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Abstract

A structurally balanced social network is a social community that splits into two antagonistic factions (typical example being
a two-party political system). The process of opinion forming on such a community is most often highly predictable, with
polarized opinions reflecting the bipartition of the network. The aim of this paper is to suggest a class of dynamical systems,
called monotone systems, as natural models for the dynamics of opinion forming on structurally balanced social networks.
The high predictability of the outcome of a decision process is explained in terms of the order-preserving character of the
solutions of this class of dynamical systems. If we represent a social network as a signed graph in which individuals are the
nodes and the signs of the edges represent friendly or hostile relationships, then the property of structural balance
corresponds to the social community being splittable into two antagonistic factions, each containing only friends.
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Introduction

In social network theory, a community of individuals charac-

terized by friendly/hostile relationships is usually modeled as a

signed graph having the individuals as nodes and their pairwise

relationships as edges: an edge of positive weight expresses

friendship, one of negative weight aversion or hostility [1,2].

According to Heider theory of structural balance [3], in a

balanced community the role of friends and enemies, determined

locally by the bipartite relationships, is perfectly defined also on

triads, and is equivalent to all length-3 cycles having positive sign.

Since the sign of a cycle is the product of the signs of its edges,

positive sign corresponds to an even number of negative edges

along a cycle. Heider’s original definition for triads can be

generalized to larger groups of individuals using the graph-

theoretical formulation of Cartwright and Harary [4]: the lack of

structural tensions corresponds to all cycles of the signed graph

being positive. Also for this more general definition (the one

adopted in this paper) structural balance implies a lack of

ambiguity in the way each individual classifies each other

individual as a friend or as an enemy. An equivalent character-

ization is in fact that the network splits into two factions such that

each faction contains only friendly relationships while individuals

belonging to different factions are linked only by antagonistic

relationships [1].

Following [4], in a perfectly balanced community it is

reasonable to assume that for a person the point of view of a

friend influences positively the process of forming an opinion

about a subject; the opposite for an adversary. Quoting [4]: ‘‘the

signed graph depicting the liking relations among a group of

people will, then, also depict the potential influence structure of

the group’’. Under this hypothesis, it is plausible to deduce that the

outcome of an opinion forming process overlaps with the

bipartition of the network: opinions are homogeneous within a

faction and opposite with respect to those of the other faction. In

this paper we ask ourselves what kind of dynamics is suitable to

represent this process of forming an opinion in a structurally

balanced world of friends and adversaries and what are the

dynamical properties that render the process so highly predictable

in presence of structural balance.

In terms of dynamical systems, we can think of ‘‘influence’’ in

the sense mentioned above as a directional derivative in opinion

space, and of the Jacobian matrix of partial derivatives as the

collection of all these influences. The principle stated above that

the influences among the members of the community are depicted

by their social relationships corresponds to identifying the signs of

the entries of the Jacobian with those of the ‘‘sociomatrix’’ i.e., of

the adjacency matrix of the signed graph describing the social

network. The role played by friends and adversaries is assumed to

be free from ambiguities, and this corresponds to constant sign of

the partial derivatives in the entire opinion space. In dynamical

systems theory, the systems whose Jacobians are sign constant at

all points and such that the associated signed graph consists only of

positive cycles form an important class of systems, called monotone

systems [5–7]. Monotone systems are well-known for their

dynamical properties: they respond in a predictable fashion to

perturbations, as their solutions are ‘‘ordered’’ in the sense that

they do not admit neither stable periodic orbits nor chaotic

behavior [7]. Owing to their order-preserving flows, in many

aspects monotone systems behave like 1-dimensional systems.

