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We investigate the nonlinear dynamics of a periodic chain of bistable elements consisting of masses connected

by elastic springs whose constraint arrangement gives rise to a large-deformation snap-through instability. We

show that the resulting negative-stiffness effect produces three different regimes of (linear and nonlinear) wave

propagation in the periodic medium, depending on the wave amplitude. At small amplitudes, linear elastic waves

experience dispersion that is controllable by the geometry and by the level of precompression. At moderate to

large amplitudes, solitary waves arise in the weakly and strongly nonlinear regime. For each case, we present

closed-form analytical solutions and we confirm our theoretical findings by specific numerical examples. The

precompression reveals a class of wave propagation for a partially positive and negative potential. The presented

results highlight opportunities in the design of mechanical metamaterials based on negative-stiffness elements,

which go beyond current concepts primarily based on linear elastic wave propagation. Our findings shed light on

the rich effective dynamics achievable by nonlinear small-scale instabilities in solids and structures.
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I. INTRODUCTION

The periodic arrangement of small-scale building blocks

results in acoustic or mechanical metamaterials [1], which

have attracted great attention because of their extremely

rich field of applications including acoustic wave guides and

filters [2,3], acoustic lenses and diodes [4,5], sound isolators

and sensors [6,7], and acoustic cloaks and sonar stealth

technologies [8,9]. Design strategies commonly exploit the

scattering of elastic waves in periodic media at characteristic

frequencies in all or specific directions [10–12] as well as

resonant phenomena capable of absorbing energy on lower

scales by local resonators [5,13,14]. In all these examples,

the careful microscale periodic architecture of multiscale

engineered material systems leads to an interesting or ben-

eficial effective dynamic behavior on the macroscale. Besides

pronounced acoustic band gaps [15,16], this design paradigm

has resulted in negative effective dynamic stiffness [17] and

mass density [18,19] and combinations of both [20]. Here

negative stiffness and negative mass density refer to the ef-

fective dynamic properties: An elastic system containing only

positive-stiffness elements can demonstrate negative effective

dynamic quantities near resonance. All these phenomena in

the linear elastic regime are well understood.

Static negative (incremental) stiffness arises from insta-

bilities in solids and structures when the energy landscape

loses (some notion of) convexity. Bistable elements such as

the spring configuration schematically shown in Fig. 1 make

an excellent example: The potential energy’s nonconvexity

provides the system with an unstable regime of negative energy

curvature (i.e., negative incremental stiffness) whose nonlinear

force-displacement relation leads to a spontaneous snapping

from one stable equilibrium to the next energy minimum

if pure tractions are applied. The same phenomenon can

be observed in prestressed buckled structural members [21].

*kochmann@caltech.edu

Furthermore, solids undergoing phase transitions or domain

switching display a similar instability on the microscale when

the crystal lattice transforms from one energy-minimizing

phase into another (or into a mixture of variants) under

the action of external stimuli such as thermal [22,23] or

electric fields [24,25] or under imposed deformation or applied

loads [26,27]. In all systems, a negative curvature of the energy

landscape implies a violation of positive definiteness of the

incremental elastic modulus tensor, which has been referred

to as (static) negative stiffness [28,29].

While unconstrained homogeneous solids with static neg-

ative stiffness are thermodynamically unstable [30], the pos-

sibility to stabilize negative stiffness in heterogeneous media

(e.g., non-positive-definite phases in linear elastic composite

materials [31,32]) has become a focus of scientific interest due

to the exciting effective physical properties that may arise from

the combination of positive- and negative-stiffness phases in

a composite system. Examples include extreme values of the

effective viscoelastic moduli [29,33], the piezo- and pyroelec-

tric as well as thermoelastic coefficients [34], and extreme

effective dynamic moduli [35]. The effective quasistatic and

dynamic behavior of systems containing negative-stiffness

phases has been subject to substantial investigation both

theoretically [31,36–38] and experimentally [23,29,39–41].

However, such studies to date have focused on the linear elastic

regime.

The rich dynamics of physical, chemical, and biological

systems containing bistable elements have been studied exten-

sively, demonstrating, among other things, the formation of

solitary waves. Previous studies on the nonlinear dynamics

of discrete systems have used various phenomenological

potentials of the Frenkel-Kontorova form giving rise to a

kink soliton solution. For example, periodic potentials of

Sine-Gordon type, nonsinusoidal and multibarrier potentials

[42–45], and anharmonic potentials have been used to

model such diverse physical systems as dislocation dynam-

ics [46–50], incommensurate structural transitions in surface

physics [51–53] and dielectrics [54,55], ferromagnetic and
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FIG. 1. (Color online) Bistable element consisting of two elastic

springs and a point mass, energy ψ(u), and force F (u).

antiferromagnetic domain wall transitions [56–58], and molec-

ular shock interactions [59,60], to mention but a few. The

mechanical response of carbon nanotubes [61,62] as well

as of cellular structural solids [63], has been explained on

the basis of buckling or snapping instabilities arising from

systems with multiple stable configurations. Moreover, the

dynamics of atomic-scale configurational changes as well as

the mechanisms of damage and fracture have been analyzed

by recourse to chains of elements with a nonmonotonic

force-displacement (or stress-strain) response; see, e.g.,

Refs. [64–71].

The dynamic response of such nonmonotonic force chains

was shown theoretically to result in solitary waves [44,45,72–

74]. In addition, previous results have shown that chains

of elements with nonmonotonic (piecewise-linear) force-

displacement relations can dissipate energy at a fast rate by

transforming kinetic energy into high-frequency oscillations

(so-called twinkling modes). This was later extended to chains

with smooth nonmonotonic force-displacement relations in a

comprehensive stability analysis [75]. It was also experimen-

tally demonstrated in chains of granular particles with a non-

smooth contact interaction [76]. Other relevant research has

focused on the quasistatic response, including the derivation

of atomically informed stress-strain relations [77] or studies of

the hysteresis and dissipative effects in elastoplasticity [78,79].

