeV < mh
<∼ 300GeV). This Higgs VEV is close to the

246.2GeV value in [10].

We can invert these equations to obtain the theory parameters as a function of mea-

surements:

m2
∗ = m2(m2

h, ξ, v0, µ∗) (2.16)

λ∗ = λ(m2
h, ξ, v0, µ∗) (2.17)

κ∗ = κ(m2
h, ξ, v0, µ∗) (2.18)
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Note, the parameters have scale dependence, and we have defined m2
∗ ≡ m2(µ∗), etc.

Up to now we have glossed over some important subtleties. The physical Higgs mass

must be defined at p2 = m2
h, whereas the one-loop effective potential is constructed for

p = 0. To take account of this, and retain the label m2
h for the physical Higgs boson mass,

we need to rewrite the renormalization condition as

m2
h → m2

h − Σ(m2
h) + Σ(0), (2.19)

where Σ(p2) is the two-point function of the Higgs boson (numerically, we used the Loop-

Tools software [11] to evaluate this two-point function). This approach has the added

benefit that the IR singularity in V ′′
eff(v0) as the Goldstone mass goes to zero is canceled

by the IR singularity in Σ(0). We discuss these IR singularity issues in more detail in the

appendix B.

The physical parameter ξ is not a unique choice for how to parametrize the measured

tri-Higgs coupling, and we wish to rewrite it in a more convenient manner. First, like the

Higgs mass, the Higgs tri-scalar coupling has IR divergences at p = 0 when the Goldstone

bosons become massless. These IR divergences are also not dangerous because they are

matched by the IR divergences of V ′′′
eff(v0), and cancel in measured cross-sections. Thus, it

is convenient to separate out this IR divergence when parametrizing the tri-Higgs coupling

observable: ξ ≡ ξF +ΓIR, where ΓIR contains IR sensitive Goldstone terms.2 Furthermore,

since the tri-Higgs coupling ξ in the SM is fixed once the Higgs mass is known, we would

like our convention to reflect this manifestly in the decoupling limit of κ → 0,

lim
κ→0

ξ → ξSM ≡ ξSM
F + ΓSM

IR (2.20)

For finite values of κ, the deviations of ξF from ξSM
F can be defined by convention to be

ξF ≡ ξSM
F +

6v3
0

f2
(2.21)

This convention (i.e., the factor of 6) ensures that κ−1/2 can be identified directly as the

decay constant of the strong sector, f , at tree level. Putting these elements together, we

can now rewrite the third renormalization condition as

V ′′′
eff(v0) = ξ ≡ ξSM

F +
6v3

0

f2
+ ΓIR. (2.22)

We emphasize that eq. (2.22) is merely a reparametrization of the tri-Higgs physical ob-

servable in terms of the decay constant, f , rather than ξ for the benefits described above,

and that ξSM
F is a computable function of mh.

Following the prescription provided above, all the parameters of our Higgs potential

(m2, λ, κ) can now be written in terms of physical observables (v0,mh, f). Thus, we are

now able to analyze the potential using physical observables as inputs.

2Explicitly, ΓIR is given by ΓIR =
nχ

32π2

»

3m2
χ(v0)

′′m2
χ(v0)

′ log m2
χ(v0) +

[m2

χ
(v0)′]3

m2
χ
(v0)

–

, where m2
χ(φ) =

m2
∗ + λ∗φ

2 + 3
4
κ∗φ

4. ΓSM
IR is given by the above expression where the limit κ∗ → 0 is taken in m2

χ(φ).

– 6 –
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2.2 Finite temperature corrections

From the splitting (2.8) of the full one-loop effective potential into a T = 0 part and a

T 6= 0 part, we get that the latter finite temperature component is:

∆V T
1 (φ, T ) =

∑

i=h,χ,W,Z,t

niT
4

2π2

∫ ∞

0
dkk2 log

[
1 ∓ e

“

−
√

k2+m2
i (φ)/T 2

”]
(2.23)

≡
∑

i=bosons

niT
4

2π2
Jb

(
m2

i (φ)

T 2

)
+

∑

i=fermions

niT
4

2π2
Jf

(
m2

i (φ)

T 2

)

where the upper (lower) sign stands for bosons (fermions). In the high-temperature regime

(T ≫ mi(φ)), the Ji function expansions are

Jb (x) =
x→0

π2

12
x − π

6
x3/2 − x2

32
log

x

ab
+ O

(
x3 log

x3/2

cst.

)
(2.24)

Jf (x) =
x→0

−π2

24
x − x2

32
log

x

af
+ O

(
x3 log

x3/2

cst.

)
(2.25)

with log ab ≃ 5.4076 and log af ≃ 2.6350. Note that in [2] only the first terms in (2.24)

and (2.25) were retained, which leads to the following approximate thermal one-loop cor-

rection:

∆V T
1,GSW (φ, T ) ≡

∑

i=bosons

niT
2m2

i (φ)

24
+

∑

i=fermions

nfT 2m2
i (φ)

48
≃ 1

2
cT 2φ2 + · · · , (2.26)

with c = (4m2
h/v2

0 + 3g2 + g′2 + 4y2
t − 12v2

0/f
2)/16.

The dominant contributions gathered in (2.26) are simply a (positive) thermal mass

which (meta)-stabilizes the origin of the potential at high temperature. This approximation

was sufficient in [2], and further refined in [3], to demonstrate the possibility of a strong

first order PT within an effective extension of the SM. Figure (1) shows the discrepancy

between the complete thermal correction and the high-temperature expansion around the

critical temperature, illustrating the worthwhileness of using the integrals of (2.23) for the

more detailed analysis.

2.2.1 Breakdown of perturbation theory and ring diagrams

In thermal quantum field theory, the traditional perturbative expansion in terms of small

coupling constants breaks down due to IR-divergences (inherent in massless models) gener-

ated by long-range fluctuations appearing as soon as one moves to finite temperature [12].

For instance, taking massless λφ4 theory at finite temperature, one can show that the self-

energy, which goes like λ at first order, receives a subleading λ3/2 correction and not λ2

as one would expect [13]. For our case, in the high-temperature expansion, or equivalently

small mass expansion, of the thermal bosonic corrections (2.24), we also see a sign of this

perturbation theory breakdown through the emergence of a monomial term of order 3/2.

The main consequence is that, as it stands, we cannot trust the completeness of the one-

loop result (2.23) because there are some higher-loop corrections of the same order [7], as

– 7 –
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Figure 1: Different potentials close to the critical temperature for mh = 115GeV and f = 620GeV

(f is the decay constant of the strong sector the Higgs emerges from). The dashed curve is the

potential of [2] which includes only the thermal mass term of the Higgs, while the solid and dot-

ted ones represent the full one-loop potential with (solid) and without (dotted) the ring diagram

contributions. In blue, we have also plotted the imaginary part of the full one-loop potential with

the ring contributions (solid blue) as well as the imaginary part of the ring contributions alone

(dashed blue). This illustrates the cancelation of the large imaginary parts between the ring and

the one-loop contributions, while there still exists an additional and smaller imaginary part for

some values of φ due to a negative quartic coupling (see the discussion in section 2.3.2 for details).

An imaginary part of the potential can be interpreted as a decay rate of some quantum states of

the scalar fields to some others but the imaginary part of the full potential is always tiny compared

to the real part around the transition temperature and the system is stable enough throughout the

entire time of the transition.

if the effect of temperature is to “dilute” the one-loop correction to some multi-loop orders

in the IR. Furthermore the leading part of these multi-loop corrections is all contained

in the so-called ring (or daisy) diagrams shown in figure (2). They are N -loop diagrams

where N − 1 of them are “ring attached” to a main one. Since this “loop-dilution” is

a finite temperature effect, the ring diagrams only need to be resummed in the IR-limit

of vanishing momenta running in their petals [7]. It is also well-known that they can be

taken into account by using propagators resummed in the IR [14]. By solving a Dyson-like

equation, this turns out to simply shift the bosonic masses by a T -dependent constant as

m2
b(φ) → m2

b(φ) + Πb(T ), where Πb(T ) is the self-energy of the (bosonic) field b in the IR

limit, ω = ~p = 0, known as a Debye mass (Πb(T ) is labeled as Πb(0) in [14]).

The higher-loop ring diagrams are needed due to IR divergences (i.e., m <∼ T ). On the

other hand, the one-loop result is trustworthy for massive (i.e., m & T ) particles, because

the long-range fluctuations arising at finite temperature will never hit an IR mass-pole in

such cases. Hence the ring diagrams will only contribute significantly at high-temperature

(T/m → ∞) where the particles can be approximated as nearly massless. Also, this

– 8 –
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Figure 2: Some generic examples of ring diagrams where each solid line may represent either a

scalar, a fermion or a gauge field. The small loops correspond to thermal loops in the IR limit.

