
Dynamics of Ranking Processes in Complex Systems

The MIT Faculty has made this article openly available. Please share 
how this access benefits you. Your story matters.

Citation Blumm, Nicholas et al. “Dynamics of Ranking Processes in Complex
Systems.” Physical Review Letters 109.12 (2012). © 2012 American
Physical Society

As Published http://dx.doi.org/10.1103/PhysRevLett.109.128701

Publisher American Physical Society

Version Final published version

Citable link http://hdl.handle.net/1721.1/76215

Terms of Use Article is made available in accordance with the publisher's
policy and may be subject to US copyright law. Please refer to the
publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/76215


Dynamics of Ranking Processes in Complex Systems

Nicholas Blumm,1,2 Gourab Ghoshal,1,2,3 Zalán Forró,4 Maximilian Schich,1 Ginestra Bianconi,1
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The world is addicted to ranking: everything, from the reputation of scientists, journals, and universities

to purchasing decisions is driven by measured or perceived differences between them. Here, we analyze

empirical data capturing real time ranking in a number of systems, helping to identify the universal

characteristics of ranking dynamics. We develop a continuum theory that not only predicts the stability of

the ranking process, but shows that a noise-induced phase transition is at the heart of the observed

differences in ranking regimes. The key parameters of the continuum theory can be explicitly measured

from data, allowing us to predict and experimentally document the existence of three phases that govern

ranking stability.
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Some rankings, such as best-seller lists or trends mea-

sured by Twitter and Wikipedia, are intrinsically volatile,

changing daily; others, such as intellectual achievement,

show remarkable stability, keeping Darwin and Einstein as

the most frequently mentioned scientists in the past 50

years [1–3]. These different patterns of ranking stability

are illustrated in Fig. 1, which indicate that the has been the

most frequently used English word in printed texts for at

least 200 years [Fig. 1(a)]. In contrast, the ranking of

research papers based on their citation patterns [Fig. 1(b)]

displays significant volatility over time (see Fig. S10 for

more examples [4]). While the items at the top of each list

command high visibility, relatively little scientific attention

is devoted to the rules and regularities of the ranking

process itself. There is a good reason for this: rankings

span such diverse areas, each with its own driving forces

and peculiarities, that it appears to be a hopeless exercise to

seek order in such a diverse subject. For example, the

failures of existing models to capture the rank dynamics

of cities [5] also indicate the need to address the dynamics

of ranking across a wide range of data sets.

Yet, understanding the mechanisms that drive ranking

raises a number of inherently deep questions: What dis-

tinguishes systems that display stable rankings from those

whose ranking is inherently unstable, or volatile? Is the

ranking a fair reflection of the intrinsic quality of the

ranked items, or could lousy items also make it to the top?

Consider a list of items i ¼ 1 . . .N, each assigned some

score XiðtÞ that determines their ranking. We consider that

in a given moment t the item with the highest score XiðtÞ is
ranked first (r ¼ 1), and the one with the lowest score is

ranked last (r ¼ N). Given that both the total number of

items, N, and the total score,
P

N
i¼1 XiðtÞ, can vary with

time, we focus on the normalized score xiðtÞ, or the market

share of item i,

xiðtÞ ¼
XiðtÞ

P

i XiðtÞ
: (1)

Note that, while an item’s score may fluctuate around its

mean value (exhibiting score stability), this does not guar-

antee its rank, as the rank is a relative measure of the score

of all items in the system. Hence, the conditions required

for score and rank stability are different.

In the data sets thatwe explore, the scoreXi represents the

number of times individual words are used in published

literature during a year [2], the daily market capitalization

of companies [6], the number of diagnoses of a particular

disease recorded in Medicare during a month [7], the num-

ber of annual citations each paper received in the Physical

Review corpus [1,8,9], the number of times a particular

hashtag was used in tweets during a day [10,11], and the

number of hourly page views of articles in Wikipedia [12]

(Table S1). The temporal resolution of the data varies from

hours to years and the time span from days to centuries.

The cumulative distribution of the market share of each

item, PðxÞ, indicates that x spans orders of magnitude

(Fig. S11). In some systems, PðxÞ follows a clear power

law (word usage, Twitter), while in others we observe

cutoffs at high xi (market cap, Medicare); PðxÞ can be

stationary or may shift in time. Despite these differences,

changes in the market share of individual items follow a

universal pattern [Figs. 1(c), 1(d), and S10e–h]. Indeed, we
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find that the dispersion ��xjx as a function of x—where �x
is the change in an item’s market share in a single time

step—follows

��xjx � x�; (2)

where 0:67 � � � 0:88 (Table S1). The fact that �< 1
implies that relative changes are typically smaller for top-

ranked items, which is known in the economic context,

where the volatility of large companies is less than that of

small companies [6]. While such sublinear behavior

[13,14] may contribute to the stability of the high-ranked

items, we do not detect any obvious correlations between�
and the observed ranking stability [Table S1 and Figs. 1(a)

and 1(b)].