Although the beneficial effects of negative-stiffness ele-

ments on the effective dynamic performance of acoustic or

mechanical metamaterials and composites is well known [38],

previous research has focused on the linear elastic regime.

However, as discussed above, bistable or multistable build-

ing blocks in periodic solids and structures also promise

interesting nonlinear dynamic effects, including solitary-wave

propagation, which provides opportunities to focus acoustic

signals in mechanical metamaterials [4,80,81]. Homogeneous

solids undergoing finite elastic deformation [82] as well as

periodic media experiencing nonlinear elastic instabilities [83]

have been shown to exhibit acoustic band gaps that are

controllable by the amount of nonlinear predeformation, yet

the investigated waves again operate in the linear elastic

regime. To date, only one example of a periodic elastic

mechanical system has been reported that produces Sine-

Gordon solitons by allowing a kink propagation in the

form of elastically connected rotating pendulums [84–88].

The weakly or strongly nonlinear response of elastic media

containing negative-stiffness elements such as the bistable

spring configuration shown in Fig. 1 has remained widely

unexplored, in part because such instabilities in solids and

the resulting nonlinear effective dynamics are mathematically

complex and make analytical solutions a rare find.

Here we study a mechanical system capable of propagating

impact pressure waves in three different regimes, serving as

a model for the creation of nonlinear acoustic metamaterials

with static negative-stiffness elements. We present closed-form

analytical results for the nonlinear response of a chain of

bistable elements consisting of elastic springs and point

masses. The specific configuration of the periodically repeated

elementary unit cell displays a continuous nonmonotonic

force-displacement relation with two stable equilibria and one

unstable equilibrium configuration giving rise to temporary

negative (static) stiffness. We have deliberately chosen a

simple albeit instructive mechanical system that enables us to

study the rich dynamics of periodic chains of bistable elements

in the full range of its linear to strongly nonlinear behavior.

The chosen spring configuration shows the same features as

prebuckled structures (while allowing for a clean analytical

investigation) and the conclusions drawn here can qualitatively

be transferred to numerous structural instabilities. In fact,

the interesting wave propagation characteristics reported here

hint at the design of novel mechanical metamaterials with

controllable wave propagation in the linear and nonlinear

regimes, with applications ranging from waveguides and

amplifiers to vibration attenuators. The chosen system admits

a clean identification of all model parameters and allows for

experimental implementation. We note that in our analysis

we assume conservative systems and thereby neglect energy

dissipation through internal friction or other damping mecha-

nisms that are usually found in mechanical systems. Of course,

the presence of damping will alter the response of the system

(our numerical examples contain small amounts of damping

to remove transient effects, whereas all analytical solutions

assume energy conservation).

II. BISTABLE CHAIN CONFIGURATION

A. Geometry and kinetics

Consider the bistable structure consisting of two identical

and symmetrically arranged linear elastic springs with stiff-

ness k1 as shown schematically in Fig. 1 in its unstressed

equilibrium configuration. Both springs are connected by a

joint allowing for rotation and carrying point mass m. Their

free ends are attached to joints, which allow for rotation but

prevent translation. Due to symmetry, a horizontal force on

mass m will result in a horizontal displacement u, so we may

treat the system as one dimensional in the following. The total

potential energy stored by the structure is given by

ψ(u) = k1[l(u) − l0]2, (1)

where

l(u) =
√

(L − u)2 + (δ/2)2 (2)

is the deformed length of each spring with geometric details

δ and L introduced in Fig. 1. Consequently, the initial spring

length is given by l0 = l(0). Energy (1) is illustrated in Fig. 1

as a function of the displacement u, which demonstrates two

stable equilibria (i.e., local energy minima) and one unstable

equilibrium configuration (corresponding to the local energy
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FIG. 2. (Color online) Periodic chain of bistable elements.

maximum). The structure experiences negative stiffness as it

passes through this unstable regime.

To arrive at a periodic one-dimensional chain, we consider

an array of N such bistable elements connected by horizontal

linear springs of stiffness k2 that act as force transfer elements.

Identical masses m are placed at each node of the chain, as

shown schematically in Fig. 2. The total Hamiltonian of the

spring system can be written as

H (u,u,t ) =
N

∑

i=1

[

m

2
u2

i,t + ψi(ui)

]

+
N−1
∑

i=1

k2

2
(ui+1 − ui)

2,

(3)

where ψ(ui) is the potential energy stored by the ith bistable

pair of springs, u = {u1, . . . ,uN } denotes the vector of all

nodal displacements depending on time t , and a comma in

indices denotes differentiation with respect to the ensuing

variable(s). Therefore, the rate of change of momentum of

mass i follows from Hamilton’s equation, i.e.

pi,t = mui,t t = −
∂H

∂ui

. (4)

Application of (3) yields

mui,t t + k2(−ui+1 + 2ui − ui−1) − F (ui) = 0, (5)

where the internal force applied to mass i by the bistable spring

element was introduced as

F (u) = −ψ ′(u) = −2k1(L − u)
l(u) − l0

l(u)
. (6)

B. Scaling and continuum limit

Dimensionless equations will enable us to investigate the

mechanics of the system without having to specify geometry

and material parameters explicitly. In order to reduce the

problem to a self-similar type, we scale the displacements

and the nodal spacing with respect to their respective length

scales. For a lattice parameter a (initial spacing between two

masses), we define

x̄ =
x

a
, ū =

u

L
, (7)

where x̄ and ū are the dimensionless x coordinate and

displacement, respectively. Therefore, the force F (u) can be

expressed in dimensionless form as

F̄ (ū) =
F (u)

k1L
= 2(1 − ū)

