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We address the problem of the potential motion of an ideal incompressible fluid with a
free surface and infinite depth in a two-dimensional geometry. We admit the presence
of gravity forces and surface tension. A time-dependent conformal mapping z(w, t)

of the lower complex half-plane of the variable w into the area filled with fluid is
performed with the real line of w mapped into the free fluid’s surface. We study
the dynamics of singularities of both z(w, t) and the complex fluid potential Π(w, t)

in the upper complex half-plane of w. We show the existence of solutions with an
arbitrary finite number N of complex poles in zw(w, t) and Πw(w, t) which are the
derivatives of z(w, t) and Π(w, t) over w. We stress that these solutions are not purely
rational because they generally have branch points at other positions of the upper
complex half-plane. The orders of poles can be arbitrary for zero surface tension
while all orders are even for non-zero surface tension. We find that the residues of
zw(w, t) at these N points are new, previously unknown, constants of motion, see also
Zakharov & Dyachenko (2012, authors’ unpublished observations, arXiv:1206.2046)
for the preliminary results. All these constants of motion commute with each other
in the sense of the underlying Hamiltonian dynamics. In the absence of both gravity
and surface tension, the residues of Πw(w, t) are also the constants of motion while
non-zero gravity g ensures a trivial linear dependence of these residues on time. A
Laurent series expansion of both zw(w, t) and Πw(w, t) at each poles position reveals
the existence of additional integrals of motion for poles of the second order. If all
poles are simple then the number of independent real integrals of motion is 4N for
zero gravity and 4N − 1 for non-zero gravity. For the second-order poles we found 6N

motion integrals for zero gravity and 6N − 1 for non-zero gravity. We suggest that the
existence of these non-trivial constants of motion provides an argument in support of
the conjecture of complete integrability of free surface hydrodynamics in deep water.
Analytical results are solidly supported by high precision numerics.
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FIGURE 1. (Colour online) Shaded area represents the domain occupied by fluid in the
physical plane z = x + iy (a) and the same domain in w = u + iv plane (b). Thick solid
lines correspond to the fluid’s free surface.

1. Introduction and basic equations

We consider two-dimensional potential motion of an ideal incompressible fluid with
a free surface of infinite depth. Fluid occupies the infinite region −∞ < x < ∞ in
the horizontal direction x and extends down to y → −∞ in the vertical direction y,
as schematically shown in figure 1(a). We assume that fluid is unperturbed both at
x → ±∞ and y → −∞.

We use a time-dependent conformal mapping

z(w, t)= x(w, t)+ iy(w, t) (1.1)

of the lower complex half-plane C
− of the auxiliary complex variable w ≡ u + iv,

−∞< u<∞, into the area in the (x, y) plane occupied by the fluid. Here the real
line v = 0 is mapped into the fluid free surface (see figure 1) and C

− is defined by
the condition −∞< v 6 0. Then the time-dependent fluid free surface is represented
in parametric form as

x = x(u, t), y = y(u, t). (1.2a,b)

A decay of perturbation of fluid beyond flat surface at x(u, t)→ ±∞ and/or y → −∞
requires that

z(w, t)→ w for |w| → ∞,w ∈C
−. (1.3)

The conformal mapping (1.1) implies that z(w, t) is an analytic function of w ∈C
−

and

zw 6= 0 for any w ∈C
−. (1.4)

Potential motion means that the velocity v of fluid is determined by a velocity
potential Φ(r, t) as v = ∇Φ with ∇ ≡ (∂/∂x, ∂/∂y). The incompressibility condition
∇ · v = 0 implies the Laplace equation

∇2Φ = 0 (1.5)
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Dynamics of poles: new constants of motion 893

inside the fluid, i.e. Φ is a harmonic function inside the fluid. Equation (1.5) is
supplemented with a decaying boundary condition (BC) at infinity,

∇Φ → 0 for |x| → ∞ or y → −∞. (1.6)

The harmonic conjugate of Φ is a streamfunction Θ defined by

Θx = −Φy and Θy =Φx. (1.7a,b)

Similar to (1.6), we set without loss of generality a zero Dirichlet BC for Θ as

Θ → 0 for |x| → ∞ or y → −∞. (1.8)

We define a complex velocity potential Π(z, t) as

Π =Φ + iΘ. (1.9)

Then equations (1.7) turn into Cauchy–Riemann equations ensuring the analyticity of
Π(z, t) in the domain of z plane occupied by the fluid. A physical velocity with the
components vx and vy (in the x and y directions, respectively) is obtained from Π as
dΠ/dz = vx − ivy. The conformal mapping (1.1) ensures that the function Π(z, t) (1.9)
transforms into Π(w, t) which is an analytic function of w for w ∈ C

− (in the bulk
of the fluid). Here and below we abuse the notation and use the same symbols for

functions of either w or z (in other words, we assume that e.g. Π̃(w, t)=Π(z(w, t), t)
and remove the ˜ sign). The conformal transformation (1.1) also ensures the Cauchy–
Riemann equations hold Θu = −Φv, Θv =Φu in w plane.

BCs at the free surface are time dependent and consist of kinematic and dynamic
BCs. A kinematic BC ensures that the free surface moves with a normal velocity
component vn of fluid particles at the free surface. Motion of the free surface is
determined by the time derivative of the parameterization (1.2) while the kinematic
BC is given by a projection into the normal direction as

n · (xt, yt)= vn ≡ n · ∇Φ|x=x(u,t),y=y(u,t), (1.10)

where n = (−yu, xu)/(x
2
u + y2

u)
1/2 is the outward unit normal vector to the free surface

and use of subscripts here and below means partial derivatives, xt ≡ ∂x(u, t)/∂t etc.
Equation (1.10) results in a compact expression

ytxu − xtyu = −Ĥψu (1.11)

for the kinematic BC as was found in Dyachenko et al. (1996), see also Dyachenko,
Lushnikov & Zakharov (2019) for more details. Here

ψ(u, t)≡Φ(u, v, t)|v=0 (1.12)

is the Dirichlet BC for Φ at the free surface and

Ĥf (u)= 1

π

p.v.

∫ +∞

−∞

f (u′)

u′ − u
du′ (1.13)

is the Hilbert transform with p.v. meaning a Cauchy principal value of the integral.

Real and imaginary parts of both z and Π at v= 0 are related through Ĥ as follows:

x̃ ≡ x − u = −Ĥy, Ĥx = y (1.14a,b)
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894 A. I. Dyachenko, S. A. Dyachenko, P. M. Lushnikov and V. E. Zakharov

and

Θ|w=u = Ĥψ, ψ = −ĤΘ|w=u, (1.15a,b)

see e.g. appendix A of Dyachenko et al. (2019). Thus it is sufficient to find y(u, t) and
ψ(u, t) while x(u, t) and Θ(u, t) can be recovered from equations (1.14) and (1.15).

A dynamic BC is given by the time-dependent Bernoulli equation (see e.g. Landau
& Lifshitz (1989)) at the free surface,

(Φt + 1

2
(∇Φ)2 + gy)|x=x(u,t),y=y(u,t) = −Pα, (1.16)

where g is the acceleration due to gravity and Pα = −(α(xuyuu − xuuyu)/(x
2
u + yu)

3/2)

is the pressure jump at the free surface due to the surface tension coefficient α. Here
without loss of generality we assumed that pressure is zero above the free surface (i.e.
in vacuum). All results below apply both to the surface gravity wave case (g> 0) and
the Rayleigh–Taylor problem (g< 0). We also consider a particular case g = 0 where
inertia forces well exceed gravity force.

Equation (1.16) can be transformed into

ψtyu −ψuyt + gyyu = −Ĥ(ψtxu −ψuxt + gyxu)− α
∂

∂u

xu

|zu|
+ αĤ

∂

∂u

yu

|zu|
, (1.17)

thus representing the dynamic BC in the conformal variables; see Dyachenko et al.
(2019) for details of such a transformation.

Equations (1.11), (1.14) and (1.17) form a closed set of equations which is
equivalent to the Euler equations for the dynamics of an ideal fluid with a free
surface. The idea of using a time-dependent conformal transformation like (1.1) to
address systems equivalent/similar to equations (1.11), (1.14) and (1.17) was exploited
by several authors including Ovsyannikov (1973), Meison, Orzag & Izraely (1981),
Tanveer (1991, 1993), Dyachenko et al. (1996), Chalikov & Sheinin (1998, 2005),
Chalikov (2016), Zakharov, Dyachenko & Vasiliev (2002). We follow the analysis of
Zakharov & Dyachenko (2012), Dyachenko et al. (2019) which found that equations
(1.11), (1.14) and (1.17) can be explicitly solved for the time derivatives yt, ψt and
rewritten in the non-canonical Hamiltonian form

Qt = R̂
δH

δQ
, Q ≡

(

y

ψ

)

(1.18)

for the Hamiltonian variables y(u, t) and ψ(u, t), where R̂ = Ω̂−1 =
(

0 R̂12

R̂21 R̂22

)

is a 2 × 2

skew-symmetric matrix operator with the components

R̂11q = 0, R̂12q = xu

J
q − yuĤ

(q

J

)

,

R̂21q = −xu

J
q − 1

J
Ĥ(yuq), R̂

†
21 = −R̂12,

R̂22q = −ψuĤ
(q

J

)

− 1

J
Ĥ(ψuq), R̂

†
11 = −R̂11.



























(1.19)

We call R̂ = Ω̂−1 by the ‘implectic’ operator (sometimes this type of inverse of the
symplectic operator is also called by the co-symplectic operator, see e.g. Weinstein
(1983)). Here the Hamiltonian H is the total energy of the fluid (kinetic plus potential
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Dynamics of poles: new constants of motion 895

energy in the gravitational field and surface tension energy) which is written in terms

of the Hamiltonian variables as

H = −1

2

∫ ∞

−∞
ψĤψu du + g

2

∫ ∞

−∞
y2(1 − Ĥyu) du

+α
∫ ∞

−∞

(

√

(1 − Ĥyu)2 + y2
u − 1 + Ĥyu

)

du. (1.20)

Equations (1.18) allow us to define the Poisson bracket (see Dyachenko et al.

(2019))

{F,G} =
∫ ∞

−∞
du

(

δF

δy
R̂12

δG

δψ
+ δF

δψ
R̂21

δG

δy
+ δF

δψ
R̂22

δG

δψ

)

, (1.21)

and to rewrite equation (1.18) in terms of Poisson mechanics as

Qt = {Q,H}. (1.22)

Thus a functional F is a constant of motion of equation (1.22) provided {F,H} = 0.

