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Dynamics of quantum droplets 
in an external harmonic 
confinement
Maitri R. Pathak & Ajay Nath*

Recent theoretical and experimental results show that one-dimensional (1D) weakly interacting 
atomic Bose-Bose mixtures with repulsive interspecies mean field (MF) interaction are stabilized by 
attractive quadratic beyond-mean-field (BMF) effects into self-bound quantum droplet (QD) in free 
space. Here, we construct an exact analytical model to investigate the structure and dynamics of QDs 
in presence of external harmonic confinement by solving the 1D extended Gross–Pitäevskii equation 
(eGPE) with temporal variation of MF and BMF interactions. The model provides the analytical form 
of wavefunction, phase, MF and BMF nonlinearities. The generation of QDs and interesting droplet to 
soliton transition in presence of regular/expulsive parabolic traps by taking the comparable MF and 
BMF interactions are illustrated. We derive the phase diagram of the droplet-soliton phase transition 
between amplitude of MF, BMF interactions and harmonic oscillator frequency. The strength and form 
of oscillator frequency are identified as key parameter for tuning the compression, fragmentation and 
transport of droplets. Finally, the stability of the obtained solutions are confirmed from Vakhitov–
Kolokolov (VK) criterion and are found stable.

The formation of droplets is one of the characteristic feature of classical liquids which results due to counter 
balancing of attractive van der Waal’s interactions with repulsive interactions generated from high density of its 
 constituents1. Recently, in one of the pioneering experiment in the field of Bose–Einstein condensate (BEC) and 
superfluids, a new type of dilute quantum droplets (QDs) are observed in Bose-Bose mixtures with isotropic 
contact  interactions2,3 and anisotropic dipolar  interactions4,5. Different from the classical liquids, these QDs 
are generated at very low temperatures ( 109 order less than classical liquids) in BEC phase which makes them 
ultradilute quantum liquid with its density 108 orders of magnitude lower than liquid helium’s6. Although, the 
formation of liquid state in weakly interacting BEC is not possible according to mean-field theory, however, 
Petrov pointed out that the QDs phase can be stabilized when the dominant contribution to the energy due to 
the contact mean field (MF) interaction is close to vanishing and becomes comparable to the beyond mean field 
(BMF) effects Lee-Huang-Yang (LHY) corrections arising from quantum  fluctuations7. Based on this stabilization 
proposal, the dilute QDs are experimentally realized in binary Bose-Bose  mixtures8, dipolar  gases9 and similar 
stabilization mechanisms are proposed for its existence in Bose-Fermi  mixtures10,11 and dipolar  mixtures12,13. 
These developments led to a plethora of works in this  field14–21. It is relevant to mention that the formation of 
vortices in  droplets22,23, multiple  droplets24, existence of striped  states25, droplet  clusters26 and supersolid prop-
erties in phase coherent  droplets27, are also predicted in BECs. The precise experimental control and tunability 
over the QDs parameters: population density of mixture constituents, inter- and intra- component interactions, 
confinement, temperature and spatial dimension, opens new direction in modelling the other complex many-
body systems like liquid  helium6,21. Further, one possible application of the QDs is considered in the precise 
designing of matter-wave  interferometer28.