They are all separately IR divergent, but their sum is IR finite.

allows us to understand why only the bosonic degrees of freedom feel the breakdown of the

perturbative expansion.3 The reason is that only bosonic fields have a vanishing Matsubara

frequency, recalling that ωn equals 2πnT for bosons and (2n + 1)πT for fermions. Only

this particular (zero-)mode will behave as a massless degree of freedom and generate IR-

divergences at high-temperature, while the other (non zero-)modes ωn act as a mass of

order T and thus lead to negligible contributions. Therefore the fermionic propagators

need not be resummed, because fermions do not have pole-mass in the IR.

Applying the techniques of [14] to our theory, we compute the finite temperature mass

shifts (Debye masses) that are needed in the ring diagram resummation:

Πh,χ(T ) =
T 2

4v2
0

(
m2

h + 2m2
W + m2

Z + 2m2
t

)
− 3T 2

4

v2
0

f2
(2.27)

ΠW (T ) =
22

3

m2
W

v2
0

T 2 (2.28)

ΠZ(T ) =
22

3

(m2
Z − m2

W )

v2
0

T 2 − m2
W (φ) (2.29)

Πγ(T ) = m2
W (φ) +

22

3

m2
W

v2
0

T 2. (2.30)

Note that these Π(T )’s are computed in the high-temperature limit of the unbroken phase

which is justified by the ring diagrams being irrelevant for T . mi(φ) as we have discussed.

At high temperature the photon and Z are not mass eigenstates, but one can treat them

as mass eigenstates in this computation with the above-given Debye masses and obtain the

correct resummed potential.

2.2.2 Incorporating the ring corrections

The traditional way the ring diagrams are implemented in the literature consists in shift-

ing all the Matsubara modes for the bosonic fields. This is the so-called self-consistent

3In the gauge sector, only the longitudinal polarizations demonstrate this same breakdown of perturba-

tion theory [14].

– 9 –
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method [15] where the potential (2.4) is replaced by

∆V self−con.
1+ring (φ, T ) =

∑

i=h,χ,W,Z,γ,t

niT

2

+∞∑

n=−∞

∫
d3k

(2π)3
log
[
~k2 + ω2

n + m2
i (φ) + Πi(T )

]
.

(2.31)

The thermal shift of the gauge masses only for the longitudinal polarizations is understood,

and Πt(T ) is simply zero. However, when applying this approach the UV divergent part

becomes T -dependent through the Π(T ) and requires T -dependent counter-terms to be

made finite. Indeed after doing to (2.31) the same splitting procedure we did to get (2.8),

and after dimensionally regularizing the UV-divergent part, we get the following result:

∆V 0,self−con.
1+ring =

∑

i=h,χ,W,Z,t

ni

(
m2

i (φ) + Πi(T )
)2

64π2

[
log

m2
i (φ) + Πi(T )

µ2
− Ci − CUV

]
(2.32)

where the CUV factor depends on T . This standard technique clashes with physical intu-

ition since it would mean that the UV behavior of the theory depends on the IR dynamics.

Although this mixing is not introducing any calculational errors to our working approxi-

mation, one can avoid it by simply shifting only the ωn = 0 Matsubara modes which carry

the leading contribution from the ring diagrams relevant at one-loop order.

As argued above, the dilution of the one-loop correction happens only for massless

modes. Hence all the corrections we seek within the ring diagrams are gathered when

resumming only the zero-mode of the propagator in the IR. Doing so, (2.4) is to be replaced

by

∆V1+ring(φ, T ) =
∑

i=h,χ,W,Z,γ,t

niT

2

{ +∞∑
′

n=−∞

∫
d3k

(2π)3
log
[
~k2 + ω2

n + m2
i (φ)

]

+

∫
d3k

(2π)3
log
[
~k2 + m2

i (φ) + Πi(T )
]}

(2.33)

≡ ∆V1(φ, T ) + ∆Vring(φ, T ) (2.34)

where the prime means that the zero modes are excluded from the sum. We can easily

extract the ring part from the last expression and we find

∆Vring(φ, T ) =
∑

i=h,χ,W,Z,γ

n̄iT

4π2

∫ ∞

0
dkk2 log

[
1 +

Πi(T )

k2 + m2
i (φ)

]

=
∑

i=h,χ,W,Z,γ

n̄iT

12π

[
m3

i (φ) −
(
m2

i (φ) + Πi(T )
)3/2

]
, (2.35)

where an irrelevant (infinite) constant has been ignored in the second line, and

n̄{h,χ,W,Z,γ} = {1, 3, 2, 1, 1}. Notice that ∆Vring includes a monomial of order 3/2 which

proves a posteriori the existence of a perturbation theory breakdown in evaluating the

Higgs potential. Furthermore, these extra corrections modify the cubic term in mi(φ),
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which partly controls4 the strength of the first order phase transition. Thus, the addition

of these terms is critical for our analysis of the electroweak phase transition.

In summary, the full T -dependent renormalized effective potential at one-loop is

Veff(φ) =
m2

∗

2
φ2 +

λ∗

4
φ4 +

κ∗

8
φ6 +

∑

i=h,χ,W,Z,t

ni
m4

i (φ)

64π2

[
log

m2
i (φ)

µ2
∗

− Ci

]

+
∑

i=bosons

niT
4

2π2
Jb

(
m2

i (φ)

T 2

)
+

∑

i=fermions

niT
4

2π2
Jf

(
m2

i (φ)

T 2

)

+
∑

i=h,χ,W,Z,γ

n̄iT

12π

[
m3

i (φ) −
(
m2

i (φ) + Πi(T )
)3/2

]
(2.36)

where definitions of all terms are given above. This is the potential we analyze for the

remainder of the article.

2.3 Reality of the quantum potential

As the scalar masses become negative, the various contributions we obtained for the quan-

tum potential develop some imaginary parts which we discuss below for both the T = 0

and T 6= 0 cases.

2.3.1 Imaginary part at T = 0

In the zero-temperature limit, the logarithm of (2.36) leads to the following scheme-

independent imaginary part5

ℑm
[
∆V 0

1 (φ)
]

=
∑

i=h,χ

Θ(−m2
i (φ))

ni|mi(φ)|4
64π

(2.37)

where Θ(−m2
i (φ)) is the Heaviside function which equals 1 when the field i is tachyonic,

and zero otherwise. The Higgs boson can obtain a negative mass squared for some values

of its VEV, originating from the fact that the classical potential is not convex everywhere.

Indeed, depending on the cutoff value, either the origin is unstable (f2 > 3v4
0/2m

2
h) or a

potential barrier separates two local minima (f2 < 3v4
0/2m

2
h), both of which lead to concave

regions of the effective potential as a function of the VEV. A similar analysis shows that

the Goldstone boson can become tachyonic for some values of the VEV as well, leading to

another contribution to the imaginary part of the effective potential. However, we shall

see shortly that the imaginary part (2.37) exactly cancels out with another contribution

coming from the finite temperature corrections for the temperature range we are interested

in for the phase transition.

4The negative quartic coupling, of course, is another source of a potential barrier for the first-order phase

transition.
5On the principal sheet, the imaginary part of the logarithm is taken to satisfy −π < ℑm log ≤ π.
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2.3.2 Imaginary part at T 6= 0

At finite temperature both the integrals of (2.23) and the ring contributions (2.35) are

spoiled by imaginary parts when scalar fields are tachyons. In the high-temperature limit,

the imaginary part of (2.23) is (see (2.24)):

ℑm
[
∆V T

1 (φ, T )
]

−→
|mi(φ)|

T
→0

∑

i=h,χ

Θ(−m2
i (φ))ni

[
−|mi(φ)|4

64π
+

|mi(φ)|3T
12π

]
. (2.38)

The first term cancels the imaginary part from the logarithm of the T = 0 potential

correction (2.37), while the second is only compensated when the ring diagrams are added,

since their imaginary part is given by

ℑm [∆Vring(φ, T )] = −
∑

i=h,χ

Θ(−m2
i (φ))

niT

12π
|mi(φ)|3 (2.39)

as long as the temperature satisfies m2
i (φ)+Πi(T ) > 0 for all φ. Although somewhat more

complicated algebraically to show (see appendix C.4 for details), this cancellation occurs

also for smaller temperatures of order T ∼ |mi(φ)|.
Nevertheless and despite this cancellation, the potential is not everywhere real because

for some values of T and φ2, m2
i (φ) + Πi(T ) < 0 and the second term of the ring correc-

tion (2.35) becomes imaginary. In the SM this term does not lead to an imaginary part

once the temperature (meta)stabilizes the origin since the SM scalars could only become

tachyonic for a negative quadratic coupling in the Higgs potential. Thus, the SM potential

is real as long as the origin is (meta)stable. On the other hand, with the additional H6

piece in the potential, the scalar masses can be negative also through a negative quartic

coupling, allowing this additional imaginary part to the potential at temperature around

the critical temperature.