The Hamiltonian system (1.18)–(1.22) is the generalization of the results of

Zakharov (1968). It was conjectured in Dyachenko & Zakharov (1994) that the

system (1.14), (1.11) and (1.17) is completely integrable at least for the case of the

zero surface tension. Since then the arguments pro and contra were presented, see

e.g. Dyachenko, Kachulin & Zakharov (2013a). Thus this question is still open.

The system (1.11), (1.14) and (1.17) has an infinite number of degrees of freedom.

The most important feature of integrable systems is the existence of ‘additional’

constants of motion which are different from ‘natural’ motion constants (integrals)

(see Zakharov & Faddeev 1971; Novikov et al. 1984; Arnold 1989). For the system

(1.11), (1.14) and (1.17), the natural integrals are the energy H (1.20), the total mass

of fluid and the horizontal component of the momentum. For g = 0, the vertical

component of momentum is also an integral of motion. See Dyachenko et al. (2019)

for the explicit expressions for these natural integrals.

In this paper we show that the system (1.11), (1.14) and (1.17) has a number of

additional constants of motion. We cannot so far determine/estimate the total number

of these constants. Instead we show examples of initial data such that the system has

almost obvious, very simply constructed additional constants. We must stress that the

number of known additional constants depends so far on the choice of initial data

and can be made arbitrarily large for the specific choices of initial data. Some of

these new integrals of motion are functional of y only. It follows from equation (1.21)

that any functionals F and G, which depend only on y, commute with each other,

i.e. {F,G} = 0. We suggest that the existence of such commuting integrals of motion

might be a sign of the Hamiltonian integrability of the free surface hydrodynamics.

Such a conjecture is in agreement with the history of the discovery of the Hamiltonian

integrability of the Korteweg de Vries equation, nonlinear Schrödinger and many other

partial differential equations, see Gardner et al. (1967), Zakharov & Faddeev (1971),

Zakharov & Shabat (1972), Novikov et al. (1984), Arnold (1989)).

The plan of the paper is the following. In § 2 we introduce the dynamic equations

in complex form for unknowns R and V and consider an analytical continuation of

the solution in the upper complex half-plane. Section 3 discusses the non-persistence
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896 A. I. Dyachenko, S. A. Dyachenko, P. M. Lushnikov and V. E. Zakharov

of pole solutions in both the R and V variables within arbitrarily small time while

addressing the fact that power law branch points are persistent. New constants of

motion for the gravity case but with zero surface tension are found in § 4 for solutions

of the full hydrodynamic equations with simple complex poles in the original variables

zw and Πw. Section 5 provides another view of the new motion constants. Section 6

identifies new constants of motion for non-zero surface tension and second-order poles.

Section 7 discusses a global analysis for analytical continuation into multi-sheet

Riemann surfaces and introduces a Kelvin theorem for phantom hydrodynamics.

Section 8 provides a brief description of our numerical methods for the simulation

of free surface dynamics by a spectrally accurate adaptive mesh refinement approach

and a procedure for recovering of the structure of the complex singularities above

the fluid’s surface. Section 9 is devoted to the numerical results on free surface

hydrodynamic simulations which provides a detailed verification of the results of all

other sections. Section 10 gives a summary of the obtained results and a discussion

of future directions.

2. Dynamic equations in the complex form and analytical continuation of the

solution into the upper complex half-plane

Dynamical equations (1.11), (1.14) and (1.17) are defined on the real line w = u

with the analyticity of z(w, t) and Π(w, t) in w ∈C
− taken into account through the

Hilbert operator Ĥ. In this paper we consider also the analytical continuation of these

functions into the upper complex half-plane w ∈ C
+. Both z(w, t) and Π(w, t) have

time-dependent complex singularities for w ∈C
+.

Using the Hilbert operator Ĥ (1.13), we introduce the operators

P̂− = 1

2
(1 + iĤ) and P̂+ = 1

2
(1 − iĤ), (2.1a,b)

which are the projector operators of a function q(u) defined at the real line w = u into

functions q+(u) and q−(u) analytic in w ∈C
− and w ∈C

+, respectively, such that

q = q+ + q−. (2.2)

Here we assume that q(u)→ 0 for u → ±∞. Equations (2.1) imply that

P̂+(q+ + q−)= q+ and P̂−(q+ + q−)= q−, (2.3a,b)

see more discussion of the operators (2.1) in Dyachenko et al. (2019).

Using equations (1.9), (1.14), (1.15) and (2.1) we obtain that

Π =ψ + iĤψ = 2P̂−ψ (2.4)

and

z − u = −Ĥy + iy = 2iP̂−y. (2.5)

Analytical continuation of equations (2.4) and (2.5) into the complex plane w ∈ C

amounts to a straightforward replacing of u by w in the integral representation of

P̂+q(w) and P̂−q(w) as detailed in Dyachenko et al. (2019).
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Dynamics of poles: new constants of motion 897

Applying the projector P̂− and using equations (2.4), (2.5), one can rewrite

(see Dyachenko et al. 2019) the dynamical equations (1.18), (1.19) in complex

form

zt = iUzu, (2.6)

Πt = iUΠu − B −P, (2.7)

where

U ≡ P̂−(RV̄ + R̄V) (2.8)

is the complex transport velocity with

P = −ig(z − w)− 2iαP̂−(QuQ̄ − QQ̄u), (2.9)

Q ≡ 1
√

zu

=
√

R (2.10)

and

B ≡ P̂−(|V|2). (2.11)

A complex conjugation f̄ (w) of f (w) in equations (2.8), (2.9), (2.11) and throughout

this paper is understood as applied with the assumption that f (w) is the complex-

valued function of the real argument w even if w takes the complex values so that

f̄ (w)≡ f (w̄). (2.12)

This definition ensures the analytical continuation of f (w) from the real axis w = u

into the complex plane of w ∈C.

Another equivalent complex form of the dynamical equations (1.18), (1.19) is given

by the ‘Dyachenko’ equations (Dyachenko 2001)

∂R

∂t
= i(URu − RUu), (2.13)

∂V

∂t
= i[UVu − RBu] + g(R − 1)− 2αRP̂− ∂

∂u
(QuQ̄ − QQ̄u), (2.14)

where

R = 1

zu

, (2.15)

V = i
∂Π

∂z
= iRΠu (2.16)

are the new unknowns first introduced in Dyachenko (2001). Equations (2.13) and

(2.14) can be obtained by differentiating equations (2.6), (2.7) over u and using the

definitions (2.15) and (2.16), see also Dyachenko et al. (2019) for more details.
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898 A. I. Dyachenko, S. A. Dyachenko, P. M. Lushnikov and V. E. Zakharov

3. Local analysis: non-persistence of poles in R and V variables and persistence

of power law branch points

All four functions R, V , U and B of equations (2.8), (2.11), (2.13) and (2.14) must
have singularities in the upper half-plane w ∈ C

+ while being analytic for w ∈ C
−

(a trivial case of the singularity at the complex infinity only is also possible). At
the initial time t = 0, any singularity for w ∈ C

+ is allowed including poles, branch
points, etc. We are interested in singularities that keep their nature in the course of
evolution for at least a finite duration of time. This ‘persistence’ requirement is very
restrictive. It would be extremely attractive to find solutions containing only pole-type
singularities such that R, V , U and B would be rational functions of w. There are
examples of different reductions/models of free surface hydrodynamics which allow
such rational solutions. They include a free surface dynamics for the quantum Kelvin–
Helmholtz instability between two components of superfluid Helium (Lushnikov &
Zubarev 2018); an interface dynamic between an ideal fluid and a light highly viscous
fluid Lushnikov (2004) and motion of a dielectric fluid with a charged and ideally
conducting free surface in a vertical electric field (Zubarev 2000, 2002, 2008).

However, for the Dyachenko equations (2.8), (2.11), (2.13) and (2.14) without
surface tension, which take the form

∂R

∂t
= i(URu − RUu), (3.1)

U = P̂−(RV̄ + R̄V), B = P̂−(|V|2), (3.2a,b)

∂V

∂t
= i[UVu − RBu] + g(R − 1), (3.3)

rational solutions are not known and we conjecture that they cannot be constructed to
satisfy R(w) 6=0 and |R(w)|<∞ for all w∈C

− (as required by the conformal mapping
(1.1) with the condition (1.4)). The only known exception is the trivial case

g = 0,
∂R

∂t
≡ 0, and V ≡ 0, (3.4a−c)

i.e. a stationary solution of a fluid at rest without gravity. In that case any singularities
(including rational solutions) are allowed in R(w) for w ∈ C

+ and these singularities
remain constant in time. We note that in equations (3.1)–(3.3) and throughout this
paper we use the partial derivatives over w and u interchangeably by assuming
analyticity in w.

In this section we provide the local analysis of the existence versus non-existence
of persistent pole singularities in equations (3.1)–(3.3). The analysis is local because
we use the Laurent series of solutions of free surface hydrodynamics at any moving
point w = a(t), Im(a) > 0. This means that we are not restricted to rational solutions
because such a local analysis does not exclude the existence of branch points for w 6=
a(t),w ∈C

+.
We note that the conformal map (1.1) and the definition (2.15) imply that R(w) 6= 0

for w ∈C
− and, respectively,

R̄(w) 6= 0 for w ∈C
+. (3.5)

We stress that this is a fact of essential importance. Here and below we often omit
the second argument t when we focus on analytical properties in w.
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Dynamics of poles: new constants of motion 899

THEOREM 1. Equations (3.1)–(3.3) have no persistent-in-time solution, such that both

R and V have only simple pole singularities at a moving point w = a(t), and a residue

V−1 of V is not identically zero in time.

We prove Theorem 1 ‘ad absurdum’. Simple poles imply that V(w) and R(w) at

w = a ∈C
+ can be written as

V = V−1

w − a
+ Vreg, (3.6)

R = R−1

w − a
+ Rreg, (3.7)

where

Vreg =
∞
∑

j=0

Vj(w − a)j (3.8)

and

Rreg =
∞
∑

j=0

Rj(w − a)j (3.9)

are the regular parts of V and R (these regular parts are analytic functions at w = a).

The coefficients Rj, Vj, j = −1, 0, . . . and a in equations (3.6)–(3.9) are assumed to

be functions of t only. In a similar way, below we designate by the subscript ‘reg’

the non-singular part of all functions at w = a. The functions U(w) and B(w) (3.2)

generally also have simple poles at w = a, so that we write them as

U = U−1

w − a
+ Ureg, Ureg =

∞
∑

j=0

Uj(w − a)j, (3.10a,b)

B = B−1

w − a
+ Breg, Breg =

∞
∑

j=0

Bj(w − a)j. (3.11a,b)

To understand the validity of these equations and find U−1 and B−1 we note that using

equations (2.1)–(2.3) we can rewrite the definitions (3.2) as

U = RV̄ + R̄V − P̂+(RV̄ + R̄V),

B = VV̄ − P̂+(VV̄).