While (2) is universal, the nature and amplitude of the

fluctuations appear to correlate with ranking stability. This

is illustrated in Figs. 1(e), 1(f), and S10 where we show a

scatter plot of �x in a function of x, indicating that, for

word usage, Medicare, and market capitalization, �x fluc-

tuates symmetrically around �x ¼ 0; hence, the score of

each item has comparable probability of moving up or

down. In contrast citations, Wikipedia and Twitter display

a remarkable asymmetry for high x, indicating that high-

scoring items have an enhanced tendency to drop in score.

To unveil the generic mechanisms that drive the ranking

patterns, we simplify the system, assuming the score of

each item follows the Langevin equation [15]

_x i ¼ fðxiÞ þ gðxiÞ�iðtÞ ��ðtÞxi; (3)

where fðxiÞ represents the deterministic mechanisms that

drive the score of item i, capturing a wide range of system-

dependent attributes, from utility (words) to information

content (Wikipedia) or impact (research papers), together

with the relative fitness of each item compared to its peers.

The second term gðxiÞ�iðtÞ captures the inherent ran-

domness in the system; hence, �iðtÞ is a Gaussian random

noise with h�iðtÞi ¼ 0 and h�iðtÞ�iðt
0Þi ¼ �ðt0 � tÞ, and

gðxiÞ models the noise amplitude, which may depend on

the score xi. The last term ensures that the scores are

normalized, i.e.,
P

ixiðtÞ � 1, 8t. Equation (3) assumes

that the scores of different items do not directly influence

each other.

We make two simplifying assumptions, suggested by

empirical data. First, we postulate that the drift term

fðxiÞ can be written as

fðxiÞ ¼ Aix
�
i ; (4)

where 0<�< 1 is identical for all i, whereas the coeffi-

cient Ai can be interpreted as the ‘‘fitness’’ of item i [16],
capturing its intrinsic ability to increase its market share xi.
We also assume gðxiÞ has the form

gðxiÞ ¼ Bx�i : (5)

This choice is directly inspired by the measurements (2)

[Figs. 1(c) and 1(d)], since the variance of score variations

�xi can be expressed as �2
�xijxi

’ gðxiÞ
2�t (see Eq. S5).

While � is comparable for all systems, we observe

significant differences in the magnitude of the coefficient

B: for systems with stable ranking, we find B � 10�3,

while, for the systems with unstable ranking, we observe

B � 10�2–10�1 (Table S1). Since the coefficient B is a

direct measure of the noise magnitude, we find that the

three unstable systems are affected by a higher level of

noise than the three stable systems. Note that the difference

between the two classes is independent of �t (see Sec. S3
and Fig. S12).

Next, we show that the observed differences in B can

induce a noise-driven phase transition in ranking, offering

a quantitative explanation of the documented differences in

ranking stability. Denoting by Pðxi; tjAiÞ the probability of
an item to have score xi at time t given its fitness Ai, the

temporal evolution of Pðxi; tjAiÞ is governed by the

Fokker-Planck equation

FIG. 1 (color online). Empirical characteristics of ranked sys-

tems. (a),(b) The evolution of the ranks of five top items in two

systems: word usage displays ranking stability, and citation

shows significant volatility. (c),(d) ��xjx in a function of x,
indicating that for each system ��xjx � x�. (e),(f) Surface plot

of �x in a function of x, indicating that for word usage �x
fluctuates symmetrically around �x ¼ 0, while we observe a

remarkable asymmetry for high x for citation. Similar data for

four other systems, comparing company market capitalizations,

disease diagnoses, Twitter hashtag usage, and Wikipedia page

views, are shown in Fig. S10.
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@P

@t
¼ �

@

@xi
f½Aix

�
i ��ðtÞxi�Pg þ

1

2

@2

@x2i
ðB2x2�i PÞ: (6)

Assuming that the system evolves towards a steady state

with a time-independent P0ðxijAiÞ and a constant value for
�ðtÞ ¼ �0, the solution of (6) for �< 1 (Sec. S1.2) reads

P0ðxijAiÞ ¼ CðAiÞx
�2�
i

� exp

�

2Ai

B2

x1þ��2�
i

1þ �� 2�

�

1�

�

xi
xc

�

1=�
��

; (7)

where

xc ¼

�

Ai

�0

�

�
�

2ð1� �Þ

1þ �� 2�

�

�
with � �

1

1� �
; (8)

and CðAiÞ is the normalization constant.