(

1 −
l̄0

l̄(u)

)

(8)

with

l̄(ū) =
√

(1 − ū)2 + d2, d =
δ

2L
, l̄0 = l̄(0). (9)

This suggests that the dimensionless force of the bistable

spring element only depends on ratio d = δ/2L and not on

actual lengths. The governing equation (5) can be nondimen-

sionalized by using the same force scale and defining two

new dimensionless parameters, viz., the stiffness ratio Kr and

the characteristic time scale T (the period associated with

the eigenfrequency of mass m attached to a single spring of

stiffness k1):

Kr =
k2

k1

, T =
√

m

k1

. (10)

This gives

ūi,t̄ t̄ + Kr (−ūi+1 + 2ūi − ūi−1) − F̄ (ūi) = 0. (11)

We choose the origin such that mass i is initially located at

xi = ia and positions are normalized by defining

x̄i =
xi

a
= i so that �x̄ = x̄i − x̄i−1 = 1. (12)

In the continuum limit (a → 0), ūi+1 and ūi−1 can be

written, using a Taylor expansion, as

ūi±1 = ūi ±
∂ūi

∂x̄
+

1

2

∂2ūi

∂x̄2
±

1

6

∂3ūi

∂x̄3
+

1

24

∂4ūi

∂x̄4
+ T , (13)

where T denotes higher-order terms. By substituting (13)

into (11), we obtain the dimensionless continuum limit of the

equation of motion

ū,t̄ t̄ − Kr

(

∂2ū

∂x̄2
+

1

12

∂4ū

∂x̄4
+ T

)

− F̄ (ū) = 0. (14)

C. Dispersion relation and long-wavelength approximation

In order to determine the dispersion relation of the periodic

chain in the continuum limit, let us first consider the linear

regime. Here the equation of motion can be approximated by

linearizing (8) about ū = 0, which gives

ū,t̄ t̄ − Kr

(

∂2ū

∂x̄2
+

1

12

∂4ū

∂x̄4
+ T

)

+ ω2
0ū = 0, (15)

where

ω2
0 =

2

1 + d2
. (16)

We assume a traveling-wave solution of the form

ū = ûei(q̄x̄−ω̄t̄), (17)

with q̄ = qa and ω̄ = ωT . Substitution of (17) into (15) yields

the continuum dispersion relation

ω̄(q̄) =
√

ω2
0 + Kr

(

q̄2 − 1
12

q̄4 + T
)

. (18)

In the long-wavelength limit q̄ = qa ≪ 1 the dispersion

relation can be approximated by only retaining the leading-

order quadratic term and dropping all higher-order terms such

that (18) becomes

ω̄(q̄) ≈ ω̄c(q̄) =
√

ω2
0 + Kr q̄2. (19)
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FIG. 3. (Color online) Dispersion relation comparison.

The exact dispersion relation for the discrete system is

obtained by substituting the traveling wave form (17) into

the discrete equation of motion (11), which gives

ω̄d (q̄) =
√

ω2
0 + 2Kr (1 − cos q̄). (20)

Obviously, in the long-wavelength limit q̄ ≪ 1 [keeping only

quadratic terms in (20)], the two dispersion relations (19)

and (20) agree. Figure 3 compares the exact discrete and

the approximate continuum dispersion relations (for Kr = 10)

and demonstrates excellent agreement with deviations of less

than 3% up to q̄ = 0.86. Therefore, in the following we only

consider long wavelengths, for which the governing equation

assumes wave equation character (with dimensionless wave

speed c̄2
0 = Kr ):

ū,t̄ t̄ − c̄2
0ūx̄x̄ − F̄ (ū) = 0. (21)

D. Regimes of wave propagation

Owing to the nonlinearity of force F̄ (ū), we can identify

three distinct regimes of wave propagation that depend on

the magnitude of the amplitude of ū and for each case we

seek solutions for the propagating wave by approximating the

nonlinear force in (21). We discriminate the following three

regimes of propagating waves: (i) For small amplitudes ū ≪ 1

we expand the nonlinear spring force to linear leading order as

F̄ (ū) ≈ −
2

1 + d2
ū = −ω2

0ū,

(ii) for moderate amplitudes ū < 1 we approximate the

nonlinear force by a third-order Taylor expansion, i.e.,

F̄ (ū) ≈ −
2

1 + d2
ū +

3d2

(1 + d2)2
ū2 −

d2(d2 − 4)

(1 + d2)3
ū3,

and (iii) for large amplitudes ū > 1 we use the exact spring

force

F̄ (ū) = 2(1 − ū)

(

1 −
l̄0

l̄(u)

)

. (22)

Figure 4 illustrates the three approximations of the nonlinear

spring force in comparison with the exact force for the

specific choice of d = 1. We note that the nodal spacing a
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FIG. 4. (Color online) Nonlinear spring force and approxima-

tions introduced for the three regimes for d = 1.

is independent of the characteristic spring length L and of

ratio d, so in the long-wavelength limit the governing equation

for all three regimes is given by (21). The special case of

amplitude ū = 1 is excluded because ū = 1 corresponds to an

unstable equilibrium configuration of the system. The smallest

perturbation is sufficient to cause the system to snap into either

energy well and thus to transform the scenario into either the

ū > 1 or the ū < 1 case.

In the following sections we will investigate the wave

propagation behavior in all three regimes. To confirm our

theoretical solutions, we will compare to numerical results

obtained for the example parameters d = 1, T = 1, and Kr =
10, from which the three regimes are chosen as (i) |ū| � 0.05,

(ii) |ū| � 0.3, and (iii) |ū| � 2. Convincing agreement has

been verified for various combinations of these parameters;

for brevity we present here only this specific case.