}

(3.12)

The functions P̂+(RV̄ + R̄V) and P̂+(VV̄) are analytic at w = a ∈ C
+ thus they only

contribute to Ureg and Breg, respectively. The functions R̄ and V̄ are also analytic at

w = a with Taylor series representations

R̄(w)≡ Rc +
∞
∑

j=1

Rc,j(w − a)j, (3.13)
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900 A. I. Dyachenko, S. A. Dyachenko, P. M. Lushnikov and V. E. Zakharov

and

V̄(w)≡ Vc +
∞
∑

j=1

Vc,j(w − a)j, (3.14)

where Rc ≡ R̄(a) and Vc ≡ V̄(a) are zero-order terms and Rc,j, Vc,j are the coefficients
of the higher-order terms of the respective power series.

Equations (3.12)–(3.14) imply that generally U and B have the same types of
singularities as R and V except for special cases where the poles of either R or V

are cancelled out. Calculating residues of RV̄ + R̄V and |V|2 at w = a we obtain that

U−1 = RcV−1 + VcR−1,

B−1 = VcV−1,

Rc ≡ R̄(a) 6= 0, Vc ≡ V̄(a),







(3.15)

where we used equations (3.6)–(3.11), (3.13) and (3.14). Also Rc = R̄(a) 6= 0 follows
from the general condition (3.5).

According to Theorem 1’s assumption, V−1 6= 0. Calculating the partial derivative of
equation (3.6),

∂V

∂t
= atV−1

(w − a)2
+ (V−1)t

w − a
+ (Vreg)t, (3.16)

we see that the left-hand side of equation (3.3) has at most (if at 6= 0) the second-order
pole. At the same time, the right-hand side of equation (3.3) has the third-order pole
−iRcV

2
−1/(w − a)3 because Rc 6= 0, where we used equations (3.15). This implies that

V−1 = 0 is required to match left-hand side and right-hand side of equation (3.3) which
contradicts the initial assumption, thus completing the proof of Theorem 1.

Consider now a more difficult case R−1 6= 0 and V−1 = 0. Equations (3.6)–(3.11) and
(3.11)–(3.15) imply that V(w) and B(w) are regular functions at w = a. If Vc 6= 0 then
U(w) has a pole according to equations (3.10) and (3.15). This leads to the formation
of a second-order pole in equation (3.1) which is cancelled out provided

at = i[R0Vc − U0], (3.17)

where U0 cannot be obtained from the local analysis of this section because it requires
us to evaluate the projector in equation (3.12) which needs global information about
V and R in the complex plane w ∈C.

At the next order, (w − a)−1, we obtain that

(R−1)t = −2iR−1(U1 − R1Vc), (3.18)

and

B1 = −ig + V1Vc, (3.19)

where again U1 and B1 can be found only if V and R are known globally in the
complex plane w ∈C. The conditions (3.17)–(3.19) must be satisfied during evolution.
Similar conditions can be obtained from terms of orders (w − a)0, (w − a)1, . . . to give
equations for the time derivatives of the coefficients of the series of the regular parts
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Dynamics of poles: new constants of motion 901

of R and V (e.g. the order (w − a)0 provides the explicit expressions for (R0)t and
(V0)t etc.).

We conclude that the local analysis does not exclude the possibility of the existence
of the persistent-in-time solution with R−1 6= 0 and V−1 = 0. The exceptional case,
when global information is not needed, is V ≡ 0 (meaning that U ≡ 0 and B ≡ 0) which
implies that equation (3.19) cannot be satisfied for g 6= 0. Then by contradiction we
conclude that

R−1 = 0, for V ≡ 0 and g 6= 0, (3.20)

i.e. no persistent poles exist in that case even for the pole only in R with V analytic
at that point.

Theorem 1 can be generalized to prove non-persistence of the same higher-order
poles R with V . The analysis of that case is beyond the scope of this paper.

We note that the analysis of Tanveer (1993) assumed that both Πu and zu are
analytic in the entire complex plane w ∈C at t = 0 (Tanveer (1993) actually considered
periodic solutions with an additional symmetry in the horizontal direction with the
fluid domain mapped to the unit disk, but we can adjust results of this case to our
conformal map). In terms of R and V , this means that poles are possible only if zu

has a regular nth-order zero at w = a with n = 1, 2, . . . . Tanveer (1993) assumed
zu(w = a, t = 0)= 0 and zuu(w = a, t = 0) 6= 0, i.e. n = 1. Two cases were considered in
Tanveer (1993) for a ∈C

+: (i) Πu(w = a, t) 6= 0 and (ii) Πu(w, t)≡ 0 in C. The case
(i) implies that V−1(w = a, t = 0) 6= 0 and R−1(w = a, t = 0) 6= 0. Then our Theorem 1
above proves that such an initial condition cannot lead to persistent pole solutions.
This agrees with the asymptotic result of Tanveer (1993) that a couple of branch
points are formed from those initial conditions during an infinitely small duration of
time. The case (ii) of Tanveer (1993) means that V ≡ 0 for t = 0 which has no poles
as proven in equation (3.20). Kuznetsov, Spector & Zakharov (1993, 1994) considered
a related case R ≡ 1 and a pole in V at t = 0 which results in the formation of a
couple of branch points in an infinitely small duration of time. That result is again
consistent with Theorem 1. Thus our results on the non-existence of persistent poles
are in full agreement with the particular conditions of Kuznetsov et al. (1993, 1994),
Tanveer (1993).

We also note that taking into account a non-zero surface tension, i.e. working with
equations (2.8), (2.11), (2.13) and (2.14) instead of equations (3.1)–(3.3), immediately
shows that the pole singularity both for R and V is non-persistent because the

dependence of the surface tension terms of Q =
√

R introduces the square root
singularity into equation (2.14) which cannot be compensated by other terms with
poles.

Contrary to the poles analysed above, power law branch points of power γ are
persistent in time for free surface dynamics which can be shown by a local analysis
that is qualitatively similar to the pole analysis above. The detailed analysis of the
persistence of power branch points is however beyond the scope of this paper. The
most common type of branch point observed in our numerical experiments is γ = 1

2
which is consistent with the results of Grant (1973), Tanveer (1991, 1993), Kuznetsov
et al. (1993, 1994). Square root singularities have been also intensively studied based
on the representation of a vortex sheet in Moore (1979), Baker, Meiron & Orszag
(1982), Meiron, Baker & Orszag (1982), Krasny (1986), Caflisch & Orellana (1989),
Baker & Shelley (1990), Caflisch, Orellana & Siegel (1990), Shelley (1992), Baker,
Caflisch & Siegel (1993), Caflisch et al. (1993), Cowley, Baker & Tanveer (1999),
Baker & Xie (2011), Karabut & Zhuravleva (2014), Zubarev & Kuznetsov (2014),
Zubarev & Karabut (2018).
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902 A. I. Dyachenko, S. A. Dyachenko, P. M. Lushnikov and V. E. Zakharov

A particular solution of equations (3.1)–(3.3) is the Stokes wave, which is a

nonlinear periodic gravity wave propagating with constant velocity (Stokes 1847,

1880). In the generic situation, when the singularity of the Stokes wave is away from

the real axis (non-limiting Stokes wave), the only allowed singularity in C is γ = 1/2,

as was proven in Tanveer (1991) for the first (physical) sheet of the Riemann surface

and in Lushnikov (2016) for an infinite number of other (non-physical) sheets of the

Riemann surface. Dyachenko, Lushnikov & Korotkevich (2013b, 2016), Lushnikov,

Dyachenko & Silantyev (2017) provided detailed numerical verification of these

singularities. The limiting Stokes wave is the special case γ = 1/3 with a = iIm(a).

Also Tanveer (1993) suggested the possibility in exceptional cases of the existence

of γ = 1/n singularities with n being any positive integer as well as singularities

involving logarithms.

4. New constants of motion for the gravity case but with zero surface tension

Assume that both functions R and V are analytic on a Riemann surface Γ . The

complex plane of w is the first sheet of this surface, which we assume to contain a

finite number of branch points w = wm,m = 1, 2, . . . ,M.

We now address the question of whether R could have isolated zeros at some other

points of C
+. (We remind the reader that R(w) 6= 0 for w ∈C

− because the mapping

(1.1) is conformal.) Assume that R has a simple zero at w = a(t), i.e. R(a)= 0 and

Ru(a) 6= 0. We assume that the functions R and V are analytic at that point which

implies, through equation (3.12), that the functions U and B (3.2) are also analytic at

that point with the Taylor series

R = R1(w − a)+ R2(w − a)2 + · · · , R1 6= 0, (4.1)

V = V0 + V1(w − a)+ V2(w − a)2 + · · · , (4.2)

and

U = U0 + U1(w − a)+ U2(w − a)2 + · · · , (4.3)

B = B0 + B1(w − a)+ B2(w − a)2 + · · · . (4.4)

Similar to § 3, by plugging equations (4.1)–(4.4) into equations (3.1) and (3.3) and

collecting terms of the same order as (w − a)j we obtain for j = 0 that

at = −iU0 (4.5)

and

(V0)t = −g. (4.6)

The order j = 1 results in

(R1)t = 0 (4.7)

and

(V1)t = gR1 + i(U1V1 − B1R1). (4.8)
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Dynamics of poles: new constants of motion 903

Equations (4.6) and (4.7) are of fundamental importance. Equation (4.7) states that
both in the absence and in the presence of gravity

R1 = const. ≡ 1

c
(1)
1

, (4.9)

where c
(1)
1 is a complex time-independent constant. Equation (4.10) results in a trivial

dependence on time,

V0(t)= −gt + e
(1)
1 , (4.10)

where e
(1)
1 is a complex constant defined by the initial condition, e

(1)
1 = V0(t = 0). Here

the subscript ‘1’ stands for the first order of zeros of R in equation (4.1). We conclude
that each simple zero of function R generates four additional real integrals of motion.

Two of them are the real and imaginary parts of c
(1)
1 = 1/R1. The two others are the

real and imaginary parts of e
(1)
1 = V0(t)+ gt. In addition, V0(t) either obeys the trivial

linear dependence on time for non-zero gravity g 6= 0 or coincides with e
(1)
1 for g = 0.

Equation (4.5) provides another important relation showing that −iU0 is ‘the transport
velocity’ which governs the propagation of the zeros of the function R in the complex
plane of w.

