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Abstract: The idea of an open quantum system was introduced in the 1950s as a response to the
problems encountered in areas such as nuclear magnetic resonance and the decay of unstable atoms.
Nowadays, dynamical models of open quantum systems have become essential components in many
applications of quantum mechanics. This paper provides an overview of the fundamental concepts
of open quantum systems. All underlying definitions, algebraic methods and crucial theorems are
presented. In particular, dynamical semigroups with corresponding time-independent generators
are characterized. Furthermore, evolution models that induce memory effects are discussed. Finally,
measures of non-Markovianity are recapped and interpreted from a perspective of physical relevance.
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1. Introduction

In physics, time belongs to fundamental quantities (base quantities), and it is used
to derive other elementary concepts such as motion, velocity or energy. Physicists have
always been interested in finding the most accurate ways to describe how physical systems
change over time. To achieve this goal, we need mathematical laws, for example, kinetic
equations that include the information about the dynamics and interaction between the
system and its environment. The equations differ in the level of accuracy and in the kind
of system they describe. All the approaches to dynamics of physical systems can be most
generally divided into two groups—classical and quantum. Since the paper focuses on
open quantum systems, more attention is given to the evolution in the microscopic scale.
However, for historical accuracy, a brief recap of the dynamics of classical systems is also
presented.

The idea of an open quantum system, i.e., a physical system of interest interacting with
some environment, was introduced in the 1950s as a response to the problems encountered
in areas such as nuclear magnetic resonance and the decay of unstable atoms. It became
evident that, in order to properly describe such physical processes, one had to take into
account the influence of the environment on the system in question. In a pioneering work
on this topic, A.G. Redfield applied for nuclear magnetic resonance spectroscopy, a master
equation that describes the time evolution of a quantum system weakly coupled to an
environment [1]. In another paper, R. Haag and D. Kastler, working within the quantum
field theory, introduced maps (originally in the article called operations) that can be used
to describe a quantum system influenced by an external intervention [2]. Their approach
was later developed by K.-E. Hellwig and K. Kraus [3,4].

In the 1970s, there was a rapid expansion of the theory of open systems. There were
numerous groundbreaking works that laid the foundations for the theory of open quantum
systems in its present shape, see, for example, Refs. [5–7]. In this paper, we revise the
remarkable results achieved in 1976 on the structure of the generator of quantum dynamical
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semigroups [8,9] as well as the findings related to the properties of completely positive
and trace-preserving (CPTP) maps [10,11]. In addition, we discuss selected concepts of
non-Markovian dynamics, which involves a revival of genuine quantum properties due to
backflows of information. Lastly, we analyze the nonlocal approach to quantum dynamics
that is based on the Nakajima-Zwanzig equation. Throughout the paper, we pay special
attention to the mathematical rigor and physical interpretations of the presented content.

2. Classical Dynamical Semigroups

Let us start with introducing a probability space (probability triple), which consists of
three elements—a sample space Ω (assumed to be a finite or countable set of all possible
outcomes), a set of events Θ and the assignment of probabilities to the events (probability
function) µ. Altogether the probability space shall be denoted by: (Ω, Θ, µ). A probability
measure µ assigned to an element ωi ∈ Ω shall be denoted by pi. The set of quantities
pi for i = 1, . . . , N ≤ ∞ defined by the assignment:

Ω 3 ωi → pi = µ(ωi) ∈ [0, 1], (1)

can be treated as coordinates of a certain vector, denoted by p, which belongs to an N-
dimensional real vector space X with a specific basis. The coordinates of the vector p satisfy
two conditions:

pi ≥ 0 for i = 1, . . . , N and
N

∑
i=1

pi = 1. (2)

Henceforth, a vector p that satisfies the two conditions (2) shall be called a probabil-
ity vector. Such terminology is commonly used in the literature on the probability theory
(e.g., [12,13]). The set of all probability measures defined on the measurable space (Ω, Θ)
will be denoted by Γ(Ω). This set is a convex subset of the set of all measures assigned to
the measurable space (Ω, Θ). The relation (1) allows one to consider probability measures
as a specific kind of vectors in space X .

Let us consider, as an example, a case such that dimX < ∞, which means that the set
of elementary events Ω is finite. Then, the map (1) allows one to identify the probability
measures defined on (Ω, Θ) with the elements of the set

Γ(Ω) :=

{
p = (p1, . . . , pN) : pi ≥ 0,

N

∑
i=1

pi = 1

}
, (3)

i.e., with the elements of the (N − 1)-dimensional simplex in the space X = RN . The ver-
tices of the simplex are determined by the vectors: p0

1 = [1, 0, . . . , 0] and p0
N = [0, 0, . . . , 1].

Let S denote a physical system such that one can associate with it a finite or countable
set of all possible physical states of the system in question. According to general schemes
of the probability theory, the events from the set are treated as elements of some abstract
Boole’s σ-algebra (see more, for example, in Ref. [14]). Bearing in mind Stone’s theorem [15],
which claims that every abstract Boole’s σ-algebra is isomorphic with some algebra of
selected subset of Ω, we shall use the definitions.

Definition 1 (Classical stochastic system). The system S is called an N-level classical stochas-
tic system if its state at any time instant t ∈ R1

+ is determined by a probability distribution
p(t) ∈ Γ(Ω). The set Γ(Ω) ( X is called the state space of the classical stochastic system S .

Definition 2 (Pure and mixed states). Let p0
k denote a vector such that pk = 1 and pj = 0 for

j 6= k. Then, the states of a classical stochastic system expressed by the probability vectors of the
form p0

k (for k = 1, . . . , N) shall be called pure states of the system S . Other states are called mixed.
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Definition 3 (Norm in X ). In the space X (dimX < ∞), one defines a norm in the follow-
ing way:

||x||1 := |x1|+ . . . + |xN |. (4)

The space X with the norm introduced as in (4) is denoted by lN
1 .

Definition 4 (Infinite-dimensional linear space). Analogously, l∞
1 denotes the infinite-dimensional

linear space composed of all sequences x = {xi}∞
i=1 such that

||x||1 :=
∞

∑
i=1
|xi| < ∞.

One can rewrite the formula (3) for the state space of an N-level classical stochastic
system S by using the definition of the norm introduced in (4)

Γ(Ω) := {p ∈ lN
1 : p ≥ 0, ||p||1 = 1}. (5)

A natural problem that appears at this moment is how to describe linear changes of
the state of an N-level classical physical system S . Mathematically speaking, one needs to
consider a linear operator Φ acting in the space lN

1 such that

Φ : Γ(Ω)→ Γ(Ω),

i.e., an operator that transforms states into states. The answer to this problem is rather
trivial—the desired kind of operator in its matrix representation is a left stochastic matrix,
which means that the entries are nonnegative real numbers and the elements in each column
sum to one

Φ(i, j) ≥ 0,
N

∑
i=1

Φ(i, j) = 1, for i, j = 1, . . . , N < ∞. (6)

The matrix representation of Φ is called the Markov matrix, and its elements are
interpreted as transition probabilities. Any operator Φ that satisfies the conditions from (6)
can be considered a classical channel, which maps one state into another. However, from
the point of view of system dynamics, it is desirable to be able to determine a continuous
set of all state vectors for a certain physical system, i.e., one needs to find the trajectory of
the state vector within the state space. Such a trajectory shall be denoted by {p(t), t ∈ R1

+}.
Mathematically speaking, in order to analyze the evolution of a classical system, it

is essential to introduce a family of classical maps that depends on one real parameter,
denoted by t, which in physics can be understood as time. In both classical and quantum
cases, the theory of dynamical semigroups constitutes the foundation for such analysis, c.f.
Refs. [5,16]. The definition of a classical dynamical semigroup can be found in many books.
Here, we follow the definition from Ref. [17]. Let us first denote the lowest dimensional
linear space which contains the state space by l1(Ω) (i.e., l1(Ω) = lN

1 or l1(Ω) = l∞
1 ). Then,

we can formulate the following definition.

Definition 5 (Classical dynamical semigroup). A family {Φ(t), t ∈ R1
+} of linear maps such

that Φ(t) : l1(Ω)→ l1(Ω) shall be called a classical dynamical semigroup of a physical system S if

1. Φ(t) : Γ(Ω)→ Γ(Ω) ∀ t ∈ R1
+,

2. Φ(t)Φ(s) = Φ(t + s) ∀ t, s ∈ R1
+,

3. lim
t→0

Φ(t) = I,

where I denotes the identity operator in l1(Ω). The limit which appears in the last equation should
be understood as a limit in terms of the norm ||.||1 in l1(Ω).
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For the sake of physical relevance, we distinguish a specific kind of classical dynam-
ical semigroup—a regular dynamical semigroup (sometimes called a proper dynamical
semigroup).

Definition 6 (Regular (proper) dynamical semigroup). A classical dynamical semigroup
{Φ(t), t ∈ R1

+} containing maps such that Φ(t) : l1(Ω) → l1(Ω) shall be called a regular
(proper) dynamical semigroup, if there exists a linear operator

L : l1(Ω)→ l1(Ω)

such that
Φ(t) = exp(Lt)

for all t ∈ R1
+. The operator L is referred to as the generator of the semigroup {Φ(t), t ∈ R1

+}.

