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GÁBOR STÉPÁN∗
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In this paper, the dynamics of maps representing classes of controlled sampled systems with
backlash are examined. First, a bilinear one-dimensional map is considered, and the analysis
shows that, depending on the value of the control parameter, all orbits originating in an attractive
set are either periodic or dense on the attractor. Moreover, the dense orbits have sensitive
dependence on initial data, but behave rather regularly, i.e. they have quasiperiodic subsequences
and the Lyapunov exponent of every orbit is zero. The inclusion of a second parameter, the
processing delay, in the model leads to a piecewise linear two-dimensional map. The dynamics
of this map are studied using numerical simulations which indicate similar behavior as in the
one-dimensional case.
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1. Preliminaries

We consider the map

xj+1 = Axj −BΦ(xj) , j = 0, 1, 2, . . . , (1)

with the initial condition x0 and

Φ(xj) =

{

0 , |xj | < 1

xj , |xj | ≥ 1 ,

in the parameter domain A > 1, |A−B| < 1. Such
maps naturally arise in digitally controlled mechan-

ical systems [Kollár et al., 2003; Lóránt & Stépán,
1996; Theodossides & Natsiavas, 2000].

Remark 1.1. This map can be obtained by dis-
cretizing the following differential equation with
piecewise constant on right-hand side [Kollár,
2001]

˙̃x(t)− ax̃(t) = −Pψ̃(x̃(jτ))x̃(jτ) ,

t ∈ [jτ, (j + 1)τ) , j = 0, 1, 2, . . . ,
(2)

∗Author for correspondance.
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Fig. 1. (a) The piecewise constant function ψ. (b) The discrete one-dimensional map.

where a > 0, the sampling rate τ > 0, and the
control parameter P > 0. The function ψ̃ is given
by

ψ̃(x̃(jτ)) =

{

0 , |x̃(jτ)| < δ

1 , |x̃(jτ)| ≥ δ
, δ > 0 . (3)

Note that (2) and (3) represent a controlled linear
system with backlash (i.e. the control can only act
outside a δ neighborhood of the equilibrium).

For convenience, we introduce the rescalings
x = x̃/δ and T = t/τ . Then we consider the
function ψ

ψ(x(j)) = ψ̃(x̃(jτ)) =

{

0 , |x(j)| < 1

1 , |x(j)| ≥ 1 ,
(4)

that is shown in Fig. 1(a), and obtain an equivalent
equation

x′(T )− aτx(T ) = −Pτψ(x(j))x(j) ,
T ∈ [j, j + 1) , j = 0, 1, 2, . . . ,

(5)

where ′ = d/dT . The general solution of this equa-
tion on the interval [j, j+1) can be obtained by the
variation of constants formula as follows

x(T ) = eaτ(T−j)x(j)

+

∫ j+1

j
eaτ(T−s)(−P )τψ(x(j))x(j)ds .

Substituting T = j + 1, introducing the notation
xj = x(j), and evaluating the resulting integral
yield the one-dimensional map

xj+1 =

[

eaτ + (1− eaτ )
P

a
ψ(xj)

]

xj . (6)

Introduce the notation

A = eaτ , B = −(1− eaτ )
P

a
,

Φ(xj) = ψ(xj)xj ,
(7)

then the map (6) can be written in the form of (1).
This map is depicted in Fig. 1(b).

Example 1.2. Equation (2) can describe a one-
degree-of-freedom mechanical system under the
effect of velocity-dependent forces. Since the
controlled variable is the velocity, the governing
equation is a first-order differential equation with
piecewise constant as right-hand side where the
variable x̃ is the velocity. This equation arises,
e.g. in the study of stick-and-slip motion of certain
machine tool parts. For these systems digital con-
trol can be used to achieve a stable, small feed rate
of the tool [Haller & Stépán, 1996].

Remark 1.3. If Φ(xj) ≡ xj (i.e. no backlash), then
the fixed point 0 is asymptotically stable if and only
if |A−B| < 1 or, equivalently, a < P < a(eaτ +1)/
(eaτ − 1).