In this work, we aim to construct an exact analytical model for investigating the generation of QDs in 
cigar-shaped two component BEC mixture and study its spatio-temporal dynamics in the presence of external 
harmonic confinement. In order to construct the analytical model, we consider binary Bose-Bose mixture in 
one dimensional geometry. The choice of binary BECs offers the presence of competing intra- and inter-com-
ponent interactions which is required for the generation and stabilization of  QDs7 and these interactions are 
experimentally tunable using Feshbach resonance  technique29. Additionally, the quasi 1D condensates are quite 
useful for studying fundamental physics problems and a variety of nonlinear excitations like solitons (bright, 
dark, grey), compactons, rogue waves, Faraday waves, etc. are theoretically and experimentally explored in  it30. 
Further, the choice of 1D geometry offers significant stability advantage of nonlinear excitations in comparison 
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to three-dimension geometry and a clean controllable many-body test bed for precise measurement of quantum 
many-body effects. Although, in recent times, the dynamics of QDs is investigated in 1D geometry in absence 
of any external confinement i.e. free space. Astrakharchik et. al. identified the two physically different regimes 
(Gaussian shape and broad flat top plateau) of QDs depending its size in free space using  eGPE31 and Tylutki et. 
al. distinguished droplets from quasi-1D bright solitons by investigating the excitation spectrum of the QDs in 
free  space32. However, the study of QDs in presence of external confinements got less attention in the current 
literature. The motivation for studying two-component BEC in presence of external harmonic trap is threefold: 
(i) study novel phase transition: by tuning interaction and particle number in binary bose-bose BEC mixture in 
the 1D configuration, Cheiney et. al. realized an interesting phenomena of droplet to bright soliton transition 
in the harmonic  trap3 ; (ii) mimic actual experimental scenario: in the current QDs experiments, it’s difficult to 
completely realize the free space situation experimentally, as there is always a presence of weak external harmonic 
trapping potential due to residual trapping frequency along the axial  direction8; and (iii) stability of droplets: 
presence of external harmonic trap not only might improve its stability but can find application as a bath for 
sympathetic cooling of other  systems7. Therefore, theoretically it would be important to investigate the behavior 
of QDs in presence of external harmonic confinement. We calculate the non-trivial exact form of wavefunction, 
phase, MF and BMF nonlinearities. Although, a family of solutions are obtained for eGPE from the constructed 
model, we mainly emphasize on the localized non-linear solitary excitations. Further, we find that one of the 
consistency conditions governing the condensate dynamics and harmonic oscillator frequency interestingly maps 
with the linear Schrödinger equation and Riccati equation. This provides flat top droplet profile corresponding 
to each solvable quantum mechanical configuration and leads to a significant control over the system dynamics. 
Utilizing the nature of MF, BMF interactions and strength of oscillator frequency, we demonstrate the droplet to 
soliton transition in presence of regular/expulsive parabolic trap. We also identify that the oscillator frequency 
and the sign of MF, BMF interaction amplitude’s act as the key parameter for controlling the droplet-soliton 
transition in the system. Further, we investigate the fragmentation and merging of QDs by choosing the elliptic 
solution of eGPE. The temporal evolution of QDs is studied by estimating the number of droplets w.r.t. the 
oscillator frequency of trap. We also illustrate the transport of QDs corresponding to the variation of oscillator 
frequency in the droplet domain.

In the following section, we provide an exact analytical model for investigating the dynamics of QDs in a 
weakly interacting 1D mass-balanced binary Bose-Bose mixture in the presence of external harmonic trap using 
1D eGPE. Here, we have considered the system with temporally varying competing repulsive cubic MF and 
attractive quadratic BMF interactions. The model and analytical framework for the calculated system variables 
is explained by finding the wavefunction, oscillator frequency, MF and BMF nonlinearities. It is shown that 
with suitable choice of the harmonic oscillator frequency, one can realize following experimentally realizable 
forms of trap configurations: (a) free space; (No confinement); (b) V(x, t) = 1

2
M2x2 ; (regular harmonic); and 

(c) V(x, t) = − 1
2
M2x2 ; (expulsive harmonic). Moreover, the the consistency conditions governing the oscillator 

frequency interestingly maps with the linear Schrödinger equation which leads to a significant temporal control 
over the droplet dynamics of the system. We then investigate the dynamics of condensate under the influence of 
regular and expulsive parabolic traps. In comparison to free space, the axial compression of the atomic number 
density is observed in above-mentioned confinement with the variation of oscillator frequency. We illustrate 
the droplet to soliton transition in the considered system and remarkably identify the strength of oscillator 
frequency and sign of MF, BMF interaction’s amplitude as the key parameters for realizing this transition. For a 
better insight of the phenomenon of droplet-soliton transition, a phase diagram between the MF, BMF interac-
tion amplitude’s and the oscillator frequency is also plotted. Moreover, by choosing the elliptic solution of eGPE 
and oscillator frequency of trap, we achieve fragmentation, merging and transport of QDs across the potential. 
The stability of obtained solution is confirmed using Vakhitov–Kolokolov (VK) criterion through an estimation 
of slope of norm w.r.t. chemical potential.

Results
The model and analytical framework. We begin by considering the binary BEC with equal masses and 
equal number of atoms in the components under the influence of BMF (LHY corrections for quantum fluctua-
tions) in presence of temporally varying external harmonic confinement. The same magnitude of equilibrium 
densities of binary mixture components makes the result analysis clearer and easier. In 1D geometry, the system 
is described by the following  equation14,33:

where ψ1 ( ψ2 ) are the wavefunctions of first and second component of binary mixture. Further, we assume 
that the coupling constants describing the repulsion between the atoms in each components are equal: 
g↑↑ = g↓↓ ≡ g = 2�2as(t)/(ma2⊥) and gc = g↑↓ . Here, �s(t) = (gc + 3g)/2 represents the self interaction coef-
ficients whereas �c(t) = (gc − g)/2 is the cross interaction coefficients along with Ŵ(t) =

√
mg3/2/(π�)33. We 

also consider binary mixture under influence of an external harmonic trapping potential V(x, t) with frequency 
ωT , i.e., mω2

