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Reactive pathways to nucleation in a three-dimensional Ising model at 60% of the critical temperature are
studied using transition path sampling of single spin flip Monte Carlo dynamics. Analysis of the transition
state ensemble (TSE) indicates that the critical nuclei are rough and anisotropic. The TSE, projected onto the
free energy surface characterized by cluster size, N, and surface area, S, indicates the significance of other
variables in addition to these two traditional reaction coordinates for nucleation. The transmission coefficient,
κ, along N is κ ≈ 0.35, and this reduction of the transmission coefficient from unity is explained in terms of
the stochastic nature of the dynamic model.

I. Introduction
This paper presents a new application of transition path

sampling,1-4 namely, to nucleation of bulk phase transitions.5
It should be of interest to those concerned with computational
techniques devoted to rare transitions between metastable states,
as well as to those interested in nucleation theory. The
application focuses on the simplest example of nucleation, that
of a supercooled Ising model. We are not the first to carry out
numerical simulations of nucleation in the Ising model. For
example, see refs 6-15. Our work is distinguished from these
earlier studies in that we focus on the statistics of an ensemble
of reactive pathways to nucleation. We are also not the first to
use transition path sampling to study nucleation of a bulk phase
transition. Zahn, for instance, has used this technique to study
atomistic models undergoing solid-solid transitions.16,17 That
work succeeded at harvesting typical nucleation pathways and
examples of transition states for specific molecular systems. In
contrast, our focus in this paper is on generic issues raised by
recent experiments and simulations,18-23 issues that suggest the
importance of deviations from classical nucleation theory due
to fluctuations.6,24
The thermodynamics of nucleation is thought to be governed

by a competition between two effects in the growing nucleus,
an unfavorable contribution from the formation of a surface and
a favorable contribution from nucleating the stable phase:

Here, N is the number of particles in the growing nucleus
(assumed to be spherical), ∆µ is the chemical potential
difference between the two phases, and γ is the surface tension
(assumed to be that of an infinite planar interface). Equation 1
assumes that the free energy of this nonequilibrium process
depends on the size of the growing nucleus as the one relevant
variable (i.e., reaction coordinate) that controls its progress:
small nuclei tend to shrink due to their large surface area to
volume ratios, while sufficiently large nuclei tend to grow as
the bulk free energy dominates. The transition state, or critical
nucleus, then sits atop this free energy barrier between the
undercooled and stable phases. This picture is found in any

theory that relates the nucleus size to a single reaction
coordinate. In general, nucleation, as with all nonequilibrium
processes, can involve many degrees of freedom25,26 and may
not be faithfully described by one or even a small handful of
coordinates.27,28
We investigate to what extent the simplest picture holds. Our

analysis involves reversible work calculations, committor
distributions, transmission coefficients, and, most importantly,
the statistics of an ensemble of reactive trajectories. We find
that the traditional coordinate, N, provides a reasonable ap-
proximation to the reaction coordinate. But other variables in
addition to N and also cluster surface area, S, are required for
a quantitative treatment. We also find that the critical nuclei in
the transition state ensemble are rough and anisotropic as seen
recently in experiments on colloidal and polymer systems.18-20

II. Model and Simulation Details
Our system is the nearest neighbor Ising model on a cubic

lattice with the Hamiltonian

where J (>0) is the coupling constant, h is the magnetic field,
and si is a spin variable that can either be 1 or-1. The bracketed
sum over i and j denotes a restriction to nearest neighbor pairs.
In these simulations, the temperature is 60% of the critical
temperature in units of J/kB and the field h ) 0.55 in units of
J. The lattice has 32 spins on an edge with periodic boundary
conditions and is propagated using single spin flip Metropolis
Monte Carlo with random site selection. Time is measured in
units of sweeps.
The temperature 0.6 Tc is about 20% above the roughening

temperature of the three-dimensional Ising model, TR.29 One
anticipates that below TR, the nuclei will tend to be cubic with
relatively flat interfaces,11,12 while above TR, nuclei will tend
to be isotropic and rounded.30 This latter regime is appropriate
for the study of liquid-vapor equilibrium. Using eq 1, we can
anticipate the typical critical cluster size assuming a spherically
isotropic nucleus. Taking |∆µ| ) 2h (due to the usual connec-
tions between the Ising spin system and a lattice gas) and γ ≈
2J (assuming the zero temperature value of γ in the Ising model)† Part of the special issue “Frank H. Stillinger Festschrift”.