The distinguished position of classical dynamical semigroups can be explained by
the following reasoning. If {Φ(t), t ∈ R1

+} denotes a regular dynamical semigroup and
L : l1(Ω)→ l1(Ω) is its generator, then for all p ∈ l1(Ω), the following relation is satisfied

d
dt
{Φ(t)p} = L[Φ(t)p].

Moreover, by substituting p(t) = Φ(t)p for all t ≥ 0, one obtains an equation that
demonstrates how the probability vector p changes with time

dp(t)
dt

= L[p(t)] ∀ t ∈ R1
+. (7)

Equations of the form (7) are commonly called master equations (sometimes also
kinetic equations), and they are widely used to describe the different forms of evolution of
physical, chemical, or biological systems.

In other words, one can say that every trajectory {p(t), t ∈ R1
+} that is defined by

a regular dynamical semigroup {Φ(t), t ∈ R1
+} is a solution of a master Equation (7).

Additionally, if one makes an assumption concerning the initial state vector: p(0) ∈ Γ(Ω),
then for all t ∈ R1

+:
R1
+ 3 t→ p(t) ∈ Γ(Ω),

which means that the trajectory determined by the semigroup does not leave the state
space, i.e.,

{p(t), t ∈ R1
+} ⊂ Γ(Ω).

Finally, one may ask a question concerning the conditions that should be satisfied by
the generator of a regular dynamical semigroup. The answer to this problem was found
in 1931 by A. Kolmogorov; see more in Ref. [18].

Theorem 1 (Kolmogorov 1931). The equations of the form:

dpi(t)
dt

=
N

∑
j=1

Lij pj(t)

are kinetic equations if and only if the matrix entries of the generator L satisfy the three following
conditions:

1. Lii ≤ 0 for i = 1, . . . , N,
2. Lij ≥ 0 for i 6= j and i, j = 1, . . . , N,
3. ∑N

i=1 Lij = 0 for j = 1, . . . , N.
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The result proved by A. Kolmogorov provides the sufficient criteria that have to be
satisfied by a linear operator L : l1(Ω)→ l1(Ω) to generate a legitimate model of classical
evolution. In the context of continuous-time Markov processes, the generator L is termed a
transition rate matrix [19]. If one takes a legitimate generator of evolution, then for every
initial state vector p(0) ∈ Γ(Ω), the trajectory {p(t), t ∈ R1

+} determined by the master
Equation (7) lies within the state space Γ(Ω).

From a modern perspective, the original representation of the transition rate matrix is not
the most general. For systems with multiple steady states, the generator can be represented
as a block diagonal matrix. Then, a single block may or may not satisfy the third condition
from Theorem 1. More specifically, it is not satisfied when a steady state does note reside in
the block of L. This concept, which is known as open system symmetries, was studied in
the quantum context but also remains relevant to classical stochastic systems, see more in
Ref. [20].

3. Quantum Dynamical Semigroups

Quantum dynamical semigroups appear to be a natural method to describe the dynam-
ics of quantum systems. However, within the quantum theory, they are only considered one
of the possible approaches to this problem (other influential techniques related to quantum
dynamics involve the Redfield equation, the path integral formulation, the Fokker–Planck
equation, or the hierarchical equations of motion). Let us first revise the necessary notation
and symbols. We consider an open quantum system S . The Hilbert space associated with
the system shall be denoted by H (sometimes, in order to emphasize that the space is
related to the system, it is denoted byHS). The corresponding well-defined scalar product
shall be denoted by 〈ψ|φ〉 for any vectors |ψ〉 , |φ〉 ∈ H.

Throughout the paper, the Dirac notation is used, which means that 〈ψ| refers to the
conjugate transpose (the Hermitian conjugate or the Hermitian transpose) of |ψ〉. Thus,
〈ψ| is obtained by taking the transpose of |ψ〉 and then taking the complex conjugate of
each entry. The Hermitian conjugate shall be denoted by a star, which is common in linear
algebra, i.e., |ψ〉∗ = 〈ψ|.

If one assumes that the Hilbert space is finite-dimensional, one may introduce an
orthonormal basis {|xi〉}d

i=1 satisfying 〈xi|xj〉 = δij, where d = dimH. In the present paper,
we do not consider infinite-dimensional Hilbert spaces.

Throughout the paper, we use the following notations [21]:

1. B(H) shall refer to the complex vector space of all linear operators on H with an
operator norm for A ∈ B(H) defined by ||A||HS :=

√
Tr(A∗A), where, by A∗, we

mean the Hermitian transpose of A (this norm is often referred to as the Hilbert–
Schmidt norm, and for this reason, there is an abbreviation “HS” in the subscript of
the norm);

2. B∗(H) shall refer to the real Banach space of self-adjoint (Hermitian) operators onH,
i.e., B∗(H) := {A : H → H, A∗ = A};

3. V+(H) shall refer to the cone of all positive semi-definite operators within B(H)
(an operator A is called positive semi-definite (denoted by A ≥ 0) if and only if
〈φ|A|φ〉 ≥ 0 for all |φ〉 ∈ H), i.e., V+(H) = {A : H → H, A ≥ 0};

4. T(H) shall refer to the vector space of trace class operators (A is said to be a trace
class operator if ||A||Tr := Tr

√
AA∗ < ∞). If dimH = d < ∞, then the vector spaces

B(H) and T(H) are isomorphic. However, they are not identical, because the norm is
defined in different ways.

Then, we make a distinction between pure and mixed quantum states. A pure quantum
state is represented by a normalized complex vector |φ〉 belonging to the Hilbert spaceH
or, alternatively, by a projector onto a one-dimensional subspace, i.e., Π := |φ〉〈φ|.

A mixed quantum state, if the associated Hilbert space H has a fixed basis, is repre-
sented by a density matrix—a Hermitian nonnegative matrix with unit trace—which can
be generally decomposed in the form:
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ρ := ∑
κ

λκ |φκ〉〈φκ |, (8)

where 〈φκ |φη〉 = δκη , λκ ≥ 0 and ∑κ λκ = 1. The formalism of density operators was
introduced in 1927 by John von Neumann [22] and, simultaneously, by Lev Landau [23],
however, the latter did it less rigorously.

According to the fundamental assumptions of quantum mechanics, the density matrix
contains all achievable information about the state of a physical system. Therefore, the
problem of state identification, i.e., the density matrix reconstruction from experimental
data, has been relevant to many modern areas of quantum theory; as can be seen in
Refs. [24,25].

Bearing in mind the general decomposition of any density operator, one can write the
definition of a set that contains all physically legitimate quantum states:

S(H) := {ρ : H → H, ρ ≥ 0, ρ∗ = ρ, Tr ρ = 1}, (9)

which shall be called the set of states.
An important property of the set of states is convexity, which means that every convex

combination of density operators belongs to S(H), i.e., if one takes nonnegative numbers
a1, . . . , aM ≥ 0 such that ∑M

i=1 ai = 1 and density operators σ1, . . . , σM ∈ S(H), then
∑M

i=1 aiσi also belongs to the set of states.
Another useful property of density operators claims that γ ≡ Tr ρ2 ≤ 1 for all ρ ∈ S(H).

We know that max γ = 1 if and only if ρ is a pure state. On the other hand, min γ = 1/d for a
maximally mixed state. For given density operators, this property can be used to distinguish
pure states from mixed ones. In a more general sense, γ is a measure on quantum states, giving
information on how much a state is mixed. The quantity γ is commonly called the purity [26].

Geometrically speaking, one can imagine that the condition Trρ = 1, which we impose
on quantum states, cuts the cone of all positive semi-definite operators V+(H) so that the
dimension of the S(H) is lowered by 1.

In order to describe how quantum systems change over time, we need to determine
the properties of a one-parameter family of linear operators Φ(t) such that for all t ∈ R1

+

quantum states are mapped into quantum states, i.e.,

Φ(t) : S(H)→ S(H).

The conditions that the family of maps {Φ(t), t ∈ R1
+} should satisfy to guarantee

a legitimate physical evolution can be combined together in a definition of a quantum
dynamical semigroup [5,17,27].

Definition 7 (Quantum dynamical semigroup). A one-parameter family {Φ(t), t ∈ R1
+} of

linear maps such that Φ(t) : B∗(H)→ B∗(H) shall be called a quantum dynamical semigroup of a
physical system S if

1. Φ(t) : V+(H)→ V+(H) ∀ t ∈ R1
+;

2. ||Φ(t)[ρ]||Tr = ||ρ||Tr ∀ ρ ∈ V+(H) and ∀ t ∈ R1
+;

3. Φ(t)Φ(s) = Φ(t + s) ∀ t, s ∈ R1
+;

4. lim
t→0

Φ(t) = I,

where I denotes the identity operator in B∗(H). The limit which appears in the last equation should
be understood as a limit in terms of the norm ||.||Tr

The conditions enumerated in Definition 7 are very natural from the physical point
of view. Points 1. and 2. ensure that, for all t ∈ R1

+, the operator Φ(t) transforms
a quantum state into another state, i.e., Φ(t) : S(H) → S(H). Condition 3. guaran-
tees that the one-parameter family {Φ(t), t ∈ R1

+} constitutes a semigroup. Finally,
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the last condition ensures that for any Q ∈ B∗(H), the following equation is satisfied:
lim
t→0

Tr(Q(Φ(t)[ρ]− ρ)) = 0.