Remark 1.4. The orbits of the map (1) represent
discrete points of the trajectories of the scaled
differential equation (5) in the neighborhood of
unstable equilibrium x = 0.

Remark 1.5. Equation (7) describes a one-to-one
relationship between P and B. For convenience, in
the next section, we state our results with parame-
ter B instead of parameter P .



Dynamics of Piecewise Linear Discontinuous Maps 2343

2. Statements of the Main Results

In this section we analyze the behavior of the orbits
of the map (1) depending on the parameter B. Al-
though x = 0 equilibrium is unstable, we can find
invariant sets for every choice of B which attracts
every orbit except the trivial one (i.e. xn ≡ 0). If
A−B > 0 then this set is [A−B, A) or (−A, −(A−
B)] if x0 > 0 or x0 < 0, respectively. If A − B < 0
then this set is (−A, −(A−B)]∪ [A−B, A). When
A − B > 0, the cases x0 > 0 and x0 < 0 are sym-
metric, therefore it is enough to examine the case
x0 > 0 without loss of generality. When A−B < 0,
|xn| coincides with the nth iterate of a positive x0 of
the map xj+1 = |A−B|xj, hence the case A−B > 0
can be extended easily for the case A − B < 0. In
what follows, we discuss the case A−B > 0, x0 > 0
and we denote the invariant set [A − B, A) by A.
The behavior of orbits depends on B. There are two
possibilities:

(i) every orbit is eventually periodic or,
(ii) every orbit is dense.

Next, we give a necessary and sufficient condition
for the existence of periodic orbits.

Theorem 2.1. Let x0 ∈ A. Then the orbit origi-
nating in x0 is periodic if and only if B satisfies the
condition

B = A− 1
n−k
√
Ak

, (8)

where k, n ∈ Z, n ≥ 2, 1 ≤ k ≤ n − 1 and n is the
period.

Proof. First, prove that if a period-n orbit exists
then the condition of the theorem holds. Consider
a period-n orbit. Let x0 be a point of this periodic
orbit. Then

xn = Ak(A−B)n−kx0 ,

if the periodic orbit has k points in the interval
[A − B, 1) and n − k points in the interval [1, A).
Since the orbit is a period-n orbit, xn = x0, and we
have Ak(A − B)n−k = 1. This relation implies the
formula given in the theorem.

Now, suppose that

B = A− 1
n−k
√
Ak

,

where k, n ∈ Z, n ≥ 2, 1 ≤ k ≤ n − 1, and show
that a period-n orbit exists. This equality implies
that Ak(A−B)n−k = 1. Consider the following pro-
cess. Choose an initial value x0 in the attractor and

multiply it by A if x0 < 1 or by A − B if x0 ≥ 1,
and remove an A or an A − B from the product
Ak(A−B)n−k. Then show that the process can be
continued, i.e. the new product contains A if x1 < 1
or A − B if x1 ≥ 1, and this holds for each m ∈ Z

if m < n.
Assume that A − B ≤ x0 < 1. Then x1 = Ax0

and the product Ak(A − B)n−k certainly contains
A, because k ≥ 1. Now suppose that this process
is continued for m steps and xm = Al(A − B)m−l,
where l ∈ Z, l ≤ k and m− l ≤ n − k, but at most
one equality holds, som < n. Otherwise,m = n and
xm = xn = Ak(A − B)n−kx0 = x0, so the period-
n orbit is found. We consider the following three
cases.

(i) 1 ≤ xm < A
This implies that Al(A − B)m−l > 1 and the
new product Ak−l(A−B)n−k−(m−l) is strictly
less than 1. The new product must contain
A−B, so the process can be continued.

(ii) A−B ≤ xm ≤ x0 (but m < n)
This implies that Al(A − B)m−l ≤ 1 and the
new product Ak−l(A−B)n−k−(m−l) is greater
than or equal to 1. The new product must con-
tain A, so the process can be continued.

