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ABSTRACT
In this paper we explore some dynamical features on the non-linear interactions among equatorial waves. The shallow-
water equation model with the equatorial β-plane approximation is used for this purpose. The Galerkin method is
applied to the governing equations with the basis functions given by the eigensolutions of the linear problem. From the
phase space expansion of two particular integrals of motion of the system, quadratic to lowest order, some constraints
are obtained which the coupling coefficients must satisfy in order to ensure the invariance of such integrals. From the
numerical evaluation of the coupling coefficients, these constraints are used to determine the possible resonant triads
among equatorial waves. Numerical integrations of the resonant three-wave problem show that the energy of the waves
in a resonant triad evolves periodically in time, with the period and amplitude of the energy oscillations dependent on
the magnitude of the initial amplitudes of the waves and the way in which the initial energy is distributed among the
triad components. The high-frequency modes are found to be energetically more active than the low-frequency modes.
The latter tend to act as ‘catalytic’ components in a resonant triad. Integrations of the problem of two resonant triads
coupled by a single mode point out the importance of gravity waves in the intertriad energy exchanges, suggesting the
significance of these modes in the redistribution of energy throughout the atmospheric motion spectrum. The results
also show that the intertriad energy exchanges provided by the highest frequency mode of two triads occur in a longer
time-scale than the intratriad interactions. Therefore, these results also suggest the importance of the high-frequency
modes in the generation of the low-frequency variability (intraseasonal and even longer term) of the atmospheric
flow.

1. Introduction

The equatorial trapping of large-scale wave-like disturbances is
a prominent characteristic of the atmospheric circulation. This
phenomenon was theoretically discovered by Matsuno (1966),
who derived a complete set of linear wave-mode solutions of the
shallow-water equations on the equatorial β-plane. After this
theoretical finding, several studies have provided observational
evidence of the existence of these waves in the equatorial atmo-
sphere (Yanai and Maruyama, 1966; Maruyama, 1967; Gruber,
1974; Zangvil and Yanai, 1980; Takayabu, 1994; Dunkerton and
Baldwin, 1995; Magaña and Yanai, 1995; Pires et al., 1997;
Wheeler and Kiladis, 1999). As a consequence, the equatori-
ally trapped waves have been applied in explaining fundamen-
tal features of tropical climate. The phenomena that have been
explained in terms of equatorial wave theory include Hadley–
Walker circulation (Webster, 1972; Gill, 1980; Lau and Lim,

∗Corresponding author.
e-mail: cfmraupp@model.iag.usp.br

Postal address: Rua do Matão, 1226, Cidade Universitária, São Paulo-
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1982; Lim and Chang, 1983), atmospheric teleconnection pat-
terns (Lim and Chang, 1983; Raupp and Silva Dias, 2004), the
low-frequency oscillation initially observed by Madden and Ju-
lian (1972) (Lau and Peng, 1987; Wang and Rui, 1990) and the
El Niño Southern Oscillation (Lau, 1981; Hirst, 1986).

However, although a significant advance has been obtained
on equatorial waves, especially on their interaction with moist
convection, the non-linear behavior is far from completely un-
derstood. Particularly, most theoretical studies are based on lin-
earized equations about simplified basic states and the non-linear
dynamics of equatorial waves needs to be better understood. De-
spite the observational evidence of wave–wave interactions in the
tropics (Kanamitsu et al., 1972), not many analytical works have
been published on this matter. Domaracki and Loesch (1977)
first studied resonant triads of equatorial waves using the asymp-
totic method of multiple scales. They obtained energy solutions
which show that the triad member having the maximum ab-
solute frequency always grows (or decays) at the expense of
the other two triad members. Loesch and Deininger (1979) ex-
tended the results of Domaracki and Loesch for resonantly in-
teracting waves in coupled triad configurations and also pointed
out the importance of the maximum absolute frequency modes
in individual triads for energy transfers throughout the system.
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On the other limit of energy scale, Salmon (1980) extended
the results of geostrophic turbulence (Charney, 1971) (mainly,
the concepts of energy and enstrophy conservation) to low
latitudes.