To find the most probable value of xi, we set the deriva-
tive of Eq. (7) to zero, obtaining

FðxiÞ ¼ ðAx�i ��0xiÞ �
B2

2
�x2��1

i ¼ 0: (9)

For B ¼ 0, the solution of Eq. (9) is

x?i ¼

�

Ai

�0

�

�
: (10)

One can obtain Eq. (10) directly from the steady-state

solution of Eq. (3) with fðxiÞ defined in Eq. (4) and

gðxiÞ ¼ 0. Equation (10) indicates that each item will

converge to a score determined by its fitness Ai and a

combination of all other fitnesses via �0 ¼ ð
P

iA
�
i Þ

1=�.

In the presence of noise, Eq. (9) indicates that B shifts

the steady-state value of xi from its deterministic solution

x?i to a new x?i þ �i. Equation (9) predicts that changes in

the noise magnitude B induce a dynamical phase transition

from a stable (confined score) to an unstable (delocalized

score) phase. For B< Bc, Eq. (9) has two solutions, at

xi ¼ x?i þ �i (stable) and xi ¼ 0 (unstable) (Fig. S13b).

Therefore, PðxijAiÞ is unimodal with a sharp peak

(Fig. S13e), indicating that for low noise the market share

of item i will be localized around a value determined by

the interplay between the item’s fitness and the noise

magnitude. At B ¼ Bc, the nonzero solution disappears

((xi ¼ x?i þ �i ! 0; see Figs. S13c and S13f). Equation

(7) predicts that for B> Bc the distribution follows a

power law PðxijAiÞ � x�2�
i with an exponential cutoff at

high xi. This implies that xi is no longer confined to the

vicinity of x?i but becomes delocalized, varying over orders

of magnitude.

The consequence of the predicted noise-induced phase

transition is illustrated in Figs. S13h–j, where we show the

evolution of the ranks for the top five fitness items, as

predicted by numerical simulations of Eq. (3). In the stable

phase (B< Bc), the top items maintain their nominal rank,

determined by their respective fitnesses, similar to the

behavior observed in Fig. 1(a). At the critical point

B ¼ Bc, the stable ranking is perturbed by unstable bursts,

an intermittent behavior common in dynamical systems at

the critical point [17,18]. Finally, for B> Bc most items

become delocalized, lacking rank stability, a behavior

similar to the one observed in Fig. 1(b).

To further test the predictive power of our model in

Fig. S13, we plot the average change in score h�xi and
��xjx as a function of the score x. For B< Bc, the score

variation �x fluctuates symmetrically around �x ¼ 0,
similar to the behavior observed in stable systems

[Fig. 1(e)]. For B> Bc, however, there is a systematic

downward trend for high x, as observed for the unstable

systems [Fig. 1(f)]. Indeed, while a precise empirical

determination of the drift term is difficult, the choice of

its functional form Eq. (4) is supported by the qualitative

agreement between Figs. 1(e), 1(f), S13k, and S13m.

Score stability, the expectation that xi fluctuates around a
well-defined mean, is a necessary but not a sufficient con-

dition for an item to maintain a stable rank. Rank is a

collective measure: it depends not only on the score xi of
item i, but also the score of all other items xj (j � i) to

which xi is compared.While an itemmay be score-stable, its

fluctuation around x?i may be sufficiently large so that

P0ðxijAiÞ for items with comparable x?i may overlap and

thus the items can swap ranks, a phenomenon akin to the

melting of a solid, where atoms cannot remain in register due

to thermal agitation. Score (and rank) stability can occur

only in theB< Bc regime, and a saddle point approximation

provides the magnitude of the fluctuations in xi around its

steady-state market share x?i (see Sec. S2.1). Assuming that

the intrinsic fitnesses Ai are drawn from PðAÞ � A�ð1þ�Þ

(see Fig. S11 for empirical support), we can relate the rank

fluctuation of an item to its rank r (Eq. S21 and [9]):

�r ¼

�

�

2�0

�

1=2
Bhxi�r : (11)

For an item to show rank stability, the inequality �r ¼
hxir � hxirþ1 >�r predicts a second critical value of the

noise coefficient, Br < Bc, controlling rank stability (where

hxri is the expected score of an item with rank r).
These results indicate that the stability of a list is best

captured by the A-B phase diagram shown in Fig. 2(a). The

top part (B> Bc) is the unstable region, where Eq. (7)

predicts that the score of each item is broadly distributed;

hence, neither rank nor score stability is possible, similar to

a gas phase where atoms move at random. In the region

B< Bc, we have score stability, which means that each

score fluctuates around a steady-state market share x?

determined by its intrinsic fitness. Yet, score stability

does not necessarily imply rank stability. Hence, there

are two distinct phases below Bc: a score-stable (liquid)

phase between Bc and Br, where each item has a stable

score but the fluctuations around x? are sufficient for items

with comparable score to swap rank. For B below Br, we

find a solid phase: the noise is sufficiently low so that items
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display not only score but also rank stability. These pre-

dictions are supported by Fig. 2(b), where we plot the time

evolution of ranks for the top items in each phase.

