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Abstract. In this paper we study some qualitative behavior of the solutions of the
difference equation

xn+1 = axn +
bxn

cxn − dxn−1
, n = 0, 1, ...,

where the initial conditions x−1, x0 are arbitrary real numbers and a, b, c, d are positive

constants with cx0 − dx−1 ̸= 0.

1. Introduction

In this paper we deal with some properties of the solutions of the difference
equation

(1) xn+1 = axn +
bxn

cxn − dxn−1
, n = 0, 1, ...,

where the initial conditions x−1, x0 are arbitrary real numbers and a, b, c, d are
positive constants with cx0 − dx−1 ̸= 0.

Recently there has been a lot of interest in studying the global attractivity,
boundedness character and the periodic nature of nonlinear difference equations.
For some results in this area, see for example [21-41].

Many researchers have investigated the behavior of the solution of difference
equations for example:

In [5] Elabbasy et al. investigated the global stability character, boundedness
and the periodicity of solutions of the difference equation

xn+1 =
αxn + βxn−1 + γxn−2

Axn +Bxn−1 + Cxn−2
.

Elabbasy et al. [6] investigated the global stability, boundedness, periodicity char-
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acter and gave the solution of some special cases of the difference equation

xn+1 =
αxn−k

β + γ
∏k

i=0 xn−i

.

Elabbasy et al. [7] investigated the global stability, periodicity character and gave
the solution of some special cases of the difference equation

xn+1 =
dxn−lxn−k

cxn−s − b
+ a.

Aloqeili [1] obtained the form of the solutions of the difference equation

xn+1 =
xn−1

a− xnxn−1
.

Simsek et al. [32] obtained the solution of the difference equation

xn+1 =
xn−3

1 + xn−1
.

Other related results on rational difference equations can be found in refs. [2-20].
Here, we recall some notations and results which will be useful in our investi-

gation.
Let I be some interval of real numbers and the function f has continuous partial

derivatives on Ik+1 where Ik+1 = I × I × ... × I (k + 1− times). Then, for initial
conditions x−k, x−k+1, ..., x0 ∈ I, it is easy to see that the difference equation

(2) xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, ...,

has a unique solution {xn}∞n=−k.
A point x ∈ I is called an equilibrium point of Eq.(2) if

x = f(x, x, ..., x).

That is, xn = x for n ≥ 0, is a solution of Eq.(2), or equivalently, x is a fixed point
of f .

Definition 1(Stability).
(i) The equilibrium point x of Eq.(2) is locally stable if for every ϵ > 0, there exists
δ > 0 such that for all x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < δ,

we have
|xn − x| < ϵ for all n ≥ −k.

(ii) The equilibrium point x of Eq.(2) is locally asymptotically stable if x is
locally stable solution of Eq.(2) and there exists γ > 0, such that for all
x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < γ,
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we have
lim

n→∞
xn = x.

(iii) The equilibrium point x of Eq.(2) is global attractor if for all x−k, x−k+1, ..., x−1, x0 ∈
I, we have

lim
n→∞

xn = x.

(iv) The equilibrium point x of Eq.(2) is globally asymptotically stable if x is
locally stable, and x is also a global attractor of Eq.(2).
(v) The equilibrium point x of Eq.(2) is unstable if x is not locally stable.

The linearized equation of Eq.(2) about the equilibrium x is the linear difference
equation

(3) yn+1 =

k∑
i=0

∂f(x, x, ..., x)

∂xn−i
yn−i.

Now assume that the characteristic equation associated with Eq.(3) is

(4) p(λ) = p0λ
k + p1λ

k−1 + ...+ pk−1λ+ pk = 0,

where pi =
∂f(x, x, ..., x)

∂xn−i
.

Theorem A([28]). Assume that pi ∈ R , i = 1, 2, ... and k ∈ {0, 1, 2, ...}. Then

(5)
k∑

i=1

|pi| < 1,

is a sufficient condition for the asymptotic stability of the difference equation

yn+k + p1yn+k−1 + ...+ pkyn = 0, n = 0, 1, ... .