Ripa (1981) formulated the non-linear wave–wave interaction
problem for barotropic non-divergent Rossby waves and internal
gravity waves on a vertical plane. Ripa applied Galerkin formal-
ism with the basis functions given by the eigensolutions of the
linear problem and showed that the conservation of two particular
integrals of motion, quadratic to lowest order, leads to interest-
ing properties that the coupling coefficients must satisfy in order
to ensure the invariance of such integrals. This formalism was
extended to the equatorial wave-guide in Ripa (1982, 1983a,b).
Recently, Majda et al. (1999) analyzed the role of topography
in resonantly coupling equatorial waves. They used an asymp-
totic expansion in terms of multiple scales and showed that by
resonance with topography the equatorial waves can also inter-
act with each other and exchange energy. Especially, the Kelvin
wave can excite large-scale Yanai and Rossby waves with spe-
cific zonal wavelengths and slow down its phase speed by this
resonance mechanism.

A straightforward view of Ripa’s formalism will be carried
out here in order to organize the theoretical framework. In this
paper we used the results of Ripa’s formalism to determine the
possible resonant triads among equatorial waves and analyzed
their dynamics by numerical integrations of the model equations
in the phase space. The main concern here is to highlight the
implications of the results for tropical atmospheric dynamics.
It shall be shown that the resonant energy exchanges among
equatorial waves have interesting implications for tropical at-
mospheric dynamics. Particularly, the results of the numerical
integrations of the problem of two resonant triads coupled by
a single mode suggest the importance of gravity waves (and,
thus, moist convection) in the generation of the low-frequency
(intraseasonal and/or even longer term) variability of the atmo-
spheric circulation. Thus, as shall be discussed in Section 6,
this paper provides an alternative explanation for the origin of
intraseasonal oscillations in the tropics. In Section 2, the gov-
erning equations, the spectral method of solution and the con-
cept of resonance in non-linear interactions are presented. In
Section 3 we describe a straightforward view of Ripa’s for-
malism on non-linear wave–wave interactions on the equatorial
wave-guide. In Section 4 the main result of this formalism is
used to determine the possible resonant triads among equatorial
waves by numerical computation of the coupling coefficients.
In Section 5 we explore the dynamics of the energy exchanges
among equatorial waves in resonant triads by numerical inte-
grations of the model equations in spectral space. The results
of both the three-wave problem and the problem of two triads
coupled by a single mode are shown. A summary of the results
obtained in the previous sections and the implications of these
results for the tropical atmospheric dynamics are presented in
Section 6.

2. Model equations and solution method

The shallow-water model on the equatorial β-plane adopted in
the present work can be described by the following system of
equations in the vector form:

∂ξ

∂t
+ �ξ = N . (2.1)

System (2.1) is shown after normalization, using the scales
[L] = (c/β)1/2 and [T ] = (1/cβ)1/2 of length and time, respec-
tively, and h0 as the vertical scale, where ξ = [u(x , y, t), v(x , y,
t), φ (x , y, t)]T is the state vector of the model and
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(2.2)

are the linear operator associated with the linearized equations
and the non-linear term, respectively. Here, u and v are, respec-
tively, the components of the two-dimensional velocity field on
the x (eastward) and y (northward) directions; φ is the geopoten-
tial field of the free surface, c = √

gh0 is the phase speed of pure
gravity waves, h0 is the equivalent depth and g is the effective
gravity acceleration. The parameter β = d f /dy is the Rossby
parameter (where f is the Coriolis parameter) and is assumed
here as a constant and with its equatorial value.