Taking into account all N isolated simple zeros of R at w = a( j), j = 1, . . . , N
and designating by the superscript ‘( j)’ the corresponding jth zero, we obtain from

equations (4.9) and (4.10) that R
(n)
1 = const. ≡ 1/c

(n)
1 and V

(n)
0 (t)= −gt + e

(n)
1 . Then we

notice that any difference e
( j)

1 − e
(n)
1 , j, n = 1, . . .N, j 6= n, is the true integral of motion

even for g 6= 0.
We conclude that N simple isolated zeros of R, separated from branch points, imply

for g 6= 0 the existence of 4N − 1 independent new constants of motion Re(c
(n)
1 ),

Im(c
(n)
1 ), n = 1, . . . , N, Re(e

(n)
1 − e

(N)
1 ), Im(e

(n)
1 − e

(N)
1 ), n = 1, . . . , N − 1 and Im(e

(N)
1 )

as well as one linear function of time Re(V
(N)
0 ) = −gt + Re(e

(N)
1 ). For zero gravity

g = 0 we have 4N independent new constants of motion Re(c
(n)
1 ), Im(c

(n)
1 ), Re(e

(n)
1 ),

Im(e
(n)
1 ), n = 1, . . . ,N.

Section 9 below demonstrates, in a number of particular cases, the independence of
these motion constants on time in full nonlinear simulations of equations (3.1)–(3.3).

Using definitions (2.15) and (2.16), we obtain from equations (4.1) and (4.2) that

zw = 1

R1(w − a)
+ (zw)reg,

Πw = −iV0

R1(w − a)
+ (Πw)reg.















(4.11)

Equations (4.9)–(4.11) imply that the residues (i.e. the coefficients of (w − a)−1 of the
Laurent series),

Res
w=a
(zw)=

1

R1

= c
(1)
1 = const. (4.12)

and Res
w=a
(Πw) = −iV0/R1 = −ic

(1)
1 e

(1)
1 = const., of both zw and Πw are constants of

motion for g = 0. For g 6= 0, Res
w=a
(zw) remains the integral of motion while

Res
w=a
(Πw)= −ic

(1)
1 [−gt + e

(n)
1 ], (4.13)
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i.e. it has a linear dependence on time. Section 5 provides another way to
straightforwardly derive that these residues are constants of motion.

A Poisson bracket (1.21) between any motion constant is a motion constant itself
(see e.g. Arnold 1989). Together such motion constants form a Lie algebra. We
conjecture that this Lie algebra is commutative. However, in this paper we are able
to prove only the weaker statement that

{c(n)1 , c
(k)
1 } = 0 (4.14)

for any n, k = 1, . . . , N. The proof is almost trivial and relies on the fact that all

c
(n)
1 integrals are determined by the shape of the free surface z(u, t), i.e. they are

functionals of z only. Hence

δc
(n)
1

δψ
= 0, n = 1, . . . ,N, (4.15)

and equation (4.14) immediately follows from the Poisson bracket definition (1.21).

The question about the explicit calculation of Poisson brackets {c(n)1 , e
(k)
1 } and {e(n)1 , e

(k)
1 },

n, k = 1, . . . ,N, remains open.
We note that the existence of an arbitrary number of integrals of motion was not

addressed in Tanveer (1993) because it focused on the particular case of analytic initial
data in the entire complex plane w ∈C.

5. Another view of the new motion constants

In this section we use the dynamical equations (2.6), (2.7) with α = 0. It is useful
to introduce new functions

ρ ≡ zu = 1

R
and W ≡Πu = −i

V

R
. (5.1a,b)

Then differentiating equations (2.6) and (2.7) over u together with the definitions (5.1)
implies that

ρt = i(Uρ)u,
Wt = i(UW)u − Bu + ig(ρ − 1).

}

(5.2)

Let us address a question about possible singularities of the functions ρ and W.
We assume that the functions R and V (2.15), (2.16) have only a finite number of
branch points for w ∈ C+. Apparently, ρ and W generally inherit these branch points
(with the only exception being the possible cancellation of some branch points because
W = −iV/R) but they cannot have any additional branch point. In other words, if a
branch point appears in ρ and W at some moment of time, then it immediately implies
a branch point creation in both R and V .

However, ρ and W can have poles in the domains of the regularity of R and V .
Indeed, assume that R has a regular pole of order m at w = a while V is regular and
non-zero at w = a. This means that at w = a both R and V can be represented by
Taylor series

R = Rm(w − a)m + · · · , Rm 6= 0, (5.3)

V = V0 + V1(w − a)+ V2(w − a)2 + · · · . (5.4)
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Dynamics of poles: new constants of motion 905

Then equations (5.1), (5.3) and (5.4) imply the Laurent series

ρ =
∞
∑

j=−m

(w − a)jρj,

W =
∞
∑

j=−m

(w − a)jWj.























(5.5)

Here ρ−1 and W−1 are the residues of ρ and W at w = a which can be represented
by the contour integrals

ρ−1 = 1

2πi

∮

C

ρ dw = 1

2πi

∮

C

dw

R
, (5.6)

and

W−1 = 1

2πi

∮

C

W dw = − 1

2π

∮

C

Vdw

R
, (5.7)

where C is the counterclockwise closed contour around w = 0 which is taken to be
small enough to avoid including any branch point in the interior.

A direct integration of equations (5.2) over the contour C implies, together with
equations (5.6) and (5.7), that

d

dt
ρ−1 = 0, (5.8)

d

dt
W−1 = igρ−1, (5.9)

which is another way to recover the results of § 4 ((4.12) and (4.13)) in terms of ρ
and W. In particular, equation (5.8) means that ρ−1 is a constant of motion and W−1

is a motion constant only for g = 0 while generally

W−1 = W
(0)
−1 + igρ−1t, (5.10)

with W
(0)
−1 being the complex constant.

Thus poles in ρ and W are persistent in time (at least during a finite time while
w = a remains a regular point of both ρ and W) which suggests the following
decomposition

ρ = ρrational + ρb,

W = Wrational + Wb,

}

(5.11)

where ρrational and Wrational are rational functions of w while ρb and Wb generally have
branch points.

Assume that at the initial time t = 0, both ρ and W are purely rational, i.e. ρb|t=0 =
Wb|t=0 ≡ 0. As a simple particular case one can assume that these rational functions

have only simple poles with residues ρ
(k)
−1 and W

(k)
−1 at N points w = ak, Im(ak)> 0, k =

1, 2, . . . ,N as follows:

ρ|t=0 = 1 +
N
∑

k=1

ρ
(k)
−1

w − ak

, W|t=0 =
N
∑

k=1

W
(k)
−1

w − ak

, (5.12a,b)
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906 A. I. Dyachenko, S. A. Dyachenko, P. M. Lushnikov and V. E. Zakharov

where the 1 on the right-hand side of the first equation ensures the correct limit (1.3).
Generally these points might be different for ρ and W but our particular choice of
the same points corresponds to the common poles originating from the zeros of R in
equations (5.1). This type of initial condition is studied numerically in § 9. Note that
the initial conditions (5.12) imply logarithmic singularities at w = ak, k = 1, 2, . . . , N

in both z and Π through the definitions (5.1) provided ρ
(k)
−1 6= 0 and W

(k)
−1 6= 0.

Bringing equations (5.12) to the common denominator, we immediately conclude
that ρ|t=0 has N zeros (counting according to their algebraic multiplicity) at some
points w = bk, k = 1, 2, . . . , N. Equation (1.4) requires that Im(bk) > 0 for all k =
1, 2, . . . ,N which must be taken into account in choosing initial conditions (5.12) for
the simulations.

At a general position W|w=bk
6= 0. Assume that w = bk is an mth-order zero of ρ|t=0.

Then equations (5.1) imply that the Laurent series of both R and V have poles of
order m. According to § 3 such poles are not persistent in time, meaning that in an
arbitrarily small time they turn into branch points.

The branch point at w = bk is generally moving with time, i.e. bk = bk(t). At the
initial time t = 0, the point w = bk is separated from all poles w = aj, j = 1, 2, . . . . ,N
in equations (5.12). This means that at least during a finite time w = bk will
remain separated from poles w = aj(t), j = 1, 2, . . . , N which move according to
equation (4.5) (this equation is also valid for arbitrary m as shown in § 6 below for
m = 2, equation (6.5)). During that finite time one can write a decomposition (5.11)
as

ρ = 1 +
m
∑

j=1

N
∑

k=1

ρ
(k)
−j

(w − ak(t))j
+ ρb,

W =
m
∑

j=1

N
∑

k=1

W
(k)
−j (t)

(w − ak(t))j
+ Wb,



























(5.13)

where the ‘non-rational’ terms ρb and Wb are identically zero at t = 0. Here ρ
(k)
−1 is

the motion constant and W
(k)
−1(t) is a linear function of time according to equations

(5.8) and (5.10). Results of the numerical experiment of § 9 support this decomposition
scenario completely.

6. New constants of motion for non-zero surface tension and second-order poles

in zw and Πw

On taking into account non-zero surface tension, α 6= 0, then instead of equations
(3.1)–(3.3) we have to consider the more general equations (2.8), (2.11), (2.13) and

(2.14). Expressing Q =
√

R through R we obtain from equation (2.14) that

∂V

∂t
= i

[

UVu − RP̂− ∂

∂u
(|V|2)

]

+ g(R − 1)− αRP̂− ∂

∂u

(

Ru

√
R̄√

R
− R̄u

√
R√

R̄

)

. (6.1)

Assume that initially R and V satisfy equations (4.1)–(4.2). Plugging them into the
right-hand side of equation (6.1), one obtains at the leading power of w − a that

∂V

∂t
∝ 1√

w − a
, (6.2)
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Dynamics of poles: new constants of motion 907

i.e. a square root singularity appears in V in an infinitely small time. Thus the analysis
of § 4 fails for non-zero surface tension. However, we can now consider the double
zero in R, i.e. equation (4.1) is replaced by

R = R2(w − a)2 + · · · , R2 6= 0, (6.3)

V = V0 + V1(w − a)+ V2(w − a)2 + · · · , (6.4)

and, respectively, the square root disappears in
√

R.
Plugging equations (4.3), (4.4), (6.3) and (6.4) into equations (3.1) and (6.1), and

collecting terms of the same order (w − a)j we obtain, similar to § 4, at order j = 0
that

at = −iU0, (6.5)

and

(V0)t = −g, (6.6)

which are exactly the same as equations (4.5) and (4.6) and which implies that
equation (4.10) is now trivially replaced by

V0(t)= −gt + e
(1)
2 , (6.7)

where e
(1)
2 is the constant defined by the initial condition, e

(1)
2 = V0(t = 0). Here the

subscript ‘2’ stands for the second order of zero of R in equation (6.3).
The orders j = 1 and j = 2 result in

(R2)t = iR2U1, (6.8)

and

(V1)t = iV1U1, (6.9)

where we do not show an explicit expression for (V2)t which appears not to be very
useful.

