
Dynamics of polarons in conjugated polymers: An adaptive time-dependent density-matrix
renormalization-group study

Hui Zhao,1 Yao Yao,1 Zhong An,1,2 and Chang-Qin Wu1

1Surface Physics Laboratory (National Key Laboratory) and Department of Physics, Fudan University,
Shanghai 200433, People’s Republic of China

2College of Physics, Hebei Normal University, Shijiazhuang 050016, People’s Republic of China
�Received 7 March 2008; revised manuscript received 29 April 2008; published 28 July 2008�

The motion of polarons, which serve as charge carriers in conjugated polymers, is of fundamental impor-
tance for understanding transport properties of organic optoelectronic devices. We investigate the dynamics of
a charged polaron in the presence of both electron-phonon and electron-electron interactions under the influ-
ence of an external electric field, which is modeled by the one-dimensional tight-binding Su-Schrieffer-Heeger
�SSH� model supplemented with a Hubbard on-site repulsion term. For this many-body dynamical evolution
problem, we develop an adaptive time-dependent density matrix renormalization group �t-DMRG� method in
combination with a Newtonian equation of motion for atomic displacements. Our results show that the velocity
of the polaron is suppressed by the on-site Coulomb interaction U. The polaron moves with a supersonic
velocity, about four times the sound velocity at the small U limit, and approaches the sound velocity at the
large U limit. Furthermore, the dependence of the polaron velocity and the polaron effective mass on the lattice
structures are discussed.
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I. INTRODUCTION

Conjugated polymers, as quasi-one-dimensional materi-
als, have a property that their lattice structure can be easily
distorted due to the strong electron-lattice interactions.1 As a
result, charge injections or photoexcitations will induce self-
trapped elementary excitations such as solitons,2,3 polarons,4

and neutral polaron excitons. There have been considerable
research works devoted to the study of those nonlinear el-
ementary excitations in conjugated polymers.5 The motiva-
tion behind these works stems from the fact that these exci-
tations play an important role in organic optoelectronic
devices, including light-emitting diodes, field-effect transis-
tors, photocells, lasers,6 and so on. For example, in polymer-
based light-emitting diodes, it has been generally accepted
that injected charge from the metal electrodes deforms the
polymer chain to form a polaron, as charge carrier; the po-
laron transports under the influence of an external electric
field. When a positively charged polaron meets a negatively
charged one, they will recombine to form a neutral polaron
exciton. Then, the exciton decays radiatively to emit a pho-
ton. Polymer-based photocells rely on the inverse processes,
i.e., charge carriers �charged polarons� generated from the
dissociation of polaron excitons. Obviously, in order to im-
prove the performance of these devices, the physics of these
processes has to be well understood.

Most of these processes in organic optoelectronic devices,
such as the migration of polarons, recombination of oppo-
sitely charged polaron pairs, and the dissociation of excitons,
are dynamic processes accompanied by both charge and
lattice distortions, therefore, a real-time dynamical model re-
vealing both charge motion and lattice evolution will be ap-
propriate. Our previous work on the dynamics of photoexci-
tations in conjugated polymers also shows that the dynamic
characteristics are essentially important to understand the
physical phenomena in organic optoelectronic devices.7 Al-

though the charge transport is largely limited by interchain
hopping rather than by intrachain processes in realistic de-
vices, from the theoretical point of view, we focus on the
dynamics of charged polarons driven by an external electric
field in a single conducting polymer chain. In fact, electronic
transport through single conductive molecules �or molecular
wires� has been studied intensively theoretically as well as
numerically in recent years.8

Indeed, based on the one-dimensional tight-binding Su-
Schrieffer-Heeger �SSH� Hamiltonian, there have been ex-
tensive studies on the polaron dynamics in conjugated
polymers.9–17 It has been known that the polaron moves as
one entity consisting of both the charge and the lattice defor-
mation with a saturation velocity after being accelerated for a
short time. A breatherlike lattice oscillation is developed be-
hind the polaron, which bears the increased energy due to the
electric field acting on the polaron.9 The polaron can move
with a supersonic velocity when the electric field strengths
are above 0.14 mV /Å and the maximum velocity �about
four times the sound velocity� is reached at a high electric
field strength ��3.5 mV /Å�.10 At even higher electric field
strengths, the polaron becomes unstable and dissociates due
to the charge moving faster and not allowing the distortion to
occur.