System (2.1) is an appropriate model for describing atmo-
spheric and oceanic motions with somewhat long time-scales
and whose horizontal length-scales are relatively larger than their
vertical ones, that is, for describing phenomena that do not de-
pend crucially on temporal changes of the vertical density strat-
ification. In the linear context, the shallow-water equations can
also be regarded as the governing equations for the time evolution
of the horizontal structure associated with a particular internal
vertical mode of the upper-lidded primitive equations (Silva Dias
et al., 1983). In this context, the equivalent depth h0 is the sep-
aration constant and is obtained as an eigenvalue of the vertical
structure equation. However, as far as the non-linear terms are
restored this correspondence is no longer valid, because in this
case the Galerkin projection of the three-dimensional primitive
equations onto a particular vertical mode does not fall naturally
into the non-linear shallow-water equations given by eqs. (2.1)
and (2.2). As a consequence, caution is necessary in interpreting
the results of this paper for the fully vertically stratified atmo-
sphere, as shall be mentioned in Section 6.
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Zonal periodicity in the x-direction and bounded solution as
|y| goes to infinity provide the boundary conditions for system
(2.1). These boundary conditions define the eigenfunctions of
the linear operator � as Hermite functions in the y-direction
multiplied by trigonometric functions in the x-direction. Such
eigenmodes form an orthogonal and complete set and are used
as the basis functions in the expansion of ξ in a series as in

ξ (x, y, t) =
∑

a

ca(t)ξa (2.3)

where ca (t) are the spectral coefficients defined as the inner
product between the state vector and a particular eigenfunction
ξ a . The subscript a characterizes a particular expansion mode
and is given by a = (k, n, r ), where k is the zonal wavenumber,
n is the meridional mode, which distinguishes the meridional
structure of the eigenfunctions; r = 1 for Rossby waves (RW),
r = 2 for inertio-gravity waves propagating westward (WGW)
and r =3 for inertio-gravity waves propagating eastward (EGW).
The mixed Rossby–gravity waves (MRGW) correspond to the
n = 0 mode and are included in either r = 1 (for k > 2−1/2) or r
= 2 (for k < 2−1/2) categories. The Kelvin wave is represented
by n = − 1 and r = 3. The determination of the eigenfunctions
of � and a complete discussion on the properties of such free
linear wave solutions of the governing equations are found in
Matsuno (1966).

For each expansion mode with parameters (ωa , ka, na, ra),
where ωa are the eigenfrequencies associated with the eigen-
functions ξ a , and the structure functions ξ a , there is another
mode, with parameters (−ωa ,−ka, na, ra) and structure functions
−ξ ∗

a , where the superscript ∗ indicates the conjugate complex;
the latter is denoted by a∗ and called as the conjugate mode of
a. Two conjugate modes are mathematically independent, in the
sense that the expansion (2.3) must consider both components
of each conjugate pair (a, a∗), but physically equivalent because
the reality of the state variables u, v and φ in eq. (2.3) implies
that

ca∗ = −c∗
a(ωa∗ = −ωa, ka∗ = −ka). (2.4)

The expansion (2.3) is an exact solution of eq. (2.1) provided that
the spectral coefficients satisfy the following system of ordinary
differential equations

dca(t)
dt

− iωaca(t) =
∑

b

∑
c

σ bc
a c∗

b(t)c∗
c (t). (2.5)

In eq. (2.5) above, σ bc
a represent the coupling coefficients

among three particular modes a, b and c, and are given by

σ bc
a =

〈[
ubikcξc + vb

∂ξc

∂ y
+ (0, 0, 1)Tφb

×
(

ikcuc + ∂vc

∂ y

)
+ C P

]
· ξa

〉
δabc. (2.6)