Nevertheless, in spite of its physical relevance, one needs to look at the problem
differently to be able to use the mathematical properties of quantum semigroups. In Ref. [5],
it was proven that the conditions listed in Definition 7 are equivalent to the following set of
terms.

Definition 8 (Kossakowski 1972). A one-parameter family {Φ(t), t ∈ R1
+} of linear maps such

that Φ(t) : B∗(H)→ B∗(H) constitutes a quantum dynamical semigroup of a physical system S if

1. Tr(Φ(t)[ρ]) = Tr ρ ∀ ρ ∈ B∗(H) and ∀ t ∈ R1
+;

2. ||Φ(t)[ρ]||Tr = ||ρ||Tr ∀ ρ ∈ B∗(H) and ∀ t ∈ R1
+;

3. Φ(t)Φ(s) = Φ(t + s) ∀ t, s ∈ R1
+;

4. lim
t→0

Φ(t) = I.

The key difference between the two definitions of a quantum dynamical semigroup is
that the conditions 1. and 2. of Definition 8 refer to the vector space B∗(H), not like in the
case of Definition 7 only to the cone V+(H).

By applying the Hille–Yosida theorem (see, for example, Refs. [28,29]) to a quantum
semigroup {Φ(t), t ∈ R1

+}, one can affirm that there exists a linear operator L : B∗(H)→
B∗(H) such that

d
dt
{(Φ(t)[ρ]} = L[Φ(t)[ρ]], (10)

for all ρ ∈ D(L), where D(L) denotes the domain of the operator L (the domain lies within
the vector space B∗(H)).

In case of quantum dynamical semigroups, we also distinguish a class of regular
dynamical semigroups [30].

Definition 9 (Regular quantum dynamical semigroup). A quantum dynamical semigroup
{Φ(t), t ∈ R1

+}, which consists of maps such that Φ(t) : B∗(H) → B∗(H), shall be called a
regular dynamical semigroup if there exists a linear bounded operator:

L : B∗(H)→ B∗(H)

such that
Φ(t) = exp(Lt)

for all t ∈ R1
+. The entire vector space B∗(H) is the domain of the operator L.

For a d-level quantum system (dimH < ∞), every dynamical semigroup is regular
(because every linear operator from B∗(H) is bounded). In other words, if dimH < ∞,
every family of maps {Φ(t), t ∈ R1

+} (Φ(t) : B∗(H)→ B∗(H)) that satisfies the conditions
enumerated in Definition 8 can be expressed in the exponential form: Φ(t) = exp(Lt) for
t ∈ R1

+, where the operator L : B∗(H)→ B∗(H) is called the generator of evolution.
By substituting ρ(t) ≡ Φ(t)[ρ] to the differential Equation (10), one obtains the master

equation in a succinct form:

dρ(t)
dt

= L[ρ(t)], (11)

where the initial condition states: ρ(0) = ρ. Sometimes, a master equation of the form (11)
is called the quantum Liouville equation, and the generator L is referred to as the Liouville
operator.
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4. Positive and Completely Positive Maps

The concept of completely positive maps was introduced by Stinespring in 1955 [31].
However, the motivation behind Stinespring’s work was purely mathematical because it
was a part of the research into C∗-algebras, and there was no proposal to apply this idea to
quantum physics. The problem of the proper description of changes in a quantum system
due to external intervention was investigated in the 1960s in the works of R. Haag and D.
Kastler, as well as K.-E. Hellwig and K. Kraus—see, for example, Refs. [2–4]. In one of the
very first articles on open quantum systems [2], the authors mathematically introduced
maps (originally called operations) that can be applied to describe the interactions between
a given physical system and other external systems. The concept of positive and completely
positive maps was later developed by Kraus and described in papers such as Refs. [10,11].

Nowadays, positive and completely positive maps are widely applied in many areas
of physics—quantum computing and quantum information [26]), quantum entanglement
detection [32,33] and the evolution of quantum systems [34–37].

To describe the changes of a quantum state, one needs to analyze linear operators
Λ (sometimes called superoperators) such that Λ : B(H) → B(H). The action of every
operator of this kind can be written in the following way (this decomposition is not unique
and only holds for finite-dimensional spaces; see, for example, Ref. [38]):

Λ[X] =
η

∑
i=1

λi AiXBi, (12)

where λi ∈ C and Ai, Bi ∈ B(H) for all i = 1, . . . , η.
Now let us define specific kinds of maps.

Definition 10 (Hermiticity preserving maps). Λ preserves Hermiticity ⇐⇒

∀ X ∈ B(H) (Λ[X])∗ = Λ[X∗]. (13)

Properties of such maps which preserve Hermiticity are often analyzed in the quantum
theory. One may prove that, in the case of Hermiticity-preserving maps, the general
decomposition of Λ as from (12) can be transformed into:

Λ[X] =
N

∑
i=1

αi AiXA∗i , (14)

where αi ∈ R and Ai ∈ B(H) for all i = 1, . . . , N.

Definition 11 (Trace-preserving maps). Λ preserves trace ⇐⇒

∀ X ∈ B(H) Tr(Λ[X]) = Tr(X). (15)

Definition 12 (Identity-preserving maps). Λ preserves identity ⇐⇒

Λ[I] = I. (16)

An identity-preserving map is termed unital.

Definition 13 (Positive map). Λ is called positive ⇐⇒

∀ X ∈ V+(H) Λ[X] ≥ 0. (17)

According to Definition 13, determining whether a map Λ is positive would require
checking an infinite number of conditions.
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Definition 14 (k-positivity). Λ is called k-positive if and only if the map Ik ⊗Λ acting:

Ik ⊗Λ : Mk(C)⊗ B(H)→Mk(C)⊗ B(H) (18)

is positive.
In (18), the symbol Mk(C) denotes the space of all k× k complex matrices and Ik denotes the

identity operator in Mk(C).

Remark 1 (kth amplification). The map Ik ⊗Λ is called the kth amplification of the map Λ.

Remark 2. If a map Λ is k-positive, it is also (k− 1)-positive, (k− 2)-positive, (k− 3)-positive, . . . ,
2-positive.

The concept of k-positivity is necessary to introduce the definition of completely
positive maps (often written CP maps for short).

Definition 15 (Complete positivity). A map Λ : B(H)→ B(H) is called completely positive
(CP) if and only if the map Ik ⊗Λ is positive for all k ∈ N. In other words, Λ is completely positive,
when it is k-positive for k = 1, 2, . . . .

Remark 3. A map that satisfies the condition for complete positivity (Definition 15) and is trace-
preserving (Definition 11) is called a quantum channel. Completely positive and trace-preserving
maps are often abbreviated to CPTP maps.

Thankfully, in practice, one does not have to check the positivity of an infinite number
of maps Ik ⊗Λ (k = 1, 2, 3, . . . ) in order to judge whether Λ is CP or not. A result obtained
by Choi gives a better understanding of CP maps [39].

Theorem 2 (Choi theorem [39]). If dimH = d, then Λ is CP if and only if Λ is d-positive.

If Pk denotes the convex set of all k-positive maps, one can formulate the following
chain of inclusions:

CP maps ≡ Pd ⊂ Pd−1 ⊂ · · · ⊂ P2 ⊂ P1 ≡ positive maps.

As an example, one can consider the transposition Td : Md(C) → Md(C), which
is standard algebraic operation, i.e., Td[X] = XT . This operator does not change the
eigenvalues of X, which implies that XT ≥ 0 for any X ≥ 0. One can also notice that Td is
unital and preserves the trace. However, if we consider I2 ⊗ T2, it turns out that this map is
not positive in M4(C). This means that the map Td is not CP.

Another example relates to the reduction mapRd : Md(C)→Md(C) that is defined as

Rd[X] :=
1

d− 1
(Id TrX− X).

It can be demonstrated that this map is positive [40]. In addition, it preserves the trace
and identity. However, if one again considers I2 ⊗R2, it can be proved that this map is not
positive in M4(C), which implies thatRd is not CP.

From Theorem 2, one can observe that, in order to verify whether Λ is CP, it is sufficient
to investigate the positivity of only one map, namely: Id ⊗Λ. However, as has already been
stated, according to Definition 13, checking the positivity, in general, requires verifying an
infinite number of conditions. Fortunately, thanks to the Choi-Jamiołkowski isomorphism
(channel-state duality), the verification of complete positivity is made easier [41].
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Theorem 3 (Choi-Jamiołkowski theorem). A linear map Λ : B(H)→ B(H), where dimH =
d, is CP if and only if:

(Id ⊗Λ)[P+
d ] ≥ 0, (19)

where P+
d denotes the projector onto the maximally entangled state P+

d = 1
d ∑d

i,j=1 Eij ⊗ Eij (the
symbol Eij relates to a matrix with ij-th entry equal to 1 and others equal zero).