(iii) x0 < xm < 1
Recall that A − B ≤ x0. After multiplying
both sides of this relation by Al(A − B)m−l,
we have (A − B)Al(A − B)m−l ≤ xm < 1
and this implies that Al(A − B)m−l+1 < 1.
Since Al(A − B)m−l > 1, m − l < n − k or
m − l + 1 ≤ n − k. Since Ak(A − B)n−k = 1,
it follows that l < k and the process can be
continued.

The case 1 ≤ x0 < A can be treated by using
the same procedure. �

Theorem 2.2. Assume that B is chosen such that
condition (8) is not satisfied. Then the orbits are
dense on the attractor A.

Proof. We prove this theorem in three steps. First,
the map is transformed to a logarithmic map. Then
the motion is simplified to a motion on a circle in
one direction. Finally, we show that points of an
orbit are dense on the circle.

Let b = lnA, c = ln(A − B) and yj = lnxj,
j = 1, 2, . . . , where b > 0 and c < 0. Then we
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obtain the following map

yj+1 =

{

b+ yj , yj < 0

c+ yj , yj ≥ 0 .

If periodic solutions do not exist, i.e. xi 
= xj for
all i, j ∈ Z

+, i 
= j, then Ak(A−B)n−k is different
from 1 for any k, n ∈ Z

+ or kb+(n−k)c is different
from 0. It implies that b/c is not rational.

This map gives a motion in the interval [c, b),
where yj+1 could be both less and greater than yj.
Now this motion is transformed to a motion on a
circle in one direction. Let 0 ≤ y0 < b. First, assume
that −c > b. Then y1 = c+y0 < 0. Letm ∈ Z

+ such
that ym = (m − 1)b + c + y0 ≥ 0, but ym−1 < 0.
Suppose that ym < y0. Let y0 − ym = d and let
l ∈ Z

+ such that ylm = l(m − 1)b + lc + y0 < 0,
but y(l−1)m ≥ 0. ylm+1 ≥ 0, since d < b. If we
consider the interval [0, b) as a circle, then the dis-
tance between ylm+1 and y(l−1)m is d. Repeating
these cycles with m or m + 1 steps, we take steps
on the circle in one direction with length d which
provides a quasiperiodic subsequence of the orbit.

Now we show that an orbit can approach any
point in the interval [0, b) arbitrarily. The proof is
similar for the interval [c, 0). Since d = y0 − ym =
−(m−1)b− c, it implies that d/b = −(m−1)− c/b.
m − 1 is rational and c/b is not rational, therefore
d/b is not rational. Choose an arbitrary point y∗ on
the circle. Since any irrational number can be ap-
proximated arbitrary closely by rational numbers,
we can find k, n ∈ Z

+ such that for all ε > 0, the
distance between y∗ +nb and y0 + kd is less than ε,
i.e. starting from y0, we can approach an arbitrary
y∗ ∈ [0, b) after k steps, if k is large enough.

Further cases can be proved by following the
same procedure. �

Next, we observe how nearby orbits behave,
then the Lyapunov exponent is calculated.

Theorem 2.3. Let x0 and x0 be two different ini-
tial values in the set A. Furthermore, assume that
B does not satisfy condition (8), i.e. the orbits
are dense on the attractor A. Then there exists an
n ∈ Z

+ such that the nth iterate of x0 and x0, i.e. xn

and xn, respectively, are on opposite sides of 1.

Proof. Let x0, x0 ∈ A and x0−x0 = ε, where ε > 0.
If x0 and x0, or xj and xj for some j ∈ Z

+ are
on opposite sides of 1 then the theorem is proved.
Now, suppose that xj and xj are on the same side
of 1 for every j ∈ Z

+ ∪ {0} and we show that it

leads to contradiction. Let the nth iterate of x0 be
xn = Knx0. Since xj and xj are on the same side of
1 for every j ∈ Z

+∪{0}, they are always multiplied
by the same number, therefore

xn = Knx0 = Kn(x0 − ε) = Knx0 −Knε . (9)

The orbits are dense, therefore they approach 1 ar-
bitrarily, i.e. for every δ > 0 there exists an n ∈ Z

+

such that

1 < xn = Knx0 < 1 + δ , (10)

where δ is an arbitrary positive number, so it can
be chosen such that 0 < δ < ε/x0. By (10) we have

Knε >
ε

x0
> δ . (11)

Then we obtain from (9)–(11) that

xn = Knx0 −Knε < Knx0 − δ < 1 ,

i.e. xn and xn are on opposite sides of 1
which contradicts the assumption and proves the
theorem. �

Remark 2.4. Once two orbits are on opposite sides
of 1, they are multiplied by different numbers and
they leave each other’s neighborhood.