In eq. (2.6) above, 〈·〉 represents the inner product given by

〈p(x, y) · q(x, y)〉 =
∫ Lx

−Lx

∫ +∞

−∞

(
p1q∗

1 + p2q∗
2 + p3q∗

3

)
× dy dx, (2.7)

where p and q are arbitrary three-dimensional vector fields satis-
fying the boundary conditions of model (2.1) and the subscripts
1, 2 and 3 refer to their scalar components; Lx corresponds to
the zonal period in dimensionless units and the superscript ‘T’
in eq. (2.6) refers to the transposition operation so that (0, 0, 1)T

corresponds to the unit vector in the vertical direction. The term
CP in eq. (2.6) means cyclical permutations between the super-
scripts bc and, thus, the coupling coefficients σ bc

a are invariant
under permutations of these indices. For a suitable normaliza-
tion of the eigenfunctions ξ a , the coupling coefficients are real.
From eqs. (2.5) and (2.6) it can be noted that the non-linear inter-
actions take place in triad configurations in which the coupling
coefficients represent a measure of how far the product between
two particular modes b and c can project onto another particular
mode a. Thus, all information on the non-linearity of the model
is contained in these coefficients. The coefficients δabc represent
the interaction condition for the triad (a, b, c) and are given by

δabc =
{

2Lxδ(ka + kb + kc) if na+nb + nc = odd (2.8a)
0 otherwise (2.8b)

where the delta function in eq. (2.8a) results from the orthogo-
nality of the trigonometric functions. It is well known (Phillips,
1960; Bretherton, 1964; Ripa, 1981, 1982, 1983a,b) that if the
amplitude is small such that, to a first approximation, the evo-
lution of the system is controlled by the linear part of eq. (2.5),
only the interacting triads whose components satisfy the relation

ωa + ωb + ωc = 0 (2.9)

contribute significantly to the non-linearity of the model. These
triads whose components satisfy the interaction condition (2.8a)
for ka + kb + kc = 0 and the resonance condition (2.9) are usually
referred to as resonant triads.

This interesting phenomenon in non-linear wave–wave inter-
actions was noticed by Phillips (1960) while discussing the role
of small non-linear terms in the theory of ocean waves and has
then been applied to a wide range of problems in physics. A
rich and complete discussion on resonance in wave–wave inter-
actions can be found in Bretherton (1964) in his analysis of a
simple wave equation forced by a quadratic term. In the equa-
torial wave spectrum is a variety of resonant triads, as will be
shown in Section 4. It is also important to mention that coupled
resonant triads can also exist in the spectrum of the equatorial
waves, i.e. resonant interactions involving a larger number of
modes, as discussed later.

Therefore, knowledge of the possible resonant triads involv-
ing equatorial waves is of great importance for the tropical atmo-
spheric dynamics, because, a priori, these triads determine the
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non-linear interactions in the spectrum of the equatorial waves.
The next sections aim to analyze the time evolution of the mode
energies in resonant triads. This analysis is no longer obvious
and requires a further investigation on the internal dynamics of
the model (2.1). This is exactly what shall be done in the next
sections. Some constraints that the coupling coefficients must
satisfy will be discussed in the next section. These are conditions
that the coupling coefficients must satisfy as a consequence of
the invariance of two particular integrals of motion, following
the mathematical formalism of Ripa (1982, 1983a). As will be
shown, total energy and pseudo-momentum conservations lead
to interesting properties that determine the time evolution of the
modal amplitudes in a resonant triad and thus interesting impli-
cations for the dynamics of equatorial waves.

3. Integral constraints

System (2.1) is constrained by the existence of several integrals
of motion. Two (and only two) of them have, to lowest order,
a quadratic dependence in terms of the dependent variables of
the model. The consequences of their conservation to the evo-
lution of (2.1) in the phase space are more powerful than the
consequences of the other conservation laws. These quadratic
to lowest-order integrals of motion are the total energy and the
total pseudo-momentum defined by their respective equations in
conservative forms:

∂ E
∂t

+ ∇ ·
[

	V
(

E + 1

2
φ2

)]
= 0 (3.1a)

∂ P
∂t

+ ∇ ·
[
	V (P + u)

]
+ 1

2

∂

∂x

[
φ2 − (

u2 + v2
)] = 0. (3.1b)

In the equations above, the superscript ‘T’ corresponds to the
transposition operation so that 	V = (u, v)T refers to the two-
dimensional velocity field vector. The variables E and P are, re-
spectively, the energy and pseudo-momentum densities defined
by

E = 1

2

[(
u2 + v2 + φ2

) + φ
(
u2 + v2

)]
(3.1c)

P = φu − 1 + φ

2
(q − y)2 (3.1d)

where q is the potential vorticity and y refers to the dimensionless
Coriolis parameter.