An imaginary part of the potential can be interpreted as a decay rate of some quantum

states of the scalar fields to some others [16]. Thus, one can rely on the real part of the

potential as long as its imaginary part remains small enough to consider the field stable

during the phase transition, in which case it can be discarded. We checked that the

imaginary part of the one-loop potential is always tiny compared to the real part around

the transition temperature, thanks to the previously demonstrated cancellations of large

imaginary pieces. Thus, we conclude that the system is stable enough throughout the

entire time of the transition, and that its dynamics is driven by the real part of the one-

loop potential we computed.

3. Dynamics of the electroweak phase transition

Now that we have the formalism developed for our analysis of the finite temperature Higgs

potential at one loop, we are in the position to study the dynamics of the phase transition.

One of our first considerations must be the analysis of when (and if) the phase transition

actually occurs. This is not simply a matter of determining the temperature at which the

symmetry breaking minimum becomes the global minimum. An analysis of the energetics

– 12 –



J
H
E
P
0
4
(
2
0
0
8
)
0
2
9

of bubble formation must be undertaken for a more complete picture. The nucleated

bubbles can then undergo collisions and the surrounding plasma experience turbulence,

which generate gravity waves that could possibly be detected in experiments. We discuss

these issues in this section.

Throughout this section, we report our numerical results of various relevant quantities

as contour plots that scan the allowed region of the parameter space (mh, f). We recall

that mh is the physical Higgs mass while f is the decay constant of the strong sector (or

more generally the energy scale suppressing the H6 operator) physically defined through

the triple Higgs self-interaction as defined in the previous sections, and we work in the MS

scheme for µ = mZ . The bounds delinating the region of first-order phase transition are

both numerically computed using the complete one-loop potential at finite temperature.

The lower one is set by requiring that EW symmetry is broken at T = 0 and restores at

high temperature, while above the upper bound the Higgs vacuum is likely to undergo a

second-order phase transition or a smooth crossover. In general, determining the latter is

not an easy task as it requires a non-perturbative analysis of the effective potential when

the transition is not strongly first-order [17]. Indeed, the phase transition always appears

first-order at the perturbative level, even though very weakly. Moreover, as f increases

one tends to recover the SM potential, which leads non-perturbatively to a continuous

crossover, instead of a weak first-order transition at one-loop, for mh & 80 GeV [18]. We

estimated the upper bound by considering that as soon as the phase transition is as weak

as in the SM for mh = 80 GeV, it is likely to be a crossover.

3.1 The onset of nucleation and EW baryogenesis

The effective potential ensures the presence of a potential barrier at finite temperature

which is a necessary ingredient to have a first-order phase transition. It proceeds by spon-

taneous nucleation of non-vanishing VEV bubbles into a surrounding symmetric metastable

vacuum. As soon as the universe cools down to a critical temperature Tc the symmetry-

breaking vacuum becomes energetically favorable and then thermal fluctuations allow the

bubbles to form. However, the temperature of the transition is not necessarily close to

Tc. Once created, a bubble needs some free energy, which is unavailable at Tc, in order to

maintain its interface with the symmetric phase surrounding it. It turns out that for T

just below Tc it is often the case that the bubbles are too small and surface tension makes

them collapse and disappear. Hence the phase transition effectively starts at a smaller

temperature when enough free energy is available to permit the nucleation of sufficiently

large bubbles that can grow and convert the entire universe into the broken phase. This

supercooling phenomenon can substantially delay the phase transition and thus modify the

spectrum of gravity waves significantly, as we shall discuss shortly (important supercooling

effects were also observed in some of the analyses of ref. [1])

3.1.1 When does the nucleation start?

Although the probability to tunnel via the excitation of SU(2) instantons is very tiny, about

exp(−O(100)), the decay of the false vacuum can nonetheless proceed through thermal

fluctuations which help to overcome the potential barrier. The rate per unit of space-time
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for this process is given in the semi-classical WKB approximation by Γ ∼ e−SE where SE

is the euclidean action for the Higgs VEV evaluated on the so-called bounce solution of the

euclidean equation of motion [19]. For temperatures much higher than their inverse radius,

the bubbles overlap in euclidean time and feel the IR breaking of Lorentz symmetry [20, 21],

in which case the bounce6 solution is O(3)-symmetric and is the solution of

d2φb

dr2
+

2

r

dφb

dr
+

∂V (φb, T )

∂φb
= 0, (3.1)

subject to the boundary conditions

φb(r → ∞) = 0 and
dφb(r = 0)

dr
= 0. (3.2)

The bounce solution physically represents the Higgs VEV profile of a static unstable (either

expanding or shrinking) bubble, and r measures the distance from the bubble center. For

such a static solution of the equation of motion, the action factorizes as SE = S3/T , with

S3 =

∫
dr4πr2

[
1

2

(
dφb

dr

)2

+ V (φb, T )

]
. (3.3)

Moreover for small temperatures of the order of the bubble size, we replace the O(3) bounce

for the O(4)-symmetric solution which minimizes the action when the breaking of Lorentz

symmetry is not significant. Finally we use the traditional overshooting/undershooting

method to numerically solve the equation of motion.

There is a supercooling effect that can delay the onset of the first order phase transition

to temperatures much smaller than 100GeV. A first order phase transition can only proceed

in the presence of a potential barrier separating the two vacua and the nucleation could

potentially start at a temperature Tn far below that of Tc. This is especially likely in the

case where the barrier persists down to T = 0. One can consider that the nucleation starts

at the time when the probability of creating at least one bubble per horizon volume is of

order one [31]. This condition guarantees the percolation of bubbles in the early universe

and translates into the following criterion for determining the nucleation temperature [22]:

S3(Tn)

Tn
∼ −4 log

(
Tn

mP l

)
=⇒ S3(Tn)

Tn
∼ O(130 − 140) for Tn ∼ 100GeV. (3.4)

where mP l ≡ MP l/
√

8π is the reduced Planck mass.

The contours of constant nucleation temperature are reported in the left panel of

figure 3. We point out that there exists a region (painted red in figure 3) with low f and

mh . 225GeV such that the criterion eq. (3.4) is not satisfied, meaning that the expansion

of the universe does not permit the bubbles to percolate. Thus the nucleation never starts

and the universe remains trapped in a symmetric vacuum. In addition, the right panel of

figure 3 helps one to realize further the numerical significance of the supercooling effect

6Strickly speaking, it is no longer a bounce but rather a critical bubble as it corresponds to a static field

configuration.
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Figure 3: The left panel of this figure shows contours of the nucleation temperature Tn in the

allowed region for an EW symmetry-breaking first order phase transition (f is the decay constant

of the strong sector the Higgs emerges from, and mh is the physical Higgs mass). Below the red

lower bound the EW symmetry remains intact in the vacuum while above the blue upper one

the phase transition is second order or not even occurs. Within the red band, the universe is

trapped in a metastable vacuum since no expanding bubble is nucleated and the transition never

proceeds. The contours are from left to right for Tn = {50, 100, 150}GeV. The right panel of

this figure shows contours of the relative deviation of the nucleation temperature from the critical

one: ǫT = (Tc − Tn)/Tc. This measures the degree to which the phase transition is delayed by the

overcooling effect. The contours are, from above, for ǫT = {10−3, 10−2, 0.1, 0.3}.

by plotting the deviation of the nucleation temperature Tn from Tc. We see that, for

large values of f , the deviation is not significant since the potential barrier disappears at

a temperature not much less than the critical one. On the another hand, as soon as one

lowers f , the barrier persists to lower and lower temperatures, making the supercooling

delay of the phase transition important. Thus the knowledge of the nucleation temperature

becomes necessary to clearly understand the dynamics of the phase transition in this region.

3.1.2 Saving the baryon-asymmetry from wash-out

Understanding the dynamics of the phase transition is a worthy endeavor on its own;

however, one of the key reasons for understanding the nature of the EW phase transition is

to determine if a baryon asymmetry can be produced and survive the process. Calculations

in the previous sections enable us to refine some of the results of [2], where the possibility of

a strong first order phase transition was first demonstrated. The strength of the transition

is characterized by the crucial ratio 〈φ(T )〉/T , which controls the sphaleron production

rate in the broken phase. For 〈φ(T )〉/T > 1, the transition is strongly first-order as any

baryon-asymmetry produced at that time is ensured not to be washed out by the B + L

violating sphaleron processes.
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Figure 4: Plot of the ratio ξn = 〈φ(Tn)〉/Tn characterizing the strength of the phase transition

using the thermal mass approximation of [2] (left) and the complete one-loop potential (right). The

contours are for ξn = {1, 2, 3, 4} from top to bottom. f is the decay constant of the strong sector

the Higgs emerges from, and mh is the physical Higgs mass.