∆G(N) ) -N|∆µ| + N2/3γ (1)

H ) -J∑
〈i,j〉
sisj + h∑

i
si (2)
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implies a critical cluster size of N* ∼ 200 with a free energy
barrier of about 40 kBT. In fact, the exact numerical analysis
gives N* ) 115 with a corresponding free energy barrier of
18 kBT (see below). In any case, the size of the critical nucleus
is much smaller than our system size and the height of the free
energy barrier indicates that nucleation is a rare event.

III. Statistical Analysis of an Ensemble of Reactive
Trajectories
A. Transition Path Sampling. To study the dynamics of

nucleation without being biased by a particular choice of reaction
coordinate, many trajectories of the nucleation event need to
be obtained without reference to any specific coordinate. For
nucleation, such a calculation might seem difficult to carry out
because the process is a rare event. The difficulty is overcome,
however, with transition path sampling (TPS).3,4 In a straight-
forward simulation, a large majority of computational time is
spent simulating the undercooled state even though the nucle-
ation event of interest is fleeting (see, for instance, ref 31). In
contrast, TPS allows exclusive sampling of the reactive portion
of the trajectory. It employs a Monte Carlo walk in the space
of reactive trajectories to harvest multiple examples of the rare
event without wasting computational time simulating the
metastable state. Moreover, no reaction coordinate is required
a priori.
We apply TPS to nucleation in the Ising model and sample

paths connecting nucleated and undercooled states defined by
the characteristic functions hA(q) and hB(q):

Here, q ) (s1, s2, ..., si, ...) denotes a particular configuration of
the lattice and N(q) returns the size of the largest cluster in that
configuration. The limits NA and NB are far removed from the
transition state region. In other words, hB(q) gives a signal if a
configuration is in the product region and hA(q) gives a signal
if a configuration is in the reactant region. In this calculation,
NA ) 26 and NB ) 260 are chosen such that the free energy
barrier in Figure 5 (see below) separating the two basins exceeds
10 kBT. This ensures that once a configuration finds itself in
either the reactant or product region, it remains there for times
much longer than the molecular relaxation time and that the
reactant and product basins do not overlap. Since N may not
necessarily be an adequate reaction coordinate, we verify this
latter condition by separate simulations of configurations starting
in both regions.
In these simulations, trajectories 150 time units in length are

sampled with the shooting algorithm:2,4 a time slice is chosen
at random from a trial trajectory and then new forward and
backward paths are generated using the underlying dynamics
of the system. The newly generated trajectory is accepted if it
connects the reactant and product regions defined by the
characteristic functions hA(q) and hB(q). Since the dynamics of
this system is stochastic, a new path can be generated by simply
shooting one direction at a time, as the forward and backward
transition probabilities are equal.4 This increases the acceptance
probability. A complete shooting move is defined as two such
moves. We relax an initial trajectory32 with 25 000 moves, and
then 1000 independent trajectories are harvested, one every 100
moves. Convergence and adequate choice of path length are

verified by calculation of 〈hB[q(t)]〉AB, the characteristic function
hB(q) along a reactive trajectory averaged over the transition
path ensemble (not shown). The fact that this quantity reaches
the linear regime implies that our path length is long enough to
sample typical barrier crossing behavior.4
One often imagines that the most important reaction coor-

dinate describing nucleation is the size of the growing cluster,
N, as alluded to in the Introduction. Another relevant, but
secondary, reaction coordinate which is also considered is the
cluster’s surface area, S. In Figure 1, we project paths obtained
from TPS onto a contour plot of the N-S free energy (green
circles).
The free energy surface in Figure 1 is determined using