The theoretical framework employed in this work follows the
mathematical formalism of Ripa (1983a) and is also presented in
Section 3 of Raupp and Silva Dias (2005). Thus, further details
of this formalism will not be repeated here. The most important
result for the purpose of the next sections is that, as a consequence
of the conservation of total energy and pseudo-momentum, if a
certain triad (a, b, c) satisfies the resonance condition (2.9) the
coupling coefficients associated with this particular triad satisfy

the relations

σ bc
a + σ ac

b + σ ab
c = 0 (3.2a)

saσ
bc
a + sbσ

ac
b + scσ

ab
c = 0. (3.2b)

The parameter s in eq. (3.2b) above is the slowness index
(Ripa, 1981, 1982, 1983a,b), which is defined as the inverse
of the zonal phase speed of the waves. Condition (3.2a) is a
consequence of the conservation of total energy, whereas re-
lation (3.2b) results from the pseudo-momentum conservation.
These constraints have some interesting implications for the dy-
namics of the equatorial waves. The immediate consequence
of eqs. (3.2a) and (3.2b) is that resonant interactions conserve
the quadratic (lowest-order) part of total energy and pseudo-
momentum; the changes of O(c3) terms are owing to interactions
by off-resonant triads. From eqs. (3.2a) and (3.2b) it can also be
noted that, in a resonant triad, the component which has the cou-
pling coefficient with the opposite sign of the other two (and,
consequently, with the greatest absolute value) has the interme-
diate slowness. Thus, in this kind of interaction, the wave with
the intermediate slowness always gains energy from (or releases
energy to) the other two. Furthermore, using the definition of
the slowness s (inverse of the phase speed of the waves) and the
interaction condition (ka + kb + kc = 0), it is easy to show that
the wave with the intermediate slowness in a certain resonant
triad has the largest absolute frequency of the triad, i.e.

σ bc
a

ωa
= σ ac

b

ωb
= σ ab

c

ωc
= γabc. (3.3)

Therefore, in a resonant triad the wave with the largest abso-
lute frequency is the most energetically active, that is, always
gains energy from (or releases energy to) the other two compo-
nents. Moreover, eq. (3.3) also shows that high-frequency modes
in a resonant triad are energetically more active than the low-
frequency modes. As will be shown in the next sections, this
constraint has an important implication not only in the determi-
nation of the possible resonant interactions but also in the time
evolution of the wave energies in such interactions.

4. Determination of the possible resonant triads
among equatorial waves

In this section we determine the possible resonant triads involv-
ing equatorial waves. The possible resonant triads were deter-
mined by the numerical calculation of the coupling coefficients
in eq. (2.6) and by using the constraint (3.2a). For the numerical
computation of the coupling coefficients in eq. (2.6) we used the
Gauss–Hermite quadrature formula. It is important to mention
that, because eq. (2.1) allows only a discrete number of normal
modes, the resonance condition (2.9) cannot be exactly satisfied
in practice. Thus, a certain tolerance � in eq. (3.2a) is needed in
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Table 1. Possible resonant triads involving equatorial waves for h0 = 250 m. The table shows, from left to right, the triad components and their
respective eigenfrequencies and coupling coefficients. The modes are characterized, from left to right, by the zonal wavenumber, the meridional
mode and the wave type