Excluding U1 from equations (6.8) and (6.9) we obtain the constant of motion

V1

R2

= const. ≡ f
(1)
2 . (6.10)

We note that the surface tension coefficient α does not contribute to equations (6.7)
and (6.10) (α contributes only to the expression for (V2)t and higher orders in powers
of w − a). Thus equation (6.10) is valid for arbitrary g and α.

Equations (2.15), (2.16), (5.3) and (5.4) imply that equation (4.11) is replaced by
the Laurent series

zw = 1

R2(w − a)2
− R3

R2
2(w − a)

+ O((w − a)0),

Πw = −iV0

R2(w − a)2
+ i(R3V0 − R2V1)

R2
2(w − a)

+ O((w − a)0).















(6.11)
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908 A. I. Dyachenko, S. A. Dyachenko, P. M. Lushnikov and V. E. Zakharov

However, equations (6.6) and (6.10) do not exhaust all integrals of motion for the
case of the second-order pole of this section. For this we note that the results of § 5
on time independence of ρ−1 = Res

w=a
(zw) and linear dependence of W−1 = Res

w=a
(Πw) on

time (see equations (5.8) and (5.9)) are true for the second-order pole and they remain
valid for α 6= 0. We note that it is possible to derive equations (5.8) and (5.9) by direct
computations in the R and V variables, similar to the derivation of equation (6.10), but
we do not provide it here because the analysis of § 5 is much more elegant for these
residues. Thus equation (5.8) implies that it is natural to replace the definition of the

motion constant c
(1)
1 from equation (4.12) of § 4 for the first-order pole by

Res
w=a
(zw)≡ c

(1)
2 = const. (6.12)

for the second-order pole, where the subscript ‘2’ means ‘second order’. Using
equation (6.7), one can also rewrite equation (5.10) as follows

Res
w=a
(Πw)+ iRes

w=a
(zw)V0 = const. (6.13)

The explicit expressions for Res
w=a
(zw) and Res

w=a
(Πw) immediately follow from

equation (6.11) giving

Res
w=a
(zw)=

−R3

R2
2

, Res
w=a
(Πw)= −iRes

w=a
(zw)V0 − iV1

R2

. (6.14a,b)

Equations (6.10) and (6.14) also imply that equation (6.13) is not an independent
integral of motion.

We now generalize the statement of § 4 on the number of motion constants to the
second-order pole case of this section. Taking into account all N isolated zeros of
the second order of R at w = a( j), j = 1, . . . , N and designating by the superscript
‘( j)’ the corresponding jth zero, we obtain 2N real independent integrals of motion

Re( f
( j)

2 ), Im( f
( j)

2 ), j = 1, . . . , N from equation (6.10); 2N − 1 real independent

integrals of motion Re(e
( j)

2 − e
(N)
2 ), Im(e

( j)

2 − e
(N)
2 ), j = 1, . . .N − 1, Im(e

(N)
2 ) as well as

one linear function of time Re(V
(N)
0 )= −gt + Re(e

(N)
2 ) (similar to § 4, the number of

integrals turns into 2N for g = 0 by adding Re(e
(N)
2 )) from equation (6.7); and 2N real

independent integrals of motion Re(c
( j)

2 ), Im(c
( j)

2 ), j = 1, . . . , N from equation (6.12).
Thus the total number of independent complex integrals of motion is either 6N − 1
for g 6= 0 or 6N for g = 0. All these results for the motion constants are valid for
non-zero surface tension α 6= 0. We note that if we look at the poles of an order
higher than two, the number of independent integrals of motion is increasing (with
α 6= 0 allowed for all even orders). However, such a general case of third- and
higher-order poles is beyond the scope of this paper.

One can easily generalize the results of both this section and § 4 by allowing a
mixture of the terms with the highest first- and the second-order poles (corresponding
to equations (4.1) and (6.3), respectively) at each of the N points of zero of R. The
corresponding number of independent integrals of motion can be easily recalculated
for that more general case.

The constants of motion c
( j)

2 , j = 1, . . . ,N (6.12) are functionals of z only, similar to

c
( j)

1 , j = 1, . . . ,N of § 4. This implies an immediate generalization of equations (4.14)
and (4.15) to

{c(n)m1
, c(k)m2

} = 0, (6.15)
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Dynamics of poles: new constants of motion 909

and

δc(n)m

δψ
= 0, (6.16)

for any n, k = 1, . . . ,N and any 1 6 m,m1,m2 6 2.

7. Kelvin theorem for phantom hydrodynamics and global analysis

In this section we return to the analysis of the free surface hydrodynamics in terms
of the functions R (2.15) and V (2.16) which satisfy the Dyachenko equations (2.8),
(2.10), (2.11), (2.13) and (2.14). Similar to § 5, we assume that both R and V have
a finite number of branch points and pole singularities for w ∈ C

+. As discussed in
§ 3, equations (3.12)–(3.14) imply that generally the functions U and B have the same
types of singularities as R and V excepting the special cases of cancellation of the
singularities. Moreover, both U and B can have singularities only at points were R
and V also have singularities. Also all four functions R, V , U and B are analytic
for w ∈ C

−. We note that beyond the branch point our analysis cannot fully exclude
the appearance of essential singularities. However, all our numerical simulations of
§ 9 indicate only the formation of branch points, which is also consistent with the
assumption of this section that the only possible singularities of are poles and branch
points. See also Lushnikov (2016) for similar discussion in the particular case of the
Stokes wave.

We stress that the main task of the theory is to address the analytic properties of
R and V in the entire complex plane w ∈ C. Moreover, we consider an analytical
continuation of these functions into the Riemann surfaces which we call ΓR(w) and
ΓV(w), respectively. This means that we need a global analysis beyond the local
analysis of §§ 3–5. Little is known about these surfaces. If either R or V is a purely
rational function, then the corresponding Riemann surface would have a genus zero
(see e.g. Dubrovin, Fomenko & Novikov 1985). However, the results of § 3 suggest
that such rational solutions are unlikely to exist for any finite duration of time. The
local analysis of § 3 suggests that a branch point in V implies that R also has a
branch point of the same type at that point. Then we expect that a covering map
exists from ΓR(w) onto ΓV(w). Then from equation (3.12) we conclude that U has
the same Riemann surface as ΓR(w) while B has the same Riemann surface as ΓV(w).
We conjecture that in the general case, branch points of ΓR(w) and ΓV(w) are of
square root type, i.e. their genera are non-zero. We also conjecture, based on the
results of § 3, that V(w) generally has no poles for w ∈ C with the same valid for
B(w). We conjecture that at a general position ΓR(w) and ΓV(w) are non-compact
surfaces with the unknown total number of sheets. Our experience with the Stokes
wave (Lushnikov 2016) suggests that generally the number of sheets is infinite. Some
exceptional cases such as those found in Karabut & Zhuravleva (2014), Zubarev &
Karabut (2018) have only a finite number of sheets of the Riemann surface (these
solutions however have diverging values of V and R at w → ∞). We suggest that the
detailed study of such many and infinite sheet Riemann surfaces is one of the most
urgent goals in free surface hydrodynamics. This topic is however beyond the scope
of this paper.

Both Riemann surfaces ΓV(w) and ΓR(w) appear after we define the conformal
mapping (1.1). There is another Riemann surface, which we call G(z), appearing
before the conformal mapping. Indeed, we can look at the complex velocity V inside
the fluid in the complex z plane using the definition (2.16). An analytical continuation
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of V(z, t) outside of the fluid defines G(z). For stationary waves such a continuation
had been considered since the 19th century, see e.g. Lamb (1945). Here, ΓV(w) is the
composition of G(z) and z(w) as Γ (w)= G(z(w)). The analytical continuation of the
time-dependent Bernoulli equation (1.16) also allows us to recover the fluid pressure
in the z plane.

The analytically continued function V(z, t) describes the flow of an imaginary
(fictional) fluid on the Riemann surface G(z). We call the corresponding theory ‘the
phantom hydrodynamics’. We introduce this new concept in effort to find a physical
interpretation of the new motion integrals found in §§ 4–5. The idea of using the
circulation over a complex contour in the domain of analyticity of the analytical
extension as the integral of motion was also introduced by Crowdy (2002) in the
quite different physical settings of the rotating Hele-Shaw problem and the viscous
sintering problem. For the Hele-Shaw problem (in the approximation of the Laplace
growth equation) an infinite number of integrals of motion were also discovered
in Richardson (1972) and later used in Mineev-Weinstein, Wiegmann & Zabrodin
(2000) to show the integrability of that equation in the sense of the existence of an
infinite number of integrals of motion and its relation to the dispersionless limit of
the integrable Toda hierarchy.

Hereafter, we assume that the non-persistence of poles is valid for any order of pole
both in V and R (as was proved for more restricted cases in Theorem 1 of § 3 (it also
means that we fully exclude a trivial case given by equation (3.4)). Then R can be
analytically continued to the same surface as ΓV without the introduction of additional
singularities, i.e. ΓR = ΓV . Respectively, one can consider both equations (5.6) and
(5.7) on the whole surface ΓV beyond just w ∈C. Now C in equations (5.6) and (5.7)
is any closed and small enough contour on ΓV , which moves together with the surface.
This means that the poles of both ρ and W on other sheets of ΓV generate integrals
of motion and the total number of these integrals is unknown. One can consider these
integrals on the physical surface G. As far as dw/R = dz, one can rewrite the right-
hand side of equation (5.7) as −(1/2π)

∮

Vdz and interpret a conservation of W−1 at
g = 0 as a ‘generalized Kelvin theorem’ valid for the phantom hydrodynamics (see
e.g. Landau & Lifshitz (1989) for the Kelvin theorem of the usual hydrodynamics).
Notice however, that this generalized Kelvin theorem can be formulated only after the
conformal mapping of the surface G to the surface ΓV .