Numerical solutions are obtained from a chain of 100

elementary unit cells modeled in the time domain by an

implicit finite-difference scheme of Newmark-β type with

parameters chosen to minimize numerical damping (β =
0.25 and γ = 0.5). Displacement and/or velocity boundary

conditions are directly imposed on the first node of the chain,

while the remaining nodes may vibrate freely. All nodes are

constrained to only move horizontally.

III. WAVE PROPAGATION RESULTS

A. Small amplitude: Linear solution

1. Analytical solution

The equation governing the wave propagation in this regime

is given by

ū,t̄ t̄ − c̄2
0ūx̄x̄ + ω2

0ū = 0, (23)

with ω2
0 from (16). This is the dimensionless linear Klein-

Gordon equation [89] for the unknown displacement field

ū(x̄,t̄). The theoretical solution for this problem is of the form

ū(x̄,t̄) = A cos(q̄x̄ − ω̄t̄) + B sin(q̄x̄ − ω̄t̄), (24)

where the dimensionless wave number q̄ and the dimensionless

angular frequency ω̄ are related by the dispersion relation (19).

Therefore, this regime admits the propagation of linear elastic
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FIG. 5. (Color online) Small-amplitude regime: numerical re-

sults compared to the linear Klein-Gordon solution.

waves at frequencies outside the stop bands characterized by

the dispersion relations.

2. Numerical results

For the numerical benchmark test, the first node of the

chain of bistable elements is excited by time-harmonic

displacements (we enforce displacement and corresponding

velocity boundary conditions at the first node) according to

ū1(t) = û cos(ω̄t̄), ū1,t (t) = −ûω̄ sin(ω̄t̄). (25)

As only small amplitudes are permitted in this regime, we

choose û = 0.05 along with a value of ω̄ = 2 such that the

long-wavelength limit holds, which becomes apparent from

the dispersion relations in Fig. 3. Transient effects are removed

by artificial initial damping.

Figure 5 shows a comparison of the numerical solution

with the theoretical solution in space, at a specific instant of

time. The two solutions match with minor deviations due to

numerical noise arising from the discrete solution (as the wave

passes through the long chain towards its rightmost node, a

weakly nonlinear effect causes the curve to slightly deviate

from the theoretical solution). The wave speed can be inferred

from the x-t contour diagram of the numerical solution shown

in Fig. 6. The observed velocity of propagation agrees with

the phase speed computed from the dispersion relation (also

included as a solid red line). Nonlinear effects therefore only

play a negligible role in this regime of small amplitudes, so

the linear Klein-Gordon solution is a legitimate approximation

to describe and explain the wave propagation behavior in this

regime.

B. Medium amplitude: Weak nonlinearity

1. Analytical solution

For moderate displacements, the dimensionless governing

equation in the continuum long-wavelength limit is approxi-

mated by

ūt̄ t̄ − c̄2
0ūx̄x̄ +

2

1 + d2
ū −

3d2

(1 + d2)2
ū2 +

d2(d2 − 4)

(1 + d2)3
ū3 = 0,

(26)

FIG. 6. (Color online) Small-amplitude regime: x-t contour dia-

gram of the numerical solution; for comparison, the solid red line

represents a positive characteristic of the theoretical solution.

an equation of cubic nonlinear Klein-Gordon type [90,91]

for the unknown displacement field ū(x̄,t̄). The solution can

be found by a perturbation multiple-scale expansion [92].

Therefore, we use the ansatz

ū(x̄,t̄) = ǫφ0(x̄,t̄) + ǫ2φ1(x̄,t̄) + ǫ3φ2(x̄,t̄) + O(ǫ4), (27)

where |ǫ| ≪ 1 is a small characteristic length scale. For the

current problem, the expansion is restricted to third order,

since this approximation demonstrates sufficient accuracy for

the medium amplitude regime; cf. Sec. II D. Suppose that in

addition to variables x̄ and t̄ the solution depends on multiple

scales of position and time. Then new scaled variables can be

defined by

Xi = ǫi x̄, Ti = ǫi t̄ . (28)

Again, we limit scales to order 3. Consequently, we now seek

solutions

φi(x̄,t̄) = φi(X0,X1,X2,T0,T1,T2). (29)

Derivatives with respect to the primary variables become

∂

∂t̄
=

2
∑

i=0

ǫiDi,
∂

∂x̄
=

2
∑

i=0

ǫiDXi, (30)

where we introduced operators

Di =
∂

∂Ti

, DXi =
∂

∂Xi

. (31)

Substitution of the chosen representation of the displacement

field (27) into the governing equation (23) and inspecting the

equation at O(ǫ) leads to

Lφ0 = 0 with L = D2
0 − c̄2

0D
2
X0 + ω2

0. (32)

Hence, the solution for the first-order expansion is of the form

φ0 =A(X1,X2,T1,T2)ei(q̄X0−ω̄T0) + c.c. (33)

Here and in the following c.c. stands for the complex conjugate

(for conciseness we do not write out both terms; the complex

conjugate terms follow analogously). Frequency ω̄ and wave

number q̄ are related by the first-order dispersion relation for
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small amplitudes discussed above. At O(ǫ2), the governing

equation reads

(D0 + ǫD1)2(ǫφ0 + ǫ2φ1) − c̄2
0(DX0 + ǫDX1)2(ǫφ0 + ǫ2φ1)

+
2

1 + d2
(ǫφ0 + ǫ2φ1) −

3d2

(1 + d2)2
(ǫφ0 + ǫ2φ1)2 = 0,

which can be algebraically reduced to the simpler form

Lφ1 = −(2D0D1 − 2c2
0DX0DX1)φ0 +

3d2

(1 + d2)2
φ2

0 . (34)