Theorem 3 can be considered a milestone result for modern quantum theory, because
it states that in order to prove that a map Λ is CP, one needs to demonstrate that (Id ⊗Λ) is
positive only on one operator—the projector onto maximally entangled state P+

d .
Another commonly used theorem concerning CP maps is the so-called Kraus repre-

sentation [11].

Theorem 4 (Kraus representation). A linear map Λ : B(H)→ B(H) is completely positive if
and only if for any X ∈ B(H):

Λ[X] = ∑
α

Kα X K∗α , (20)

where Kα ∈ B(H).

Although the formula (20) is called the Kraus representation and the operators Kα

are usually referred to as the Kraus operators, it was not introduced by Kraus. The above
decomposition of CP maps appeared already in 1961 in Ref. [42]. Furthermore, it is worth
mentioning that the Kraus representation is non-unique.

As was already mentioned, a CPTP map is called a quantum channel. Based on the
Kraus representation, one may write the following definition of the quantum channel.

Definition 16 (Quantum channel). A linear map Λ : B(H)→ B(H) is a quantum channel if
and only if:

∀ X ∈ B(H) Λ[X] = ∑
α

Kα X K∗α

and
∑
α

K∗α Kα = Id. (21)

The condition in (21) ensures that the map Λ preserves the trace of X. Typical examples
of quantum channels studied within quantum information theory include bit flip and phase
flip, depolarizing, amplitude damping, and phase damping channels [26].

In order to describe the changes of a quantum system over time, one needs to introduce
time-dependent CPTP maps Λt. Maps that are legitimate from the physical point of view
are called dynamical maps.

Definition 17 (Dynamical map). A one-parameter continuous family of maps {Λt, t ∈ R1
+}

such that Λt : B(H)→ B(H) constitutes a dynamical map if and only if:

1. Λt is completely positive for all t ∈ R1
+;

2. Λt is trace-preserving for all t ∈ R1
+;

3. Λ0 = I.

The last condition in the definition of a dynamical map is natural, because if a family
of maps {Λt, t ∈ R1

+} is used to describe the evolution of a density operator, it has to
satisfy the initial condition Λ0[ρ(0)] = ρ(0).

If the initial density operator ρ(0) is known, a dynamical map determines the trajectory
of a quantum state because it defines the assignment:

R1
+ 3 t→ ρ(t) := Λt[ρ(0)]. (22)
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There exists a general decomposition of a dynamical map that allows one to describe
any evolution of the density matrix: Λ(t1,t0)

: ρ(t0)→ ρ(t1) [43,44].

Theorem 5 (Salgado et al. [43] and Tong et al. [44]). Any kind of time evolution of a quantum
state ρ(t0) can always be written in the form

ρ(t1) ≡ Λ(t1,t0)
[ρ(t0)] = ∑

α

Kα(t1, t0, ρ) ρ(t0) K∗α(t1, t0, ρ), (23)

where the operators Kα(t1, t0, ρ) depend on the state ρ at time t0.

The significance of Theorem 5 relates to its generality. For any density operator,
regardless of the initial condition and the path of its evolution in the state space, the time
evolution of the state can always be described in terms of an operator-sum representation
(Kraus representation). However, we would rather have mathematical formalism that
describes a physical process independently of the state it acts upon. In this way, we can
obtain a universal dynamical map that can be imposed on any initial state. Furthermore,
such an approach gives a precise description of the interactions by means of operators. This
leads to another definition [35].

Definition 18 (Universal dynamical map (UDM)). A dynamical map is termed universal if it
is independent of the state it acts upon. The most general form of a UDM is given by

ρ(t1) ≡ ΛUDM
(t1,t0)

[ρ(t0)] = ∑
α

Kα(t1, t0) ρ(t0) K∗α(t1, t0)

with a condition
∑
α

K∗α(t1, t0)Kα(t1, t0) = Id

that guarantees Tr(ρ(t1)) = 1 for any initial state ρ(t0).

Theorem 5 and Definition 18 demonstrate how powerful the Kraus representation is.
Not only does it apply to transformations of quantum states, but also to the time-continuous
evolution of the density matrix.

5. Dynamics of Closed Quantum Systems

The dynamics of closed quantum systems is a well-known subject that has been
thoroughly described in numerous publications. This section on closed systems was
written based on four high-profile publications—Chapter 3.1. of Ref. [45], Chapter 2 of
Ref. [46], Chapter 2 of Ref. [35], and Chapters 2 and 8 of Ref. [26].

A quantum system is said to be closed (or isolated) if it does not interact with another
physical system, i.e., the system in question does not interchange information with another
system. Mathematically, the description of such systems is relatively simple. However,
in a laboratory, it is impossible to achieve perfectly isolated systems. Nevertheless, the
dynamics of closed systems is a necessary step to understanding open quantum systems.

The problem of quantum systems evolution lies at the very foundations of quantum
mechanics. The first approach to describe the changes over time of a physical system was
proposed in 1926 by E. Schrödinger, who derived an evolution equation which was later
named after the author—the Schrödinger Equation [47]. A state vector |ψ(t)〉 ∈ H, which
contains information about a certain closed physical system in the pure state, evolves in
time according to the equation:

ih̄
d|ψ(t)〉

dt
= H|ψ(t)〉, (24)

where i2 = −1, h̄ denotes the Dirac constant (the Planck constant divided by 2π) and
H ∈ B∗(H) is a fixed Hermitian operator known as the Hamiltonian of the closed system.
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The exact value of the constant h̄ is not important in the most presented considerations.
Thus, we shall put h̄ = 1.

One can easily observe that, in order to possess the complete knowledge about changes
over time in a closed system, it is necessary and sufficient to have the Hamiltonian of the
system. However, in general, determining the Hamiltonian that describes a particular
system is a very difficult task, which requires much data from an experiment.

One of the key features of the Schrödinger equation is the fact that it does not change
the norm of the states, which can be easily proved:

d
dt
〈ψ(t)|ψ(t)〉 =

(
d〈ψ(t)|

dt

)
|ψ(t)〉+ 〈ψ(t)|

(
d|ψ(t)〉

dt

)
=

= i〈ψ(t)|H∗|ψ(t)〉 − i〈ψ(t)|H|ψ(t)〉 = 0,
(25)

because the Hamiltonian belongs to the space of self-adjoined operators, i.e., H∗ = H.
Since the Schrödinger equation, as was shown in (25), cannot change the norm of a

state vector, the solution of the equation for a finite dimensional system has to be given by
a unitary operator:

|ψ(t)〉 = U(t, t0)|ψ(t0)〉, (26)

where U(t, t0)U∗(t, t0) = U∗(t, t0)U(t, t0) = I ⇐⇒ U−1(t, t0) = U∗(t, t0).
The fact that a unitary operator constitutes a map that does not change the norm (i.e., a

norm-preserving map) can be manifested in a simple way. Let us assume that the solution
of the Schrödinger equation is given by a map |ψ(t)〉 = V(t, t0)|ψ(t0)〉 and we demand
that this map has to be norm-preserving. Then, we can obtain:

〈ψ(t)|ψ(t)〉 = 〈ψ(t0)|V∗(t, t0)V(t, t0)|ψ(t0)〉 = 〈ψ(t0)|ψ(t0)〉 ⇐⇒
V∗(t, t0)V(t, t0) = I ⇐⇒ V∗(t, t0) = V−1(t, t0)

and one can confirm that the only kind of map which guarantees norm-preserving is
unitary. Naturally, the unitary operator which appears in (26) is the exponential form of
the Hamiltonian from (24), i.e.,

U(t, t0) = exp(−iH(t− t0)).

In the case of mixed states of closed (isolated) quantum systems, one has to use the von
Neumann equation in order to describe the dynamics of the system. Any mixed state can be
considered a statistical mixture of pure states |ψk(t)〉 (each of them evolves according to the
Schrödinger equation) with nonnegative weights λk. Therefore, the evolution equation for
any density operator of a closed system ρ(t) := ∑k λk|ψk(t)〉〈ψk(t)| can be quickly derived
on the basis of the Schrödinger equation:

dρ(t)
dt

= ∑
k

λk
d|ψk(t)〉〈ψk(t)|

dt
= ∑

k
λk

(
d|ψk(t)〉

dt
〈ψk(t)|+ |ψk(t)〉

d〈ψk(t)|
dt

)
=

= ∑
k

λk(−iH|ψk(t)〉〈ψk(t)|+ i|ψk(t)〉〈ψk(t)|H) =

= −i ∑
k

λk[H, |ψk(t)〉〈ψk(t)|] = −i[H, ∑
k

λk|ψk(t)〉〈ψk(t)|] =

= −i[H, ρ(t)],

where [A, B] denotes the commutator of A and B, i.e., [A, B] := AB− BA.
The solution of the von Neumann equation can also be easily obtained on the basis of

the Schrödinger equation:

|ψk(t)〉 = U(t, t0)|ψk(t0)〉 ⇐⇒ |ψk(t)〉〈ψk(t)| = U(t, t0)|ψk(t0)〉〈ψk(t0)|U∗(t, t0),
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which gives the formula for ρ(t):

ρ(t) = ∑
k

λkU(t, t0)|ψk(t0)〉〈ψk(t0)|U∗(t, t0) = U(t, t0)ρ(t0)U∗(t, t0). (27)

One can notice that the unitary evolution (27) resulting from the von Neumann
equation is an example of UDM. The evolution of closed systems is described by only one
time-dependent operator U(t, t0). Naturally, this kind of dynamics is CP since the map is
given in the Kraus form. Furthermore, the unitary operator property, U−1(t, t0) = U∗(t, t0),
is equivalent to the condition for trace-preserving maps (21).