Such notions of order are very appropriate for structurally

balanced social networks, for which the pattern of opinions is

completely predictable from the signed graphs depicting the social

relationships [4]. Scope of this paper is to make the link between

structural balance theory and monotone dynamical systems theory

clear and formally precise.
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A classical example where structural balance theory applies is

two-party (or two-coalition) political systems [8,9]. In these systems

we too often see that opinions within a faction are monolithic and

antipodal to those of the other faction, and that discussion among

the two factions is a wall-against-wall fight. Other cases in which

structural balance has been suggested to correctly reproduce the

phenomenology of a social community are for example the pattern

of international alliances leading to World War I [10] (one could

easily add the armed peace of the post-war Iron curtain [11]),

duopolistic markets, rival business cartels [12], various case studies

from anthropology [13] and social psychology [14–16]. See [1,2]

for a more complete list of examples. In other contexts, notably in

biological networks [17–20] and in on-line social networks [21–

23], structural balance is not exact. One can then try to quantify

this amount of unbalance [17,19,21,24,25], or study dynamical

evolutions of the edge signs that lead to structural balance

[10,26,27]. These types of dynamics are fundamentally different

from those investigated here, as our sociomatrices are and remain

structurally balanced for all times.

If a major feature of a structurally balanced world is that the

members of a community are influenced in their decision by the

social network they form, a series of other properties of these

systems admit interpretations in terms of monotone dynamics.

One such property is that a small germ of opinion seems to be

propagating unavoidably to the whole community if the network is

connected. In structurally balanced systems, this often seems to be

happening only due to the process of decision forming itself,

regardless of the intrinsic value of the opinion (think of some

decisions in the aforementioned two-party political systems).

Monotone systems, thanks to their order-preserving solutions,

also exhibit this behavior. We will show how for these systems the

individual who seeds an idea first has a strong competitive

advantage over both friends and competitors.

The signed graphs used in social network theory can be either

undirected or directed [1,2]. In the present context, an undirected

edge corresponds to a mutual relationship (and mutual influence)

between the two individuals connected by the edge, while a

directed edge corresponds to an influence which is not recipro-

cated. In many instances of social networks, in fact, not all

individuals have the same power of persuasion over their peers. In

particular, the fact that an ‘‘opinion leader’’ may be influential for

the opinions of his neighbors on the network (both friends and

adversaries), does not mean that the implication has to reciprocate.

Both the concepts of structural balance and of monotonicity

extend to directed graphs in a similar manner. Also the graphical

tests available in the literature coincide [1,7].

If influences are associated with edges of the social network, it

means that an individual with zero in-degree is unaffected by the

opinion of the community (one with zero out-degree is instead

unable to influence the community). At the other extreme, highly

connected individuals are those influencing (or being influenced)

the most. In particular, strong connectivity of a network means

that all individuals have some influence power and are at the same

time influenced by the community. A monotone dynamical system

on a strongly connected graph is called strongly monotone [5].

The main characteristic of strongly monotone systems is that the

order in the solutions is strict. This corresponds to the property

that all individuals in a strongly connected structurally balanced

graph must necessarily take side: neutral opinions are not possible

on such social networks.

Although the strength of the opinions at steady state depends on

the precise functional form chosen for the dynamics, we already

mentioned that in general the individuals with the highest in-

degree achieve the strongest opinions. In our models this is true

regardless of whether their relationships are friendly or hostile. We

interpret this property by observing that both monotonicity of a

system and structural balance of a social network are invariants of

a particular class of operations which, for analogy with Ising spin

glasses in Statistical Physics [28], we call gauge transformations.

Consider the signed graph representing the social network and a

cut set that splits the graph into two disconnected subgraphs. A

change of sign on all edges intersecting the cut set cannot alter the

signature of the cycles of the network (cut sets intersect cycles in an

even number of edges). Such operations are called switching

equivalences in the signed graph literature [29], or gauge

transformations in the spin glass literature [28]. If we think of a

signed graph as a spin glass, then a structurally balanced graph

corresponds to a so-called Mattis model [30], in which the

‘‘disorder’’ introduced by the negative edges is only apparent, and

can be completely eliminated by a suitable gauge transformation

(see [31] and [11] for an earlier formulation of a structurally

balanced social network as a Mattis system). When applied to a

monotone dynamical system, this transformation renders all

entries of the Jacobian nonnegative, property known as Kamke

condition in the literature [6]. Therefore the process of opinion

forming of a two-party structurally balanced social network is

always (dynamically) identical, up to the sign of the opinions, to

that of a community with the same topology, but composed only

by friends.