Substitution of (33) into (34) and defining σ = q̄X0 − ω̄T0

results in

Lφ1 =
(

2iω̄
∂A

∂T1

+ 2iq̄c̄0
2 ∂A

∂X1

)

eiσ

+
3d2

(1 + d2)2
A2ei2σ +

3d2

(1 + d2)2
|A|2 + c.c. (35)

For simplicity the overbars on c2
0, q, and ω will be dropped

henceforth. Because σ is the eigenfrequency of the operator

L, the coefficient of the resonant term cancels, implying

ω
∂A

∂T1

+ qc2
0

∂A

∂X1

= 0. (36)

By introducing the group velocity vg = qc2
0/ω (which can be

verified from the dispersion relation), we know that function

A must be of the form

A(X1,X2,T1,T2) = A(X1 − vgT1,X2,T2). (37)

Therefore, (35) reduces to

Lφ1 =
3d2

(1 + d2)2
A2ei2σ +

3d2

(1 + d2)2
|A|2 + c.c. (38)

The inhomogeneous solution is determined from the ansatz

φ1 = B(X1,X2,T1,T2)e2iσ + C(X1,X2,T1,T2)

+ c.c., (39)

which is substituted into (38). As A does not depend on X0

and T0, the nonoscillating terms corresponding to the absolute

value cancel on both sides. Hence, only the resonant terms

remain:
(

−4ω2 + 4c̄0
2q2 + ω2

0

)

Be2iσ + ω2
0C

=
3d2

(1 + d2)2
A2ei2σ +

3d2

(1 + d2)2
|A|2 + c.c. (40)

Solving for B and C (ignoring complex conjugates) results in

B = −
d2

2(1 + d2)
, C =

3d2

2(1 + d2)
|A|2, (41)

which implies that

φ1 = −
d2

2(1 + d2)
A2ei2σ +

3d2

2(1 + d2)
|A|2 + c.c. (42)

Similarly at O(ǫ3), we have

(D0 + ǫD1 + ǫ2D2)2(ǫφ0 + ǫ2φ1 + ǫ3φ2)

− c2
0(DX0 + ǫDX1 + ǫ2D1 + ǫ3φ2)2(ǫφ0 + ǫ2φ1 + ǫ3φ2)

+ω2
0(ǫφ0 + ǫ2φ1 + ǫ3φ2)

+
d2(d2 − 4)

(1 + d2)3
(ǫφ0 + ǫ2φ1 + ǫ3φ2)2

−
6d2

(1 + d2)2
(ǫφ0 + ǫ2φ1 + ǫ3φ2)3 = 0, (43)

which, after canceling appropriate terms, reduces to

Lφ2 = −
d2

1 + d2

(

2A
∂A

∂T1

(−iω) − c2
02A

∂A

∂X1

(iq)

)

ei2σ

−
(

2
∂A

∂T2

(−iω) − 2c2
0

∂A

∂X2

(iq) +
∂2A

∂T 2
1

− c2
0

∂2A

∂X2
1

)

eiσ

+
12d2

(1 + d2)2
|A|2Aeiσ −

4d2(d2 − 1)

(1 + d2)3
A3ei3σ . (44)

Due to (36), the coefficient of the ei2σ term vanishes. To

ensure finite amplitudes, the resonant term proportional to

eiσ must not contribute to the solution. Consequently, the only

remaining term gives

Lφ2 = −
4d2(d2 − 1)

(1 + d2)3
A3ei3σ , (45)

with the solution

φ2 = −
d2(d2 − 1)

4(1 + d2)2
A3ei3σ . (46)

Since the coefficient of the resonant term in (44) must vanish,

we also have

2
∂A

∂T2

(−iω) − 2c2
0

∂A

∂X2

(iq) +
∂2A

∂T 2
1

− c2
0

∂2A

∂X2
1

−
12d2

(1 + d2)2
|A|2A = 0. (47)

Let us introduce the following new variables:

ξ1 = X1 − vgT1, η1 = T1,
(48)

ξ2 = X2 − vgT2, η2 = T2.

Substitution into (47) and simplification finally yields (with

overbars for the final solution)

i
∂A

∂η2

+
c̄2

0 − v̄2
g

2ω̄

∂2A

∂ξ 2
1

+
6d2

ω̄(1 + d2)2
|A|2A = 0. (49)

Equation (49) is a nonlinear Schrödinger (NLS) equation

for the unknown function A. Therefore, A scales with ǫ2 in

time and with ǫ in space. In general, a NLS equation of the

form

i
∂A

∂η2

+ P
∂2A

∂ξ 2
1

+ Q|A|2A = 0 (50)

with coefficients P,Q ∈ R has two types of solutions [89,93]:

PQ > 0 ⇒ envelope solitons,

PQ < 0 ⇒ dark solitons. (51)

In the current case, one can verify that

PQ =

(

c̄2
0 − v̄2

g

2ω̄

)

(

6d2

ω̄(1 + d2)2

)

=
3c2

0ω
2
0d

2

ω̄4(1 + d2)2
> 0 (52)
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for all admissible values of ω̄. Therefore, the solution of the

displacement field in this regime can be characterized as an

envelope soliton [94], which is caused by a Benjamin-Feir

modulational instability [93,95] of the wave as it propagates

through the system for PQ > 0. A similar kind of mod-

ulational instability was observed in Sine-Gordon and φ4

problems [72]. The NLS equation can be solved exactly for

function A [96], giving

A = Vmsech

(

√

Q

2P
ǫVm(x̄ − vg t̄)

)

exp

(

i(ǫVm)2 Q

2
t̄

)

,

(53)

where Vm is the characteristic amplitude of the wave and

Q

2P
=

6d2ω̄2

c̄2
0ω

2
0(1 + d2)2

,
Q

2
=

3d2

ω̄(1 + d2)2
. (54)