6. Evolution of Open Quantum Systems

An open quantum system, on the contrary to closed systems, interacts with the other
system called the environment. The dynamics of open quantum systems has been the
subject of extensive research in recent years. There have been many approaches to study
open quantum systems’ evolution. In spite of a large number of publications revealing new
results on open systems’ dynamics, there are still many unsolved problems.

In this section, we revise selected concepts on the evolution of open quantum systems.
The content is divided into three parts. First, in Section 6.1, a brief summary of the reduced
dynamics is given, which is essential to understand the idea of open systems. Then, in
Section 6.2, we present the most important results on local in time approach to open
systems’ evolution. The results are accompanied by selected algebraic tools needed for
solving problems related to this scope (such as the method of vectorization). Finally, in
Section 6.3, a short review on the nonlocal in time approach is presented.

6.1. Reduced Dynamics of Open Quantum Systems Evolution

In this section, we shall revise the concept of reduced dynamics. Since there are two
physical parts, coupled and interacting with each other, in this case, one needs to consider
two Hilbert spaces—HS associated with the system of interest S andHE corresponding to
the environment E .

The physical system of interest shall be described by a density matrix ρ(t) ∈ S(HS)
and the environment by a quantum state ρE(t) ∈ S(HE).

Apparently, the evolution of the total system S + E (described by the density matrix
ρSE(t)) is unitary and determined by a Hamiltonian that can be expressed as:

H = HS ⊗ IE + IS ⊗ HE + Hint, (28)

where HS, IS : HS → HS , HE, IE : HE → HE, and Hint : HS ⊗HE → HS ⊗HE.
Under two approximations, one is able to derive a computable formula for the evolu-

tion of the quantum system of interest.

1. First crucial assumption claims that the coupling between the system and the environ-
ment is weak and, therefore, the quantum state of the environment does not change
in time and can be simply denoted by ρE.

2. The other important assumption claims that there is no initial correlation between the
system and its environment, i.e., ρSE(0) = ρ(0)⊗ ρE.

Based on these two assumptions, the dynamical map given by means of the partial
trace over the environmental degrees of freedom has the form

ρ(t) = TrE[U(t) ρ(0)⊗ ρE U∗(t)] (29)

where U(t) : HS ⊗HE → HS ⊗HE is the unitary operator that governs the evolution of
the total system S + E , i.e., U(t) = exp(−iHt), where the Hamiltonian H is defined in (28).
The symbol TrE denotes partial trace overHE.

Evolution of an open quantum system can also be described by a dynamical map Λt
(see Definition 17 and the assignment (22)).
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One can notice that there are two alternative approaches to open quantum dynamics
(One can find more in Section 3.2. of Ref. [35]).

1. One may consider the initial state of environment+system ρSE(0) = ρ(0)⊗ ρE and
apply to it unitary evolution. In order to obtain the evolution of the system in question,
it is required to perform the partial trace as indicated in (29) to eliminate the degrees
of freedom related to the environment.

2. One may reduce the initial environment+system state and apply a dynamical map
only to the system of interest (see (22)).

Both approaches are equivalent because every dynamical map induced from the
unitary evolution of an extended system with the initial condition ρSE(0) = ρ(0)⊗ ρE is a
UDM and vice versa [35].

The assumption that the system and the environment are initially in a separable tensor
product state is intrinsically linked with the property of complete positivity of dynamical
maps. In a wide variety of realistic situations, it is justified to expect that we have sufficient
control over the system to guarantee that it is decoupled from its environment. However,
in more general treatment, there may be some initial correlations between the system and
its bath. In such circumstances, one cannot rely on CP maps to model the evolution of the
system. It turns out that the reduced dynamics of S is described by maps that are not CP;
see more in Refs. [48,49].

Furthermore, there have been multiple attempts to go beyond the weak-coupling
approximation. For example, fourth-order quantum master equations can be derived for a
general system Hamiltonian, which provides corrections in the intermediate system-bath
coupling regime [50]. Other approaches to extend the dynamics beyond the weak-coupling
limit involve: improved Dyson series expansion [51], hierarchical equations of motion [52],
quasi-adiabatic propagator path integral [53], or the correlation picture approach [54].

6.2. Local in Time Approach to Open Quantum Systems Evolution

In the second half of the XX century, there was a scientific debate on a generalization
of the von Neumann equation in order to make it applicable to open quantum systems. As
a result of this dispute, two articles have been published in 1976—one written by V. Gorini
and A. Kossakowski, and G. Sudarshan [8] and the other by G. Lindblad [9]. Both articles
contain very similar results and interestingly, they were submitted and published almost
simultaneously. These articles are considered milestones for the development of the theory
of open quantum systems.

In a historical article Ref. [55], the authors established the sequence of events. In 1972,
A. Kossakowski published a landmark article with an axiomatic definition of dynamical
semigroups [5]. Between 26 March and 6 April 1973, V. Gorini attended the conference
Foundations of quantum mechanics and ordered linear spaces, where he learned about the concept
of complete positivity from K. Kraus and E. Stormer. Both V. Gorini and A. Kossakowski
visited G. Sudarshan from September to December 1974 at the University of Texas in Austin.
G. Lindblad preferred to work individually. In December 1974, he participated in the
Symposium on Mathematical Physics, organized by R. Ingarden in Toruń. Lindblad’s
seminar at the conference was devoted to quantum dynamical semigroups. He used
the conference to announce his most recent results for the first time (see the letter from
Lindblad published in [55]). In January 1975, V. Gorini visited Lindblad in Stockholm,
and both researchers compared the results on quantum dynamical semigroups which
were obtained independently. First, on 19 March 1975, V. Gorini, A. Kossakowski, and G.
Sudarshan submitted their manuscript, which was published in May 1976 [8]. On 7 April
1975, G. Lindblad submitted their paper, which appeared in June 1976 [9].

Although two articles on the generators of quantum dynamical semigroups were
published in 1976, the discovery was not immediately disseminated within the community.
In 1984, T. Banks, L. Susskind, and M.E. Peskin published a work entitled “Difficulties for
the Evolution of Pure States Into Mixed States”, in which they investigated “the general
properties of evolution equations for ρ”. They arrived at the solution that closely resembles
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the results by V. Gorini et al. and G. Lindblad, but their methods suggest that they had not
known the papers from 1976 [56].

The main result published in the articles [8,9] relates to the properties of the generator
L of a quantum dynamical semigroup. However, neither of the articles gives a general
answer regarding what conditions a generator L should satisfy so that the solution of the
equation

Λ̇t = L[Λt] (30)

determines a quantum dynamical semigroup Λt. Although in both cases the problem
was narrowed, it does not decrease the significance of the results and its applicability to
physical problems.

On the basis of [8], one can formulate the following theorem.

Theorem 6 (GKS generator). A linear operator L : Md(C)→Md(C) generates a completely
positive semigroup if it can be represented in the form:

L[ρ(t)] = −i[H, ρ(t)] +
1
2

d2−1

∑
p,q=1

αpq

(
[Fp ρ(t), F∗q ] + [Fp, ρ(t) F∗q ]

)
, (31)

where H∗ = H, TrH = 0, TrFp = 0 (for p = 1, . . . , d2 − 1), Tr(FpF∗q ) = δpq (for p, q =

1, . . . , d2 − 1) and the elements αpq constitute a positive semi-definite matrix. Moreover, the symbol
Md(C) denotes the algebra of d× d complex matrices.

The matrix [αpq] is sometimes called the Kossakowski matrix. If the basis {Fj} is given,
one needs to know the Kossakowski matrix and the Hamiltonian in order to determine the
trajectory of a quantum state.

Lindblad used a different approach—he worked in the Heisenberg picture at the level
of B(H), and by applying different methods, he obtained a result which can be presented
in the following theorem [9].

Theorem 7 (Lindblad generator). A linear operator L∗ : Md(C) → Md(C) generates a
completely positive semigroup if and only if it has the following form:

L∗[X] = i[H, X] +
1
2

d2−1

∑
k=1

γi

(
V∗k XVk −

1
2
{V∗k Vk, X}

)
, (32)

where Vk ∈ B(H) and ∑k V∗k XVk ∈ B(H). The symbol {A, B} denotes anticommutator, i.e.,
{A, B} = AB + BA. The operators Vi can be called Lindblad operators or jump operators. The
coefficients γk are called decoherence rates and they have to satisfy γk ≥ 0 for all k.