Applying a gauge transformation to one or more individuals

means that those individuals change side on the two-faction

bipartition: friends become adversaries and viceversa. In certain

two-party political systems (Italy for example) these moves are not

so uncommon. When such ‘‘conversions’’ happen, they are

normally followed by sudden inversions of opinions on many

political arguments. These phenomena are well-captured by the

dynamical models we are proposing: an individual switching side

perceives a strong influence to align himself with the opinions of

his new friends.

Methods

A Dynamical Model for Influences
Consider the dynamical system

_xx~f (x) ð1Þ

where x[Rn is the vector of opinions of the n individuals and the

functions f (:) describe the process of opinion forming of the

community. Assume x~0 is a fixed point of (1). This is equivalent

to assume that no opinion is formed unless at least one of the

individuals has already an opinion at t~0, i.e., unless x(0)=0 in

(1).

We model the influence of the j-th individual over the i-th
individual by the partial derivative

Fij(x)~
Lfi(x)

Lxj

, i,j~1, . . . ,n ð2Þ

so that the matrix of pairwise F (x)~ Fij(x)½ �i,j~1,...,n is the formal

Jacobian of the system (1). We expect then that the influence of a

friend is positive,
Lfi(x)

Lxj

w0, and that of an adversary negative,

Lfi(x)

Lxj

v0. We also expect that qualitatively these influences do

not change sign if we compute them in different points x1 and x2

in opinions space (friends are friends in the good and in the bad

Dynamics of Opinion Forming in Social Networks
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moments, and so are enemies). If sgn(:) is the sign function, in

formulas:

sgn(Fij(x1))~sgn(Fij(x2)) Vx1,x2[Rn: ð3Þ

The condition (3) is denoted ‘‘sign stability’’ in [6]. If we define A
as the n|n matrix of entries

Aij~sgn(Fij(x)), ð4Þ

at an arbitrary point x[Rn, then (3) implies that A has to have the

same sign pattern over the entire opinion space Rn.

Notice that our considerations are more general than just taking

the Jacobian linearization of (1) around an equilibrium point. In

particular, the system (1) may have multiple equilibrium points,

even with different stability characters. This is irrelevant to our

discussion. Even the precise functional form of the f (x) is not

assumed to be known a priori, as long as it obeys (3). One possible

choice for f (x) (used in the simulations of the paper) is presented

in the Text S1.

Furthermore, we do not consider our own current opinion as

useful to reinforce it or to change our mind. On the contrary, we

will normally consider
Lfi(x)

Lxi

v0, i.e., opinions are gradually

forgotten over time (this helps in avoiding divergence of the ODEs

(1)).

The following two different situations can be considered:

1. influences are always reciprocal:

Fij(x)=0 u Fji(x)=0; ð5Þ

2. influences can be asymmetric

Figure 1. Structurally balanced community. (A): The community split into two factions such that members of the same faction are connected by
friendly relationships (blue edges) and positively influence each other, while members of opposite factions are linked by adversary relationships (red
edges) and negatively influence each other. All cycles and semicycles contain an even number of negative edges. (B): the gauge transformation, i.e.,
the switch of sign to all edges of the cut set (gray line), renders the signed graph completely blue. It corresponds to all individuals on one side of the
cut set changing their mind simultaneously on their relationships with the other faction (in the drawing individuals are ‘‘flipped’’ for analogy with
spins in Statistical Physics). (C): In this gauge transformation only the two individuals above the gray cut set switch side. The graph clearly remains
bipartite. The three signed graphs in (A), (B) and (C) all are exactly structurally balanced.
doi:10.1371/journal.pone.0038135.g001

Figure 2. Examples of monotone and strongly monotone trajectories. Given s, a system like (1) is monotone (panel (A)) if initial conditions
x1 , x2 which respect the partial order s (meaning x1,i(0)ƒx2,i(0) when si~z1, x1,i(0)§x2,i(0) when si~{1) induce solutions in (1) which respect
the partial order s for all times (x1,i(t)ƒx2,i(t) when si~z1, x1,i(t)§x2,i(t) when si~{1). It is strongly monotone (panel (B)) if initial conditions
respecting the partial order s and such that they differ in at least a coordinate (x1,i(0)ƒx2,i(0) when si~z1, x1,i(0)§x2,i(0) when si~{1, plus
x1,i(0)=x2,i(0) for some i) induce solutions in (1) which respect the partial order s with strict inequality for all tw0 along all coordinates
(x1,i(t)vx2,i(t) when si~z1, x1,i(t)wx2,i(t) when si~{1).
doi:10.1371/journal.pone.0038135.g002