Because both electron-phonon and electron-electron inter-
actions are expected to be important features of the elec-
tronic structure of organic materials, it is necessary to ad-
dress the role of these interactions on polarons. In the SSH
model, however, only the electron-lattice interactions are
considered while the electron-electron interactions are ig-
nored. Therefore, it should be asked, how the electron corre-
lation affects the dynamical properties of polymers. Many
research works have suggested that the electron correlation
effect is of fundamental importance for understanding the
physics properties of conjugated polymers,5 for example, the
branch ratio between the singlet and the triplet excitons in
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polymer-based light-emitting diodes.18–21 The real-time dy-
namics of such a many-body system including both electron-
phonon and electron-electron interactions is a challenging
work. Fortunately, a recently developed numerical method,
the adaptive time-dependent density matrix renormalization
group22 �t-DMRG� provides an efficient approach to perform
such a task. In this paper, we apply the t-DMRG method on
this system with both electron-phonon and electron-electron
interactions, and investigate the dynamics of polarons based
on the Hubbard model in weak coupling region and the t-J
model in strong coupling region. The dynamical properties
of the other processes, such as the recombination of oppo-
sitely charged polaron pairs and the dissociation of excitons,
will be discussed elsewhere. Our results show that the effec-
tive mass is enlarged and the velocity of the polaron is sup-
pressed by electron-electron interactions.

The paper is organized as follows: In Sec. II, we present
SSH model modified to include electron-electron interactions
via a Hubbard Hamiltonian for a polymer chain under the
influence of an external electric field and describe the dy-
namical evolution method used in this work. In Sec. III the
dynamical evolution of a polaron under an applied electric
field will be discussed. A summary is given in Sec. IV.

II. MODEL AND METHOD

The model Hamiltonian we consider for a polymer chain
in this paper takes the following form:

H = Hel + Hlatt + HE. �1�

The first part is to describe the electron energy, which
contains both the electron-lattice coupling and electron-
electron interactions, modeled by Hubbard extension of an
SSH-type Hamiltonian:23–25

Hel = − �
i,�

ti�ci,�
† ci+1,� + H.c.� + U�

i

ci↑
† ci↑ci↓

† ci↓, �2�

where ti��t0−��ui+1−ui�� is the hopping integral between
sites i and i+1 with � the electron-lattice coupling constant
and ui the monomer displacement of site i from its undimer-
ized equilibrium position; U is the on-site Coulomb interac-
tion; ci,�

† �ci,�� is the creation �annihilation� operator of an
electron with spin � at the site i.

The second part in Eq. �1� is to describe the lattice elastic
potential energy and the kinetic energy,

Hlatt =
K

2 �
i

�ui+1 − ui�2 +
M

2 �
i

u̇i
2, �3�

where K denotes the force constant originating from the �
bond between carbon atoms and M the mass of a site, such as
that of a CH-unit for trans-polyacetylene.

The electric field E�t� is included in the Hamiltonian as a
scalar potential. This gives the following contribution to the
Hamiltonian:

HE = E�t��e��
i

�ia + ui��ci
†ci − 1� . �4�

The model parameters used in this work are those

generally chosen for trans-polyacetylene: t0=2.5 eV,
K=21.0 eV /Å2, �=4.1 eV /Å, a=1.22 Å, M
=1349.14 eV fs2 /Å2, and a bare optical phonon energy
��Q=�	4K /M =0.16 eV. The results are expected to be
qualitatively valid for the other conjugated polymers.

Before going for the dynamical evolution, we determine
the static structure of a polaron in the absence of the external
electric field. The total energy is obtained by the expectation
value of the Hamiltonian �1� at the ground state �g
,

Et = �g�He�g
 +
K

2 �
i

�ui+1 − ui�2. �5�

The electronic states are determined by the electronic part
of the Hamiltonian �2� and the lattice configuration of the
polymer �ui is determined by the minimization of the total
energy in the above expression

ui+1 − ui = −
�

K
�g�ci

†ci+1 + H.c.�g
 + � , �6�

where � is a Lagrangian multiplier to guarantee the polymer
chain length unchanged, i.e., �i�ui+1−ui�=0. The initial con-
figuration of a polaron in the following dynamical evolution
will be obtained from the solution of the above self-
consistent Eq. �6� at the ground state.