One should bear in mind that the generator L∗ in the Heisenberg picture can be easily
transformed into the generator L in the Schrödinger picture:

L[ρ(t)] = −i[H, ρ(t)] +
d2−1

∑
k=1

γi

(
Vkρ(t)V∗k −

1
2
{V∗k Vk, ρ(t)}

)
, (33)

The equation dρ(t)
dt = L[ρ(t)] with the generator given by (31) or (33) is the most general

type of Markovian and time-homogeneous master equation which preserves trace and
positivity. Both forms of the generator of evolution are equivalent because every positive
semi-definite matrix [αpq] can be diagonalized so that the result matrix has only nonnegative
elements on the main diagonal. Therefore, hereafter in this paper, any generator of evolution
of the form either (31) or (33) shall be called a GKSL generator (Gorini–Kossakowski–
Sudarshan–Lindblad generator). The derivation of the GKSL master equation and its
properties can be found in Ref. [57].
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In the 1970s, V.A. Franke was also searching for the most general linear transformations
of the density matrices of an open quantum system that preserve the properties of ρ and
do not generate negative probabilities [58]. His paper was submitted on 6 October 1975
and published in May 1976. The results obtained by V.A. Franke are close to Refs. [8,9].
Therefore, some authors name the generator of a quantum dynamical semigroup as: Franke–
Gorini–Kossakowski–Lindblad–Sudarshan (FGKLS), see for example, Ref. [59].

On the basis of (33), one can reformulate the definition of the generator L by introduc-
ing a completely positive map Φ.

Remark 4. If one denotes

Φ[ρ(t)] ≡
d2−1

∑
k=1

γkVkρ(t)V∗k ,

then the generator L can be equivalently presented in the form:

L[ρ(t)] = −i[H, ρ(t)] + Φ[ρ(t)]− 1
2
{Φ∗[Id], ρ(t)}, (34)

where Φ is completely positive and Φ∗ denotes the dual map to Φ.

Alternatively, the generator of evolution L can be presented in the explicit matrix form
that is obtained by employing the method of vectorization. For any matrix A, the operator
vec[A] denotes a vector constructed by stacking the columns of A one underneath the
other. This operation has some unique properties. In particular, to transform the generator
of evolution given by (33), one applies the relation that connects vectorization with the
standard matrix product and the Kronecker product [60–62]

vec{XYZ} = (ZT ⊗ X) vec{Y}, (35)

which holds for matrices X, Y, Z selected in such a way that the matrix product XYZ
is computable.

Taking into account the relation (35), one obtains the matrix representation of the
GKSL generator

L = i(HT ⊗ Id − Id ⊗ H) +
d2−1

∑
k=1

γk

(
Vk ⊗Vk −

1
2
Id ⊗V∗k Vk −

1
2

VT
k Vk ⊗ Id

)
, (36)

where Vk denotes the complex conjugate of the operator Vk. The property (36) is commonly
called the Roth’s column lemma. The explicit matrix form of the generator of evolution
is useful in the context of quantum tomography because it allows one to determine the
algebraic properties of the generator L [63,64]. Furthermore, the Roth’s column lemma can
be useful in quantum optimal control theory (see more, for example, Ref. [65]).

Quantum dynamical semigroups are only one of the possible approaches to local-in-
time quantum dynamics. More generally, one should consider a master equation with a
time-dependent generator Lt

dρ(t)
dt

= Lt[ρ(t)], (37)

where Lt : Md(C) → Md(C) is a linear operator. The dynamics (37) can be called time-
convolutionless (TCL) master equation, and the generator Lt does not have to be in the
GKSL form.

Any linear operator Lt can be explicitly represented in its matrix form by using the
method of vectorization (bear in mind the general form of any linear operator—Equation
(12)). Thus, any evolution equation with a time-dependent linear operator takes the form:

vec{ρ̇(t)} = Lt vec{ρ(t)}, (38)
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where between Lt and vec{ρ(t)} there is a standard algebraic multiplication, i.e., the
column vector vec{ρ(t)} is multiplied by the matrix Lt. Thus, one way of analyzing such
dynamics requires investigating the algebraic properties of Lt.

Alternatively, the master Equation (37) can be rewritten so that it describes how Λt
changes over time:

Λ̇t = Lt[Λt]. (39)

Equation (39) is analogous to (30).
Apart from Equation (39), there is another formula that connects the map Λt with the

generator Lt. Let us assume that we know a certain dynamical map Λt that is invertible,
i.e., there exists a map Λ−1

t : Md(C)→Md(C) such that Λ−1
t Λt = ΛtΛ−1

t = Id. Then, one
can write [40,66]:

Λ̇t = Λ̇tΛ−1
t Λt = Lt[Λt], (40)

from which one can observe that
Lt := Λ̇tΛ−1

t , (41)

which means that, starting with a legitimate dynamical map Λt that is invertible, one can
calculate the corresponding time-dependent generator Lt. However, the inverse map Λ−1

t
is very difficult to construct and it does not need to be completely positive (to be precise, for
a CP map Λt, the inverse map Λ−1

t is also CP if and only if Λt[X] = U(t) X U∗(t), which
means that Λt has to be unitary).

In 1949, F. Dyson published a work, where he presented the formal solution of an
explicitly time-dependent Schrödinger Equation [67]. The result was obtained by iteration
and a time ordering operator that was later called, after the author, the Dyson series. Thus,
the formal solution of Equation (37) can be written as follows:

Λt = T̂ exp
(∫ t

0
Lτdτ

)
, (42)

where T̂ denotes the chronological product. The formula (42) can be expanded by applying
the Dyson series [67]:

Λt = Id +
∫ t

0
dt1Lt1 +

∫ t

0
dt1

∫ t1

0
dt2Lt1Lt2 + . . . , (43)

provided it converges. For some specific types of time-dependent generators, the TCL
master equation can be solved without the necessity of implementing the Dyson series. In
particular, functionally commutative [68] and partially commutative generators [69] lead to
simple dynamical maps since the T̂ product can be dropped out.

One might consider the following question.
What algebraic properties should a local-in-time generator Lt possess in order to

guarantee that Λt defined by the Dyson series in (43) generates a legitimate dynamical
map?

Generally, the answer to this question is not known; however, there are many specific
cases of the generator Lt such that one can prove the map Λt is legitimate.

One commonly known case is a time-dependent GKSL generator [70,71]. It can
be proved that the trace and Hermiticity of a density matrix are preserved by the time-
dependent generator in the form:

Lt[ρ(t)] = −i[H(t), ρ(t)] +
d2−1

∑
k=1

γk(t)
(

Vk(t) ρ(t)V∗k (t)−
1
2
{V∗k (t)Vk(t), ρ(t)}

)
, (44)

where H(t) denotes a time-dependent effective Hamiltonian that accounts for the unitary
evolution, and Vk(t) are time-dependent Lindblad operators. The functions γi(t) are called
decoherence rates, and in this approach, they also depend on time.



Symmetry 2022, 14, 1752 18 of 24

If the relaxation rates are nonnegative functions for all time instants, i.e., γk(t) ≥ 0 for
all k and for any t ≥ 0, then the generator from (44) is in the GKSL form (c.f. (33)) for each
fixed t ≥ 0. Such dynamics can be considered time-dependent Markovian, although the
corresponding dynamical map Λt does not lead to a quantum dynamical semigroup [72].

On the other hand, if the relaxation rates are negative on some time intervals, then
the generator from (44) has different properties than the GKSL generator (33). For exam-
ple, it does not have to be a completely positive generator. However, some particular
constructions of Lt with negative decoherence rates guarantee a legitimate evolution that
leads to non-Markovian effects. Such dynamics feature backflows of information from the
environment to the system. However, the evolution is still local in time because there is no
convolution (integral) of the open system states with a memory kernel.

Different frameworks were proposed to assess whether a given dynamical map de-
scribing a physical process could have arisen from Markovian dynamics [73]. On the level
of quantum dynamical maps, the distinction between Markovian and non-Markovian
evolution can be made on the basis of CP-divisibility. Let us recall the definition.

Definition 19 (Propagator of the dynamics). A dynamical map Λt can be decomposed as

Λt = V(t, s) Λs, for t ≥ s ≥ 0, (45)

where V(t, s) is termed the propagator of the dynamics. Moreover, if Λ−1
t exists, then the propagator

can be computed from
V(t, s) = Λt ◦Λ−1

s .

Based on the notion of the propagator, one can define CP-divisibility.

Definition 20 (CP-divisibility). A dynamical map Λt is called CP-divisible if its propagator
V(t, s) is CP for all t ≥ s ≥ 0.

The property of CP-divisibility is strictly connected with Markovianity, i.e., quantum
evolution is Markovian if and only if the corresponding dynamical map Λt is CP-divisible [74,75].
For time-local generators (44), the dynamical map Λt is CP-divisible if and only if the relaxation
rates γk(t) of the generator (44) are nonnegative for all t ≥ 0. One can verify that for dynamics
governed by a GKSL generator (33), the corresponding dynamical map Λt = exp(Lt) is CP-
divisible, which stems from the properties of a dynamical semigroup.