Tx
2/2 . a⊥ is the transverse oscillator length of the trap and as(t) represent the time dependent inter-

and intra- components atomic scattering lengths which is tunable through Feshbach resonance  technique29.
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Considering the binary mixture as mutually symmetric spinor components with ψ1 = ψ2 = ψ0ψ , then the 
dynamics of the considered system reduces to the time-dependent dimensionless single  eGPE14:

Here, ψ(x, t) can be treated as the condensate wave function of the droplet with mass m and |ψ(x, t)|2 repre-
sents the normalized density of each component. The parameters g1(t) = Ŵ(t) and g2(t) = �s(t)+�c(t) are 
the binary mixture components coupling constants representing BMF and MF interactions. In experiments it is 
possible to tune g1(t) and g2(t) , both to positive or negative values by changing the sign of atomic scattering 
length. Here, g1(t) and g2(t) are non-zero functions. Further, M(t) is the time dependent harmonic oscillator 
frequency; a constant M(t) implies an oscillator potential which can be confining or expulsive for M > 0 or 
M < 0 , respectively. Here, the value of scaling parameters x0 , t0 , ψ0 are �g1(t)

Ŵ(t)

√

�s+�c
2mg2(t)

 , �(�s+�c)g
2
1 (t)

2g2(t)Ŵ2(t)
 , 
√
2g2(t)Ŵ(t)

(�s+�c)g1(t)
 , 

 respectively31. Equation (3) is the extended GPE added with external harmonic confinement and for M(t) = 0 , 
it has been extensively used in the past theoretical studies to describe the structure and dynamics of quantum 
 droplets7,21.

In order to obtain analytical solutions of (3) in presence of of the time-dependent harmonic trapping potential 
and discuss QDs spatio-temporal dynamics in it, we assume the following ansatz solution:

where A(t) and ξ(x, t) = γ (t)x + δ are the time-modulated amplitude and travelling coordinate of the con-
densate, respectively. Here, γ (t) is the positive definite functions of time with δ > 0 . In principle, the γ (t) and 
−δ/γ (t) represents the inverse of the width and the position of the center of mass of the  excitation34, respectively. 
Further, we assume the quadratic form of the phase as:

Now, by substitution of the ansatz Eq. (4) and phase form (5) in Eq. (3), we obtain the following consistency 
conditions:

where E is eigenvalue of Eq. (6), G1 , G2 denote nonlinearity constant which can have positive or negative depend-
ing on scattering length along with:

where M(t) is the oscillator frequency of the harmonic confinement. It is important to note here that if γ (t) is 
constant then M(t) = 0 i.e. no external harmonic trap. The Eq. (9) can be transformed into the well-known linear 
form of Schrödinger equation by taking γ (t) = 1

a(t):

Equation (10) reveals a non-trivial correlation between the oscillator frequency and the amplitude of con-
densate wavefunction. This is one of the main results of this paper. By taking advantage of this connection, one 
can in principle identify QDs corresponding to each solvable quantum-mechanical system. Further, the Eq. (10) 
can be transformed into the Riccati equation,

with a(t) = e−
∫ t
0
ν(t′)dt′ . The merit of these correlations is that it provides freedom to control the dynamics of 

the QDs in a number of analytically tractable ways as the Schrödinger equation and the Riccati equation can be 
exactly solved for a variety of M(t). The solution of Eq. (6) can be given  as7,31:

where, µ0 = −2/9 with E < 0 , G1 < 0 and G2 > 0 . Thus, the complete solution of Eq. (3) can be written as:

(3)
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Equation (13) represents the localized solution of Eq. (3). Below, we study the dynamics of QD’s by consider-
ing the exact solution (13) of eGPE in presence of temporally varying repulsive cubic MF and attractive quadratic 
BMF interactions in harmonic confinement. Based on Eq. (9), we investigate the droplet dynamics for the follow-
ing experimentally relevant forms of harmonic traps with suitable choice of oscillator frequencies M(t) and γ (t) : 

(a) Free space: γ (t) =constant, M(t) = 0 ; No confinement
(b) Regular harmonic: γ (t) = γ0sec(Mt) , M(t) = M2 ; V(x) = 1

2
M2x2

(c) Expulsive harmonic: γ (t) = γ0sech(Mt) , M(t) = −M2 ; V(x) = − 1
2
M2x2

where, γ0 , and M are real positive constants. In principle, depending on the need of the physical situation, one 
can choose the suitable γ (t) form for controlling the depth and width of the resultant traps. Here, in the following 
sections, we demonstrate the generation of QD’s in above mentioned trap configurations i.e. in absence/presence 
of regular/expulsive parabolic traps.