Dynamics of Opinion Forming in Social Networks
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Fij(x)=0 Fji(x)=0: ð6Þ

We assume henceforth that Fij(x) and Fji(x) never have

opposite signs:

Fij(x)Fji(x)§0, ð7Þ

condition which is called sign symmetry in [6] and which

corresponds to two individuals never perceiving reciprocal

influences of opposite signs. From (4), conditions analogous to

(5)–(6) hold for A: in the first case A is symmetric; in the second it

need not be. The condition (7) instead becomes:

AijAji§0: ð8Þ

The Associated Signed Social Community and its
Structural Balance

Under the sign stability condition (3), the sociomatrix of the

signed social network can be identified with the matrix A.

Associating social relationships with influences, as assumed here,

means that the i-th individual considers the j-th individual a friend

when Aijw0, an adversary when Aijv0, while when Aij~0 no

relationship is perceived by the i-th individual. Therefore in this

work the matrix A plays the double role of signature of the

Jacobian of the influences and of sociomatrix of the signed social

network.

For a symmetric A, assuming that the social community is

structurally balanced means that all cycles in the (undirected)

graph of adjacency matrix A have to have positive sign [4]. When

instead influences can be asymmetric, A is the adjacency matrix of

a digraph. In social network theory, the notion of structural

balance is extended to digraphs by looking at ‘‘semipaths’’ and

‘‘semicycles’’, i.e., undirected paths and undirected cycles of the

underlying undirected signed graph obtained ignoring the

direction of the edges [4], see Fig. 1(A) for an example. A

necessary and sufficient condition for a digraph to admit an

underlying undirected graph is (8), i.e., no negative directed cycle

of length 2 exist in the signed digraph. Under this assumption, no

cancellation appears when we take the ‘‘mirror’’ of A (i.e., AT ) and

consider Au~sgn(AzAT ) as adjacency matrix of the underlying

undirected graph. When this is possible, then a directed signed

network is structurally balanced if and only if all undirected cycles

of Au have positive sign [4].

A sociomatrix A is reducible if there exists a permutation matrix

P such that PAP~
A1 A2

0 A3

� �
with A1, A3 square submatrices. A

is irreducible otherwise. In terms of the graph of A, irreducibility

corresponds to a strongly connected graph, i.e., a graph for which

there exists a directed path between any pair of nodes (see Fig. 1

for an example of strongly connected graph and Fig. S3(A) for one

of non-strongly connected graph). Irreducibility of A implies

therefore that each individual is directly or indirectly influenced by

the opinion of any of the other members of the community.

Monotone Dynamical Systems
For a thorough introduction to the theory of monotone systems,

the reader is referred to [5–7]. In Rn, consider one of the orthants:

Ks~fx[Rn such that Dx§0g where D is a diagonal matrix

D~diag(s) of diagonal elements s~(s1, . . . ,sn), si[f+1g, and

denote by x(t) the solution of (1) at time t in correspondence of the

initial condition x(0). The vector s identifies a partial order for the

n axes of Rn, which can be the ‘‘natural’’ one when si~z1, or

the opposite when si~{1, see Fig. 2.

The partial order generated by s is normally indicated by the

symbol ‘‘ƒs’’: x1ƒsx2 u x2{x1[Ks: The system (1) is said

monotone with respect to the partial order s if for all initial conditions

x1(0), x2(0) such that x1(0)ƒsx2(0) one has x1(t)ƒsx2(t) Vt§0.