The property of CP-divisibility of Λt defines Markovian evolution. For a propagator
V(t, s) that is not CP but only k-positive, we can define the notion of k-divisibility.

Definition 21 (k-divisibility). A dynamical map Λt is called k-divisible is and only if the corre-
sponding propagator V(t, s) is k-positive for all t ≥ s ≥ 0.

One can notice that CP-divisible maps correspond to d-divisibility. To clarify the
notation, let us call 1-divisible maps P-divisible. The definition of k-divisibility allows us to
introduce a degree of non-Markovianity [76].

Definition 22 (Non-Markovianity Degree (NMD)). We say that a dynamical map Λt has a
non-Markovianity degree NMD[Λt] = m if and only if the map is (d−m)-divisible but it is not
(d−m + 1)-divisible.

From the definition of NMD, one can see that for Markovian maps, NMD[Λt] = 0
while for P-divisible maps, which are called essentially non-Markovian, NMD[Λt] = d.
The concept of k-divisibility allows us to compute a series of natural measures that quantify
the departure from k-divisibility [76].
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Definition 23 (Non-Markovianity measures). The departure from k-positivity is quantified as

Mk[Λt] = sup
X

Σ+
k [X]∣∣Σ−k [X]

∣∣ ,
where

Σ+
k [X] =

∫
ςk(X;t)>0

ςk(X; t) dt

and
ςk(X; t) :=

d
dt
‖(Ik ⊗Λt)[X]‖Tr.

Σ−k [X] is analogously computed by integrating over time integrals such that ςk(X; t) < 0. The
supremum is taken over all Hermitian operators X ∈Mk(C)⊗ B(H).

It can be proven that |Σ−k [X]| ≥ Σ+
k [X], which implies that Mk[Λt] ∈ [0, 1] [76].

Furthermore, one can check that for l > k, we haveMl [Λt] >Mk[Λt], which leads to a
chain of inequalities

0 ≤M1[Λt] ≤ . . . ≤Md[Λt] ≤ 1.

Finally, a map Λt is called maximally non-Markovian if and only ifM1[Λt] = 1, which
givesM1[Λt] = . . . =Md[Λt] = 1.

Markovian generators Lt constitute a convex cone within the space of all legitimate
local in time generators, which means that a convex combination of two Markovian genera-
tors is also Markovian, i.e., α1L

(1)
t + α2L

(2)
t is Markovian for any two Markovian generators

L(1)
t and L(2)

t and for any α1, α2 ≥ 0.
An analogous proposition would not be true for dynamical maps, i.e., if there are two

CP-divisible maps (i.e., Markovian maps) Λ(1)
t and Λ(2)

t , their convex combination α1Λ(1)
t +

α2Λ(2)
t does not have to be CP-divisible [74]. In Ref. [77], a simple but very educational

example illustrating this fact was provided. Let us consider two time-local generators:

L(1)[ρ(t)] =
c
2
(σ1 ρ(t) σ1 − ρ(t)) and L(2)[ρ(t)] =

c
2
(σ2 ρ(t) σ2 − ρ(t)), (46)

where c > 0 and σ1, σ2 denote, by convention, two Pauli matrices.
Naturally, both generators are in the GKSL form, and therefore, they are CP-divisible. The

dynamical maps corresponding with the generators have the following form Λ(1)
t = etL(1)

and

Λ(2)
t = etL(2)

. Let us notice that one might obtain the following convex combination of maps:

Λt[ρ(0)] =
1
2

Λ(1)
t [ρ(0)] +

1
2

Λ(2)
t [ρ(0)] =

=
1 + e−ct

2
ρ(0) +

1− e−ct

4
(σ1ρ(0)σ1 + σ2ρ(0)σ2).

(47)

Apparently, Λt is a legitimate dynamical map. However, the corresponding generator
of evolution has the form:

Lt[ρ(t)] =
3

∑
k=1

γk(t)(σkρ(t)σk − ρ(t)), (48)

where the relaxation rates are given by: γ1 = γ2 = c
2 and γ3(t) = − c

2 tanh(c t). It is clearly
visible now that γ3(t) < 0, which means that the operator Lt (48) generates non-Markovian
evolution. Equivalently, we can say that the map Λt (47) is not CP-divisible. Therefore,
the convex combination of two dynamical maps, each corresponding to a GKSL generator,
turns out to generate non-Markovian evolution.
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On the other hand, in Ref. [78], the authors introduced a map:

Λt = e−γt I+
(
1− e−γt) E , (49)

where E [X] = ∑d
k=1 |k〉〈k|X |k〉〈k| and the set {|k〉}d

k=1 constitutes an orthonormal basis in
Cd. It was shown that, for a given γ, one is able to find time-dependent γ1(t) and γ2(t)
such that the map Λt can be represented as [78]:

Λt = pΛ(1)
t + (1− p)Λ(2)

t , (50)

with Λ(1)
t = e−Γk(t)I + (1 − e−Γk(t))E and Γk(t) =

∫ t
0 γk(τ) dτ. Since neither Λ(1)

t nor

Λ(2)
t is Markovian, one can conclude that the map from (49), which is Markovian and

additionally is a semigroup, has been obtained by a convex combination of two non-
Markovian semigroups. Mixing two non-Markovian semigroups has made all memory
effects disappear and led to a perfectly memoryless evolution.

Apart from the CP-divisibility (Definition 20), there are other methods to demonstrate
memory effects in quantum evolution. For example, the non-Markovian behavior of the
map Λt can be demonstrated by following the criterion given by H.-P. Breuer, E.-M. Lane,
and J. Piilo, hereafter referred to as the BLP criterion [72]. However, one must note that the
definition of non-Markovianity based on the divisibility property of the dynamical map is
not equivalent to the BLP criterion. Examples where these two criteria do not coincide can
be found in Ref. [79].

The BLP criterion provides a general measure for the degree of non-Markovianity in
open quantum systems. According to the BLP criterion, a dynamical map Λt is Markovian
if and only if

σ(t; ρ1, ρ2) :=
1
2

d
d t
‖Λt(ρ1 − ρ2)‖Tr ≤ 0 (51)

for all pairs of input states ρ1 and ρ2. The quantity σ(t; ρ1, ρ2) can be interpreted as the
information flow and, as a result, σ(ρ1, ρ2; t) < 0 implies that the information is lost over
time (for an isolated system, we have σ(t; ρ1, ρ2) = 0 for all ρ1, ρ2, and t ≥ 0 since no
information is lost due to the absence of interactions with an external environment). On
the other hand, σ(t; ρ1, ρ2) > 0 indicates a backflow of information from the environment
to the system, which is a proof of non-Markovian effects.

The BLP criterion (51) allows one not only to distinguish a non-Markovian dynamics
from a Markovian evolution, but it also leads to a convenient quantifier of the degree of
non-Markovianity

N = max
ρ1, ρ2

∫
σ>0

σ(t; ρ1, ρ2) dt, (52)

where the time-integration is performed over all time intervals (τ
(k)
1 , τ

(k)
2 ) in which σ is

positive, and the maximum is found over all possible pairs of initial states.
Finally, let us comment that the BLP criterion (51) can be explained by the fact that all

CPTP maps Λ are contractions for the metric defined through the trace distance. For any two
quantum states ρ1 and ρ2, the distance can be defined by D(ρ1, ρ2) = 1/2 ‖ρ1 − ρ2‖Tr [26].
Then, the contraction property for any CPTP map Λ can be stated as [80]

D(Λ[ρ1], Λ[ρ2]) ≤ D(ρ1, ρ2) ∀ ρ1, ρ2 ∈ S(H).

For any quantum Markovian process, the trace distance D(Λ[ρ1], Λ[ρ2]), correspond-
ing to any fixed pair of initial states, is a monotonically decreasing function of time. In
other words, the distinguishability between any two quantum states declines monotoni-
cally, which is interpreted as a flow of information from the system to the environment
(consequently, we have σ(t; ρ1, ρ2) < 0). However, for other physical processes, the trace
distance does not behave monotonically, which implies that in a certain time interval,
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the distinguishability of the pair of states increases (σ(t; ρ1, ρ2) > 0). We interpret this
phenomenon as a flow of information from the environment back to the system [72].

As has been said, the fundamental problem concerning the conditions that the gen-
erator Lt should satisfy in order to guarantee a legitimate evolution has not been solved
yet. Another partially solved problem relates to computing a dynamical map based on a
quantum master equation. Both questions remain relevant research problems.

6.3. Nonlocal in Time Approach to Open Quantum Systems Evolution

In an alternative approach to open quantum systems’ dynamics one follows the
Nakajima–Zwanzig equation, according to which the evolution of a system is given by a
nonlocal Equation [81,82]:

dρ(t)
dt

=
∫ t

0
Kt−τ [ρ(τ)]dτ, (53)

where Kt denotes an operator called memory kernel. The nonlocal character of evolution
given by (53) is associated with the presence of convolution, which mathematically means
that the rate of evolution for ρ(t) depends on the history starting from t = 0 (therefore, one
needs to integrate the kernel in (53)).