8. Numerical simulations of free surface hydrodynamics through additional time-

dependent conformal mapping

8.1. Basic equations for simulations and spectrally accurate adaptive mesh

refinement

We performed simulations of the Dyachenko equations (2.8), (2.10), (2.11), (2.13) and
(2.14) using a pseudo-spectral numerical method based on a fast Fourier transform
(FFT) coupled with an additional conformal mapping (Lushnikov et al. 2017)

q = q∗ + 2 arctan

[

1

L
tan

w − w∗

2

]

. (8.1)

Equation (8.1) provides the mapping from our standard conformal variable w = u Iv

into the new conformal variable q. Here L, q∗, w∗ ∈ R are the parameters of that
additional conformal mapping. The details of the numerical method are provided in
Lushnikov et al. (2017). Here and below we assume without loss of generality that
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Dynamics of poles: new constants of motion 911

both R and V are periodic functions of w with period 2π (if the period is different
then one can rescale independent variables w and t as well as g and α to ensure 2π

periodicity while keeping the same form of equations (2.8), (2.11), (2.13) and (2.14)).
To recover the limit of the decaying solution at |u| → ∞ considered in the previous
sections, we take the limit of a large spatial period (before rescaling to 2π). In terms
of rescaled variables, this means that the distance of the complex singularities of
interest to the real line u = w must be much smaller than 2π. However, the analytical
results of previous sections are valid for the periodic case also. See also Dyachenko
et al. (2016) for a detailed discussion of the periodic case compared with the decaying
case. We also note that the conformal map (8.1) conserves the 2π periodicity of both
R and V .

The goal of our simulations was to reach a high and a well-controlled numerical
precision while maintaining the analytical properties in the complex plane. The reason
for using the new conformal variable (8.1) for the simulations is that a straightforward
representation of R and V by Fourier series (while ensuring the analyticity of both R
and V for w ∈ R) would be much less efficient as the lowest complex singularity at
w = wc ≡ uc + ivc of R or/and V approaches the real line during the dynamics. Such
an approach would imply a slow decay of the Fourier coefficients as

∝e−vc|k| for k � 1, (8.2)

where k is the Fourier wavenumber. It was found in Lushnikov et al. (2017) that the
conformal mapping (8.1) allows us to move the singularity w = wc significantly away
from the real line. It was shown there that the optimal choice of the parameter L is

L = Loptimal '
(vc

2

)1/2

, (8.3)

which ensures a mapping of w = wc into q = qc, Im(qc)≈ (2vc)
1/2 � vc for vc � 1 and

the fastest possible convergence of Fourier modes in the q variable as

∝e−(2vc)
1/2|k| for k � 1. (8.4)

The parameters u∗ and q∗ of equation (8.1) are u∗ = uc and q∗ = 2 arctan[L tan (u∗/2)].
The introduction of these parameters is a modification of the results of Lushnikov
et al. (2017) to account for the motion of complex singularities in the horizontal
direction. The scaling (8.4) is greatly beneficial compared with the scaling (8.2)
for vc � 1 because to reach the same numerical precision one needs to take into
account a factor ∼ (vc/2)

1/2 less Fourier modes. For example, Lushnikov et al.
(2017) demonstrated a ∼106 fold speed up of simulations of a Stokes wave with
vc ' 10−11. In our time-dependent simulations described below we routinely reached
down as low as vc ' 10−6. It is definitely possible to extend our simulations for
significantly smaller vc, which is however beyond the scope of this paper which is
focused on numerical verifications of the analytical results of the above sections.

Our simulation method is based on the representation of R and V in Fourier
series in the q variable as R(q, t) =

∑−∞
k=0 Rk(t)e

ikq and V(q) =
∑−∞

k=0 Vk(t)e
ikq, where

Rk(t) and Vk(t) are Fourier modes for the integer wavenumber k. These modes are
set to zero for k > 0 which ensures analyticity of R and V for w ∈ C

−. For the

simulations we truncated Fourier series to the finite sums R(q, t) =
∑−N

k=0 Rk(t)e
ikq

and V(q) =
∑−N

k=0 Vk(t)e
ikq, where the integer N is a time dependent and chosen

large enough at each t to ensure approximately round-off double precision ∼10−16.
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912 A. I. Dyachenko, S. A. Dyachenko, P. M. Lushnikov and V. E. Zakharov

Equations (2.8), (2.11), (2.13) and (2.14) were rewritten in the q variable with

the main difficulty being to numerically calculate the projector P̂− (defined by
equation (2.1) in the u variable but which must be numerically calculated in the q

variable) which we did based on Lushnikov et al. (2017). We used a uniform grid
in q (it is needed for the FFT), which we call the computational domain. In the u

variable such a case implies a highly non-uniform grid which focuses on the domain
closest to the lowest complex singularity, see Lushnikov et al. (2017) for details.
In other words, our numerical method provides a spectrally accurate adaptive mesh
refinement.

During the dynamics we fixed N, u∗ and L for a finite period of time during which
the Fourier spectrum was resolved up to a prescribed tolerance (typically we chose
that tolerance to be ∼10−13 for the double precision simulations). Advance in time was
achieved by the sixth-order Runge–Kutta method with an adaptive time step to both
maintain the numerical precision and satisfy the numerical stability. The de-aliasing
(see e.g. Boyd 2001) was not required because after each time step we set all positive
Fourier modes to zero to ensure analyticity for w ∈ C

−. If the Fourier spectrum at
some moment of time became too wide to meet the tolerance (this occurs due to the
motion of the lowest singularity wc in C

+) then we first attempted to adjust u∗ and
L to make the spectrum narrower to meet the tolerance. This was achieved through
the approximation of uc = u∗ by the location of the maximum of the Jacobian |zu|2
at the real line w = u while the updated value of L was obtained by decreasing L

by a factor 21/2. An alternative procedure to find more accurate values of vc (and
respectively more accurate values of L through equation (8.1)) is to either use the
asymptotic of the Fourier series as in Dyachenko et al. (2013b, 2016) or to perform
a least-square-based rational approximation of the solution (described below) to find
an updated value of wc and, respectively to update u∗ and L. After finding new values
of u∗ and L, the spectral interpolation was performed on the new grid with the updated
values u∗ and L. That step cannot be performed with FFT because the change of u∗

and L causes a nonlinear distortion of the uniform grid compared with the previous
value of L. Instead, straightforward evaluations of the Fourier series at each new value
of q were performed requiring ∼ N2 flops (while FFT requires only ∼ N log N flops).
However, such a change of L and/or u∗ was required typically once every few hundred
or even many thousands of time steps so the added numerical cost from the N2 flops
step was moderate. If such a first attempt to update u∗ and L was not sufficient to
meet the tolerance, N was also additionally increased by the spectral interpolation to
the new grid in q by adding extra Fourier modes of zero amplitude (i.e. increasing
N) and calculating numerical values on the new grid through FFT.

8.2. Recovering the motion of the singularities for w ∈C
+ by the least-squares

rational approximation

The simulation approaches of § 8.1 result in numerical approximations of R and V on
the real line w = u for each t. To recover the structure of the complex singularities of
R and V for w ∈C

+ for each t we used the least-squares rational approximation based
on the Alpert–Greengard–Hagstrom (AGH) algorithm Alpert, Greengard & Hagstrom
(2000) adapted to water wave simulations in Dyachenko et al. (2016). Contrary to the
analytical continuation of a Fourier series (see e.g. Dyachenko et al. 2013b, 2016),
the AGH algorithm allows for analytical continuation from the real line w = u into
w ∈ C

+ well above the lowest singularity w = wc. The AGH algorithm is based on
an approximation of the function f (u) with the function values given on the real line
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Dynamics of poles: new constants of motion 913

w = u by the rational function in the least-squares sense. The rational approximant
is then straightforward to analytically continue to the complex plane by replacing
u by w. The AGH algorithm overcomes numerical instabilities typical for the Padé
approximation (see e.g. Baker & Graves-Morris 1996) which is based on a value of
function and its derivative at a single point, see Gonnet, Pachon & Trefethen (2011),
Dyachenko et al. (2016) for more discussion. The AGH algorithm robustly recovers
poles in the solution while branch cuts are approximated by a set of poles as follows:

g(ζ )= 1

2π

∫

C

ρ(ζ ′) dζ ′

ζ − ζ ′ '
N
∑

n=1

σn

ζ − ζn

, (8.5)

where the function g(ζ ) has a single branch cut along the contour C in the complex
plane of ζ with ρ(ζ ) being a jump of g(ζ ) at the branch cut. The right-hand side of
equation (8.5) approximates g(ζ ) by simple poles located at ζ = ζn ∈ C, n = 1, . . . ,N
with the residues σn, n = 1, . . . , N. A generalization to multiple branch cuts is
straightforward. Dyachenko et al. (2016) demonstrated for the particular case of
a Stokes wave that ρ(ζ ) can be robustly recovered from ζn and σn by increasing
N with an increase of the numerical precision. For fixed N, the right-hand side
of equation (8.5) approximates g(ζ ) with high precision for all points ζ ∈ C located
away from C by a distance several times exceeding the distance between neighbouring
ζn. In the numerical examples below we distinguish actual poles of g(w) from the
artificial poles which occur in the approximation of branch cuts, as in equation (8.5),
by changing the numerical precision (the actual poles remain the same while the
number of poles in approximation (8.5) increases with the increase of the numerical
precision). An alternative way is to look at the dynamics of the poles: while actual
poles move continuously with time and their residues either remain constant or change
gradually in time (in accordance with the analysis of §§ 4–6), the poles approximating
branch cuts quickly change both their positions and residues with their number N
also changing, as seen in the numerical examples of § 9 below.

To take into account the 2π periodicity of our simulation in the w variable we
define an auxiliary conformal transformation

ζ = tan
w

2
, (8.6)

which maps the stripe −π< Re(w) < π into the complex ζ plane. Also w ∈C
+(C−)

imply that ζ ∈ C
+(C−), see also Dyachenko et al. (2016) for more details of the

mapping (8.6). The ζ variable is convenient to use in the AGH algorithm (Dyachenko
et al. 2016) which is assumed below.

While the simulations of the dynamics were performed in double precision
arithmetic, the AGH algorithm was performed in variable precision (typically we
used 512 bits, i.e. approximately 128 digits). It is also possible to use a variable
precision for the dynamics (as was done in Dyachenko et al. (2016) for a Stokes
wave) to improve the numerical approximation of the branch cuts, which is however
beyond the scope of this paper.