Consider the following equation

(6) xn+1 = f(xn, xn−1).

The following theorems will be useful for the proof of our main results in this paper.

Theorem B([27]). Let f : [a, b]2 → [a, b] be a continuous function, where a and b
are real numbers with a < b. Suppose that f satisfies the following conditions:

(a) f(x, y) is non-decreasing in x ∈ [a, b] for each fixed y ∈ [a, b], and is non-
decreasing in y ∈ [a, b] for each x ∈ [a, b].

(b) If (m,M) is a solution of the system

m = f(m,m) and M = f(M,M),
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then

m = M.

Then there exists exactly one equilibrium x of Eq. (6), and every solution of Eq.(6)
converges to x.

Theorem C([27]). Let f : [a, b]2 → [a, b] be a continuous function, where a and b
are real numbers with a < b. Suppose that f satisfies the following conditions:

(a) f(x, y) is non-increasing in x ∈ [a, b] for each fixed y ∈ [a, b], and is non-
decreasing in y ∈ [a, b] for each x ∈ [a, b].

(b) If (m,M) is a solution of the system

m = f(M,m) and M = f(m,M),

then

m = M.

Then there exists exactly one equilibrium x of Eq. (6), and every solution of Eq.(6)
converges to x.

2. Periodic solutions

In this section we study the existence of periodic solutions of Eq.(1). The
following theorem states the necessary and sufficient conditions that this equation
has periodic solutions.

Theorem 1. Eq.(1) has positive prime period two solutions if and only if

(7) (c+ d)(a+ 1) > 4d, d ̸= ac.

Proof. First suppose that there exists a prime period two solution

..., p, q, p, q, ...,

of Eq.(1). We will prove that Condition (7) holds.
We see from Eq.(1) that

p = aq +
bq

cq − dp
,

and

q = ap+
bp

cp− dq
.

Then

(8) cpq − dp2 = acq2 − adpq + bq,
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and

(9) cpq − dq2 = acp2 − adpq + bp.

Subtracting (9) from (8) gives

d(q2 − p2) = ac(q2 − p2) + b(q − p).

Since p ̸= q, it follows that

(10) p+ q =
b

d− ac
.

Again, adding (8) and (9) yields

(11) 2cpq − d(p2 + q2) = ac(p2 + q2)− 2adpq + b(p+ q).

It follows by (10), (11) and the relation

p2 + q2 = (p+ q)2 − 2pq for all p, q ∈ R,

that

(12) pq =
b2d

(d− ac)2(c+ d)(a+ 1)
.

Now it is clear from Eq.(10) and Eq.(12) that p and q are the two positive distinct
roots of the quadratic equation

(13) (d− ac)t2 − bt+
b2d

(d− ac)(c+ d)(a+ 1)
= 0.

and so

b2 >
4b2d

(c+ d)(a+ 1)
.

Therefore inequality (7) holds.
Second suppose that inequality (7) is true. We will show that Eq.(1) has a

prime period two solution.
Assume that

p =
b+ α

2(d− ac)
,

and

q =
b− α

2(d− ac)
,

where α =

√
b2 − 4b2d

(c+ d)(a+ 1)
.
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From inequality (7) it follows that α is a real positive numbers, therefore p and
q are distinct positive real numbers.

Set
x−1 = p and x0 = q.

We show that x1 = x−1 = p and x2 = x0 = q.
It follows from Eq.(1) that

x1 = aq +
bq

cq − dp
=

acq2 − adpq + bq

cq − dp

=

ac

[
b− α

2(d− ac)

]2
− ad

[
b2d

(d− ac)2(c+ d)(a+ 1)

]
+ b

[
b− α

2(d− ac)

]
c

[
b− α

2(d− ac)

]
− d

[
b+ α

2(d− ac)

] .

Multiplying the denominator and numerator by 4(d− ac)2

x1 =

2b2d− 4ab2cd+ 4ab2d2

(c+ d)(a+ 1)
− 2bdα

2(d− ac) {cb− bd− (c+ d)α}
.