Therefore, at O(ǫ) the displacement field can be expressed as

ū(x̄,t̄) = ǫA(x̄,t̄) exp(iσ ) + c.c. (55)

2. Numerical results

We use the same numerical setup as before to simulate

the wave propagation behavior in this regime, but we expand

the number of nodes to 200 (to ensure sufficient level of

detail to compare with the continuous solution). In order to

see the formation of an envelope soliton due to modulational

instability, a sinusoidal plane wave is imposed by the boundary

conditions at the first node, viz., by enforcing

ū1(t̄) =
{

û cos(ω̄t̄) for 0 � t̄ � τ̄

0 otherwise
(56)

and

ū1,t̄ (t̄) =
{−ûω̄ sin(ω̄t̄) for 0 � t̄ � τ̄

0 otherwise.
(57)

Instead of fixing the displacement at the first node for t̄ /∈ [0,τ̄ ],

one can leave the first node traction-free without significantly

affecting the solution. The boundary node at the other end of

the chain is kept traction-free for all times.
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FIG. 7. (Color online) Snapshots of the propagating wave (travel-

ing from left to right) at different instances of time show the evolution

of the envelope soliton. The sech-type envelope begins to form due

to self-modulation, as the wave passes through the lattice.
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FIG. 8. (Color online) Discrete Fourier transform of the spatial

variation of the waveform at a chosen instant of time.

Figure 7 illustrates numerical results for the specific choices

of û = 0.3, ω̄ = 3, and τ̄ = 10. Results clearly confirm the

propagation of a soliton, yet they show a variation of the

envelope soliton as it moves through the lattice. The envelope

of the waveform is seen to oscillate at a different frequency

than the applied frequency at the first node. In order to verify

the nature of the waveform, we show the Fourier spectrum in

Fig. 8. In avoidance of spectral leakage due to the limitations of

a discrete Fourier transform, Hann, Blackman, and Hamming

windows are used to determine the spectral content of the

signal. The resulting peak frequency corresponds to the spatial

wave number of the applied frequency. However, side lobes

form, which can be explained by the modulational instabil-

ity [93] caused by the weakly nonlinear effects discussed

above. Hence, wave propagation in this regime can indeed be

explained by the nonlinear Schrödinger and the cubic nonlinear

Klein-Gordon equations and numerical results confirm the

theoretical prediction of an envelope soliton. The envelope

appears to vary as it moves along the chain, yet the waveform

preserves it localized nature, leaving behind small-amplitude

high-frequency oscillations.

C. Large amplitude: Strong nonlinearity

1. Analytical solution

For the case of large amplitudes, we use the exact nonlinear

form of the potential energy. Therefore, the governing equation

in the continuum limit is

ūt̄ t̄ − c̄2
0ūx̄x̄ − F̄ (ū) = 0. (58)

For convenience, the overbars are omitted in the following.

We seek a traveling-wave solution of the form u(x,t) = u(x −
vt) = u(z), where v is the propagation velocity and z = x − vt

a reduced variable. Substitution into (58) gives

(

v2 − c2
0

)

uzz − F (u) = 0. (59)

Multiplication by du
dz

and integration leads to

v2 − c2
0

2

(

du

dz

)2

+ ψ(u) = C1, (60)
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where C1 is a constant of integration. The value of C1 can be

computed from the initial conditions

lim
z→∞

u(z) = 0, lim
z→∞

du(z)

dz
= 0, (61)

which translate into

C1 = 0. (62)

Therefore, after some rearrangement (60) becomes

√

c2
0 − v2

2

∫

du
√

ψ(u)
= z − z0, (63)

where z0 is another constant of integration. Performing the

integration results in

2
√

1 + d2
ln

(

a(u) +
a(u)

b(u)

√

1 + d2

)

+ ln

(

1 − a(u)

1 + a(u)

1 − b(u)

1 + b(u)

)

=

√

2

c2
o − v2

(z − z0) (64)

with the abbreviations

a(u) = u − 1, b(u) =
√

1 + d2(u − 1)
√

(u − 1)2 + d2
. (65)

In summary, the solution in the large-amplitude case is indeed

a propagating wave of type u(x,t) = u(x − vt). From (64) we

conclude that c0 > v, which implies that the wave speed is

subsonic. Although (64) cannot be inverted to solve for u(z)

explicitly, the relation shows that u(z) → 0 as z → ∞ and

that u(z) → 2 as z → −∞. In addition, the function can be

plotted parametrically for u ∈ (0,2), which is shown in Fig. 9.

Obviously, the wave front is localized and of kink soliton type,

which can be physically explained by the snap-through effect

of each spring from one stable configuration to the other. The

shape of the kink depends on the velocity of propagation with

higher velocity kinks having steeper slopes.

Numerical Result

Theoretical Result
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FIG. 9. (Color online) Comparison of the theoretical large-

amplitude solution and numerically determined wave profile (for

parameters d = 1, z0 = −93.2, and v = 2.812).

FIG. 10. (Color online) The x-t contour diagram of the numerical

solution for the large-amplitude regime. The red straight line is the

best-fit line corresponding to the leading edge characteristic.

2. Numerical results

We use the same numerical setup as before to simulate a

chain of 100 bistable spring elements. We apply to the first node

an initial velocity sufficiently high to make the first mass snap

to its other stable branch. The other end of the chain is kept free

at all times, i.e., zero tractions are enforced on that boundary.