umbrella sampling with hard wall constraints.33 For this and
all subsequent calculations, a set of spins is considered a nucleus
of size N if each spin in the set is a nearest neighbor of at least
one other spin in the set. The surface area, S, of such a cluster
is the number of exposed faces. The umbrella sampling windows
constrain the size and surface area of the largest cluster in a
given configuration of the lattice. For N > 20, it is highly
unlikely that there is more than one cluster of that size in any
given configuration of the full system. Approximately 200
overlapping windows of average size ∆N ) 12 by ∆S ) 40
are used. In each window, an initial configuration is equilibrated
for 50 000 sweeps and statistics are taken over a subsequent
run of 200 000 sweeps. The windows are linked together with
multiple histograms generalized to two dimensions.34
B. The Transition State Ensemble. A configuration is

considered a member of the transition state ensemble (TSE) if
half of the new trajectories initiated from it cause the nucleus
to shrink and the other half cause it to grow. From the 1000
trajectories acquired through transition path sampling, we found
approximately 3200 members of the TSE.

hA(q) ) {1, N(q) < NA
0, N(q) > NA

(3)

hB(q) ) {0, N(q) < NB
1, N(q) > NB

(4)

Figure 1. Contour plot of ∆G(N, S)/kBT, the free energy of a nucleus
as a function of its size and surface area. The contour lines are in
gradations of 1 kBT. The green circles show points visited by eight
typical trajectories projected onto the N-S plane. The blue squares
show members of the transition state ensemble projected in the same
way.
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To determine transition states with a minimum of computa-
tional effort, we check each configuration along a reactive
trajectory in the following way.4 (1) If a configuration is in either
the reactant or product region, it is rejected as a transition state
candidate straight away. (2) If a configuration is not in the
reactant or product region, a series of additional trajectories are
initiated from that configuration and pB, the ratio of paths which
end up in region B to the total number of paths initiated, is
calculated after 11, 14, 17, 20, 25, 30, 35, 42, and 49
trajectories.35 After the 49th trajectory, additional trajectories
are generated up to a maximum of 100 trajectories, and pB is
calculated after every trajectory. The configuration is rejected
as a transition state candidate if pB falls outside the 95%
confidence interval around pB ) 0.5 at any point. Finally, (3)
if pB ) 0.5 within 95% confidence after 100 trajectories, then
that configuration is accepted as a member of the transition state
ensemble.
Figure 1 juxtaposes projections onto the N-S plane of

representative trajectories and the TSE with the corresponding
free energy surface. The comparisons indicate that N and S
capture much of the mechanism for nucleation. The TSE is not
perpendicular to the N axis, showing that S as well as N is
important to the mechanism of nucleation. The comparisons also
show that other variables in addition to N and S play significant
roles in the mechanism. In particular, the orientation of the
projected TSE is far from that expected from the saddle in the
free energy surface. Further, the projected TSE has a significant
width.
Further analysis of the TSE shows that the critical nuclei are

rough and anisotropic. The distribution of cluster sizes in the
transition state ensemble is shown in Figure 2a. A typical critical
nucleus taken from the transition state ensemble is shown in
Figure 3. The anisotropy and roughness of this nucleus are
characteristic of the transition state ensemble. Quantitative
measurements of this fact are shown in Figure 2b and Figure
4. Figure 2b shows the distribution of surface areas in the
transition state ensemble. The average surface area is 241
compared to an average cluster size of 110 (Figure 2). This
observed average surface area is almost 30% larger than would

be expected of a compact spherical cluster of 110 particles,
indicating that the critical nuclei are, on average, extremely
rough.36

Figure 4 shows the distribution of the anisotropy function,

where I+(q) and I-(q) are the major and minor, respectively,
principal moments of inertia. For a completely isotropic
structure, a(q)) 0. The deviation from zero indicates anisotropy.
In contrast, the equilibrium average crystal shape for a nearest
neighbor three-dimensional Ising model above the roughening
transition is isotropic and rounded.30

In the following sections, we contrast these results obtained
from the statistical analysis of an ensemble of reactive trajec-
tories with those obtained from more conventional methods.