In the phase diagram of Fig. 2(a), we can represent each

real system with a horizontal line placed at its experimen-

tally measured B (Table S1). Medicare, word usage, and

market cap are deep in the rank-stable regime, indicating

that highly ranked items should display rank stability, a

prediction that agrees with the empirical results of

Figs. 1(a) and S10.An order ofmagnitude gap inB separates

them from the three unstable systems, Twitter, Wikipedia,

and citation, that are deeply in the unstable phase.

Our theory predicts that for score-stable systems the

market share xi of the high-fitness items should be nar-

rowly distributed, in contrast with the unstable phase,

where xi fluctuates widely [Fig. 2(c)]. We therefore

measured PðxiÞ for top-scoring items in each system

[Fig. 2(d)], finding that, as expected, in the three stable

systems PðxiÞ is narrow, spanning less than an order of

magnitude. In contrast, for the three unstable systems PðxiÞ
spans 3–4 orders of magnitude.

Taken together, our results indicate that the ranking

stability observed in some systems and the volatile ranking

observed in others represent different phases separated by

a noise-induced phase transition. Despite the diversity of

the explored systems, their dynamics can be qualitatively

captured by a single continuum theory that predicts the

existence of three dynamically distinct phases. In analogy

with critical phenomena, one could view B as the control

parameter and the score’s standard deviation as the order

parameter.

With suitable enrichments—for example, through the

incorporation of fads and herding [19,20]—the introduced

formalism may be extendible to a wider range of systems

such as biodiversity and linguistics [21,22]. A detailed

account should also consider the role of memory and

correlations (see Secs. S6 and S7 for results on this). In

our formalism, we take into account global shocks [23],

since �ðtÞ enforces normalization. Local correlations,

present for related items, could reduce the relative motion

between items, increasing rank stability. Such stability

could shift the rank-stable transition upwards in Fig. 2.

Remarkably, the model qualitatively emulates correlations

observed in the data even without explicitly enforcing local

correlations (Figs. S1 and S2).
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[22] R. F. iCancho andR. Solé, Proc.R. Soc.B268, 2261 (2001).

[23] D. Sornette, F. Deschatres, T. Gilbert, and Y. Ageon, Phys.

Rev. Lett. 93, 228701 (2004).

PRL 109, 128701 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

21 SEPTEMBER 2012

128701-5

http://link.aps.org/supplemental/10.1103/PhysRevLett.109.128701
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.128701
http://dx.doi.org/10.1038/nature05302
http://dx.doi.org/10.1038/376046a0
http://dx.doi.org/10.1038/376046a0
http://dx.doi.org/10.1371/journal.pcbi.1000353
http://dx.doi.org/10.1016/j.joi.2006.06.001
http://dx.doi.org/10.1016/j.joi.2006.06.001
http://dx.doi.org/10.1038/ncomms1396
http://dx.doi.org/10.1038/ncomms1396
http://dx.doi.org/10.1126/science.1202775
http://dx.doi.org/10.1126/science.1202775
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.167.192
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.167.192
http://dx.doi.org/10.1209/0295-5075/81/28006
http://dx.doi.org/10.1209/0295-5075/81/28006
http://dx.doi.org/10.1103/PhysRevLett.92.028701
http://dx.doi.org/10.1103/PhysRevLett.92.028701
http://dx.doi.org/10.1080/00018730801893043
http://dx.doi.org/10.1016/S0378-4371(00)00205-3
http://dx.doi.org/10.1016/S0378-4371(00)00205-3
http://dx.doi.org/10.1209/epl/i2001-00260-6
http://dx.doi.org/10.1209/epl/i2001-00260-6
http://dx.doi.org/10.1103/PhysRevLett.90.170601
http://dx.doi.org/10.1103/PhysRevLett.90.170601
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1126/science.1121066
http://dx.doi.org/10.1126/science.1121066
http://dx.doi.org/10.1007/s11135-007-9074-6
http://dx.doi.org/10.1007/s11135-007-9074-6
http://dx.doi.org/10.1038/nature01883
http://dx.doi.org/10.1038/nature01883
http://dx.doi.org/10.1098/rspb.2001.1800
http://dx.doi.org/10.1103/PhysRevLett.93.228701
http://dx.doi.org/10.1103/PhysRevLett.93.228701