Remark 2.5. The map F : A → A is said to have
sensitive dependence on initial conditions on A if
there exists δ > 0 such that, for any x ∈ A and any
neighborhood Ux of x, there exists an x ∈ Ux and a
positive integer n such that |Fn(x)−Fn(x)| > δ (see
e.g. [Devaney, 1989; Wiggins, 1990]). Theorem 2.3
and Remark 2.4 imply that if B does not satisfy
condition (8) then the map (1) has sensitive depen-
dence on initial conditions on A.

Remark 2.6. Although map (1) has sensitive de-
pendence on initial conditions on A, the motion is
not unpredictable, because nearby orbits leave each
other’s neighborhood for one step only.

In the following, the Lyapunov exponent is
computed. The Lyapunov exponent describes the
behavior of nearby orbits. If nearby orbits attract
each other, then the Lyapunov exponent is nega-
tive. If nearby orbits stretch each other exponen-
tially then the Lyapunov exponent is positive.

Theorem 2.7. The Lyapunov exponent of any
orbit of map (1) is 0.
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Proof. If periodic orbits exist then every orbit
is eventually periodic, therefore the Lyapunov ex-
ponents of periodic orbits are 0. To obtain the
Lyapunov exponents of dense orbits, we determine
the distribution function above the attractor. Let p1

and p2 be the probabilities of points of a trajectory
in the interval [A − B, 1) and [1, A), respectively.
The Lyapunov exponent can be calculated by ap-
plying the Frobenius–Perron equation [Szépfalusy
& Tél, 1982]

λ =

∫ 1

0
P (x) ln |F ′(x)|dx

= p1 ln A+ p2 ln (A−B) , (12)

since F ′(x) = A if |x| < 1 and F ′(x) = A − B
if |x| ≥ 1. The areas under the distribution func-
tion in the interval [A − B, 1) and [1, A), divided
by the sum of the area under the distribution
function in the attractor gives the probabilities
p1 and p2, respectively. They are substituted into
(12) and the Lyapunov exponent is determined.
Since

P (xj+1) =
n

∑

j=1

P (xj)

|F ′(xj)|

holds for the probability densities [Collet &
Eckmann, 1980; Szépfalusy & Tél, 1982], it implies
that

P (xj+1) = P (Axj) =
P (xj)

A
, A(A−B) ≤ xj+1 < A

P (xj+1) = P ((A−B)xj) =
P (xj)

A−B
, A−B ≤ xj+1 < A(A−B) .

P (x) = c/x satisfies these equations in both inter-
vals. Thus, it follows for the probabilities

p1 =

∫ 1

A−B

c

x
dx = −c ln(A−B) ,

p2 =

∫ A

1

c

x
dx = c ln A ,

where

c =
1

ln
A

A−B

.

Substituting p1 and p2 into (12), yields λ = 0. �

The Lyapunov exponent is 0 for every value
of B. Trajectories neither attract nor stretch each
other exponentially.

3. Modeling Processing Delay

In the model of the present section, processing de-
lay (for calculating the control force) is included,
stability conditions are determined and numerical
results are shown. The processing delay is assumed
less than the sampling delay.