At t=0, the polymer chain contains a positively charged
polaron at the center. Then the lattice configuration at time
t��0� can be obtained by the equation of motion for the
atomic displacements:

Müi�t� = − K�2ui�t� − ui+1�t� − ui−1�t�� + �����t��ci
†ci+1

− ci−1
† ci + H.c.���t�
� + �e�E�t�����t��ci

†ci���t�
 − 1� ,

�7�

where ���t�
 are the time-evolved states at time t. In prin-
ciple, the time evolution can be done by operating on ���t�

with the time-evolution operator:

���t + 	t�
 = e−iH�t�	t/����t�
 = e−i
H�t����t�
 . �8�

The time development of the lattice distortions and the elec-
tronic wave functions are obtained by solving the coupled
Newtonian equation of motion Eq. �7� and the time-
dependent Schrödinger equation Eq. �8�.

Directly solving the time-dependent Schrödinger equation
for interacting many-body systems is highly nontrivial.
A recently developed numerical method, the adaptive
time-dependent DMRG �Ref. 22� which is an efficient
implementation of Vidal’s time-evolving block-decimation
�TEBD� algorithm26 in the DMRG framework,27 enables us
to perform this task. The key idea of t-DMRG is to incorpo-
rate the second-order Suzuki-Trotter �ST� decomposition of
the time-evolution operator Eq. �8� into the DMRG finite-
system algorithm. The second-order ST decomposition of the
one-dimensional Hamiltonian as employed in Eq. �1� can be
written as
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e−i
H � e−i
H1/2e−i
H2/2 . . . e−i
HN/2e−i
HN/2 . . . e−i
H2/2e−i
H1/2

+ O�
3� , �9�

where Hi is the Hamiltonian of the bond i. The DMRG rep-
resentation of the wave function at a particular step i during
the finite-system sweep is

��
 = �
l�i�i+1r

�l�i�i+1r�l
��i
��i+1
�r
 , �10�

where �l
 and �r
 represent the states of the left and right
blocks �in a truncated basis, optimally selected as eigenvec-
tors of a density matrix�, and ��i
 and ��i+1
 represent the
states of the two central sites. An operator acting on sites i
and i+1 �only involving nearest neighbors� can be applied to
��
 exactly and re-expressed in the same optimal basis as

�A��l�i�i+1r = �
�i��i+1�

A�i�i+1;�i��i+1� �l�i��i+1� r. �11�

Thus, the time-evolution operator of the bond i can be ap-
plied exactly on the DMRG step i. As a consequence, the
time evolution is done by applying e−i
Hi/2 at DMRG step i.
Then basis transformations to the left or right are performed,
until the next part of Eq. �9� can be applied. We thus apply
the full operator of Eq. �9� by sweeping the site i through the
system. The price to be paid is that a truncation error is
introduced at each iteration step of the sweep as is known
from the static DMRG. A full sweep evolves the system one
time step 
. The error introduced by the second-order decom-
position is order 
3 in each time step. Thus, upon evolving
the system one time unit �1 /
 steps�, an order 
2 error is
introduced. However, the errors mentioned can be well con-
trolled by increasing m �the states remained per block� or
decreasing 
.

The appealing feature of this algorithm is that it can be
very easily implemented in existing finite-system DMRG.
One uses standard finite-system DMRG to generate a high-
precision initial state ���0�
 and continues to run finite-
system sweeps, one for each infinitesimal time step, merely
replacing the large sparse-matrix diagonalization at each step
of the sweep by local bond updates for the odd and even
bonds, respectively. The two main conditions for this method
to be applicable, namely, that the system must be one dimen-
sional and have only nearest-neighbor interactions, are met
for the present system. In this paper, we present quasiexact
numerical results of the real-time dynamics of the Hamil-
tonian Eq. �1� for realistic sizes of up to N=128 sites.

III. RESULTS AND DISCUSSIONS

In this section, we present our results on the motion of
polarons in the presence of an external electric field. In our
simulations, we consider a chain with total sites N=128. The
starting geometry is obtained by minimizing the total energy
of the chain where the electronic band is half filled with an
extra hole. Then an electric field is turned on to accelerate
the polaron. In order to reduce the lattice vibration in the
accelerated process of the polaron, the electric field is turned
on smoothly, that is, the field strength is increased as E�t�

=E0 exp�−�t− tc�2 / tw
2 � for 0� t� tc and E�t�=E0 for t� tc

with tc being a smooth turn-on period and tw the width. In
this simulation, we take tw=20 fs, tc=40 fs, and E0
=2.0 mV /Å.