IV. Cluster Size as Reaction Coordinate

A. Reversible Work of Cluster Formation. Figure 5 shows
the free energy ∆G(N) where, within an additive constant,
∆G(N) ) -kBTΣS exp[-∆G(S, N)]. Qualitatively, we see that
the computed curve resembles the curve predicted by eq 1. The
maximum occurs at N* ) 115 monomers where ∆G(N*) is

Figure 2. Distributions of cluster sizes (a) and surface areas (b) in the
transition state ensemble. The average values from the two histograms
are N ) 110 and S ) 241.

Figure 3. A characteristic example from the transition state ensemble.
The spheres represent nucleated spins on the cubic Ising lattice. For
this nucleus a(q) ) 0.72 (see eq 5 and Figure 4).

Figure 4. The distribution of a(q), a function of the principal moments
of inertia of the nuclei (see eq 5), in the transition state ensemble.

a(q) )
I+(q)
I-(q)

- 1 (5)

Dynamics of Nucleation in the Ising Model J. Phys. Chem. B, Vol. 108, No. 51, 2004 19683



within a small fraction of kBT from the free energy at N ) 110
monomers, the average of N in the TSE.
The free energy in Figure 5 is calculated using umbrella

sampling with hard wall constraints, and different umbrella
windows are linked together using the multiple histogram
method. Approximately 30 overlapping windows of size ∆N )
12 are used. In each window, an initial configuration is
equilibrated with 50 000 sweeps and then statistics are taken
over a run of 100 000 sweeps.
B. Committor Distribution. The extent to which ∆G(N)

provides an adequate indication of the dynamics can be
determined by calculating the probability that configurations
constrained to have a nucleus of size N* will either grow or
shrink. If N is indeed a good reaction coordinate, a configuration
with an N* sized nucleus should be just as likely to grow as to
shrink. In this case, the probability distribution, also called a
committor distribution, would be peaked around 50%.3,4
The distribution in Figure 6 represents the results of such a

calculation where pB once again denotes the probability of a
configuration ending up in the product region. A set of 1000
independent configurations is drawn from the ensemble of
configurations constrained to have N ) N*, and 200 separate
trajectories are then run for each configuration. The final
configuration of these trajectories is then judged by the
characteristic function hB(q) (eq 4).
The fact that the committor distribution for N constrained to

N* is peaked around 50% indicates that it is a reasonable

approximation to the reaction coordinate for nucleation. If this
were not the case, we would expect a different distribution (see,
for example, ref 28). The spread in the distribution, however,
indicates that coordinates other than N are still involved albeit
in a secondary way.
C. The Transmission Coefficient along N.We calculate the

transmission coefficient, κ, via the reactive flux method.22,33,37
The value of κ is then given by the plateau of the normalized
reactive flux correlation function:

where θ is the Heaviside step function, N(t) is shorthand for
N[q(t)], and the primed angled brackets indicate an equilibrium
average with N(0) constrained to N*. In other words, we
constrain our ensemble of initial states to be at the maximum,
N*, of ∆G(N) (Figure 5).
A plot of k(t) is given in Figure 7. A plateau value of κ < 1

along N is an indicator of recrossings due to friction in the
barrier region. Here, κ ≈ 0.35. We argue below that the friction
in our system is mainly a manifestation of the stochastic
dynamics in the Monte Carlo trajectory.
For the calculations in Figure 7, a set of independent

configurations is drawn from the ensemble of configurations
constrained to have N ) N* and trajectories are run beginning
from these configurations. The reactive flux correlation function,
k(t), is then calculated as an average over these trajectories. The
initial velocity of the reaction coordinate, Ṅ(0), is taken to be
the finite difference N(1) - N(0).
D. Friction from Stochastic Dynamics. The friction which

reduces the value of the transmission coefficient in this case
can be attributed mostly to the diffusive nature of a random
walk on a relatively flat barrier top. To illustrate this idea, we
consider a random walk beginning at the top of a free energy
barrier and calculate its transmission coefficient. Here, we
assume that the random walker makes uncorrelated steps of
typical length δN and is committed to a basin once it has
traveled a distance l corresponding to when the free energy has
changed by ∼1 kBT relative to the barrier top. The length l
therefore depends on the curvature of the barrier near its
maximum.
The reactive flux correlation function in eq 6 can be thought

of as a ratio of the average flux across the dividing surface of
trajectories which end up in the product region to the average

Figure 5. The free energy of a growing cluster in the three-dimensional
Ising model at T ) 0.6 Tc and h ) 0.55 J.