a b c ωa ωb ωc σ bc
a σ ac

b σ ab
c

1 0,−1,K 1,1,WG 1,1,EG 0 1.71 −1.78 0 −0.1225 0.12765
2 1, 1, R 3,3,WG 4,3,EG 0.0758 2.687 −2.86 0.00607 0.04377 −0.0519
3 5,1,R 1,3,EG 6,3,WG 0.2711 −2.67 2.906 0.012614 0.054344 −0.0631
4 0,0,WG 4,1,WG 4,2,EG 1 1.83 −2.49 −0.028472 −0.064398 0.0909
5 0,1,R 5,2,R 5,0,M 0 0.183 0.577 0 −0.07624 0.07588
6 7,1,R 6,−1,K 1,3,EG 0.292 −1.39 −2.67 −0.00625 −0.049643 0.05715
7 5,−1,K 2,1,EG 7,1,WG −1.156 −1.86 2.21 0.01684 0.076963 −0.0914
8 1,2,EG 3,1,WG 4,0,M −2.27 1.756 0.64 0.09563 −0.0816 −0.0251
9 5,0,M 1,2,WG 4,3,EG 0.577 2.225 −2.86 −0.0185 −0.08019 0.10136
10 2,−1,K 7,0,M 5,2,EG −0.462 0.477 −2.6 0.03389 0.007342 −0.04

order to find the possible resonant interactions. The number of
resonant triads found by condition (3.2a) depends on the toler-
ance and, through the fundamental wavenumber, on the equiv-
alent depth h0. However, although the choice of the tolerance
� and the equivalent height h0 influence the size of the reso-
nance spectrum, it was found that the resonant triads are highly
self-consistent, i.e. exhibit a remarkably similar composition ir-
respective of h0 and the choice of �. Therefore, for an illustrative
purpose, only unique values of h0 (250 m) and � (10−2) are dis-
cussed here (Table 1). This value of h0 is associated with the
dominant vertical mode for the atmospheric flow in the tropical
region (Silva Dias and Bonatti, 1985), because it corresponds to
the mostly excited vertical mode by the typical heating resultant
from the organized moist convection in the tropics (DeMaria,
1985). Table 1 shows the mode components of each triad and
their correspondent eigenfrequencies and coupling coefficients.
It is important to state that Table 1 presents only some examples
of the main kinds of resonant triads found. Obviously, there are
more triads that are not shown in Table 1 but these triads have
the same kind of waves as those shown in Table 1.

Table 1 shows that, in general, the resonant triads obtained in-
volve all the equatorial wave types. They are strongly dominated
by triads with two high-frequency modes (Kelvin or inertio-
gravity) and one low-frequency mode (Rossby or mixed Rossby–
gravity). Some strictly low-frequency (case 5 of Table 1) and
strictly high-frequency triads (cases 4 and 7) also exist, but no
triads involving solely the inertio-gravity modes, satisfying con-
dition (3.2a), could be found.

From Table 1 it can be noted that the coupling coefficients in
a resonant triad involving equatorial waves are indeed propor-
tional to the individual absolute frequencies of the wave com-
ponents. As a consequence, in a resonant interaction involving
two inertio-gravity modes and one Rossby mode the coupling
coefficient associated with the Rossby mode is much smaller
in absolute value than the coupling coefficients associated with
the inertio-gravity modes. As a result, this kind of interaction is
characterized by a catalytic energy exchange between the two

high-frequency modes, while the Rossby wave energy remains
almost unchanged in time, as will be shown in the next section.
Especially, in resonant triads containing the zonally symmetric
Rossby or Kelvin modes, as a consequence of the zero-frequency
of these modes, their coupling coefficients are zero and thus their
energy remains completely unaltered in a resonant interaction.

Loesch and Deininger (1979) determined the resonant triads
among equatorial waves using the conditions (2.8a) and (2.9),
together with the dispersion relation, following Longuet-Higgins
and Gill (1967). In general, the resonant interactions found by
Loesch and Deininger are in agreement with those obtained here.

5. Dynamics of resonant interactions among
equatorial waves

Possible resonant interactions involving equatorial waves were
discussed in the previous section. As, in a first approximation,
only these triads have a significant role on the non-linear evolu-
tion of eq. (2.5), besides the knowledge of the possible resonant
triads it is also interesting to analyze the triad dynamics. The
dynamics of the resonant three-wave problem is discussed in
Section 5.1, i.e. system (2.5) is truncated to consider only three
waves satisfying the conditions (2.8a) for ka + kb + kc = 0 and
(3.2a). The problem of two resonant triads coupled by a single
mode is discussed in Section 5.2.