The time evolution of the charge center Xc of the polaron
under a moderate electric field, E0=2.0 mV /Å, is shown in
Fig. 1. The polaron is first accelerated, and then moves with
a constant velocity as one entity consisting of both charge
and lattice defects. The velocity is scaled by the sound ve-
locity vs=	4K /Ma /2 and is averaged in order to cancel out
the fluctuations because only the saturation velocity is fo-
cused below. The stability for the polaron velocity occurs
because the moving polaron shall emit localized phonons,
multibreather excitations, which bear the increased energy of
the system due to the external electric field.9

From Fig. 1, the following issues should be addressed:
First, in order to confirm the validity of our results, we com-
pare the t-DMRG calculations �keeping m=200 states per
block and using a time step 
=0.1� with the exact numerical
results for a noninteracting �U=0� chain of the same set of
parameters described above. The excellent agreement was
found in both the charge center Xc and the staggered bond
parameters up to t�180 fs. Second, the polaron velocity is
decreased with increasing the Coulomb interaction U. At
last, one can find that the polaron velocity calculated by the
t-DMRG is smaller than that obtained at the UHF level. The
electron correlation effects have been considered in t-DMRG
calculations, thus, it indicates that the motion of polarons is
more suppressed by the electron correlation effects. More-
over, it should be noted that the polaron velocity depends not
only on the electron-electron interaction, but also on the
electron-phonon coupling constant, the sound velocity, etc.
In what follows, in order to study the electron correlation
effects on the polaron dynamics, we will only focus on the
saturation velocities of the polaron for different electron-
electron interaction strengths with the condition that the
other parameters are fixed.

A. In the weak coupling region

As described above, the motion of a charged polaron has
been presented in the weak coupling region �U / t0�3.0�,
based on the SSH and Hubbard model. Figure 2 shows that
the saturation velocity of a polaron varies with the on-site
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FIG. 1. �Color online� The time evolution of the charge center
Xc of the polaron for different electron-electron interactions U.
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Coulomb interaction U. One can find that the Coulomb re-
pulsion restrains the motion of the polaron and the saturation
velocity of the polaron reaches its maximum value at U=0.
This can be understood as that the electron localized in the
polaron has to overcome the potential barrier induced by
Hubbard U in order to move from one site to another because
the lattice tends to be singly occupied in the spin-density-
wave �SDW� phase.

For further understanding of the electron correlation ef-
fects on the polaron velocity, we explore the relation between
the saturation velocity of the polaron and its localization
from a static view. The staggered bond order parameter i
= �−1�i�2ui−ui−1−ui+1� /4 of a static polaron is shown in the
inset of Fig. 2 for several values of U. It is found that the
width of the polaron is a decreasing function of the Hubbard
U. The narrower the width is, the stronger effective potential
the localized charge in the polaron feels. As a result, the
binding energy is increased, which leads to the localization
of the polaron is enhanced by the Coulomb repulsion, and
the polaron stability increases. Along with the increase of the
binding energy, the effective mass of the polaron is enlarged,
thus the saturation velocity of the polaron decreases. It
should be stressed that a similar tendency has been observed
at the UHF level,14 but the detailed physical origin is sub-
stantially different from the DMRG results. At the UHF
level, only the enhanced localization of the polaron is found,
the dimerization of the polymer chain is less affected by the
on-site Coulomb interaction U, see the inset of Fig. 3 in Ref.
12. In contrast, the enhanced dimerization is observed in the
weak coupling region from the DMRG results, see the inset
of Fig. 2, which arises from the electron correlation effects.28

The enhanced dimerization will decrease the polaron veloc-
ity furthermore.

In connection with the saturation of the velocity, it is in-
teresting to trace the behavior of the effective mass of po-
larons. The static lattice configuration is smoothed by spline
interpolation, allowing us to compute the configuration at
any desired points. Then, the polaron effective mass can be

determined by calculating the energy of a slowly moving
domain wall

u�x,t� = u�x − vpt,t� . �12�

The schematic representation of the time dependence of the
polaron configuration is illustrated in Fig. 3. Using the adia-
batic approximation for the electronic motion, one can show
that the effective mass of the polaron is related ui for a
small change in domain wall position by

1

2�
i

Mu̇i
2�t� =

1

2
mpvp

2. �13�

It is clear that the effective mass will appear in the transport
coefficients of the polaron.