At present we are ready to compute 〈φ(T )〉/T at the nucleation temperature in the

cases where only the thermal masses are included and where the complete one-loop potential

is used. This allows us to compare the effect on the wash-out criterion of the supercooling

of the phase transition and the usefulness of the one-loop potential. The contour plots

of figure (4) show the common fact that the lower the value of f , the stronger the phase

transition for a fixed Higgs mass. The qualitative result of considering the temperature

delay from Tc to T = Tn is that for a given point in the parameters plane, the phase

transition is generically stronger at Tn. Indeed not only is the nucleation temperature

potentially much smaller than Tc, but also the value of the Higgs VEV grows as the

universe cools down.

Another important result for the baryon-asymmetry of the universe, is that it can

be saved from the wash-out through sphaleron processes, namely 〈φ(T )〉/T > 1, for a

not-so-small value of f . Indeed, in order to allow baryogenesis during the EWPT in the

approximation of [2] some fine-tuning might be required in some approaches without any

particular dynamics to make the suppression scale of the dimension six operator in the

Higgs sector relatively smaller than the TeV scale required in the gauge sector to pass EW

precision measurements. But the full one-loop potential tells us that for values of the Higgs

mass above the current experimental bound f can be larger — as large as 1.2 TeV — and

the baryon-asymmetry can still freeze out.

3.2 Gravitational waves

As a bubble expands a part of the latent heat released accelerates the bubble wall and

introduces turbulent motions in the hot plasma. After bubbles collide, spherical symmetry
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is broken. This enables gravitational radiation to be emitted. The turbulence of the plasma

after bubble collisions is another important source of gravitational radiation (see [23] for an

introduction to the physics of gravity waves). In the following, we characterize the spectrum

of gravitational radiation that one can expect from the first order phase transition we have

detailed in this article. We compare these results with the sensitivities of current gravity

wave detectors, and of proposed gravity wave detectors of the future.

3.2.1 Characterizing the spectrum

Previous studies [24 – 26] of the gravity wave spectrum culminate in showing that it can

be fully characterized by the knowledge of only two parameters derived ultimately from

the effective potential.7 The first one is the rate of time-variation of the nucleation rate,

named β. Its inverse gives the duration of the phase transition, therefore defining the

characteristic frequency of the spectrum. The second important parameter, α, measures

the ratio of the latent heat to the energy density of the dominant kind, which is radiation

at the epoch considered: α ≡ ǫ/ρrad. They are both numerically computed from the

effective action S3/T at the nucleation temperature as follows. The time-dependence of

the rate of nucleation is mainly concentrated in the effective action and β is defined by β ≡
−dSE/dt

∣∣
tn

. Using the adiabaticity of the universe one obtain the following dimensionless

parameter:
β

Hn
= Tn

d

dT

(
S3

T

) ∣∣∣
Tn

, (3.5)

where Hn is the expansion rate when nucleation starts. The latent energy is the sum of the

amount of energy ∆V seperating the metastable vacuum to the stable one and the entropy

variation ∆S between these two phases. Hence one has:

ǫ = −∆V − T∆S =

[
−∆V + T

∂V

∂T

] ∣∣∣
Tn

. (3.6)

The left and right panels of figure 5 show contours of constant α and β/Hn, respectively,

at the time of nucleation.

3.2.2 Observability at interferometry experiments

Future interferometry experiments could offer us a way to observe the EWPT. A detailed

analysis of the potential to directly see gravitational waves from the first-order phase tran-

sition can be compared with the sensitivity expected from the correlated third generation

LIGO detector on earth and the LISA and BBO detectors in space. A general analysis that

we utilize has been presented in [22], where both bubble collisions and turbulent motions

7This conclusion is valid under the assumption of detonation. However, in practice the bubble expand in

a thermal bath and not in the vacuum and friction effects taking place in the plasma slow down the bubble

velocity. Therefore, it might be important to consider the deflagration regime as in ref. [27]. When the

phase transition is weakly first order, we obtained under the approximations of [28] a wall velocity lower

than the speed of sound. However, in the interesting region where the phase transition gets stronger, we

approach the detonation regime and the approximations of [28] have to be refined to accurately compute

the wall velocity.
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Figure 5: The panel on the left contains contours of the latent heat α =

{5.10−3, 10−2, 5.10−2, 0.1, 0.5} from top to bottom. The panel on the right draws contours of

the parameter, β/Hn, measuring the duration of the phase transition. From above one has

β/Hn = {105, 104, 103, 200}. f is the decay constant of the strong sector the Higgs emerges from,

and mh is the physical Higgs mass.

were considered. Qualitatively, gravity-wave detectors will give us a better chance to ob-

serve the phase transition today if the latent heat energy released is large and the emission

lasts a long time. This can be understood easily by recalling that the power spectrum is

given by the square of the quadrupole moment of the source which in turns scales as the

kinetic energy over the time of emission [29]. In other words, typically α has to be O(1)

and β/H as small as O(100) to get a sufficiently high energy density Ωh2 & 10−10.

Relying on our effective (nonrenormalizable) potential approach, we find that generi-

cally the dynamics of the first order EWPT beyond the SM generate too weak gravity waves

to observe except for a tiny region of the parameter space. Namely, by looking closely at

figures 5 one can see that for a Higgs mass slightly above the LEP2 bound, mh & 115 GeV,

and a relatively low scale, f ∼ 650 GeV, we get at best α ∼ 0.5 and β/H ∼ 100. The cor-

responding nucleation temperature in this region is about 50 GeV, according to Fig 3. For

such a temperature scale, only LISA and BBO will be sensitive to the emitted spectrum of

gravity waves, according to the results presented in figures 3 and 4 of [22]. Its detectability

is probably beyond the capability of LISA. This result is in qualitative agreement with the

results of [30]. Indeed LISA requires at least values of α > 0.6 for β/H ∼ 100 in order to

see the characteristic peak from turbulence while the collision peak starts to be probed for

α > 0.8. On the other hand, BBO should be able to observe both peaks if α is around 0.3

(keeping β/H ∼ 100).

Thus it seems that one will have to wait until the launching of the second generation

of space-based interferometers to really study the EWPT through gravity wave detectors

within this framework. Moreover this would be possible only in the maximizing case where
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Figure 6: Example of gravity wave spectrum produced during the EW phase transition both

by turbulence (left peak) and collision effects (right peak slightly emerging from the tail of the

turbulence spectrum). This plot is for mh = 115GeV and f ≃ 600GeV where α = 0.51, β/H = 89

and Tn = 39GeV. Note that suitable values of α, β/H to get a strong signal always imply a small

nucleation temperature (< 100GeV) due to important overcooling effects that drag the peak below

the lower bound of the space-based detectors frequency band (≃ 10−4 Hz), making the gravity

waves delicate to observe.

the Higgs mass is close to its current experimental bound and the composite scale of the

Higgs is relatively low.

4. Conclusions

In this article we have reported on a complete computation of the one-loop finite tem-

perature effective potential in models where the Higgs boson is composite and emerges as

a light pseudo-Goldstone boson of a strongly interacting sector (our analysis could also

be relevant for studying the dynamics of electroweak symmetry breaking in Little Higgs

theories). These models are characterized by higher dimensional operators in the Higgs

sector suppressed by the strong decay constant, f , a scale parametrically smaller than the

cutoff of the strong sector. Interestingly, by following the details of the phase transition

dynamics, the parameter space of a strong first-order phase transition has actually grown

for large value of f , and shrunk for small value of f cutoff, compared to the tree-level

result found in [2]. It has grown at the higher end by going beyond the high temperature

approximation. The parameter space has shrunk on the lower end, since we found that

bubbles cannot be nucleated well enough there to overcome the effects of an expanding

universe. We encountered some subtleties along the way, including infrared singularities

and imaginary components to the potential, that were resolved.

It was also necessary to compute the details of the phase transition dynamics in order

to investigate the possibility of detecting gravitational radiation from the first order phase

transition occuring in the early universe. After bubbles are nucleated, their collisions and

subsequent turbulence in the plasma give rise to gravity waves. In the assumption of a

detonation regime, the effects depend on only two parameters, the latent heat α and the
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duration of the phase transition β−1, both of which can be determined by solving the

bounce equation, and analyzing the full one-loop finite temperature effective potential at

the scale of the nucleation temperature. Although LIGO and LISA are likely not sensitive

to these effects, we found that BBO, a planned second generation experiment of space-

based interferometers, could be sensitive to the gravity waves produced during this phase

transition.
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A. On-shell renormalization of the T = 0 potential

The on-shell scheme identifies lagrangian parameters as physical parameter (i.e., observ-

ables). It is the scheme employed by [31], although we augment that discussion by describ-

ing a self-consistent approach with higher order operators, and describe the details of how

IR divergences from massless Goldstone bosons cancel.