Quantum droplets in free space with M(t) = 0. In this section, we investigate the generation of QD in 
absence of external confinement i.e. free space. In the 1D geometry, the dynamics of QDs is extensively investi-
gated in free space  scenario7,21,31. Here, from the constructed analytical model, we write down the wavefunction 
solution of Eq. (3) for V(x, t) = 0 . For this, we consider γ (t) =constant = γ , which ensures that M(t) becomes 
zero from Eq. (9). Thus, the complete wavefunction solution form of Eq. (13) for δ = 0 becomes:

where γ > 0 , with E < 0 , G1 < 0 and G2 > 0 . The obtained form (14) of free space wavefunction solution for 
eGPE (4) is identical to the results reported in the literature with G1 = −17,21,31.

Further, for this form of γ (t) , the BMF and MF interactions becomes: g1(t) = (1/2)G1γ
3
2 , and g2(t) = (1/2)G2γ , 

respectively. Depending upon the sign of G2 , Eq. (14) leads to investigation of QDs dynamics in three characteristic 
regimes: (a) G2 > 0 : flat top density profile i.e. droplet domain, (b) G2 < 0 : integrable GPE with bright soliton solution 
with quantum fluctution term approaching to zero, and (c) G2 is very small: GPE with only quadratic nonlinearity giving 
rise to the droplet wave function of the Korteweg-de Vries-type32.

In Fig. 1a, we plot the variation of condensate density profiles for the wavefunction (14) w.r.t. the changing 
magnitude of mean field interaction i.e. G2 with G2 > 0 . Here, the physical parameter values: γ (t) = 1 , E = −2/9 , 
G1 = −1 , along with G2 = 0.99 (dotted purple), 0.9999 (dotdashed blue), 0.999999 (dashed red) and 0.9999999 
(thick black line). It is apparent from the figure that as MF interaction strength G2 → 1 and becomes comparable 
to BMF interaction strength G1 = −1 , the signature feature of QD’s i.e. flat top density profile is realized. The 
variation of condensate density with the MF interaction parameter G2 is in conformity with the physical situa-
tions reported in the  literature32.
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√
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Figure 1.  Quantum droplets in free space and external harmonic trap. Variation of density profiles (a) in free 
space w.r.t. changing magnitude of mean field interaction strength ( G2 ) for the physical parameters: γ (t) = 1 , 
E = −2/9 , G1 = −1 , along with G2 = 0.99 (dotted purple), 0.9999 (dotdashed blue), 0.999999 (dashed red) 
and 0.9999999 (thick black line); (b) in presence of regular harmonic trap (dotdashed blue line) and expulsive 
harmonic trap (dashed line red) for the physical parameter values: γ0 = 1.5 , M = 0.4 , E = −2/9 , G1 = −1 , 
G2 = 0.9999 and t = 1 . Here, the free space quantum droplet profile is depicted with black line for γ (t) = 1 and 
G2 = 0.9999.
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Quantum droplets in regular harmonic trap with M(t) = M
2. In comparison to previous section, 

here we investigate the impact of regular harmonic trap on the dynamics of QDs. Although, the droplets are 
extensively explored in free space domain, however, its study had got less attention in presence of external har-
monic traps. Here, from the constructed model, we calculate the form of wavefunction in presence of regular 
parabolic trap. In order to realize the chosen trap form, we take γ (t) = γ0sec(Mt) which makes the form of 
oscillator frequencey: M(t) = M2 from (9). Now, using the Eq. (13) with δ = 0 , the resultant form of complete 
wavefunction for regular harmonic trap can be written as:

with γ0 > 0 , M > 0 , E < 0 , G1 < 0 and G2 > 0.
In Fig. 1b, we compare the profile of condensate densities for the regular harmonic trap (dotdashed blue line) 

with the free space domain (black line) using wavefunction solutions (14) and (15), respectively. For plotting, 
the magnitude of dimensionless physical parameters are: γ0 = 1.5 , M = 0.4 , E = −2/9 , G1 = −1 , G2 = 0.9999 
and t = 1 . Specifically, for comparison, the free space QD density profile (black line) is plotted with γ (t) = 1 and 
G2 = 0.9999 . Figure clearly illustrate that in comparison to free space, QDs gets compressed due to the presence 
of regular parabolic trap which is as per physical understanding.

In Fig. 2, we illustrate an interesting physical phenomena of droplet to soliton transition in regular har-
monic trap by tuning the strength of MF and BMF interactions. Recently, Cheiney et. al. reported the bright 
soliton to QD transition in a binary mixture of two component BEC in presence of external harmonic con-
finement by tuning the interaction strength and particle  number3. Motivated from this, in Fig. 2a, we investi-
gate the spatio-temporal dynamics of QD in chosen trap configuration with g1(t) = (1/2)G1[γ0sec(Mt)]

3
2 , and 

g2(t) = (1/2)G2γ0sec(Mt) i.e. γ (t) = γ0sec(Mt) for M = 1 . It is evident from figure that initially, at t = 0 , the 

(15)ψ(x, t) =
3(E/G1)

√
γ0sec(Mt)

1+
√

1− µ
µ0

G2

G1
cosh(

√
-E× γ0sec(Mt)x)

e
i

[

−M×Tan[Mt]z2−
∫ Eγ 2

0
sec2(Mt)

2
∂t

]

.