In Fig. 4, the U dependence of the effective mass mp
scaled by the free electron mass me is summarized.29 As
stated above, one can find that the effective mass increases
with increasing repulsive interaction. The increase of effec-
tive mass is consistent with the fact that the repulsive inter-
action makes the polaron width narrower. In general, the nar-
rower is the width of a polaron, the larger is its effective
mass, as similar as that of a soliton.1 With the polaron effec-
tive mass increasing, its velocity decreases.
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FIG. 2. �Color online� The saturation velocity of a polaron
driven by an external electric field �E0=2.0 mV /Å� as a function
of U. The inset shows the staggered bond order parameter i of a
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B. In the strong coupling region

Next, let us discuss the polaron dynamical properties in
the strong coupling region. When the Coulomb interaction U
is too large, some difficulties, such as slower convergence
and worse precision, are encountered numerically. Moreover,
the polaron takes long time to reach the saturation velocity,
such that eventually the adaptive t-DMRG will break down.
Therefore, it is difficult to calculate the saturation velocity of
the polaron by the t-DMRG method directly in the case of
the Hubbard U tending to infinity. Instead, we investigate the
polaron velocity from its effective mass point of view. In the
limit U / t0�1, double occupancy �↑↓
 can be excluded, this
results in the t-J model

Ht-J = − �
i,�

ti�c̃i,�
† c̃i+1,� + H.c.� + �

i

Ji�S� iS� i+1 −
1

4
nini+1� ,

�14�

where c̃i�= �1−ni−��ci� �here ni�=ci�
† ci��, S� i

=1 /2���ci�
† ��� ���ci�, and ni=��ni�, in which the spin-spin

interaction Ji=4ti
2 /U is due to a second-order virtual hopping

process possible only for electrons of opposite spin on sites i
and i+1.

The static lattice configuration of the polaron can be ob-
tained by solving self-consistently the following equations:

ui+1 − ui = t0
2�J�Si,i+1
 − ��Bi,i+1
 − �

t0K + 2J�2�Si,i+1

, �15�

in which the Lagrangian multiplier � satisfies:

��
i

1

t0K + 2J�2�Si,i+1

= �

i

2�J�Si,i+1
 − ��Bi,i+1

t0K + 2J�2�Si,i+1


.

�16�

Where J�4t0 /U; �Bi,i+1
=���g�c̃i�
† c̃i+1�+H.c. �g
 and

�Si,i+1
= �g�S� iS� i+1− 1
4nini+1�g
 are the bond-correlation and

spin-correlation functions, respectively. In the inset of Fig. 4,
we present a comparison of the polaron conformations ob-
tained from the Hubbard model and the t-J model at U / t0
=32. It is clearly shown that the bond order parameter of the
Hubbard model is almost the same as that of the t-J model.

Then, the effective mass mp of the polaron can be calcu-
lated by using the same method described above. The U
dependence of the effective mass mp calculated in the t-J
model is also plotted in Fig. 4. A similar tendency as that in
Hubbard model, i.e., the effective mass increases with in-
creasing repulsive interaction, is clearly seen, although the
polaron effective mass calculated by the t-J model is smaller

than that obtained by the Hubbard model. At U=� limit, the
second term in Eq. �14� vanishes, so Eq. �14� reduces to a
single-particle problem. Moreover, all the energy levels are
occupied by 1 /	2 ��↑ 
+ �↓ 
� except for the highest energy
level. Then the t-J Hamiltonian can be mapped onto an
acoustic polaron model due to the particle-hole symmetry. It
has been known that the saturation velocity of an acoustic
polaron is the sound velocity of the system.30 Also, the satu-
ration velocity of the acoustic polaron has been estimated
from the time dependence of the velocity, which is slightly
smaller than the sound velocity.31 From the staggered bond
order parameter of the acoustic polaron, we obtain its effec-
tive mass m��240 me �the dash line in Fig. 4�, which is
rather heavier than the effective mass of the optical polaron
at U=0 �about 3.3 me�.

Finally, it should be stated that we obtain the effective
mass from the static geometry structure of the polaron and
assume that the geometry does not change when it moves. In
fact, the moving polaron shall emit phonons to keep its
steady motion,9 and the width of a moving polaron shows
small oscillations in time because of the excitation of ampli-
tude modes. Therefore, the effective mass of the polaron ob-
tained in this paper may be slightly different from that of a
moving polaron.

IV. SUMMARY

In summary, the effects of electron-electron interaction on
the motion of a polaron driven by an external electric field in
conjugated polymers are investigated by using an adaptive
t-DMRG method, based on the SSH model and the Hubbard
model. It has been shown that the t-DMRG is an efficient
approach to perform a real-time dynamics of many-body sys-
tems including both electron-electron and electron-phonon
interactions. Our results show that the motion of the polaron
is suppressed by the on-site Coulomb interaction U. The ef-
fective mass of the polaron is enlarged and the saturation
velocity of the polaron decreases monotonically with the on-
site repulsions. Additionally, the saturation velocity of the
polaron reaches the minimum value, the sound velocity,
when the Coulomb interaction U tends to infinite.
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