Renormalizing our theory in the on-shell scheme is most convenient when we begin by

writing the full potential in the following form:

Vtree(φ) =
λ

4

(
φ2 − v2

0

)2
+

κ

8

(
φ2 − v2

0

)3
+ ∆V 0

1 (φ) +
δc2

2
φ2 +

δc4

4
φ4 +

δc6

6
φ6 (A.1)

where

∆V1(φ, T = 0) ≡ ∆V 0
1 (φ) =

∑

i=h,χ,W,Z,t

ni

2

∫
d4kE

(2π)4
log
[
k2

E + m2
i (φ)

]
(A.2)

=
∑

i=h,χ,W,Z,t

ni
m4

i (φ)

64π2

[
log

m2
i (φ)

µ2
− Ci − CUV

]
(A.3)

which has been regularized in 4−ǫ dimensions, Ci = 5/6 (3/2) for gauge bosons (scalars and

fermions) and CUV ≡ 2
ǫ − γE +log 4π +O(ǫ). In this parametrization of the tree-potential,

the scalar φ-dependent masses are: m2
h(φ) = λ(3φ2 − v2

0) + 3κ(5φ4 − 6v2
0φ2 + v4

0)/4 and

m2
χ(φ) = λ(φ2 − v2

0) + 3κ(φ2 − v2
0)

2/4. The on-shell scheme imposes that v0 is the vacuum

expectation of the Higgs field, λ ≡ m2
h

2v2
0
, and κ ≡ 1/f2. The precise meaning of f2 is defined

below.

– 20 –



J
H
E
P
0
4
(
2
0
0
8
)
0
2
9

The counter terms, δci, are determined by the renormalization conditions:

dVeff(φ, T = 0)

dφ

∣∣∣
φ=v0

= 0, (A.4)

d2Veff(φ, T = 0)

dφ2

∣∣∣
φ=v0

= m2
h − ∆Σ, (A.5)

d3Veff(φ, T = 0)

dφ3

∣∣∣
φ=v0

= ξphys − ∆Γ (A.6)

where ∆Σ = Σ(mh) − Σ(0) and ∆Γ = Γ(mh) − Γ(0) are needed to take us from the IR-

sensitive and unphysical p = 0 limit of the effective potential to p2 = m2
h, where physical

observables mh and the tri-Higgs coupling ξphys are defined. Detailed computations demon-

strating the cancellation of the IR divergences in this scheme are presented in appendix B.

We wish to have a more direct physical parameter that parametrizes deviations from

the SM, and so we redefine

ξphys ≡ ξSM
phys +

6v3
0

f2
(A.7)

which constitutes the definition of the physical observable f . Recall that the tri-Higgs

coupling in the SM is fixed with knowledge of mh, and thus ξSM
phys is determined completely

by mh and the other parameters of the SM:

ξSM
phys =

3m2
h

v0
+
∑

i

ni

32π2

[m2
i (v0)

′]3

m2
i (v0)

. (A.8)

Since m2(v0) depends on 1/f2, this expression is technically equal to the SM one only in

the limit of f2 → ∞, which is all that we need for the analysis to be self-consistent.

We are now able to invert the renormalization conditions and compute the counter

terms, which depend on the various derivatives of V 0
1 (φ), ∆Σ, and ∆Γ. Upon expanding

the result, one can express the renormalized full one-loop potential as

Veff(φ) =
m2

h

8v2
0

(φ2 − v2
0)

2 +
1

8f2
(φ2 − v2

0)
3 (A.9)

+
∑

i=h,χ,W,Z,t

ni

64π2

[
m4

i (φ)

(
log

m2
i (φ)

m2
i (v0)

− 3

2

)
+ 2m2

i (v0)m
2
i (φ)

]

+
1

16
(7∆Σ − v0∆Γ) φ2 +

1

16v2
0

(−5∆Σ + v0∆Γ)φ4 +
1

48v4
0

(3∆Σ − v0∆Γ)φ6

where all the f -dependence of the loop-order contribution to the potential is contained in

the field-dependent masses, making the continuity of the decoupling limit explicit.

B. Cancellation of Goldstone boson IR divergences

In this appendix, we gather the detailed computations for the results mentioned in ap-

pendix A about smoothing the Goldstone IR singularity in the one-loop potential at zero

temperature. First, we shall briefly recall how one moves from zero-momentum to on-shell

scheme in the SM, as a warm-up for the dimension-six operator discussion that will come

afterwards.
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B.1 Review of the SM case

In the SM the loop-integral of (A.2) can be renormalized by imposing the two conditions

dVeff(φ, T = 0)

dφ

∣∣∣
φ=v0

= 0, (B.1)

d2Veff(φ, T = 0)

dφ2

∣∣∣
φ=v0

= m2
h,0, (B.2)

which leads to the traditional form of the effective potential

V
(SM)
eff (φ) =

m2
h,0

8v2
0

(φ2 − v2
0)

2 (B.3)

+
∑

i

ni

64π2

[
m4

i (φ)

(
log

m2
i (φ)

m2
i (v0)

− 3

2

)
+ 2m2

i (v0)m
2
i (φ)

]

where the scalar masses must be evaluated in the decoupling limit of the dimension-six

operator (f → ∞). As we will review, mh,0 is an off-shell Higgs mass defined at p = 0.

This is fine to use as long as no massless particle couples to the Higgs field [31]. If such

particles like the Goldstone bosons are to be taken into account, one must move away from

zero-momentum to avoid the pole-mass at p = 0 that makes both mh,0 and the one-loop

potential IR divergent.

In order to see how this can be done, we recall that near the symmetry breaking

minimum (φ = v0) the renormalized effective potential can always be expanded in terms

of 1PI-Green functions evaluated at vanishing external momentum as follow:

Veff(φ, T = 0) = −
∞∑

n=0

(φ − v0)
n

n!
G(n)(p2

i = 0), (B.4)

where G(n)(p2
i ) are the n-legs renormalized 1PI Green functions for the physical Higgs scalar

evaluated about the true vacuum (i.e., in the shifted theory). This expansion directly

follows from the fact that the effective action may be intepreted as a generating functional

of these 1PI Green functions. Hence the second derivative of the effective potential at v0

is simply the renormalized two-point function at zero-momentum:

d2Veff(φ, T = 0)

dφ2

∣∣∣
φ=v0

= −G(2)(p2 = 0). (B.5)

Given that the two-point function (the inverse propagator) of the Higgs is

G(2)(p2) = p2 −
(
m2

h,R + Σ(p2)
)
, (B.6)

where m2
h,R and Σ(p2) are the renormalized Higgs mass and one-loop Higgs self-energy, we

see that imposing the renormalization condition (B.2) leads to

m2
h,0 = m2

h,R + Σ(p2 = 0). (B.7)

justifying that mh,0 is to be understood as the zero-momentum Higgs mass. In order to

circumvent the IR divergences a natural choice would be to express the right-hand side
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Figure 7: IR divergent diagram contributing to Σ(p2 = 0).

of (B.2) in terms of physical parameters. The physical Higgs mass (mh) is defined as the

pole of the one-loop resummed propagator (G(2)(p2 = m2
h) = 0) and is given by solving the

self-consistent equation:

m2
h = m2

h,R + Σ(p2 = m2
h). (B.8)

This allows us to rewrite (B.5) as

d2Veff(φ, T = 0)

dφ2

∣∣∣
φ=v0

= m2
h,R + Σ(p2 = 0),

= m2
h − ∆Σ (B.9)

with ∆Σ ≡ Σ(p2 = m2
h) − Σ(p2 = 0).