A comparison of the numerically determined wave profile

and the theoretical exact solution propagating with the same

velocity is shown in Fig. 9. The perturbations in the numerical

solution with respect to the theoretical solution are caused due

discreteness effects [97,98]. To allow for a direct comparison,

the velocity of propagation in the numerical example is found

by linearly fitting the position of the leading edge in the x-t

contour plot in Fig. 10. The linear fit is shown in Fig. 11, which

shows that the velocity is not constant, but variations with

time are marginal, so we may assume the wave is traveling

at almost constant speed. Inserting the propagation velocity

into the theoretical solution shows an excellent match with

Best-fit line until t�250

Characteristic curve
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FIG. 11. (Color online) The characteristic curve corresponding

to the leading edge of the wave is shown in comparison with the

best-fit solution at t = 250. The slope of the line determines the

initial speed of the propagating wave. This speed is used to compute

the exact solution in the kink soliton propagation. The kink slows

down toward the end due to the energy radiated by the oscillatory

tail.
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the numerical wave profile, which confirms the accuracy of

the aforementioned analytical solution for the large-amplitude

regime. The propagating wave is of antisoliton nature with a

topological charge of −1.

3. Energy of the kink soliton

Bistable elements have been shown to produce twinkling,

which results in energy dissipation; see, e.g., Ref. [75] and

references therein. Here we disregard just oscillations and

focus on the propagating kink soliton whose energy can be

determined by integrating the Hamiltonian spatial density over

the complete lattice at any given time. The Hamiltonian density

per unit spacing in the continuum limit is given by

h(x,t) = u2
t + 1

2
c2

0u
2
x + ψ(u). (66)

In the large-amplitude case as derived in Sec. III C 1, we have

u(x,t) = u(x − vt) = u(z). Substitution into (66) gives

h(z) =
(

v2 + c2
0

2

)

u2
z + ψ(u). (67)

Replacing the value of ψ(u) by using (60), we arrive at

h(z) =
(

v2 + c2
0

2

)

u2
z +

(

c2
0 − v2

2

)

u2
z = c2

0u
2
z . (68)

Therefore, the total energy is computed by integrating h(z)

over the complete lattice, which results in

E =
∫ ∞

−∞
h(z)dz

=
c2

0
√

2
(

c2
0 − v2

)

[

d2 ln

(

1 +
√

1 + d2

√
1 + d2 − 1

)

− 2
√

1 + d2

]

.

(69)

Consequently, (69) implies that the energy increases with the

propagation speed of the soliton. In combination with results

from Sec. III C 1, we thus conclude that faster moving solitons

have a steeper slope and have higher energy.

D. Effect of precompression

For the linear, weakly nonlinear, and strongly nonlinear

regimes, we have shown how the wave characteristics (includ-

ing the dispersion relations, wave speeds, and wave profiles)

can be fine-tuned by changing the geometric parameter d. In

addition, the nonlinearity of the bistable spring elements ad-

mits tailoring of the dynamic response of the chain by applying

initial preloads. Specifically, assume identical constant forces

F0 are applied to all masses in their direction of motion (e.g.,

by arranging the chain of springs vertically and letting the

point masses predeform the bistable spring elements under the

action of gravity, while the connecting linear springs remain

unstretched in equilibrium). Consequently, all masses exhibit

an initial equilibrium displacement u0 that satisfies

F0 = −ψ ′(u0). (70)

Wave solutions are obtained by approximating the nonlinear

force-displacement relation about this new initial equilibrium

configuration. Let u denote the displacement from the new

equilibrium state so that the total force on a bistable spring

element becomes

F (u) = −ψ ′(u0 + u). (71)

By using the dimensionless definitions of Sec. II B, we arrive

at the equations of motion in the presence of preloads, viz.,

ūi,t̄ t̄ + Kr (−ūi+1 + 2ūi − ūi−1) − F̄ (ū) + F̄0 = 0 (72)

or, after substitution of (70) and (71),

ūi,t̄ t̄ + Kr (−ūi+1 + 2ūi − ūi−1) + ψ̄ ′(ū0 + ūi) − ψ̄ ′(ū0) = 0.

(73)

For small amplitudes (ū ≪ 1) we take

ψ̄ ′(ū0 + ūi) ≃ ψ̄ ′(ū0) + ψ̄ ′′(ū0)ūi, (74)

which again leads to a linearized Klein-Gordon equation, viz.,

ūi,t̄ t̄ + Kr (−ūi+1 + 2ūi − ūi−1) + ψ̄ ′′(ū0)ūi = 0. (75)

Therefore, the same solution derived above applies when

defining

ω2
0 = ψ̄ ′′(ū0) = 2

[

1 −
d2

√
1 + d2

[d2 + (ū0 − 1)2]3/2

]

, (76)

which naturally reduces to (16) when choosing ū0 = 0.

Therefore, predeformation u0 can be utilized to manipulate the

dispersion relation (19). We note that the amount of precom-

pression is limited before snapping occurs. Specifically, (76)

only yields real-valued wave speeds if

u0 � 1 − d
√

(1 + d−2)1/3. (77)

Next let us consider moderate amplitudes. The applicability of

this regime now depends on the predeformation. Here ψ ′(ū +
ū0) − ψ ′(ū0) = 0 generally has two solutions {ū∗,ū∗∗} with

ū∗ < ū∗∗. In the following, we assume moderate amplitudes

that satisfy ū∗ + ū0 < ū∗∗ to prevent snapping. A third-order

Taylor expansion of the nonlinear spring force turns (73) into

ūi,t̄ t̄ + Kr (−ūi+1 + 2ūi − ūi−1) + ψ̄ ′′(ū0)ūi

+ 1
2
ψ̄ ′′′(ū0)ū2

i + 1
6
ψ̄ ′′′′(ū0)ū3

i = 0. (78)

A multiple-scale expansion approach again leads to a nonlinear

Schrödinger equation, which in turn gives rise to a wave profile

of envelope soliton type as derived in Sec. III B, the details of

which are omitted here due to the close analogy to the previous

analysis.