Consider the map

xj+1 = Axj − CΦ(xj) + (C −B)Φ(xj−1) ,

j = 1, 2, . . . ,
(13)

with initial condition x0, x1 = Ax0 and

Φ(xj) =

{

0 , |xj | < 1

xj , |xj | ≥ 1 ,

or equivalently

xj+1 =























Axj , |xj | < 1 and |xj−1| < 1

(A− C)xj , |xj | ≥ 1 and |xj−1| < 1

Axj + (C −B)xj−1 , |xj | < 1 and |xj−1| ≥ 1

(A− C)xj + (C −B)xj−1 , |xj | ≥ 1 and |xj−1| ≥ 1 .

Similarly to the procedure shown in Sec. 1, this map can be derived from the differential equation (2)
with a “new” right-hand side due to the processing delay

˙̃x(t)− ax̃(t) =

{

−Pψ̃(x̃((j − 1)τs))x̃((j − 1)τs) , t ∈ [jτs, jτs + τp)

−Pψ̃(x̃(jτs))x̃(jτs) , t ∈ [jτs + τp, (j + 1)τs)
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where j = 1, 2, . . . , τs and τp are the sampling and
the processing delay, respectively, 0 ≤ τp ≤ τs,

and the function ψ̃ is given by (3) as τ is inter-
changed by τs. The response to the actual data
taken at the last sampling is provided after the pro-
cessing delay. It means that, in the time interval
[jτs, jτs + τp), the control force is still determined
by the previously sampled data (i.e. the data sam-
pled at t = (j − 1)τs), while, for the rest of the

time before the next sampling [jτs + τp, (j + 1)τs),
the control force is determined by the new sam-
pled data (at t = jτs). Note that in the first step
we do not have previously sampled data, and this
explains that x1 = Ax0 independently from the
value of x0.

Introducing the rescalings x = x̃/δ and T =
t/τs as well as considering the function ψ in (4), we
obtain the equivalent equation

x′(T )− aτsx(T ) =

{

−Pτsψ(x(j − 1))x(j − 1) , t ∈ [j, j + τp/τs)

−Pτsψ(x(j))x(j) , t ∈ [j + τp/τs, j + 1)
(14)

where ′ = d/dT as in Sec. 1. The general solution of Eq. (14) on the interval [j, j + τp/τs) can be obtained
by the variation of constants formula as follows

x(T ) = eaτs(T−j)x(j) +

∫ j+τp/τs

j
eaτs(T−s)(−P )τsψ(x(j − 1))x(j − 1)ds .

Substituting T = j + τp/τs and evaluating the re-
sulting integral give

x

(

j +
τp
τs

)

= eaτpx(j)

+ (1− eaτp)
P

a
ψ(x(j − 1))x(j − 1) .

(15)

The general solution of Eq. (14) on the interval
[j + τp/τs, j + 1) can be written in the form

x(T ) = eaτs(T−(j+τp/τs))x

(

j +
τp
τs

)

+

∫ j+1

j+τp/τs

eaτs(T−s)(−P )τsψ(x(j))x(j)ds .

Similarly, substituting T = j+1 and evaluating the
integral yield

x(j + 1) = eaτs(1−τp/τs)x

(

j +
τp
τs

)

+ (1− eaτs(1−τp/τs))
P

a
ψ(x(j))x(j) .

(16)

As Eq. (15) is substituted into Eq. (16) and the
notation xj = x(j) is introduced, we obtain the
following map

xj+1=

[

eaτs + (1− ea(τs−τp))
P

a
ψ(xj)

]

xj

+

[

(ea(τs−τp) − eaτs)
P

a
ψ(xj−1)

]

xj−1 . (17)

Introduce the notation

A = eaτs , B = −(1− eaτs)
P

a
,

C = −(1− ea(τs−τp))
P

a
, Φ(xj) = ψ(xj)xj ,

(18)

then the map (17) can be simplified to the form of
(13).

Remark 3.1. According to (18) there is a one-to-
one relationship between parameters P and τp and
B and C, and therefore we can use either P and τp
or B and C.