When ∆Σ is absent the UV-finite one-loop correction at zero temperature for the SM

has an IR divergent piece coming from the Goldstone contribution:

∆V
0 (SM)
1 (φ)(IR div) = − nχ

64π2
m4 (SM)

χ (φ) log m2
χ −→

m2
χ→0

∞ (B.10)

where m2
χ ≡ m

2 (SM)
χ (v0) will be kept non-zero as a regulator in what follows. Moving to

the on-shell renormalization scheme (i.e., replacing (B.2) by (A.5)) results in the addition

of the following term to V
(SM)
eff :

δV1,(SM)(φ) = −∆Σ(SM)

8v2
0

(φ2 − v2
0)

2 (B.11)

Now Σ(SM)(p2 = 0) receives an IR singularity from the diagram depicted in figure 7 which

can be easily calculated to give:

Σ
(SM)
(IR div)(p

2 = 0) =
nχ

32π2

m4
h

v2
0

log m2
χ. (B.12)

Combining (B.12) with (B.11), one gets the following IR divergent contribution to the

potential (up to an irrelevant φ-independent term):

δV1,(SM)(φ)(IR div) =
nχ

64π2
m4 (SM)

χ (φ) log m2
χ, (B.13)

which exactly cancels out (B.10).
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B.2 Generalization to the non-renormalizable potential

The presence of the dimension six interaction at tree-level forces us to set one more deriva-

tive of the potential to an extra measurable quantity. Focusing only on the decoupling

limit this can be accomplished by

d3Veff(φ, T = 0)

dφ3

∣∣∣
φ=v0

= ξ0, (B.14)

where

ξ0 ≡
3m2

h,0

v0
+

6v3
0

f2
0

+
∑

i

ni

32π2

[m2
i (v0)

′]3

m2
i (v0)

. (B.15)

As can be easily checked, defining only the Higgs mass on-shell does not smooth out

entirely the bad IR behavior of the one-loop potential in the non-renormalizable case.

In fact f , being another parameter to be fixed at the quantum level, needs also to be

renormalized away from zero-momentum to avoid the Goldstone pole, which is done by

defining the renormalized three-point function of the Higgs boson on-shell. As for the

two-point function, from (B.4) one gets

d3Veff(φ, T = 0)

dφ3

∣∣∣
φ=v0

= −G(3)(p2
i = 0) (B.16)

where pi denotes the external momenta of the three-point function. G(3) can be split into

a tree-level coupling and a one-loop correction as

G(3)(p2
i ) = −g3 − Γ3(p

2
i ) (B.17)

where g3 is the renormalized cubic self-couplings of the Higgs at tree-level. Similarly to the

Higgs mass, we see that imposing (B.14) implies working with a parameter ξ0, or rather

f0 through (B.15), defined at zero-momentum which leads again to IR divergent behavior.

We propose defining an on-shell cubic coupling at one-loop by8

ξphys ≡ −G(3)(p2
i = m2

h) = g3 + Γ3(p
2
i = m2

h), (B.18)

which translates into an on-shell (physical) definition of f by means of (A.7). Finally

by expressing (B.14) in terms of physical parameters, we get the on-shell renormalization

condition of (A.6)

d3Veff(φ, T = 0)

dφ3

∣∣∣
φ=v0

= g3 + Γ3(p
2
i = 0), (B.19)

= ξphys − ∆Γ3 (B.20)

where ∆Γ ≡ Γ3(p
2
i = m2

h) − Γ3(p
2
i = 0).

8Other physical definitions of the cubic coupling are possible, so long as they move away from zero-

momentum to solve the IR issue.
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Figure 8: IR divergent diagram contributing to Γ3(p
2

i
= 0). All the momenta are assumed to be

zero in the external lines.

Now by enforcing the three renormalization conditions (A.4), (A.5) and (A.6) to set

the counter-terms, we find that the zero-momentum potential is augmented by

δV1(φ) = −∆Σ

8v2
0

(
φ2 − v2

0

)2
+

[
∆Σ

16v4
0

− ∆Γ

48v3
0

] (
φ2 − v2

0

)3
(B.21)

We recall that in terms of mh,0 and ξ0 the effective potential develops a logarithmic IR

singularity of the same form as in the SM but with f -dependent masses:

∆V 0
1 (φ)(IR div) = − nχ

64π2
m4

χ(φ) log m2
χ, (B.22)

while ξ0 defined in (B.15) has a power-law divergence. Nonetheless Γ3(p
2
i = 0) contains

IR-divergent parts from the diagrams of figure 8 which are

Γ3(p
2
i = 0)(IR div) =

3nχ

32π2

m4
h

v3
0

(
1 +

6v4
0

m2
hf2

)
log m2

χ (B.23)

+
nχ

32π2

m6
h

m2
χv3

0

.

Hence the power-law divergence of ∆Γ cancels with the one of (B.15) making ξphys

a well-defined quantity. The remaining logarithmic divergence of the three-point function

along with the one from the self-energy, which turns out to be the same as in the SM,

Σ(IR div)(p
2 = 0) =

nχ

32π2

m4
h

v2
0

log m2
χ, (B.24)

gives after some simple algebra (up to irrelevant constant and O(f−4) terms)

δV1(φ)(IR div) =
nχ

64π2
m4

χ(φ) log m2
χ (B.25)

which cancels with eq. (B.22).

Finally, one finds that this procedure also leads to a UV and IR finite potential when

a different higher derivative is chosen as a third renormalization condition.

C. Review of T 6= 0 one-loop Higgs potential

C.1 The one-loop potential from the background field method

The original method proposed by Jackiw in [6] to compute loop corrections to the classical

potential is based upon expanding the action about (constant) background values for the
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various fields appearing in the theory. In our case only the neutral Higgs component has

a non-vanishing VEV, and we recall here in a concise way how this method allows one to

derive the one-loop correction given in (2.4). At the start, we consider the T = 0 correction,

and discuss the finite T corrections in the next subsection of this appendix.

As an illustration we focus on a simple self-interacting scalar (real) field theory defined

by the following generating functional:

Z[j] ≡
∫

[Dφ]exp [i(S[ϕ] + jϕ)] (C.1)

where the notation ϕj ≡
∫

d4xϕ(x)j(x) will be assumed throughout this appendix, and

the action is S[ϕ] =
∫

d4x[(∂µϕ)2/2− V0(ϕ)]. Then one shifts the field by a x-independent

background value (ϕ(x) = φ+h(x)) where φ is assumed to be a classical field configuration

and h represents a quantum fluctuation about it. We will now integrate out this fluctuation

to get its effect on the potential up to one-loop order. To do so, one defines the shifted

theory (whose dynamical field is now h) by expanding the action about its classical value:

S[φ + h] + j(φ + h) = S[φ] + jφ + h

(
δS

δϕ

∣∣∣
ϕ=φ

+ j

)
+

1

2
hx

δ2S

δϕxδϕy

∣∣∣
ϕ=φ

hy + · · · (C.2)

where thanks to the equation of motion in the presence of a source the linear term vanishes.

The · · · stand for higher (than quadratic) orders in h which lead to (at most) two-loop

corrections [6]. One also easily obtains after an integration by parts that

δ2S

δϕxδϕy

∣∣∣
ϕ=φ

= −(� + V ′′
0 (φ))δ4(x − y). (C.3)

Plugging this expansion back into (C.1) one obtains

Z[j] ≃ ei(S[φ]+jφ) ×
∫

[Dh] exp

[
i

2
hx

δ2S

δϕxδϕy

∣∣∣
ϕ=φ

hy

]

= ei(S[φ]+jφ) × Det
(
� + V ′′

0 (φ)
)− 1

2 . (C.4)

We recall that by definition the effective action is the Legendre-transform of the logarithm

of Z[j]

Seff [φ] ≡ −i log Z[j] − jφ, (C.5)

which in our case, including the quantum fluctuations at one-loop, takes the form:

Seff [φ] = S[φ] +
i

2
Tr log

(
− δ2S

δϕxδϕy

∣∣∣
ϕ=φ

)
. (C.6)

Moreover Seff can always admit a derivative expansion of the form:

Seff [φ] ≡
∫

d4x
[
−Veff(φ) + A(φ)(∂µφ)2 + · · ·

]
, (C.7)

which defines precisely what one calls the effective potential. Since φ is an homogeneous

configuration in space-time, this simplifies to:

Seff [φ] = −VVeff(φ), (C.8)
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where V is the volume of space-time we choose to keep finite for the moment. Besides,

this homogeneity preserves the diagonality of (C.3) in momentum-space, which allows us to

evaluate the trace in (C.6). This leads to the following expression for the effective potential:

Veff(φ) = V0(φ) − i

2
V−1

∑

k

log(−k2 + V ′′
0 (φ)) (C.9)

where the sum is over the eigenvalues of the � operator in momentum-space. Finally by

taking the limit of infinite space-time volume, one gets the well-known result:

Veff(φ) = V0(φ) − i

2

∫
d4k

(2π)4
log(−k2 + V ′′

0 (φ)). (C.10)

The generalization for fields of higher spin that couple to φ is

Veff(φ) = V0(φ) + i
∑

i=fields

η

∫
d4k

(2π)4
log det

(
−iD̃i(k, φ)

)
, (C.11)

where −iD̃(k, φ) is the inverse propagator, η = −1/2 (1) for bosons (fermions) is the power

of the functional determinant, and the det denotes an eventual determinant acting on either

Lorentz or Dirac indices.