Strict ordering is denoted x1vsx2 and corresponds to x1ƒsx2,

x1=x2, meaning that strict inequality must hold for at least one of

the coordinates of x1, x2, but not necessarily for all. When

inequality must hold for all coordinates of x1, x2 then we use the

notation ‘‘%s’’. The system (1) is said strongly monotone with respect to

the partial order s if for all initial conditions x1(0), x2(0) such that

x1(0)vsx2(0) one has x1(t)%sx2(t) Vtw0. See Fig. 2 for a

graphical description of these definitions.

Monotonicity of a system can be verified in terms of the

Jacobian matrix F (x), via the so-called Kamke condition ([6],

Lemma 2.1), which says that the system (1) is monotone with

respect to the order s if and only if

sisjFij(x)§0 V x[Rn, V i,j~1, . . . ,n i=j: ð9Þ

From (3)–(4), it follows that the condition (9) can be stated

equivalently in terms of A as

sisjAij§0 V i,j~1, . . . ,n i=j: ð10Þ

The condition (10) admits a graph-theoretical reformulation

which is identical to that for structural balance (see e.g. [6]). The

system (1) is monotone with respect to some orthant order if and

only if all semicycles of length w1 of the signed digraph of the

sociomatrix A have positive sign. Therefore, under the assump-

tion that our opinion is positively influenced by our friends and

negatively by our adversaries, we can conclude that the dynamics

of opinion forming in structurally balanced communities have

indeed to obey a monotone dynamics.

Under the assumption (8), the condition (10) (and, similarly, (9))

covers both cases of symmetric and asymmetric influences. In fact,

the non-strict inequality in (10) accounts exactly for situations in

which Aij=0 while Aji~0, encountered in directed graphs.

If in addition to being monotone the sociomatrix A is also

irreducible, then the system (1) is also strongly monotone [5]. As

depicted in Fig. 2, strong monotonicity implies that opinions are

strictly ordered for all individuals. In terms of our social

community, this irreducibility corresponds to the fact that all

individuals have some influence power over the community, even

the less influential members, and strict ordering translates into

the fact that no individual can remain neutral to the influences of

the community. Hence, whenever an opinion is seeded all

individuals have to eventually take side. See Fig. S3 for an

example of monotone but not strongly monotone network.

Following [7], a graph-theoretical test of strong monotonicity is

that all directed cycles of the (strongly connected) digraph of A
have to have positive sign.

Results

Propagation of Opinions on a Cooperative System
A particular (trivial) case of structural balance is given by A with

all non-negative entries. All individuals are friends and no tension

Dynamics of Opinion Forming in Social Networks
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ever emerges in decision making, except perhaps for a transient

evolution (due to conflicting initial conditions). The corresponding

system (1) is called cooperative in this case [6].

We analyze the following situations for the initial conditions:

N a single individual has an opinion at t~0;

N two different individuals have opposite opinions at t~0.

From the definition of monotonicity, it follows that any initial

condition x(0)§0, xi(0)=0 for at least one i, implies that x(t)§0
Vtw0. In particular, under the strong connectivity assumption,

x(t)w0 Vtw0, meaning that the opinion of the whole community

gets influenced even by a single xi(0)=0. This situation is shown

in Fig. 3(A) for the functional form f (x) described in the Text S1

and in Fig. S1. It can be observed that the strongest opinions are

achieved by the most connected individuals (red lines mean high

in-degree). In a similar way, x(0)ƒ0 implies x(t)ƒ0 Vtw0 (or

x(t)v0 Vtw0 when strongly connected). The two cases represent

therefore the same situation: in a cooperative system strong

connectivity implies that the whole community must align itself

with the opinion of the ‘‘seeder’’ xi. Hence in these systems

seeding an idea first gives a competitive advantage over the rest of

the community.

The only case in which contrast can arise in a cooperative

system is when two individuals have opposite opinions at t~0.

Such a contrast is not tolerated by a cooperative system, and in

fact the whole community is steered to a unanimous opinion after

a transient, see Fig. 3(B) for an example. Assume the i-th and the j-

th nodes have opposite nonzero initial opinions, e.g. xi(0)w0 and

xj(0)v0. Which of these opposite initial opinions will prevail

depends on the strengths of xi(0) and xj(0), on the form of the

f (x) and on the connectivity of the i-th and j-th individuals. When

Dxi(0)D~Dxj(0)D and, as in the special model described in the Text

S1, all influences Fij(x) are equal in modulus, then the most out-

connected individual prevails.