Figure 2.  Quantum droplet to soliton transition in regular harmonic trap. The condensate densities are 
displayed with varying (a) time (t) with M = 1 ; and (b) M with t = 1 . (c) Variation of corresponding MF ( g2(t) , 
dashed line) and BMF interactions ( g1(t) , thick line) w.r.t. M at t = 1 . (d) Phase diagram between γ0 and M 
representing droplet to soliton transition. Here, other physical parameters are: γ0 = 1.5 , E = −2/9 , G1 = −1 , 
and G2 = 0.999999 . All parameters are in dimensionless unit. Figures are plotted using MATLAB R2020b 
(Master License 31349846) and Mathematica version 1.5.1.2021061827, Wolfram Research, Inc.
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condensate density having QD profile which with increase in time demonstrate strong compression at t = nπ/2 , 
where n is a real number, and these condensate atoms coalesces forming large density peaks. Here, other physi-
cal parameters are: γ0 = 1.5 , E = −2/9 , G1 = −1 , and G2 = 0.999999 . This behavior of condensate density can 
be understood by plotting the g1(t) (thick line) and g2(t) (dashed line) profiles w.r.t. M at t = 1 (Fig. 2c) for the 
same parameter values. It shows that the magnitude of g2(t) and g1(t) increases sharply near nπ/2 points due 
to presence of sec(Mt) term which physically represents a strong repulsive MF and attractive BMF interactions. 
Further, the magnitude of g1(t) is proportional to [γ0sec(Mt)]

3
2 leading to compression of condensate atomic 

density. Analytically, the sign of g1(t) and g2(t) changes at nπ/2 values i.e. in the [0,π/2] and [3π/2, 2π] domains, 
g2(t) is positive whereas in between [π/2, 3π/2] , this becomes negative whereas g1(t) is negative in [0,π/2] and 
[3π/2, 2π] . The change of sign g2(t) results in making MF interactions repulsive to attractive with variation of M. 
As the balance of MF and BMF interaction is required for realizing QD and as discussed earlier, for g2(t) > 0 , 
the density profile of Eq. (3) will be droplet whereas if g2(t) < 0 , then it becomes  soliton7,32,35. In the time inter-
val [π/2, 3π/2] , the considered system will have attractive MF interaction with continuous loss of condensate 
atoms due to imaginary BMF term leading to formation of bright  solitons36. On this basis, we reveal an analyti-
cal scenario for the droplet to soliton in regular harmonic trap with the change in sign of ±g2(t) in Fig. 2c at 
nπ/2 points. Based on this, in Fig. 2d, we construct a phase diagram in between γ0 i.e. amplitude of MF, BMF 
interaction’s and M. For γ0 > 0 , g2(t) is positive in [0,π/2] and [3π/2, 2π] domains i.e. droplet density profile 
whereas it becomes negative in between [0,π/2] with γ0 < 0 resulting into soliton formation. This is one of the 
important result of this article revealing non-trivial correlation between the droplet to soliton phase transition 
with M and γ0 . Here, all the parameters are in dimensionless unit with magnitude: γ0 = 1.5 , E = −2/9 , G1 = −1 , 
and G2 = 0.999999 . Further, in Fig. 2b, we illustrate the impact of the strength of M on single QD profile using 
(15). It is apparent from the Fig. 2b that with M tending from 0 → 1 leads to increase in height and decrease 
in the width of QDs profile due to its compression. In principle, by tuning the oscillator frequency of external 
confinement, one can tune the width and height of QDs. Here, we depicted the profile with physical parameters: 
γ0 = 1.5 , t = 1 , G2 = 0.999999 , E = −2/9 , G1 = −1.