Equation (53) translates into another formula that describes the evolution of a dynami-
cal map:

Λ̇t =
∫ t

0
Kt−τ [Λτ ]dτ. (54)

When looking at Equations (53) and (54), one should ask the natural research question.
Question: What conditions should the kernel Kt satisfy to guarantee that the map Λt
obtained from Equation (54) is a legitimate dynamical map?

Unfortunately, there is no concrete answer to this problem. There is only a limited
number of specific examples of Kt, for which one can be certain that they provide a
legitimate evolution. However, the general construction of the memory kernel remains an
unsolved problem.

To analyze the properties of memory kernels, one usually applies the Laplace transform
(named after its discoverer Pierre-Simon Laplace). Let us recall its definition.

Definition 24 (Laplace transform). The Laplace transform of a function f (t) is defined for all
values t ≥ 0 by the following formula:

L[ f (t)](s) :=
∫ ∞

0
f (t) e−st dt ≡ f̃ (s). (55)

Physically speaking, one may say that the function f (t) is transformed from the time domain
into the function f̃ (s) in the frequency domain

By applying the Laplace transform to the evolution equation of the map (54), one
obtains a relatively simple relation that connects the Laplace transform of Λt and Kt, i.e.,
Equation (54) transfers into:

Λ̃s =
1

s− K̃s
, (56)

where Λ̃s :=
∫ ∞

0 e−st Λt dt and K̃s :=
∫ ∞

0 e−st Kt dt. Equation (56) can be rearranged into a
formula for K̃s:

K̃s = s I− Λ̃−1
s . (57)

Although there is an explicit formula that connects Λ̃s and K̃s, it is a very difficult
task to determine the conditions that should be satisfied by a legitimate memory kernel.
Nevertheless, some specific memory kernels have been found, see, for example, Ref. [83].
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7. Conclusions

The paper provides a synthesis of selected topics on open quantum systems. Starting
from the fundamental concepts of classical systems, we have gone through quantum
semigroups, positive and CP maps, master equations, non-Markovianity, and solvability of
TCL equations. The results collected in the paper do not account for the entire theory of
open quantum systems but can facilitate entering the field for students and researchers of
other expertise.

In the future, we expect further rapid development of the theory of open quantum
systems. Then, apart from the advancement of the mathematical formalism, we can observe
the emergence of numerous applications in a variety of research areas, including neuronal
systems modeling [84], quantum Brownian motion in optomechanical systems [85], or
energy transfer processes in photosynthetic complexes [86]. The plethora of mathematical
methods and emerging applications make this area a relevant part of modern physics that
contributes to the advent of quantum-based technologies.
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BLP Breuer–Lane–Piilo
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GKSL Gorini–Kossakowski–Sudarshan–Lindblad
NMD Non-Markovianity degree
TCL time-convolutionless
UDM universal dynamical map

References
1. Redfield, A.G. On the Theory of Relaxation Processes. IBM J. Res. Dev. 1957, 1, 19–32.
2. Haag, R.; Kastler, D. An Algebraic Approach to Quantum Field Theory. J. Math. Phys. 1964, 5, 848–861. [CrossRef]
3. Hellwig, K.-E.; Kraus, K. Pure Operations and Measurements. Commun. Math. Phys. 1969, 11, 214–220. [CrossRef]
4. Hellwig, K.-E.; Kraus, K. Pure Operations and Measurements II. Commun. Math. Phys. 1970, 16, 142–147. [CrossRef]
5. Kossakowski, A. On quantum statistical mechanics of non-Hamiltonian systems. Rep. Math. Phys. 1972, 3, 247–274. [CrossRef]
6. Haake, F. Statistical treatment of open systems by generalized master equations. Springer Tracts Mod. Phys. 1973, 66, 98–168.
7. Davis, E.B. Quantum Theory of Open Systems; Academic Press: London, UK, 1976.
8. Gorini, V.; Kossakowski, A.; Sudarshan, E.C.G. Completely Positive Dynamical Semigroups of N-level Systems. J. Math. Phys.

1976, 17, 821–825. [CrossRef]
9. Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 1976, 48, 119–130. [CrossRef]
10. Kraus, K. Operations and effects in the Hilbert space formulation of quantum mechanics. In Foundations of Quantum Mechanics

and Ordered Linear Spaces; Hartkämper, A., Neumann, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1974; pp. 206–229.
11. Kraus, K. States, Effects and Operations, Fundamental Notions of Quantum Theory; Springer: Berlin/Heidelberg, Germany, 1983.
12. Bellman, R. Introduction to Matrix Analysis, 2nd ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1997.
13. Jacobs, K. Discrete Stochastics. A Series of Advanced Textbooks in Mathematics; Birkhäuser Verlag Basel: Berlin, Germany, 1992;

pp. 19–63.
14. Ingarden, R.S. Information Theory and Thermodynamics of Light Part II. Principles of Information Thermodynamics. Fortschr.

Phys. 1965, 13, 755–805. [CrossRef]
15. Stone, M.H. The Theory of Representations of Boolean Algebras. Trans. Amer. Math. Soc. 1936, 40, 37–111.
16. Engel, K.-J.; Nagel, R. One-Parameter Semigroups for Linear Evolution Equations; Springer: New York, NY, USA, 2000.
17. Jamiołkowski, A. On Some Aspects of Observability of Stochastic Systems. Open Syst. Inf. Dyn. 2000, 7, 255–276. [CrossRef]
18. Kolmogorov, A. Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 1931, 104, 415–458. [CrossRef]

http://doi.org/10.1063/1.1704187
http://dx.doi.org/10.1007/BF01645807
http://dx.doi.org/10.1007/BF01646620
http://dx.doi.org/10.1016/0034-4877(72)90010-9
http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1002/prop.19650131202
http://dx.doi.org/10.1023/A:1009684600435
http://dx.doi.org/10.1007/BF01457949


Symmetry 2022, 14, 1752 23 of 24

19. Norris, J.R. Markov Chains; Cambridge University Press: Cambridge, UK, 1997.
20. Thingna, J.; Manzano, D. Degenerated Liouvillians and steady-state reduced density matrices. Chaos 2021, 31, 073114. [CrossRef]

[PubMed]
21. Alicki, R.; Lendi, K. Quantum Dynamical Semigroups and Applications; Springer: Berlin/Heidelberg, Germany, 1987.
22. von Neumann, J. Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. Gött. Nach. 1927, 1, 245–272.
23. Landau, L. Das Dampfungsproblem in der Wellenmechanik. Z. Phys. 1927, 45, 430–441. [CrossRef]
24. James, D.F.V.; Kwiat, P.G.; Munro, W.J.; White, A.G. Measurement of qubits. Phys. Rev. A 2001, 64, 052312. [CrossRef]
25. Toninelli, E.; Ndagano, B.; Valles, A.; Sephton, B.; Nape, I.; Ambrosio, A.; Capasso, F.; Padgettm, M.j.; Forbes, A. Concepts in

Quantum State Tomography and Classical Implementation with Intense Light: A Tutorial. Adv. Opt. Photonics 2019, 11, 67–134.
[CrossRef]

26. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000.
27. Jamiołkowski, A. Fusion Frames and Dynamics of Open Quantum Systems. In Quantum Optics and Laser Experiments; Lyagushyn,

S., Ed.; InTech: Rijeka, Croatia, 2012; pp. 67–84.
28. Yosida, K. Functional Analysis; Springer: Berlin/Heidelberg, Germany, 1995.
29. Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Springer: New York, NY, USA, 2011.
30. Spohn, H. Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 1980, 52, 569–615. [CrossRef]
31. Stinespring, W.F. Positive functions on C*-algebras. Proc. Amer. Math. Soc. 1955, 6, 211–216.
32. Horodecki, M.; Horodecki, P.; Horodecki, R. Separability of Mixed States: Necessary and Sufficient Conditions. Phys. Lett. A 1996,

223, 1–8. [CrossRef]
33. Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [CrossRef]
34. Benatti, F.; Floreanini, R. Open Quantum Dynamics: Complete Positivity and Entanglement. Int. J. Mod. Phys. B 2005, 19, 3063.

[CrossRef]
35. Rivas, Á.; Huelga, S.F. Open Quantum Systems. An Introduction; Springer: Berlin/Heidelberg, Germany, 2012.
36. Breuer, H.-P.; Laine, E.-M.; Piilo, J.; Vacchini, B. Colloquium: Non-Markovian dynamics in open quantum systems. Rev. Mod.

Phys. 2016, 88, 021002. [CrossRef]
37. Vega, I.; Alonso, D. Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 2017, 89, 015001. [CrossRef]
38. Mathieu, M. Characterising Completely Positive Elementary Operators. Bull. Lond. Math. Soc. 1998, 30, 603–610. [CrossRef]
39. Choi, M.-D. Completely positive linear maps on complex matrices. Linear Algebra Appl. 1975, 10, 285–290. [CrossRef]
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76. Chruściński, D.; Maniscalco, S. Degree of Non-Markovianity of Quantum Evolution. Phys. Rev. Lett. 2014, 112, 120404. [CrossRef]
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