5.1. Resonant three-wave problem

The resonant three-wave problem has the following formulation
in the phase space:

dc1

dt
− iω1c1 = σ 23

1 c∗
2c∗

3 (5.1a)

dc2

dt
− iω2c2 = σ 13

2 c∗
1c∗

3 (5.1b)

dc3

dt
− iω3c3 = σ 12

3 c∗
1c∗

2 . (5.1c)
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Fig. 1. Time evolution of the modal quadratic energies associated with the solution of the resonant three-wave problem for the triad composed of a
Rossby wave (RW) with k = 1 and n = 1 (mode 1), an inertio-gravity wave propagating eastward (EGW) with k = 4 and n = 3 (mode 2) and an
inertio-gravity wave propagating westward (WGW) with k = 3 and n = 3 (mode 3). The total quadratic energy given by the sum of the energy of the
individual components is also displayed. The initial amplitudes of the triad components are given by A1 = A3 = 1 and A2 = 10.

The above system is in Hamiltonian form, with (cj, c∗
j ), j =1, 2

or 3, being the canonically conjugate variables. The Hamiltonian
form of eqs. (5.1) is

dc j

dt
= iω j

∂ H
∂c∗

j
, j = 1, 2 or 3 (5.2)

with the Hamiltonian H given by

H =
∑

j

γ123 Im(c1c2c3) = constant (5.3)

where the coefficient γ 123 in eq. (5.3) is given by eq. (3.3). Thus,
the dynamical system (5.1) has three degrees of freedom and, at
least, three integrals of motion: the Hamiltonian H , E (2) and P (2)

(which refer, respectively, to the quadratic part of total energy
and pseudo-momentum). Therefore, the three-wave problem is
integrable. General solution of this problem can be obtained in
terms of Jacobian elliptic functions as in Domaracki and Loesch
(1977) and Ripa (1981).

Although the dynamics of the resonant three-wave problem
(5.1) is well known (Domaracki and Loesch, 1977; Ripa, 1981,
and others), we show here an example of numerical integration of
this problem in order to fix ideas and to discuss the implications of
this triad dynamics for some aspects of the tropical atmospheric
circulation. We believe that the original contribution of this work
for the dynamics of resonant triads stems from the results of
the five-wave dynamics shown in Section 5.2. The numerical

integration scheme of eq. (5.1) assumes that the non-linear terms
in the right-hand side of eq. (5.1) are constant forcings during a
very short time 2�t so that, given the coefficients cj, j = 1, 2,
and 3, at t − �t and t, an analytic solution can easily be obtained
at t + �t . In this scheme, the non-linear terms are evaluated at
the central level t. The initial condition used in the numerical
simulations is given by

c j (0) = A j e
iλ j (5.4)

where j = 1, 2, 3. The initial phases λ j are chosen such that∑
j λ j = π/2, in order to obtain the maximum energy ex-

change (Domaracki and Loesch, 1977; Loesch and Deininger,
1979).

The example of the numerical integration of the problem (5.1)
is displayed in Fig. 1 for the triad constituted of a RW with k =
1 and n = 1 (mode 1), an EGW with k = 4 and n = 3 (mode
2) and a WGW with k = 3 and n = 3 (mode 3). This triad
refers to case 2 of Table 1. In this triad, mode 2 has the largest
absolute frequency and, thus, the maximum coupling coefficient
in absolute value. Therefore, this inertio-gravity mode is the most
energetically active of the triad, i.e. corresponds to the wave
which supplies energy to the other components or gains energy
from the other two modes. In this integration, the initial condition
is almost all projected onto mode 2 and only a small fraction is
projected onto the other components (A1 = A3 = 1 and A2 =
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Fig. 2. Time evolution of the zonal component of the velocity field at a certain point of the domain correspondent to the numerical solution of Fig. 1.