9. Recovering the motion of the singularities from simulations and comparison

with analytical results

The initial data for zu and Πu (which immediately implies the initial data for R
and V through the definitions (2.15) and (2.16)) were chosen in the rational form for
the variable ζ (8.6) which ensures 2π periodicity in w variable. Below we count the
number poles per period, i.e. inside a single stripe −π<Re(w)<π which is the same
number as in the complex plane of ζ .
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914 A. I. Dyachenko, S. A. Dyachenko, P. M. Lushnikov and V. E. Zakharov

9.1. A pair of simple poles in the initial conditions and the formation of an oblique

jet

Consider an initial condition in the form of a pair of simple poles at w = a1(0) and
w = a2(0) both for zu and Πu as follows

zu = 1 − q

[

cot

(

w − a1(0)

2

)

− cot

(

w − a2(0)

2

)]

= 1 − q







1 + ζ tan
a1(0)

2

ζ − tan
a1(0)

2

−
1 + ζ tan

a2(0)

2

ζ − tan
a2(0)

2






,

Πu = ic(1 − zu),











































(9.1)

where a1(0), a2(0)∈C
+, c, q ∈C are constants and we used the trigonometric identity

cot (a − b)= 1 + tan a tan b

tan a − tan b
. (9.2)

Equations (9.1) and (2.15) and (2.16) imply that R = 1/zu is analytic and has simple
zeros at w = a1 and w = a2 while V is analytic and non-zero at these points provided
q 6= 0 and c 6= 0 which corresponds to the case of equations (4.1) and (4.2).

The conformal map (1.1) requires that zu 6= 0 for w ∈C
−. Solving for zu = 0 in the

first equation of (9.1) results in

w± = 2 arctan

[

A1 + A2 ±
√

(1 − 4q2)(A2 − A1)2 + 4q(A1A2 + 1)(A1 − A2)

2(1 − q[A1 − A2])

]

,

A1 ≡ tan
a1(0)

2
, A2 ≡ tan

a2(0)

2
, (9.3)

which provides a restriction on the allowed numerical values of q, a1(0) and a2(0) to
ensure that w± ∈C

+.
We choose

a1(0)= 0.3i, a2(0)= 0.6i, c = 0.64/q and q = 0.4 exp

(

3π

5
i

)

. (9.4a−d)

Equations (9.3) and (9.4) result in

w+ = 0.465388 . . .+ i 0.532846 . . . and w− = −0.465388 . . .+ i 0.367154 . . . ,

(9.5a,b)

i.e. w± ∈ C
+ in this case as required. Taylor series expansions of zu and Πu (9.1) at

w = w± ∈ C
+ and t = 0 reproduce equations (3.6) and (3.7) in the variables R and

V with R−1 6= 0 and V−1 6= 0. Then Theorem 1 of § 3 proves that solutions (3.6) and
(3.7) are not persistent in time. Generally, we expect the formation of a pair of square
root branch points from w = w± at arbitrarily small time t> 0 which is also consistent
with Kuznetsov et al. (1993, 1994), Tanveer (1993). The initial poles at w = a1(0) and
w = a2(0) are expected to be persistent for at least a finite time duration according to
the results of § 4.
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Dynamics of poles: new constants of motion 915

Figure 2(a) shows profiles of the free surface at various times obtained from
simulations of the Dyachenko equations (2.8), (2.10), (2.11), (2.13) and (2.14) with
the initial conditions (9.1), (9.4) and g = α = 0. Figure 2(b–d) demonstrates both
a persistence in time of the poles originating from w = a1(0), w = a2(0) and the
formation of branch cuts at w = w±. Figure 2(b) shows the positions of complex
singularities of zu in the complex plane w ∈ C at small times when the branch cuts
originating from w = w± have small lengths. Figure 2(d) shows these positions at
larger times when the lengths of these branch cuts increase up to ∼1. Figure 2(c)
provides a zoom-in of the left branch cut of figure 2(b). The motion of two poles
originating at w = a1(0) and w = a2(0) is shown by thick dots in these figures. Branch
cuts are numerically approximated in the AGH algorithm by a set of poles according
to equation (8.5) with neighbouring poles connected by solid lines in figure 2(d).
An increase of the numerical precision results in an increase of number of these
artificial poles approximating the branch cuts. There are several ways to determine
the type of a branch point, see e.g. Dyachenko et al. (2013b, 2016). Such a detailed
study of the branch point type is however outside the scope of this paper. We only
demonstrate that a square root branch point exists in figure 5(a) by a direct fit of
the free surface profile. We also note from simulations that at larger times the poles
start absorbing into branch cuts, which is consistent with the assumption of § 4 that
the conservation of the residues is guaranteed only at small enough times. The study
of such absorption is beyond the scope of this paper.

Figures 3(a) and 3(b) demonstrate that the residues of both zu and Πu are the
integrals of motions for g=0 fully confirming the analytical results of equations (4.12)
and (4.13). Figure 3(c) zooms into the trajectories of motion of poles w = a1(t) and
w = a2(t) in the w plane. Figure 3(d) shows a time dependence of the pole positions
w = a1(t) and w = a2(t) and compares it with the result of the time integration of
equation (4.5). The difference between the analytical curves and numerical ones is
nearly visually indistinguishable. For that comparison U was calculated numerically
at each moment of time from R and V by using the definition (2.8) and applying the
AGH algorithm to recover U0(t) (U0 is defined in equation (4.3)). Only at larger times,
when the distance from the branch cuts to either a1 or a2 becomes comparable with
the spacing between the poles approximating the branch cut in the AGH algorithm,
does the difference between the analytical and numerical values become noticeable,
as expected from the discussion of § 8.2.

Assuming g = 0.04 with all other numerical parameters as above, we obtain
simulation results similar to those shown in figure 2 because the simulation time
remains relatively small so that the effect of non-zero g is small for free surface
profiles. However, the residue of Πu is not constant any more but attains a linear
dependence on time as follows from equation (4.13). Then figures 3(a) and 3(b) (the
case g = 0) are replaced by the new figures 3(e) and 3( f ) (the case g = 0.04). There
is again excellent agreement between the simulations and the theoretical curves given
by equations (4.12) and (4.13).

We now consider the initial conditions (9.1) for another set of numerical values

a1(0)= 0.0050 i, a2(0)= 0.0075 i, q = 1.25i, c = 0.02. (9.6a−d)

Equations (9.3) and (9.6) result in w+ = 0.0790677 · · · + i 0.00625 . . . and w− =
−0.0790677 · · · + i 0.00625 . . . , i.e. w± ∈ C

+ in this case as required. Similar to the
previous simulations’ description of this section, Taylor series expansion of zu and Πu

(9.1) at w = w± ∈ C
+ and t = 0 reproduces equations (3.6) and (3.7) in the variables
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916 A. I. Dyachenko, S. A. Dyachenko, P. M. Lushnikov and V. E. Zakharov
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FIGURE 2. (Colour online) Simulations with the initial conditions (9.1), (9.4) and g=α=0.
(a) Profiles of free surface at different times. (b) Complex singularities of zu recovered by
the AGH algorithm at small times including the initial time t = 0. Two persistent poles
recovered by the AGH algorithm are shown by thick dots of different style moving near
the imaginary axis. It is seen that these two poles, originating from the initial conditions
(their initial positions are exactly at the imaginary axis according to equation (9.4)), only
slightly move away from the initial positions at these early times. Two initial zeros of zu

located at w = w± according to equation (9.5) turn into two short branch cuts at arbitrarily
short times. Each branch cut connects two branch points. These branch cuts are revealed
in the AGH algorithm by a dense set of poles located near w = w± with the number of
these poles growing with time. (c) The schematic zoom into a small area around w = w−
(in (b) that area is shown by the rectangular frame around the left branch cut) to display
the extension of branch cut with time. The small filled square shows the point w = w−.
The length of each branch cut grows approximately linearly with time. (d) The same as in
(b) but at larger times when the length of the branch cuts reaches ∼1. Poles approximating
branch cuts are connected by solid lines.

R and V with R−1 6= 0 and V−1 6= 0. Then Theorem 1 of § 3 proves that solutions
(3.6) and (3.7) are not persistent in time. At w = w± we again expect the formation
of a pair of square root branch points at arbitrarily small time t> 0. The initial poles
at w = a1(0) and w = a2(0) are expected to be persistent for at least a finite time
duration according to the results of § 4.

Figure 4(a) shows profiles of the free surface at various times obtained from
simulations of the Dyachenko equations (2.8), (2.10), (2.11), (2.13) and (2.14) with
the initial conditions (9.1), (9.6) and g = α = 0. Figure 4(b) shows a simulation with
the same parameters except g = 0.005 and α = 0. It is seen in figures 4(a) and 4(b)
that the initial free surface has the form of a disk standing on a nearly flat surface.
Then this disk moves upwards with almost constant velocity (for g = 0) forming a
mushroom with a narrow neck (stipe). For g = 0.005 that upward motion is quickly
suppressed by the non-zero gravity. Figure 4(c) demonstrates both a persistence
in time of the two poles originating from w = a1(0), w = a2(0) and a self-similar
dynamics of the branch cuts originating from w = w±. Figure 4(d) shows a time
dependence of the position of two poles moving strictly in the vertical direction.
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Dynamics of poles: new constants of motion 917
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FIGURE 3. (Colour online) (a) The residues of zu at w = a1(t) and w = a2(t) as functions
of t compared with equation (4.12). (b) The residues of Πu at w = a1(t) and w =
a2(t) compared with equation (4.13). (c) Trajectories of w = a1(t) and w = a2(t) in the
w plane compared with the result of the integration of the analytical expression (4.5).
(d) Dependence of real and imaginary parts of a1 and a2 on t for the same data as in (b).
(a–d) Show the same simulation as in figure 2 (with g = 0). (e, f ) Show the same type of
plots as (a,b) except a non-zero gravity g = 0.04 is added to the simulation with all other
parameters the same as in the simulations of figure 2.

Contrary to the previous numerical example, both poles are never absorbed into a
branch cut and they are persistent at all times. Figures 4(e) and 4( f ) demonstrate that
the dynamics of the residues of both zu and Πu is in full agreement with equations
(4.12) and (4.13) both for g = 0 and g 6= 0. Log–linear scaling of Figure 4(c) also
demonstrates that at large time and g = 0 both poles and surrounding branch cuts
evolve in a self-similar way (if we rescale with time both u and v) approaching
the real line with a spatial scaling ∝e−βt, where β ' 0.578329 is obtained from the
numerical fit of the curves of figure 4(d).