C.2 Turning on the temperature in the effective potential

The imaginary time formalism to go from quantum statistics at zero-temperature to ther-

mal quantum statistics is by compactification of the euclidean time dimension on a circle

of radius R = 1/2πT . This correspondence is formally obtained in the path integral for-

mulation of quantum mechanics [13]. However, it is worthwhile to give a quick intuitive

argument.

We begin with the generating functional for a scalar field in euclidean space-time

(τ = it):

Z[j] =

∫
[Dφ] exp

[
−
∫

d4xE

(
1

2
∂µφ∂µφ + V0(φ) + jφ

)]
. (C.12)

Now requiring the euclidean time to lie in the interval −1/2T 6 τ 6 1/2T , and restricting

the field φ to static configurations, one ends up with

Z[j] =

∫
[Dφ] exp

[
− 1

T

∫
d3x

(
1

2
∂iφ∂iφ + V0(φ) + jφ

)]
. (C.13)

For vanishing source the space integral is nothing else but the energy (E[φ]) stored in a

(time-independent) field configuration φ, and the generating functional reduces to

Z[j = 0] =

∫
[Dφ] e−

E[φ]
T ∼

∑

S=all states

e−ES/T , (C.14)

which is the common partition function of statistical mechanics where φ describes all pos-

sible (static) configurations of a given system in equilibrium with a heat reservoir at tem-

perature T .
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Therefore the prescription to follow as soon as temperature is switched on is rather

simple. It consists of Fourier expanding the fields among its eigen (Matsubara) frequencies

ωn and discretizing the imaginary time integrals by the following replacement rule:

∫
dk0,E

2π
f(k0,E) → T

∞∑

n=−∞

f(k0,E = ωn). (C.15)

For instance, applying (C.15) to momentum integral in (C.10) to implement the finite

temperature correction leads to a potential of the form presented in (2.4):

Veff(φ, T ) = V0(φ) +
T

2

∞∑

n=−∞

∫
d3k

(2π)3
log(ω2

n + ~k2 + V ′′
0 (φ)). (C.16)

C.3 Gauge degrees of freedom in Landau gauge

Recalling the Goldstone equivalence theorem of gauge theory, one might doubt the neces-

sity of counting the longitudinal polarization of a (massive) gauge field and its associated

Goldstone mode as independent degrees of freedom when computing the effective potential

in the Landau gauge. Here we clarify this fact in the simple case of an abelian Higgs model.

To do so, we explicitly compute the one-loop contributions of the U(1)-gauge, ghost and

Goldstone fields to the Higgs potential in the Rξ gauge. The effective potential turns out

to be gauge-dependent, however there is no need to worry since it is not a physical observ-

able. We work at T = 0 but the following discussion can be driven the same way when the

temperature is turned on, since we never evaluate momentum integrals.

We begin with the gauge field (Aµ). It will affect the Higgs potential at one-loop

through the following term:

∆V A
1 (φ) = − i

2

∫
d4k

(2π)4
log det

(
−iD̃−1

µν (k)
)

, (C.17)

where det acts on Lorentz indices. In the Rξ gauge the inverse propagator has the usual

expression in momentum space:

−iD̃−1
µν (k) =

(
−k2 + m2

A(φ)
)
ΠT

µν(k) +
1

ξ

(
−k2 + ξm2

A(φ)
)
ΠL

µν(k) (C.18)

with ΠT
µν(k) = ηµν − kµkν/k2 and ΠL

µν(k) = kµkν/k
2 being the transverse and longitudinal

projectors respectively. Since the traces of ΠT,L = 3, 1 and the determinant are invariants,

we can move to a basis where the matrices Π̂ = CΠC−1 are diagonal and read:

Π̂T = diag(0, 1, 1, 1) , Π̂L = diag(1, 0, 0, 0) (C.19)

In this basis the determinant can be easily evaluated and gives:

∆V A
1 (φ) = − i

2

∫
d4k

(2π)4
[
3 log

(
−k2 + m2

A(φ)
)

+ log
(
−k2 + ξm2

A(φ)
)

+ log ξ
]

(C.20)

Now we move to the Goldstone boson (χ) and ghost contributions which are

∆V χ+ghost
1 (φ) = − i

2

∫
d4k

(2π)4
log
(
−iD̃−1

χ (k)
)

+ i

∫
d4k

(2π)4
log
(
−iD̃−1

ghost(k)
)

. (C.21)
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Given that, in the abelian Higgs model, the inverse propagators are

−iD̃−1
χ (k) = k2 − m2

χ(φ) − ξm2
A(φ), (C.22)

−iD̃−1
ghost(k) = k2 − ξm2

A(φ), (C.23)

with mχ the mass the Goldstone receives from its Higgs couplings, we obtain

∆V χ+ghost
1 (φ) =

i

2

∫
d4k

(2π)4

[
log
(
−k2 + ξm2

A(φ)
)

+ iπ − log

(
1 +

m2
χ(φ)

−k2 + ξm2
A(φ)

)]
.

(C.24)

Gathering (C.20) and (C.24) together, we see the first terms of each expression cancel out,

leaving only (in euclidean space)

∆V A+χ+ghost
1 (φ) =

1

2

∫
d4kE

(2π)4

[
3 log

(
k2

E + m2
A(φ)

)
+ log

(
1 +

m2
χ(φ)

k2
E + ξm2

A(φ)

)]
+ · · · ,

(C.25)

where · · · stand for constant terms irrelevant for the potential. Taking ξ = 0 to move to

the Landau gauge, the last expression reduces to (up to an infinite constant)

∆V A+χ+ghost
1,ξ=0 (φ) =

1

2

∫
d4kE

(2π)4
[
3 log

(
k2

E + m2
A(φ)

)
+ log

(
k2

E + m2
χ(φ)

)]
+ · · · , (C.26)

from which one clearly sees that, in this gauge, the factor of 3 for the massive gauge field

is not altered by the addition of the Goldstone contribution.

Another physically meaningful fixing choice is the unitary gauge ξ → ∞. Sending

the gauge fixing parameter to infinity in (C.25) implies the decoupling of the Goldstone

contribution, as it should:

∆V A+χ+ghost
1,ξ→∞ (φ) =

1

2

∫
d4kE

(2π)4
[
3 log

(
k2

E + m2
A(φ)

)]
+ · · · , (C.27)

Again the degrees of freedom of the gauge field are still 3 in this gauge.

From this discussion we see that interpreting the factors in front of the log as the

number of polarization states for the corresponding field is only (accidentally) true in both

ξ = 0,∞ gauges. Indeed, if one takes for instance the ’t Hooft gauge (ξ = 1) the results

are

∆V A+χ+ghost
1,ξ=1 (φ) =

1

2

∫
d4kE

(2π)4
[
2 log

(
k2

E + m2
A(φ)

)
+ log

(
k2

E + m2
χ(φ) + m2

A(φ)
)]

+ · · · ,

(C.28)

where now the “degrees of freedom” of Aµ reduce from 3 to 2 by this gauge choice.

C.4 Cancellation of imaginary parts at small temperature

In section 2.3.2, we have shown that in the high temperature limit, a cancellation occurs

between imaginary parts of the one-loop potential and the ring corrections. Here we want

– 29 –
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to show that this cancellation occurs also for smaller temperatures of order T ∼ |mi(φ)|.
Indeed by working out the integrals of (2.23) in order to isolate its imaginary part, we get

ℑm
[
∆V T

1 (φ, T )
]

=
∑

i=h,χ

Θ(−m2
i (φ))

niT
4

4π2

∫ |mi(φ)|

T

0
dxx2

(
(4n + 1)π−

√
|mi(φ)|2

T 2
− x2

)
,

where n is a positive integer which ensures that

−π <
1

2

(
π −

√
|m2

i (φ)|
T 2

− x2

)
+ 2nπ 6 π (C.29)

so that one stays on the principal sheet when taking the imaginary part of the logarithm,

whose branch is assumed to lie on the negative real axis of the complex plane. We can

easily show that n = 0 as long as T > Tπ ≡ |mi(φ)|/3π, in which case the imaginary part

becomes

ℑm
[
∆V T

1 (φ, T )
]

=
∑

i=h,χ

Θ(−m2
i (φ))

niT
4

4π2

∫ |mi(φ)|

T

0
dxx2

(
π −

√
|mi(φ)|2

T 2
− x2

)
,

=
∑

i=h,χ

Θ(−m2
i (φ))ni

[
−|mi(φ)|4

64π
+

|mi(φ)|3T
12π

]
(C.30)

and reproduces the same cancellation with (2.39) and (2.37) as in the high temperature

regime.