Two-party Behavior and Gauge Transformations
A well-known property of a structurally balanced signed social

network is that it can be partitioned into two disjoint antagonistic

subcommunities. Each community contains only friends, while any

two (related) individuals from different communities are adversar-

ies. This means that only z1 edges of A link members of the same

party, while only {1 edges link members of different parties, see

Fig. 1. From the sign stability condition (3), the same is true

replacing A with the formal Jacobian F (x). Consider the change of

coordinates y~Dx, D~diag(s) and s a partial ordering of Rn.

Since DyD~DxD and F (x) is sign constant for all x[Rn, it follows that

Fij(x)Fij(y)§0. From D{1~D, the change of variable y~Dx

yields the new Jacobian DF (Dx)D. For analogy with the theory of

Ising spin glasses [28], operations like

F (x)?DF (y)D ð11Þ

are here called gauge transformations, and correspond to rearrangings

of the order of the n axes of Rn which modify the sign of the entries

of the Jacobian, without altering its absolute values. In terms of the

graph of A, a gauge transformation A?DAD corresponds to

changing sign to all edges adjacent to the nodes corresponding to

the {1 entries of s. As directed cycles and semicycles share two

(or zero) edges with each node, gauge transformations do not alter

the signature of the cycles of the network. This is well-known in the

Ising spin glass literature, see e.g. [32] (the extension to digraphs is

completely straightforward). One says that operations like (11) can

alter the ‘‘apparent disorder’’, while the ‘‘true disorder’’ (or

‘‘frustration’’) of the system is an invariant of (11). In particular,

when A is structurally balanced the true disorder is zero. In

Statistical Physics this case is called Mattis spin model [28]: an

Ising model in ‘‘disguise’’ (the disguise being a gauge transforma-

tion). The Kamke condition rephrases this property in terms of

F (x). In fact, (9) implies that there exists a special ordering ~ss for

which the gauge transformed system ~FF (y)~~DDF ( ~DDx) ~DD,

Figure 3. Collective opinions triggered by the opinion of one or two individuals, in the cooperative behavior case. The color of a curve
is proportional to the in-degree of the individual. Individuals with the highest in-degree form the strongest opinions. In panel (A) a single xi(0)w0
steers the whole community to a positive opinion; in panel (B) two individuals have contrasting initial conditions. When all influences are equal, the
whole community is steered towards the opinion of the most connected non-zero opinioner.
doi:10.1371/journal.pone.0038135.g003

Dynamics of Opinion Forming in Social Networks
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~DD~diag(~ss), is such that ~FFij(y)§0 V i,j, like in a cooperative

system. In terms of the dynamics (1), this means that in a

structurally balanced network the presence of adversaries does not

alter the monotonic character of the opinion forming process: the

dynamics is monotone regardless of the amount of apparent

disorder present in the system. In particular, in the strongly

connected case the role of the initial conditions in steering the

opinion of the whole community is similar to the one described for

cooperative systems. The only difference in the integral curves of

(1) with respect to the cooperative case is that now the two parties

converge (equally orderly) to opposite decisions, according to the

faction to which each individual belongs to.

For opinions that converge to a steady state such as those

represented here, the property DyD~DxD across all the gauge

transformations implies that all the corresponding dynamical

systems have the same convergence speed, see Fig. 4(D). We

deduce therefore that in a structurally balanced community

formed by friends and adversaries, the process of opinion forming

is (dynamically) identical, up a to a gauge transformation, to the

one described by the all-friends community. The splitting into

friends and adversaries only changes the sign of the opinion vector

x(t) which reflects now the polarized subdivision. The case of

opinions triggered by a single individual is shown in Fig. 4. In

particular in this model (with the assumption of all identical

kinetics adopted in the simulations, see Text S1), the strength of

the opinion of an individual at steady state is not a function of the

in-degree of friends or of adversaries alone, but only of the total in-

degree of relationships of an individual, regardless of their sign, see

Fig. 4(A) vs (B).