Fragmentation and merging of QDs by tuning oscillator frequency: We demonstrate a novel mechanism for the 
fragmentation and merging of QDs with the tuning of oscillator frequency of regular harmonic trap. We show 
that by choosing the elliptic solution of Eq. (6) in place of localized solution, one can induce the fragmentation 
in QDs. In order to demonstrate this effect, we write the solution of Eq. (6) as:

where B =
√

2

(2q2−1)
D > 0 , D = G1

3G2
 < 0 , and β2 = −( 6G2

(2q2−1)
) D2 , and q2 > 1/219. Here, q is the modulus 

parameter for the Jacobi elliptic function cn. For investigating the dynamics of condensate in the regular har-
monic confinement, we take the same parameter values of Fig. 2 i.e. γ0 = 1.5 , E = −2/9 , with γ (t) = γ0 sec(Mt) . 
Thus, using this, the complete wavefunction solution of (13) becomes:

with δ = 0 , M > 0 with E < 0 , G1 < 0 and G2 > 0.
Figure 3a and b depicts the impact of magnitude of M on the fragmentation and merging of QDs for M = 0.75 

and M = 0.5 with q = 0.9 . Here, we have taken comparable strength of MF and BMF interaction strengths 
with G1 = −1 , and G2 = 0.999999 , respectively so that density profile remains in droplet regime (Fig. 2b). For 
exploring the condensate dynamics, we considered potential in the range [−1, 1] . It is evident from the figures 
that, initially at t = 0 , a single QD profile is observed and with increase in time, it gets fragmented and forms the 
QD train. Further, with increase in time, these fragmented components starts to coalesce and again merges to 
form a single QD. Importantly, with M changing from 0.5 → 0.75 , the number of fragmented droplets increase. 
In Fig. 3c, we have separately depicted the number of droplets at different instant of time for M = 0.1 (black 
line), M = 0.4 (red line), and M = 0.6 (blue line), respectively. It is quite clear that with increase in magnitude 
of M from 0.1 → 0.6 , the time of fragmentation reduces but along with that number of droplets formed also 
decreases. In cigar shaped BEC, the bright solitary trains are experimentally explored in harmonic  trap38 and 
through tuning of condensate atoms gain profile theoretically investigated by Atre et. al.39. Recently, Cidrim et. 
al. explored the generation of soliton trains in two component  BEC40. The present temporal evolution in Fig. 3 
allows us to obtain fragmentation and merging of QDs by tuning of oscillator frequency and persisting for future 
experimental realization.

Transport of droplets across potential: In Fig. 4a, we illustrate an analytical scenario for the oscillation and 
transport of QDs in regular harmonic confinement in the considered system. In order to realize the transport of 
QDs in parabolic trap, we have taken δ  = 0 in Eq. (13) along with γ (t) = γ0sec(Mt) which ensures the form of 
trap as (1/2)M2x2 . Thus, the resultant wavefunction becomes:

with γ0 > 0 , M > 0 , E < 0 , G1 < 0 and G2 > 0.
In Fig. 4a, we plot the condensate density profile for wavefunction solution (18) for the parameter values: 

γ0 = 1.5 , δ = 25 , E = −2/9 , G1 = −1 , G2 = 0.999999999 and M = 0.5 . Figure clearly depicts the oscillation of 
QD across the chosen harmonic trap. In principle, the center of mass position of condensate density is connected 

(16)F(ξ) = B Cn[β ξ , q] + D,

(17)ψ(x, t) = 3(E/G1)
√

γ0sec(Mt)
[

B Cn(β ξ , q)+ D
]

e
i

[

−M×Tan[Mt]z2−
∫ Eγ 2

0
sec2(Mt)

2
∂t

]

(18)ψ(x, t) =
3(E/G1)

√
γ0sec(Mt)

1+
√

1− E
µ0

G2

G2
1

cosh(
√
-E× (γ0sec(Mt)x + δ))

e
i

[

−MTan[Mt]z2−
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2
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Figure 3.  Fragmentation and merging of quantum droplets in regular harmonic trap. The condensate density 
profiles are plotted for (a) M = 0.75 and (b) M = 0.5 with other parameters values: γ0 = 1.5 , E = −2/9 , 
G1 = −1 , G2 = 0.999999 and q = 0.9 . (c) The number of droplets w.r.t. time t is depicted for M = 0.1 (black 
line), M = 0.4 (red line), and M = 0.6 (blue line). Here, all the parameters are made dimensionless. Figures 
are plotted using MATLAB R2020b (Master License 31349846) and Mathematica version 1.5.1.2021061827, 
Wolfram Research, Inc.