Stability is examined when Φ(xj) ≡ xj (i.e. no
backlash). Map (13) can be simplified in the
following form

xj+1 = (A− C)xj + (C −B)xj−1 ,

j = 1, 2, . . . ,
(19)

and it has the characteristic equation

λ2 − (A− C)λ− (C −B) = 0 . (20)

The (0, 0)T fixed point of (19) is asymptotically sta-
ble if and only if the characteristic roots λ1 and λ2

of (20) are in modulus less than one. These yield the
following conditions: (i) A−B < 1, (ii) C−B > −1,
(iii) (C −B)− (A−C) < 1, or, equivalently, by us-
ing (18) (i) P > a, (ii) P < a/(eaτs − ea(τs−τp)),
(iii) P < a(eaτs + 1)/(2ea(τs−τp) − eaτs − 1) if
2ea(τs−τp) − eaτs − 1 > 0.
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Fig. 2. The stability chart for a = 8 and τs = 0.1.

The stability chart is constructed in the plane
of τp and P for the following values of parame-
ters: a = 8, τs = 0.1 (see Fig. 2). Condition (i)
gives a lower bound for P , while conditions (ii)
and (iii) provide upper bounds for the control pa-
rameter. The P axis is the asymptote of condi-
tion (ii), and condition (iii) also has an asymptote
at τp3 = 2ea(τs−τp)−eaτs−1, i.e. when the denomina-
tor in condition (iii) is 0. In spite of the asymptotes,
P can never be arbitrarily large, because the curves
intersect each other at

τ∗p =
1

a
ln

3eaτs + e2aτs

e2aτs + 2eaτs + 1
.

This value can be obtained by equalizing condi-
tions (ii) and (iii). Curves corresponding to condi-
tions (i) and (iii) also intersect each other, so the
maximal value τpmax of the processing delay, when
successful control is possible, is given by equalizing
these conditions

τpmax =
1

a
ln

eaτs

eaτs − 1
.

The assumption τp ≤ τs yields that the above τpmax

exists only for a ≥ amin = (ln 2)/τs. In particular, if
a = 8 and τs = 0.1, then τ∗p = 0.0139, τp3 = 0.0403,
amin = 6.9315 and τpmax = 0.0746. The value P0 of
the control parameter at τp = 0 and the value P ∗ at
τp = τ∗p can be obtained by subtituting τp = 0 and
τp = τ∗p into condition (iii): P0 = 21.06, P ∗ = 34.11.
It may be surprising that P can be larger if there
is a small processing delay, but around the upper

boundary of the stability domain the system is a
bit overcontrolled and a small delay may improve
stability.

In what follows let Φ(xj) = ψ(xj)xj . The fol-
lowing two sets of figures represent the effect of
Φ(xj) and the processing delay. Numerical results
are shown for two different sets of parameters. In
Fig. 3 parameters have the following values: a = 10,
P = 13.6788 and τs = 0.1. If τp = 0 and Φ(xj) ≡ xj

then the fixed point (0, 0)T is a stable node [see
Fig. 3(a)]. For small enough τp, (0, 0)

T is still sta-
ble, but it is a focus [see Fig. 3(b)]. For the rest
of Fig. 3, Φ(xj) = xj and the line with tangent 1 is
also shown. If τp = 0 then this is a period-2 solution
[see Fig. 3(c)]. In Figs. 3(d)–3(h), a set of numeri-
cal results can be seen as τp increases. In Fig. 3(h),
τp = 0.0313 which is the border of the stability do-
main. If τp > 0.0313 then the motion is not stable
for any initial condition. However, if the initial con-
dition is small enough (e.g. x0 = 0.9 in the figures),
then the motion could be stable even if the process-
ing delay is a bit larger than its value at the border
of the stability domain. In Figs. 4(a)–4(g) the val-
ues of parameters are a = 8, P = 10 and τs = 0.1.
If Φ(xj) ≡ xj then (0, 0)T is a stable node or focus
depending on the processing delay as in the previ-
ous case [see Figs. 4(a) and 4(b)]. For the rest of
Fig. 4, Φ(xj) = xj. If τp = 0 then this is a nonperi-
odic solution [see Fig. 4(c)]. In Figs. 4(d)–4(g), we
can again see how irregular motions are obtained
as τp increases. In Fig. 4(h), we chose parameters
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Fig. 3. Set of results for a = 10, P = 13.6788 and τs = 0.1, iteration starts with red, ends with yellow, (a) τp = 0, Φ(xj) ≡ xj ,