Figure 4. Collective opinions triggered by the opinion of a single individual, in the structurally balanced case. Both (A) and (B) show
how the community becomes polarized into two factions with opposite opinions. (A): The color of a curve is proportional to the difference in the in-
degree between friends and adversaries. The two highlighted curves represent the individuals with the most of friends (pink) and adversaries (cyan).
(B): for the same dynamics as in (A) the color now represents the total in-degree of an individual, regardless of the sign of the relationship. Clearly the
strength of an opinion depends on the total number of relationships, rather than on the proportion friends/adversaries. (C): using the color-code of
(A), the scatter plot shows the steady state x(t) at t~100 against the row sum of the sociomatrix A (negative sum means the individual has more
adversaries than friends, positive sum the opposite). (D): using the color-code of (B), the steady state x(t) at t~100 is compared with state y(t) for the

cooperative system one obtains gauge transforming the system with ~DD (see also Fig. S5).
doi:10.1371/journal.pone.0038135.g004
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Discussion

While the connection between structural balance and monotonic-

ity is not new [7], the novelty of this paper is the use of this connection

to draw conclusions on plausible opinion dynamics taking place on

structurally balanced communities. A structurally balanced network

represents a perfectly polarized community in which the drawing of a

line separating friends from enemies is always an unambiguous

process (compare Fig. 1 and Fig. S2). It is this lack of ambiguity that

yields the high predictability of opinions. The key assumption for this

to happen, that the opinions of friends exercise a positive influence

and those of enemies a negative one, is realistic in this context. Most

importantly, this assumption is needed only in qualitative terms, in the

sense that it is not related to the specific values assumed by the Fij but

only to their sign. This is important in our case, as the functional form

of a dynamical process of opinion forming is necessarily known only

in qualitative terms. The observation also implies that our results are

robust, as they hold for any Fij (and hence for any f ) taking values in

the correct orthant. For example, the reasonable scenario that an

individual is much more sensitive to the opinions of his friends than to

those of his enemies (i.e., that DFij D large only when Fijw0) is

compatible with our model. As already mentioned, in the Ising spin

models of Statistical Physics, balance corresponds to lack of true

disorder (or frustration, as it is commonly called in that literature). It is

worth remarking that even in this context only the signs of the edges

(i.e., the signs of the entries of A) matter, rather than their specific

magnitude.

In the original formulation of Heider [3], only the structural

balance of triads of individuals was considered. Clearly the Cart-

wright-Harary generalization used here, that structural balance is

equivalent to all semicycles of lengthw1 being positive [4], subsumes

Heider’s length-3 cycles situations. For graphs that are not fully

connected [10,33], the opposite is not necessarily true, see Fig. S4.

A case frequently studied in the Statistical Physics literature

deals with defining suitable dynamics of edge sign changes able to

‘‘steer’’ a frustrated network towards a structurally balanced sign

configuration [10,26,27,33]. This type of operations are gauge

inequivalent and at each step they alter the true disorder (and

hence the level of balance) of the network. Although the task is

often to iteratively reduce the disorder of a given signed network

and hence to obtain asymptotically a structurally balanced

network, this type of process is fundamentally different from the

monotonicity-induced dynamical properties of interest here, which

require a ‘‘quenched’’, frustration-free sociomatrix to start with.

For social communities such as those described in this work,

characterized by a fixed topology (represented by the sociomatrix A)

and ‘‘quenched’’ sign assignments to the edges, continuous-time

dynamics of opinion forming is in our knowledge studied only in the

non-negative sociomatrix case [34,35]. This corresponds to a special

case of what is studied here, namely the cooperative systems in

which negative influences are banned. In the context of opinion

forming, restricting to non-negative influences can represent an

undesirable (and unnecessary) limitation. Notice how all results

obtained for non-negative sociomatrices can be readily extended to

signed sociomatrices by means of gauge transformations.