Figure 4.  Transport of quantum droplets in regular harmonic trap. (a) Condensate density profile for M = 0.5 , 
and (b) the center of mass position of quantum droplet are depicted for the parameter values: γ0 = 1.5 , δ = 25 , 
E = −2/9 , G1 = −1 , and G2 = 0.999999999 . In (b), black thick line ( M = 0.5 ), dotted red line ( M = 0.75 ), and 
blue dotdashed line ( M = 0.25 ). Here, all the parameters are in dimensionless units. Figures are plotted using 
MATLAB R2020b (Master License 31349846) and Mathematica version 1.5.1.2021061827, Wolfram Research, 
Inc.
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with [ −δ/γ ((t) ] and is oscillating w.r.t.  time37. For the considered case, −δ/γ ((t) = −(δ/γ0) cos(Mt) i.e. for 
M = 0.5 , the maximum magnitude of −(δ/γ0) cos(Mt) appears at t = 2nπ . This is validated from Fig. 4a as the 
direction of oscillation of QDs changes at t = 2nπ locations. For providing a better interpretation of the oscilla-
tion of QDs in this system, we plot −(δ/γ0) cos(Mt) w.r.t. M in Fig. 4b for the same parameter values: γ0 = 1.5 , 
δ = 25 , E = −2/9 , G1 = −1 , and G2 = 0.999999999 . Here, M = 0.5 (black thick line), M = 0.75 (dotted red 
line), and M = 0.25 (blue dotdashed line). It is apparent from the Fig. 4b that as M changes from 0.5 → 0.75 , 
then temporal periodicity of oscillation increases whereas with M becoming 0.5 → 0.25 leads to its decrease. 
Thus, we reveal a non-trivial analytical connection of oscillator frequency with the transport and oscillation of 
QDs and by using this, one can control the temporal periodicity of QDs oscillation.

Quantum droplets in expulsive harmonic trap with M(t) = −M
2. In this section, we study the 

generation of QDs in presence of expulsive harmonic confinement and the droplet to soliton transition. In order 
to investigate the dynamics of QDs in presence of expulsive harmonic trap, we take γ (t) = γ0sech(Mt) in Eq. (6) 
which results into the trap form −(1/2)M2x2 . Substituting this form of γ (t) in Eq. (13) gives the wavefunction 
for expulsive parabolic trap as:

with δ = 0 , γ0 > 0 , M > 0 , E < 0 , G1 < 0 and G2 > 0.
In Fig. 1b, we depict the profile of condensate density for expulsive harmonic trap (dashed line red) for 

the physical parameter values: γ0 = 1.5 , M = 0.4 , E = −2/9 , G1 = −1 , G2 = 0.9999 and t = 1 . Here, for com-
parison, quantum droplet profile in presence of the free space is also depicted with black line for γ (t) = 1 and 
G2 = 0.9999 . The presence of expulsive trap results in the increase of height and decrease in droplet width in 
comparison to free space droplet profile (black line) and this is as per physical understanding. Further, in Fig. 5, 
we investigate the spatio-temporal dynamics of condensate density in presence of expulsive harmonic trap. 
Figure 5a depicts the temporal evolution of droplet for M = 0.25 and clearly reveal its compression at t = 0 . 
Here, we considered the parameter values: γ0 = 1.5 , E = −2/9 , G1 = −1 , G2 = 0.999999 . This compression of 
droplet in expulsive trap can be understood from the MF and BMF interactions profile represented in Fig. 5c. 
For γ (t) = γ0sech(Mt) , the form of BMF and MF interaction becomes: g1(t) = (1/2)G1[γ0sech(Mt)]

3
2 , and 

g2(t) = (1/2)G2γ0sech(Mt) , respectively. It is apparent from Fig. 5c that g2(t) and g1(t) have maximum magni-
tude at M = 0 and t = 1 i.e. strong repulsive and attractive interactions whereas their amplitude decreases with 
increase in M for γ0 > 0 . However, g1(t) is proportional to [γ0sech(Mt)]

3
2 leading to strong compression. Simi-

lar, temporal profile of g1(t) , g2(t) can be obtained by keeping M = 1 and varying time. Fig. 5c clearly justifies 
the strong compression in condensate density at t = 0 in Fig. 5a. It is important to note here that the profile of 
Fig. 5c get reversed for γ0 < 0 which means g2(t) becoming attractive with continuous loss of condensate atoms 
due to imaginary BMF term leading to formation of bright  solitons36. As discussed above, in this domain, the 
condensate density becomes soliton. Based on this, we construct a phase diagram in between γ0 and M in Fig. 5d 
which shows that droplet to soliton transition in expulsive trap can be observed by changing the sign of MF and 
BMF interaction’s amplitude. Different from regular harmonic confinement, the droplet to soliton transition 
occurs in expulsive trap by tuning the sign of MF and BMF interactions. It is due to the change in nature of MF, 
BMF interactions from sec(Mt) (regular harmonic) to sech(Mt) (expulsive harmonic). Figure 5b illustrates the 
variation of droplet profile w.r.t. changing magnitude of M. With increase in magnitude of M from 0 → 1 leads 
to decrease in height and increase in the width of QDs profile due to its expansion with changing strength of 
oscillator frequency. In principle, by tuning the oscillator frequency of external confinement, one can tune the 
width and height of QDs. Here, we depicted the profile with physical parameters: γ0 = 1.5 , E = −2/9 , G1 = −1 , 
G2 = 0.999999 and t = 1.