Multiplying the denominator and numerator by {cb− bd+ (c+ d)α} {(c+ d)(a+ 1)}
we get

x1 =

[(
4b3d3 + 4b3cd2 − 4ab3c2d− 4ab3cd2

)
+
(
4b2cd2 + 4b2d3 − 4ab2c2d− 4ab2cd2

)
α
]

2(d− ac) {4b2cd2 + 4b2d3 − 4ab2c2d− 4ab2cd2}
.

Dividing the denominator and numerator by
{
4b2cd2 + 4b2d3 − 4ab2c2d− 4ab2cd2

}
gives

x1 =
b+ α

2(d− ac)
= p.

Similarly as before one can easily show that

x2 = q.

Then it follows by induction that

x2n = q and x2n+1 = p for all n ≥ −1.

Thus Eq.(1) has the positive prime period two solution

...,p,q,p,q,...,

where p and q are the distinct roots of the quadratic equation (13) and the proof is
complete. 2
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3. Local stability of the equilibrium point

In this section we study the local stability character of the solutions of Eq.(1).
The equilibrium points of Eq.(1) are given by the relation

x = ax+
bx

cx− dx
.

If (c− d)(1− a) > 0, then the only positive equilibrium point of Eq.(1) is given by

x =
b

(c− d)(1− a)
.

Let g : (0,∞)2 −→ (0,∞) be a function defined by

(14) g(u, v) = au+
bu

cu− dv
.

Therefore

∂g(u, v)

∂u
= a− bdv

(cu− dv)2
,

∂g(u, v)

∂v
=

bdu

(cu− dv)2
.

Then we see that

∂g(x, x)

∂u
= a− d(1− a)

(c− d)
= p0,

∂g(x, x)

∂v
=

d(1− a)

(c− d)
= p1.

Then the linearized equation of Eq.(1) about x is

(15) yn+1 − p0yn−1 − p1yn = 0.

Theorem 2. Assume that

|ac− d|+ d |1− a| < |c− d| .

Then the equilibrium point of Eq.(1) is locally asymptotically stable.
Proof. It is follows by Theorem A that, Eq.(1) is asymptotically stable if

|p1|+ |p0| < 1.

That is ∣∣∣∣a− d(1− a)

(c− d)

∣∣∣∣+ ∣∣∣∣d(1− a)

(c− d)

∣∣∣∣ < 1,
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then

|a(c− d)− d(1− a)|+ |d(1− a)| < |c− d| .

Thus

|ac− d|+ d |1− a| < |c− d| .

The proof is complete. 2

4. Global attractor of the equilibrium point of Eq.(1)

In this section we investigate the global attractivity character of solutions of
Eq.(1).

Theorem 3. The equilibrium point x of Eq.(1) is a global attractor if ac > d.

Proof. Let p, q are a real numbers and assume that g : [p, q]2 −→ [p, q] be a function
defined by Eq.(14).Therefore

∂g(u, v)

∂u
= a− bdv

(cu− dv)2
,

∂g(u, v)

∂v
=

bdu

(cu− dv)2
.

Case (1) If a − bdv

(cu− dv)2
> 0, then we can easily see that the function g(u, v)

increasing in u, v.
Suppose that (m,M) is a solution of the system

m = g(m,m) and M = g(M,M).

Then from Eq.(1), we see that

m = am+
bm

cm− dm
, M = aM +

bM

cM − dM
,

then

(M −m) = a(M −m), a ̸= 1.

Thus

M = m.

It follows by the Theorem B that x is a global attractor of Eq.(1).

Case (2) If a− bdv

(cu− dv)2
< 0, then we can easily see that the function g(u, v)

decreasing in u and increasing in v.
Suppose that (m,M) is a solution of the system

M = g(m,M) and m = g(M,m).
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Then from Eq.(1), we see that

m = aM +
bM

cM − dm
, M = am+

bm

cm− dM
,

cMm− acM2 − dm2 + adMm = bM, cMm− acm2 − dM2 + adMm = bm,

then
(M2 −m2)(d− ac) = b(M −m), ac > d.