While many real social networks are evolving, in the sense that new

links are added or removed at all times, or edge signs are switched,

there are however cases where our assumptions (fixed topology, fixed

signs and structural balance) are reasonable, like two-party political

assemblies. Looking for example at the recent records of the US

congress, a situation that describes well the significance of negative

influences is the Summer 2011 deadlock on raising the national debt

ceiling: in this case the antagonism and ideological divide between the

two main political factions was the main origin of the legislative

gridlock. Needless to say, countless similar examples can be found in

basically all two-party democratic systems.

In the polarized scenario of a structurally balanced social

community, a gauge transformation has also the interpretation of

individuals leaving a party to join the opposite party. When this

happens, friends become adversaries and viceversa (i.e., for the i-th

individual the influences Fij change sign). In our models, this triggers

a rapid transient in which the individuals adopt the views of their

new friends. An example of the realignment of opinions that follows

such a move is shown in Fig. 5. Also this ‘‘turncoat’’-like behavior

may sound familiar in some highly polarized political contexts.

Conclusion
In conclusion, in structurally balanced signed networks the

process of opinion forming is highly predictable with no other detail

than the sociomatrix. This observation suggests that the continuous-

time evolution that describes the formation of the opinions in the

members of the community must be itself ‘‘dynamically trivial’’,

although governed by ODEs which can be (plausibly) nonlinear,

time-varying, coupled and high-dimensional. A number of reasons

and formal analogies suggests that the class of monotone dynamical

systems is a natural candidate for this role.

Supporting Information

Figure S1 The functional forms used for the dynamical
system. The derivative of xi is composed of a sum of modified

Michaelis-Menten functionals which are monotone in R and have

positive slope for a friendly relationship (blue curve in the left

panel), negative slope for an adversary (red curve in the right

panel). A summation of such positive/negative MM-like terms is

completed by a first order degradation term (green, in both panels)

which represents a forgetting factor in each individual.

(TIF)

Figure 5. Switching party. A fraction of one of the two parties
(individuals in red) joints the other faction at t~50. In our model this
corresponds to applying a gauge transformation to the individuals in
question: in the sociomatrix friends become adversaries and viceversa.
This results in a change of sign of the corresponding rows/columns of
the Jacobian and induces a rapid realignment of the individuals to
opposite opinions. The network rapidly reaches a new steady state,
differing for the old one only for the sign of the opinions of the red
individuals.
doi:10.1371/journal.pone.0038135.g005
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Figure S2 Non-monotone system. (A): Example of non-

monotone (or non-structurally balanced) network. There is no

bipartition of the graph such that the corresponding cut set is

composed of all and only red edges. Negative cycles (and

semicycles) are present in the signed graph. (B): A simulation of

the dynamical system of (A) using the functional form y(x) of eq.

(S4) of the Text S1 yields sustained oscillations, a behavior which is

unfeasible for a monotone system.

(TIF)

Figure S3 Monotone but not strongly monotone system.
(A): The graph of the network is not irreducible. The leftmost

individual (x1 in the simulations) cannot be influenced by any of

the other individuals. The dynamics of this network cannot be

strongly monotone, although all directed cycles (and semicycles)

are positive. (B): choosing s~½1 1 1 {1 {1�, where the last two

individuals are drawn in green in (A), 0vsx(0) 0%sx(t),
hence the system is not strongly monotone. The system is however

monotone: 0ƒsx(0) [0ƒsx(t). (C): limt?? x1(t)~0 regardless

of the initial condition, meaning that the individual x1 is not taking

side in the decision process.

(TIF)

Figure S4 Non structurally balanced signed graph with
all positive length-3 cycles. The graph shows a social network

in which all cycles of length 3 are positive, but there are cycles of

length w3 that are negative. The social network is therefore not

structurally balanced, although it passes Heider test on all triads.

(TIF)

Figure S5 Two-party vs cooperative dynamics: time
course. The solution x(t) of a two-party monotone system

(vertical axis) at various times is compared with its gauge-

transformed cooperative system y(t)~~DDx(t) (horizontal axis).

Clearly Dy(t)D~Dx(t)D also during the transient, meaning that the

convergence rate is the same across gauge equivalent systems. The

color of each point is proportional to the number of relationships

(friends plus enemies).

(TIF)

Text S1 A more detailed model formulation: decentral-
ized additive nonlinear systems.

(PDF)
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