Figure 6. Committor distribution with cluster size N constrained to
N*. The distribution is peaked around pB ) 50%, indicating that N is
a reasonable reaction coordinate for this process.

Figure 7. Plot of k(t) (eq 6), where time is measured in Monte Carlo
sweeps. The dashed, dotted, and solid lines are averages over 10 000,
30 000, and 80 000 trajectories, respectively.

k(t) )
〈Ṅ(0)θ[N(t) - N*]〉′
〈Ṅ(0)θ[Ṅ(0)]〉′

(6)
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flux across the dividing surface of trajectories with an initial
positive flux (i.e., toward the product region). For a random
walk process, these quantities can be evaluated analytically from
a straightforward application of binomial statistics. The quantity
of interest is the value of the transmission coefficient κ(M) where
M ∼ l/δN is the number of steps required to fall a distance
1 kBT in free energy from the barrier top. If M ) 1, there are
only two possible trajectories: one with positive initial flux
which is trapped on the positive side of the dividing surface
and one with initial negative flux which is trapped on the
negative side. In this case, we see that κ(1) ) 1. Similarly for
M) 2, out of four possible trajectories, one trajectory is trapped
on the positive side of the dividing surface with initial positive
flux, one trajectory is trapped on the negative side with initial
negative flux, and the other two trajectories end up back at the
dividing surface, one with positive initial flux and one with
negative initial flux. In this case, κ(2) ) 1/2. In general, we see
that the denominator of κ(M) is half of all possible trajectories
of length M and that the numerator is, within the subset of
trajectories of length M which end up in the product region,
the number with a positive initial flux minus the number with
a negative initial flux. Therefore, for arbitrary (even) M, we
have

where

and, for even M,

with (ij) ) i!/(i - j)!j!, as usual. For odd M, the result is the
same except the upper limit in the sum giving n(M) is changed
to (M - 1)/2. κ(M) is plotted in Figure 8a. For the transmission
coefficient of nucleation, the distance to 1 kBT from the barrier
top is l ∼ 45 and the typical random walk step size is δN ∼ 11.
The latter result can be arrived at by considering the typical
size of fluctuations of a nucleus of size N*. In this case, δN ∼
N* ∼ 11. Alternatively, one can compute the probability of
observing a change, δN, in the nucleus size after one sweep.
This probability, depicted in Figure 8b, shows that δN ∼ 11 is
a reasonable estimate. These numbers imply that the typical
random walk step size is approximately 4 which gives M ∼
(l/δN)2 ∼ 16. This leads to an estimate of κ ≈ 0.20. Considering
the rough nature of the approximation, this result is close to
the simulation result of κ ≈ 0.35 indicating that the stochastic
nature of the dynamics is really playing the major role in
determining the value of the transmission coefficient along N.
Zeldovich was the first to write down an analytic expression

for the transmission coefficient, Z, for nucleation:38

This factor, a measure of the barrier width, is an indication of
the diffusive nature of nucleation dynamics. In a more modern
context, we see that Z is proportional to the high friction limit
of Kramer’s expression for κ.39 The Zeldovich factor has units
of 1/N and therefore depends also on the size of the nucleus’

typical fluctuations. In our system, Z ≈ 0.013, which, when
multipled by δN ∼ 11, gives a reasonable estimate of κ ≈ 0.14.
An atomistic simulation study of liquid-gas nucleation gives

a value of κ that is 2 orders of magnitude smaller than 0.35.23
The coarse-grained dynamics used in the current study takes
much larger steps in configuration space than atomistic dynam-
ics. The corresponding M for the atomistic dynamics is thus
much larger than that which we associate with the Monte Carlo
random walk. The much larger value ofM can explain the much
smaller value of κ, as eq 7 shows.
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