(b) τp = 2 · 10−2, Φ(xj) ≡ xj , (c) τp = 0, (d) τp = 10−6, (e) τp = 10−3, (f) τp = 10−2, (g) τp = 2 · 10−2, (h) τp = 3.13 · 10−2.
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Fig. 4. (a)–(g) Set of results for a = 8, P = 10 and τs = 0.1, iteration starts with red, ends with yellow, (a) τp = 0,
Φ(xj) ≡ xj , (b) τp = 3 · 10−2, Φ(xj) ≡ xj , (c) τp = 0, (d) τp = 10−3, (e) τp = 10−2, (f) τp = 4 · 10−2, (g) τp = 5.57 · 10−2,
(h) a = 8, P = 8.4444, τs = τp = 0.0802 (i.e. A = 1.9, B = 0.95, C = 0).
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Fig. 5. The map and the stair step diagram, iteration starts with red, ends with yellow, (a) and (b) a = 10, P = 13.6788,
τs = 0.1 and τp = 10−2, (c) and (d) a = 8, P = 10, τs = 0.1 and τp = 10−2.

near the border of the stability domain to present a
very complicated motion. Note that a small change
in the parameters can affect where points appear in
the figure.

Numerical results for a = 10, P = 13.6788,
τs = 0.1, τp = 0.01 as well as a = 8, P = 10,
τs = 0.1, τp = 0.01 are repeated in Fig. 5 and the
corresponding stairstep diagrams for the first couple
of steps are associated. The stairstep diagrams show
the consecutive steps. There are five and four lines
in Figs. 5(a) and 5(c), respectively, where points of
orbits are situated. It can be seen that a point in a
particular line is mapped into another but usually
the same line. However, this regularity is broken
when the orbit is in the neighborhood of 1.

4. Conclusions

Some mechanical problems, as gear pairs with back-
lash [Kollár et al., 2003; Lóránt & Stépán, 1996;
Theodossides & Natsiavas, 2000], may be described
by bilinear discontinuous maps. When these me-
chanical elements are used in a driving system of a

digitally controlled machine, the equations of mo-
tion can be reduced to piecewise linear discrete
maps. In particular, we examine the dynamics of
the typical scalar map (1). The domain where stable
motion can be obtained is determined and we con-
sider the parameter domain given by the stability
conditions. The map has the following properties in
this parameter domain. Its only fixed point is the
origin which is unstable. The set [A − B, A) (or
(−A, −(A−B)] or their union) is an invariant set.
If condition (8) is satisfied, then every orbit is even-
tually periodic, otherwise orbits can be described as
follows

– every orbit is dense in A,
– orbits have sensitive dependence on initial condi-

tions on A,
– the Lyapunov exponents of orbits are 0 and
– orbits have quasiperiodic subsequences.

We also examined the map arising from a more
realistic model which includes processing delay. The
obtained motions appear more complicated and the
analysis of the resulting dynamics is more tedious,
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but the numerical results predict similar proper-
ties (density, sensitive dependence on initial con-
ditions, 0 Lyapunov exponent and quasiperiodic
subsequences) as the orbits have in case of the scalar
map (1).

Since there exists a positively invariant, in-
decomposable attractive set A, and the map has
sensitive dependence on initial conditions as well as
topological transitivity due to the density of orbits
on the attractor, this motion could be called chaotic
in the sense of Wiggins [1990]. However, orbits have
quasiperiodic subsequences and the sensitive de-
pendence is very weak as given in Remark 2.6, so
the motion is not unpredictable. Also, the positive
Lyapunov exponent required for a chaotic motion
in [Alligood et al., 1996] does not exist here. Con-
sequently, the typical motions of this relevant set
of digitally controlled systems with backlash can be
more complicated than quasiperiodic, but they are
not classified as chaotic according to the definition
of a chaotic attractor in [Alligood et al., 1996].
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