Finally, in the case of large amplitudes we use the exact

forcing function, which gives rise to the governing equation in

the continuum limit of the following form:

ūt̄ t̄ − c̄2
0ux̄x̄ + ψ ′(ū + ū0) − ψ ′(ū0) = 0. (79)

The application of a preload F0 results in a change of the total

potential energy landscape due to the work performed by F0.

In particular, the two energy wells are no longer symmetric but

exhibit different energy levels (depending upon the direction

and magnitude of F0). Figure 12 shows the total potential

energy

E(u) = ψ(u + u0) − ψ ′(u0)u (80)

for positive and negative predeformation u0.
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FIG. 12. (Color online) Energy landscape E(u) with positive and

negative predeformation as well as without preloads.

When the force F0 points away from the direction of

snapping, it leads to an unstable kink that disintegrates into

ripples about the initial equilibrium point and does not show

interesting wave propagation phenomena (yet it allows for the

absorption of impact energy). However, when the preload is

in the direction of snapping, the energy landscape becomes

negative near its second well. To date, all models of the

Frenkel-Kontorova type have dealt with potentials that are

either fully positive or negative in the transition region. In

contrast, the mechanical system studied here produces a

potential that is partially positive and partially negative in the

transition region. Even for a small amount of precompression

(cf. Fig. 13) the stability of the kink increases and the

effect of discreteness (i.e., phonon radiation) to lower the

wave speed is reduced [97,98]. The x-t contour plot for

the wave propagation shown in Fig. 13 confirms that the

kink characteristic is now linear and hence the kink has

stabilized as compared to the case without precompression; cf.

Fig. 10.

Increasing the precompression creates a combination of a

kink and trailing oscillations that are localized as the wave

moves through the chain. After attaining a certain width

FIG. 13. (Color online) The x-t contour diagram of the numerical

solution for a precompression ū0 = 0.03. The kink characteristic is

straighter than the characteristic without precompression.
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FIG. 14. (Color online) (a) Wave profiles for ū0 = 0.3 and

t3 > t2 > t1. (b) The x-t contour diagram of the numerical solution

for a precompression of ū0 = 0.3.

of localization, the oscillations acquire a steady shape and

propagate with the kink velocity. Figure 14 illustrates a typical

wave profile and an x-t contour diagram for the case of

precompression (both have been obtained numerically). The

oscillations forming in the wake of the kink are bounded

by an envelope as in the case of the envelope soliton

forming under medium amplitudes; see Sec. III B. This can

be explained by the reduction in potential energy as each

spring transitions from one energy well to the other. As

shown in Fig. 12, a preload into the direction of snapping

results in the snapped potential well having lower energy.

Consequently, after snapping every mass has residual kinetic

energy. This energy, however, is insufficient for a spring to

snap back since part of the energy is carried away by the kink

soliton. Hence, the masses oscillate in the snapped well with a

medium amplitude giving rise to localization by modulational

instability as seen in the envelope soliton case in Sec. III B.

For these reasons, the predeformation results in a combination

of the two modes of kink and envelope soliton propagation

with an envelope solitonlike wave created behind the kink.

As may be expected, the velocity of the propagating wave

front increases with increasing precompression for a constant

input of energy as shown in Fig. 15. There is a sharp rise in the

velocity of propagation for small precompressions followed by

a fairly linear increase for large precompressions, ultimately

becoming supersonic.
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FIG. 15. (Color online) Variation of the kink propagation veloc-

ity with precompression for an initial (normalized) velocity of the

first node of v0 = 4. The dotted line shows the characteristic sound

speed c̄0 of the medium for comparison.

IV. CONCLUSION

We have shown that mechanical chains of bistable

nonlinear-elastic elements offer a rich dynamic response with

distinct regimes of wave propagation depending on the excita-

tion amplitude. For small amplitudes, the chain propagates

elastic waves in the linear regime characterized by wave

dispersion. For moderate amplitudes, owing to modulational

instability, an envelope soliton forms and propagates. For large

amplitudes, the strongly nonlinear chain shows topological

kink solitary waves. In all three regimes, we have derived

analytical solutions of the displacement field in the continuum

limit and we have demonstrated excellent agreement with the

numerical solution obtained from a discrete chain of bistable

elements. Wave propagation characteristics can be controlled

by fine-tuning the geometric details of the bistable elements.

Moreover, precompression brings the bistable elements closer

to their snapping instability and hence can be used to

control the wave propagation. We discussed the influence of

precompression in all three amplitude regimes.

Our results highlight opportunities to design periodic

mechanical structures and metamaterials containing bistable

(negative-stiffness) elements that give rise to beneficial dy-

namic performance. This closes a gap between previous

research on composite systems with (static) negative-stiffness

phases and the nonlinear dynamics of structures undergoing

large elastic deformation. Here the negative-stiffness effect

(i.e., the unstable branch of the force-displacement curve)

is utilized to create and propagate solitary-wave packages,

which presents a way to achieve controllable metamaterial per-

formance through negative-stiffness elements, while previous

research in negative-stiffness materials mainly focused on their

elastic and viscoelastic effective properties well within the

realm of linearized kinematics. We deliberately chose a simple

(possibly the simplest) elastic system to show the sought

effects while allowing for closed-form analytical solutions, a

rare find in nonlinear dynamics. The same qualitative response

can be expected from various structural systems that allow

for practical implementation. For example, the bistable spring

elements can be replaced by buckled columns or membranes

and the elastic springs connecting the bistable elements by

compliant fillers. Current research explores possibilities to

demonstrate the reported findings experimentally. Further,

extensions to two and three dimensions by using bistable or

multistable elements (having two or more stable equilibrium

configurations, respectively) are left for future work.
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