Two more sets of the initial conditions (9.1) have initial poles away from the
imaginary axis and are given by

a1(0)= 0.004 i, a2(0)= 0.016 + 0.020 i, q = 0.025ei0.71π, (9.7a−c)

with either

c = 0.03 − 0.02i (9.8)
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FIGURE 4. (Colour online) Simulations with the initial conditions (9.1), (9.6) and α = 0.
(a,b) Profiles of free surface at different times for g = 0 and g = 0.005, respectively.
(c) Positions of two persistent poles (originate at w = a1(0) and w = a2(0), shown by small
open circles, triangles and rhombi) and branch cuts (thick dots and triangles connected by
solid lines) are shown at different t for simulation with g = 0. These poles and branch cuts
determine the mushroom type shape of (a). There are other branch cuts well above (not
shown) which determine only the background of the free surface height outside of the
mushroom. (d) Vertical positions for both poles (solid and dashed lines) for g = 0 and
g = 0.005 versus t in log scale. The exponential dependence ∝e−βt, β ' 0.578329 is also
shown for comparison. (e) The residues of zu at w = a1(t) and w = a2(t) extracted from the
simulations are constant in time both for g = 0 and g = 0.005 in agreement with equation
(4.12). ( f ) The residues of Πu at w = a1(t) and w = a2(t) are either constant or a linear
function of t depending on g and are visually indistinguishable from equation (4.13).

or

c = 0.02. (9.9)

Equations (9.3) and (9.7) result in w+ = 0.0415052 · · · + i 0.0117937 . . . and w− =
−0.0255052 · · ·+ i 0.0122063 . . . , i.e. w± ∈C

+ in these cases as required. Figure 5(a,b)
shows jets propelled in the direction oblique to the imaginary axis which are more
pronounced in the case (9.8) (figure 5a). The initial poles at w = a1(0) and w = a2(0)
are again persistent in time with residues obeying equations (4.12) and (4.13) as
shown in figures 5(c,d) and 5(e, f ). Also a fit to the square root dependence, shown
on figure 5(a) by the dotted line, corresponds to the square root branch point at the
lowest end of the left branch cut as seen in figure 5(c).
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FIGURE 5. (Colour online) Simulations of the initial conditions (9.1), (9.7), g = α = 0
and either (9.8) (a,c,e) or (9.9) (b,d, f ). (a,b) The shape of the surface. Dotted line in (a)
shows a fit of the overturning portion of the wave to the square root dependence z =
q (w − wc)

1/2 + z0, where fitting parameters are z0 = 0.0923 + 0.0961 i and q = 0.595329 +
4.48567 i while wc = −0.02348 + 3.2923 × 10−6 i is recovered from the AGH algorithm
as the position of the lowest end of the branch cut. (c,d) The motion of the poles (small
open circles and triangles) and branch cuts (filled circles and triangles connected by solid
lines) in the w plane. The small filled squares show the point w = w± from equation (9.3).
(e, f ) Residues of zu extracted from simulations are constant in time in agreement with
equation (4.12). A similar statement is true for the residues of Πu in accordance with
equation (4.13) (not shown).

9.2. Simulations with second-order poles

Consider an initial condition in the form of the second-order pole at w = a(0) both in
zu and Πu as follows:

zu = 1 + q

cos(w − a(0))− 1
= 1 − q(ζ 2 + 1)

2 cos2
a

2

(

ζ − tan
a

2

)2
, (9.10)

Πu = ic(1 − zu), (9.11)

where a(0) ∈C
+, c 6= 0, q 6= 0 ∈C are the constants and we used the identity (9.2).

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f N

ew
 M

ex
ic

o,
 o

n 
12

 Ju
l 2

01
9 

at
 1

4:
58

:2
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s .
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
44

8



920 A. I. Dyachenko, S. A. Dyachenko, P. M. Lushnikov and V. E. Zakharov

The initial conditions (9.10) and (9.11) together with equations (2.15) and (2.16)
imply that both R and V are analytic at w = a(0) for t = 0 with their Taylor series
coefficients satisfying

R0(0)= R1(0)= R3(0)= 0, R2(0)= − 1

2q
6= 0, V0(0)= c 6= 0, V1(0)= 0,

V2(0)=
c

2q
at w = a















(9.12)

for t = 0. Thus R has a second-order zero while V is non-zero at w = a(0) provided
q 6= 0 and c 6= 0 which corresponds to the case of equations (6.3) and (6.4). Then the
analytical results of § 6 predict a persistence of second-order poles at w = a(t) of both
zu and Πu for at least a finite duration of time for arbitrary values of g and α. We
study four separate cases g = α = 0; g = 0, α 6= 0; g 6= 0, α = 0; g 6= 0, α 6= 0.

The conformal map (1.1) requires that zu 6= 0 for w ∈ C
−. Solving for zu = 0 in

equation (9.10) results in

w± = 2 arctan

[

2A ± (1 + A2)
√

q(2 − q)

2 − q[A2 + 1]

]

, A ≡ tan
a(0)

2
, (9.13)

which provides a restriction on the allowed numerical values of q and a(0) to ensure
that w± ∈C

+.
We choose numerical values

c = 0.5, q = 0.25 and a(0)= 0.5i (9.14a−c)

for all four cases. Equations (9.13) and (9.14) result in

w+ = 0.722734 . . .+ i 0.5 and w− = −0.722734 . . .+ i 0.5, (9.15a,b)

i.e. w± ∈ C
+ in this case as required. Taylor series expansion of zu and Πu (9.1) at

w = w± ∈C
+ and t = 0 reproduces equations (3.6) and (3.7) in the variables R and V

with R−1 6= 0 and V−1 6= 0. Then Theorem 1 of § 3 proves that solutions (3.6) and (3.7)
are not persistent in time. Similar to the discussion of § 9.1, we expect the formation
of a pair of square root branch points at an arbitrary small time t> 0.

Figures 6(a) and 6(b) shows profiles of the free surface and |V|2 obtained from
simulations of the Dyachenko equations (2.8), (2.10), (2.11), (2.13) and (2.14) with
the initial conditions (9.10), (9.11), (9.14) and four particular cases

(A) g = α = 0; (B) g = 0, α = 0.04;
(C) g = 0.05, α = 0; and (D) g = 0.05, α = 0.04.

}

(9.16)

Figures 7(a,b) and 7(c,d) shows time dependencies of the position of the second-
order pole of both zw(w, t) and Πw(w, t) at w = a(t) as well as the coefficient R2(t)

of Taylor series (6.3) (also entering into equations (6.11)) compared with the time
integration of equations (6.5) and (6.8). It confirms a persistence in time of second-
order poles originating from w = a(0) for the initial conditions (9.10) and (9.11). We
also recovered V1(t) from simulations (not shown in figures) which together with R2(t)

allowed us to confirm the integral of motion (6.10).
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FIGURE 6. (Colour online) (a) Free surface profiles resulting from simulations for the
cases (A), (B), (C) and (D) of equation (9.16) at t = 0.25 compared with the initial profile
at t = 0. (b) |V|2 at the free surface for the same cases.

Figure 7(e, f ) shows the positions of complex singularities of z in the complex
plane w ∈ C. The branch cuts form at arbitrarily small time t > 0 from the points
w = w± (9.15). It is seen that the non-zero surface tension on figure 7( f ) results in
a significantly faster extension of these branch cuts compared with the zero surface
tension case on the left panel. This is consistent with the results of Dyachenko &
Newell (2016) that the addition of surface tension results in the quick approach of
singularities to the real line. Similar to simulations of § 9.1, at larger times the poles
start absorbing into branch cuts. The deviation between analytical and numerical
results in figures 7(b) and 7(d) at later times is due to the faster approach of branch
cuts to the pole position for α 6= 0 thus resulting in the AGH algorithm losing
numerical precision as expected from the discussion of § 8.2. We also note that
our use of z (instead of using zu in § 9.1) to obtain figure 7(a–f ) is due to the
convenience of recovering simple poles in the AGH algorithm compared with the
second-order poles. Indeed, z has the first-order pole at w = a as obtained from
the integration of equation (6.11) over w. Generally such integration produces also
a logarithmic branch point w = a from the simple pole in equation (6.11) which
would imply the formation of multiple poles approximating that branch point by the
AGH algorithm in figure 7(e, f ). However, the particular initial conditions (9.10) and
(9.11) imply through equations (6.10), (6.12)–(6.14), (9.12) that V1(t)= R3(t)= 0, i.e.
Res
w=a
(Πw)= Res

w=a
(zw)= 0 thus removing a logarithmic branch point w = a. The absence

a logarithmic branch point w = a in figure 7(e, f ) also provides another confirmation
of the persistence of the second-order pole in zu at w = a and the validity of the
motion integrals (6.10) and (6.12)–(6.14).

Figure 8 shows results similar to figures 7(a,b) and 7(c,d) but with g 6= 0. The
positions of complex singularities are not shown because they are nearly the same
as in figure 7(e, f ).

We conclude that in this section we verified with a high numerical precision the
conservation of both complex integrals of motion of § 4 and all three independent
complex integrals of motions for the second-order pole case of § 6.

10. Conclusion and discussion

The main result of this paper is the existence of new integrals of motion in free
surface hydrodynamics. These integrals are closely tied to the existence of solutions
with poles of the first and second orders in both zw and Πw. The residues of zw are
the integral of motion while residues of Πw are a linear function of time for non-zero
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FIGURE 7. (Colour online) Data extracted from simulations for the cases (A) (a,c,e) and
(B) (b,d, f ) of equation (9.16). (a,b) The dependence of Im(a) on t in equation (6.11)
compared with the result of the integration of the analytical expression (6.5) (a is purely
imaginary in these cases). For each moment of time the location of w = a = i Im(a) was
found as the solution of R(w)= 0 by Newton’s method. (c,d) The dependence of R2 on t
in equation (6.11) compared with the result of the integration of the analytical expression
(6.8). R2 is purely real in these cases. In (a,b) and (c,d) U0(t) and U1(t) were obtained
from the AGH algorithm similar to § 9.1. (e, f ) Motion of the pole (small open circle and
triangles) and branch cuts (filled triangles connected by solid lines) in the w plane for
z(w, t). The small filled squares show the points w = w± from equation (9.15).

gravity turning into the integrals of motion for zero gravity. The residues of zw at
different points commute with each other in the sense of the underlying non-canonical
Hamiltonian dynamics. This provides an argument in support of the conjecture of
complete integrability of free surface hydrodynamics in deep water. We also suggested
treating the analytical continuation of the free surface dynamics outside of the physical
fluid as phantom hydrodynamics on the multi-sheet Riemann surface. This phantom
hydrodynamics allows for a generalized Kelvin theorem. We expect that generally a
number of sheets will be infinite with generic solutions involving poles and square
root branch points in multiple sheets.

For future work we suggest an extension to the general case of poles of arbitrary
order in zw and Πw to count the total number of independent integrals of motion. We
propose also to study the expected pole solutions in other (non-physical) sheets of a
Riemann surface. The commutativity properties between different integrals of motion
need to be studied in the general case.
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FIGURE 8. (Colour online) Similar results to figures 7(a,b) and 7(c,d) but for the cases
(C) (a,c) and (D) (b,d) of equation (9.16).
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