Thus
M = m.

It follows by the Theorem C that x is a global attractor of Eq.(1) and then the
proof is complete. 2

5. Special case of Eq.(1)

In this section we study the following special case of Eq.(1)

(16) xn+1 = xn +
xn

xn − xn−1
,

where the initial conditions x−1, x0 are arbitrary real numbers with x−1, x0 ∈
R/{0} and x−1 ̸= x0.

5.1. The solution form of Eq.(16)

In this section we give a specific form of the solutions of Eq.(16).

Ttheorem 4. Let {xn}∞n=−1 be the solution of Eq.(16) satisfying x−1 = k, x0 =
h, with k ̸= h, k, h ∈ R/{0}. Then for n = 0, 1, ...

x2n−1 = k + n

(
h− k + (n− 1) +

h

h− k

)
,

x2n = h+ n

(
h− k + n+

h

h− k

)
.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assumption
holds for n− 1. That is;

x2n−3 = k + (n− 1)

(
h− k + (n− 2) +

h

h− k

)
,

x2n−2 = h+ (n− 1)

(
h− k + (n− 1) +

h

h− k

)
.

Now, it follows from Eq.(16) that

x2n−1 = x2n−2 +
x2n−2

x2n−2 − x2n−3
= h+ (n− 1)

(
h− k + (n− 1) +

h

h− k

)
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+

h+ (n− 1)

(
h− k + (n− 1) +

h

h− k

)
(
h+(n−1)

(
h−k+(n−1)+

h

h−k

))
−
(
k+(n−1)

(
h−k+(n−2)+

h

h−k

))

= h+ (n− 1)

(
h− k + (n− 1) +

h

h− k

)
+

h+ (n− 1)

(
h− k + (n− 1)+

h

h−k

)
h− k + (n− 1)

.

Multiplying the denominator and numerator by (h− k) we get

x2n−1 = k + (n− 1)

(
h− k + (n− 1) +

h

h− k

)
+

(h+ (n− 1)(h− k))

(h− k)
+ (h− k)

= k + (n− 1)

(
h− k + (n− 1) +

h

h− k

)
+ (h− k) + (n− 1) +

h

(h− k)
,

then we have

x2n−1 = k + n

(
h− k + (n− 1) +

h

h− k

)
.

Also, we get from Eq.(16)

x2n = x2n−1 +
x2n−1

x2n−1 − x2n−2

= k + n

(
h− k + (n− 1) +

h

h− k

)
+

k + n

(
h− k + (n− 1) +

h

h− k

)
(n− 1) +

h

(h− k)

.

Multiplying the denominator and numerator by (h− k) we get

x2n = k + n

(
h− k + (n− 1) +

h

h− k

)
+

(
k(h− k) + n(h− k)2

)
+ (n(n− 1)(h− k) + nh)

(n− 1)(h− k) + h
,

or

x2n = k + n

(
h− k + (n− 1) +

h

h− k

)
+ (h− k + n).

Thus we obtain

x2n = h+ n

(
h− k + n+

h

h− k

)
.

Hence, the proof is completed. 2

Remark 2. It is easy to see that every solution of Eq.(16) is unbounded.
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Numerical examples

Here we consider numerical examples which represent different types of solutions
to Eq. (1).

Example 1. Consider x−1 = 29, x0 = 8 and a = b = c = d = 1. See Fig. 1.
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plot of x(n+1)= ax(n)+(bx(n)/(cx(n)−dx(n−1)))

Fig. 1

Example 2. See Fig. 2, since x−1 = 9, x0 = 6 and a = 0.8, b = 3, c = 5, d = 2.
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Fig. 2
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Example 3. See Fig. 3, since x−1 = 7, x0 = 9 and a = 0.5, b = 13, c = 6, d = 3.
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Fig. 3

Example 4. See Fig. 4, since x−1 = 1.928

(
= p =

b+ α

2(d− ac)

)
, x0 = 1.071(

= q =
b− α

2(d− ac)

)
and a = 2, b = 6, c = 4, d = 10.
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Fig. 4
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