Stability analysis. Using various forms of γ (t) in Eq. (13), we investigated the generation and spatio-tem-
poral dynamics of droplets in absence/presence of regular/expulsive traps. In this section, we perform the stabil-
ity analysis of (13) using the VK  criterion41. The VK criterion is widely used for the stability analysis of nonlinear 
Schrödinger equation and it is already established in the literature that necessary condition for a solution to be 
stable is positive slope of dN/dE, where N is the normalization and E is the chemical potential of the system. If 
the dN/dE of obtained solution is negative then the solution is unstable and for the condition that dN/dE = 0 , 
the solution remains marginally stable. Now, using Eq. (13) and N =

∫ +∞
−∞ |ψ |2∂x , one can estimate the correla-

tion between normalization N and E as:

where G1 = −1 and G2

G2
1

≈ 1 . Equation (20) estimates the magnitude of N in presence of harmonic trap and is 
equal to the N reported for free  space31,32. Thus, even in the presence of external trap, the system has a continuous 
symmetry property and N is conserved in time as per Noether’s  theorem42. In Fig. 6, using Eq. (20), we plot 
dN/dE w.r.t. E where G1 = −1 . It is evident from the figure, that the magnitude of dN/dE is positive w.r.t. its vari-
ation E which indicates the stable nature of the obtained solution.
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Figure 5.  Quantum droplet dynamics in expulsive harmonic trap. The compression of condensate density 
w.r.t. (a) time (t) for M = 0.25 , and (b) oscillator frequency M at t = 1 for the dimensionless parameter values: 
γ0 = 1.5 , E = −2/9 , G1 = −1 , G2 = 0.999999 . For the same parameter values, the variation of g1(t) (light 
orange filled region) and g2(t) (light blue filled region) w.r.t. M at t = 1 are depicted in (c). (d) Phase diagram 
representing the droplet to soliton transition in between γ0 and M in presence of expulsive trap. Figures are 
plotted using MATLAB R2020b (Master License 31349846) and Mathematica version 1.5.1.2021061827, 
Wolfram Research, Inc.

Figure 6.  Stability analysis of obtained solution. The slope of norm N w.r.t. E is plotted as a function of chemical 
potential (E) diagrams as a function of the E Vs with G1 = −1.
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Summary
The main results reported in this paper are summarized as follows. We report a large family of exact analytical 
solution of 1D eGPE for investigating the structure and dynamics of QDs in harmonic confinement for tem-
porally varying MF and BMF interactions. We have considered a weakly interacting 1D mass-balanced binary 
Bose-Bose mixture with competing repulsive cubic MF and attractive quadratic BMF interactions. The dynamics 
of QDs investigated w.r.t. the oscillator frequency and the strength of BMF interaction in different experimentally 
realizable forms of trap configurations: (a) V(x, t) = 1

2
M2x2 ; (regular harmonic); and (b) V(x, t) = − 1

2
M2x2 ; 

(expulsive harmonic). The constructed solutions for the free space is in agreement with existing results in the cur-
rent  literature31. Compression and flat top profile of the atomic number density is illustrated in above-mentioned 
confinement with the variation of M and G2 . Such flat top density profile was reported in the literature for QDs 
in free space domain. We have observed the droplet to soliton transition in regular/expulsive harmonic confine-
ment depending on the magnitude of M and sign of γ0 . We have produced the phase diagram between the BMF 
interaction amplitude and the oscillator frequency for a better insight of droplet-soliton transition. Utilizing the 
elliptic solution of eGPE and oscillator frequency, we demonstrates a novel mechanism for fragmentation, merg-
ing and transport of QDs. The stability of obtained wavefunction solutions are confirmed using VK criterion.

As an extension of the present work, it may be interesting to verify the collision of small/large droplets, its 
impact on fragmentation/merger and study its dynamics in 2D/3D dimensions in presence of harmonic trap.

Methods
We consider the Bose-Bose mixture BEC with equal masses and equal number of atoms in the components 
under the influence of BMF (LHY corrections for quantum fluctuations) in presence of temporally varying 
external harmonic confinement. By taking the spinor components of binary mixture as mutually symmetric, 
the Hamiltonian is taken as

i.e. in the form of time-dependent dimensionless 1D eGPE. Using similarity transformation technique, we assume 
an ansatz solution and connect the 1D eGPE with a solvable PDE. This results into a number of constraints 
over phase, MF and BMF nonlinearities as PDEs. Next, we solve these equations and obtain the general form 
of wavefunction solution.

Data availability
All data generated or analysed during this study are included in this published article. It can be reproduced by 
utilizing the form of wavefunction and considered trap form.
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