For completeness we now consider the case of very low temperatures. As the tem-

perature cools down below Tπ, one begins needing to shift the imaginary part of the log

by multiples of 2π to remain on the principal sheet of the complex plane. Furthermore,

from (C.29) we see that

−2π < (4n + 1)π −
√

|mi(φ)|2
T 2

− x2 ≤ 2π. (C.31)

Thus

−
∑

i=h,χ

Θ(−m2
i (φ))ni

|mi(φ)|3T
6π

< ℑm
[
∆V T

1 (φ, T )
]
≤
∑

i=h,χ

Θ(−m2
i (φ))ni

|mi(φ)|3T
6π

(C.32)

and we conclude that ℑm
[
∆V T

1 (φ, T )
]

vanishes as T goes to zero, as it should.
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[11] T. Hahn and M. Pérez-Victoria, Automatized one-loop calculations in four and D dimensions,

Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565].

[12] K. Takahashi, Perturbative calculations at finite temperatures, Z. Physik C 26 (1985) 601.

[13] M. Le Bellac, Thermal field theory, Cambridge University Press, Cambridge U.K. (1996).

– 31 –

http://jhep.sissa.it/stdsearch?paper=05%282005%29024
http://arxiv.org/abs/hep-ph/0502255
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C046003
http://arxiv.org/abs/hep-th/0505066
http://jhep.sissa.it/stdsearch?paper=05%282007%29054
http://arxiv.org/abs/hep-ph/0607158
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C063510
http://arxiv.org/abs/hep-ph/0610375
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C076004
http://arxiv.org/abs/hep-ph/0701145
http://jhep.sissa.it/stdsearch?paper=09%282007%29077
http://arxiv.org/abs/0706.3388
http://jhep.sissa.it/stdsearch?paper=10%282007%29089
http://arxiv.org/abs/0708.2060
http://jhep.sissa.it/stdsearch?paper=08%282007%29010
http://arxiv.org/abs/0705.2425
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C036001
http://arxiv.org/abs/hep-ph/0407019
http://jhep.sissa.it/stdsearch?paper=02%282005%29026
http://arxiv.org/abs/hep-ph/0412366
http://jhep.sissa.it/stdsearch?paper=06%282007%29045
http://arxiv.org/abs/hep-ph/0703164
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C033001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C033001
http://arxiv.org/abs/hep-ph/0307338
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD47%2C3065
http://arxiv.org/abs/hep-ph/9301277
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD51%2C5327
http://arxiv.org/abs/hep-ph/9406322
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD9%2C1686
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD9%2C3320
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD9%2C3320
http://arxiv.org/abs/hep-ph/9901312
http://arxiv.org/abs/hep-ex/0612034
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD46%2C3945
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C118%2C153
http://arxiv.org/abs/hep-ph/9807565
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2CC26%2C601


J
H
E
P
0
4
(
2
0
0
8
)
0
2
9

[14] M.E. Carrington, The effective potential at finite temperature in the standard model, Phys.

Rev. D 45 (1992) 2933.

[15] P. Arnold and O. Espinosa, The effective potential and first order phase transitions: beyond

leading-order, Phys. Rev. D 47 (1993) 3546 [Erratum ibid. 50 (1994) 6662]

[hep-ph/9212235].

[16] E.J. Weinberg and A.-Q. Wu, Understanding complex perturbative effective potentials, Phys.

Rev. D 36 (1987) 2474.

[17] K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, The electroweak phase

transition: a non-perturbative analysis, Nucl. Phys. B 466 (1996) 189 [hep-lat/9510020]; A

non-perturbative analysis of the finite T phase transition in SU(2) × U(1) electroweak theory,

Nucl. Phys. B 493 (1997) 413 [hep-lat/9612006].

[18] K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Is there a hot electroweak

phase transition at m(H) > approx. m(W )?, Phys. Rev. Lett. 77 (1996) 2887

[hep-ph/9605288].

[19] S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977)

2929 [Erratum ibid. 16 (1977) 1248].

[20] A.D. Linde, Decay of the false vacuum at finite temperature, Nucl. Phys. B 216 (1983) 421

[Erratum ibid. 223 (1983) 544].

[21] A.D. Linde, Fate of the false vacuum at finite temperature: theory and applications, Phys.

Lett. B 100 (1981) 37.

[22] C. Grojean and G. Servant, Gravitational waves from phase transitions at the electroweak

scale and beyond, Phys. Rev. D 75 (2007) 043507 [hep-ph/0607107].

[23] A. Buonanno, Gravitational waves, arXiv:0709.4682.

[24] A. Kosowsky, M.S. Turner and R. Watkins, Gravitational waves from first order cosmological

phase transitions, Phys. Rev. Lett. 69 (1992) 2026; Gravitational radiation from colliding

vacuum bubbles, Phys. Rev. D 45 (1992) 4514;

A. Kosowsky and M.S. Turner, Gravitational radiation from colliding vacuum bubbles:

envelope approximation to many bubble collisions, Phys. Rev. D 47 (1993) 4372

[astro-ph/9211004];

M. Kamionkowski, A. Kosowsky and M.S. Turner, Gravitational radiation from first order

phase transitions, Phys. Rev. D 49 (1994) 2837 [astro-ph/9310044];

A. Kosowsky, A. Mack and T. Kahniashvili, Gravitational radiation from cosmological

turbulence, Phys. Rev. D 66 (2002) 024030 [astro-ph/0111483].

[25] A.D. Dolgov, D. Grasso and A. Nicolis, Relic backgrounds of gravitational waves from cosmic

turbulence, Phys. Rev. D 66 (2002) 103505 [astro-ph/0206461];

R. Apreda, M. Maggiore, A. Nicolis and A. Riotto, Gravitational waves from electroweak

phase transitions, Nucl. Phys. B 631 (2002) 342 [gr-qc/0107033];

A. Nicolis, Relic gravitational waves from colliding bubbles and cosmic turbulence, Class. and

Quant. Grav. 21 (2004) L27 [gr-qc/0303084].

[26] C. Caprini and R. Durrer, Gravitational waves from stochastic relativistic sources: primordial

turbulence and magnetic fields, Phys. Rev. D 74 (2006) 063521 [astro-ph/0603476];

G. Gogoberidze, T. Kahniashvili and A. Kosowsky, The spectrum of gravitational radiation

from primordial turbulence, Phys. Rev. D 76 (2007) 083002 [arXiv:0705.1733].

– 32 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD45%2C2933
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD45%2C2933
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD47%2C3546
http://arxiv.org/abs/hep-ph/9212235
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD36%2C2474
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD36%2C2474
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB466%2C189
http://arxiv.org/abs/hep-lat/9510020
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB493%2C413
http://arxiv.org/abs/hep-lat/9612006
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C77%2C2887
http://arxiv.org/abs/hep-ph/9605288
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD15%2C2929
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD15%2C2929
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB216%2C421
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB100%2C37
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB100%2C37
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C043507
http://arxiv.org/abs/hep-ph/0607107
http://arxiv.org/abs/0709.4682
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C69%2C2026
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD45%2C4514
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD47%2C4372
http://arxiv.org/abs/astro-ph/9211004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD49%2C2837
http://arxiv.org/abs/astro-ph/9310044
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C024030
http://arxiv.org/abs/astro-ph/0111483
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C103505
http://arxiv.org/abs/astro-ph/0206461
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB631%2C342
http://arxiv.org/abs/gr-qc/0107033
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C21%2CL27
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C21%2CL27
http://arxiv.org/abs/gr-qc/0303084
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C063521
http://arxiv.org/abs/astro-ph/0603476
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C083002
http://arxiv.org/abs/0705.1733


J
H
E
P
0
4
(
2
0
0
8
)
0
2
9

[27] C. Caprini, R. Durrer and G. Servant, Gravitational wave generation from bubble collisions in

first-order phase transitions: an analytic approach, arXiv:0711.2593.

[28] G.D. Moore, Electroweak bubble wall friction: analytic results, JHEP 03 (2000) 006

[hep-ph/0001274].

[29] C. Delaunay, C. Grojean and G. Servant, The Higgs in the sky: production of gravitational

waves during a first-order phase transition, AIP Conf. Proc. 903 (2007) 24.

[30] S.J. Huber and T. Konstandin, Production of gravitational waves in the NMSSM,

arXiv:0709.2091.

[31] G.W. Anderson and L.J. Hall, The electroweak phase transition and baryogenesis, Phys. Rev.

D 45 (1992) 2685.

– 33 –

http://arxiv.org/abs/0711.2593
http://jhep.sissa.it/stdsearch?paper=03%282000%29006
http://arxiv.org/abs/hep-ph/0001274
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APCPC%2C903%2C24
http://arxiv.org/abs/0709.2091
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD45%2C2685
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD45%2C2685