10). Thus, this case is a typical problem of wave instability. As
resonant interactions conserve the quadratic part of total energy,
the energy of a particular resonant-triad component is simply
given by the square of its amplitude.

Figure 1 shows that, when the initial condition is almost totally
projected onto the highest-frequency mode, there is a parametric
instability of this mode (mode 2), which supplies energy to the
components 1 and 3 according to conditions (3.2a) and (3.2b).
Nevertheless, after a certain time, mode 2 energy becomes so
small that the direction of the energy transfer is reversed, and
mode 2 starts to receive energy from the components 1 and 3. As
time evolves, the cycle repeats itself and the energy of each com-
ponent continues to alternate periodically. Thus, the solution of
the resonant three-wave problem is always periodic in time, that
is, the triad components exchange energy in a periodic manner
while the total energy E (2) remains constant. Some oscillations
in the total energy E (2) are observed in Fig. 1 and are due to
the fact that the resonance condition is not exactly satisfied, as
already discussed.

Another important feature on the triad dynamics involving
equatorial waves is that the variation of the RW energy is very
small compared to the variation of the gravity wave energies,
as expected from eq. (2.5) and from the values of the coupling
coefficients (see case 2 of Table 1). Thus, the dynamics of a
resonant triad like that of case 2 of Table 1 is characterized by a

catalytic energy exchange between the two gravity modes, while
the RW energy remains almost unchanged during the process.
Therefore, in a resonant triad with two high-frequency modes and
one low-frequency mode, the low-frequency mode only acts as
a catalytic component. This property implies that the magnitude
of the energy modulations is dependent on the distribution of the
initial energy among the triad components, as also pointed out by
Domaracki and Loesch (1977). In fact, if the initial condition is
mostly projected onto mode 1, the energy exchanges are strongly
inhibited (figure not shown).

Another interesting feature regarding the solution of the reso-
nant three-wave problem is that the period of the energy modula-
tions is dependent upon the initial amplitudes but is always finite.
Furthermore, the higher the values of the initial amplitudes, the
shorter the period of the amplitude modulations (Domaracki and
Loesch, 1977).

The important point to be analyzed here refers to the implica-
tion of the energy exchanges among resonant triad components
for the solution in physical space. Fig. 2 shows the time evolution
of the zonal wind field at a certain point of the domain associated
with the numerical solution of Fig. 1. The zonal wind field in
Fig. 2 was obtained by the expansion (2.3) considering only the
three modes of the resonant triad.

The time evolution of the zonal wind field illustrated in Fig. 2
displays the existence of local high-frequency oscillations with a
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period shorter than 1 d. These high-frequency local oscillations
are associated with the phase propagation of the two inertio-
gravity modes of the second triad of Table 1. In fact, for h0 =
250 m (c = 50 m s−1), the eastward inertio-gravity wave labeled
as mode 2 in Fig. 1, which is characterized by zonal wavenumber
4 and meridional mode 3, has a time frequency corresponding
to a period of the order of 16 h. This short period of the lo-
cal oscillations may be somewhat unrealistic in the sense that
it might not be observed in a more realistic large-scale atmo-
spheric model, which includes a parametrization of the feedback
between large-scale dynamics and moist convection. When the
interaction between the equatorial wave dynamics and moist con-
vection is taken into account, there is a reduction in the effective
equivalent depth of the shallow-water equations and, as a result,
there is a reduction in the time frequency of the eigenmodes. In
fact, if one assumes that the convective forcing is proportional
to divergence, in a first approximation, the divergent term in the
continuity equation of model (2.1) appears multiplied by an ef-
fective equivalent depth that is smaller than the true equivalent
depth. The stronger the convection related to the divergence, the
smaller the effective equivalent depth. Therefore, the period of
high-frequency oscillations observed in Fig. 2 may reflect the
limitation of the model adopted in the present work in not tak-
ing into account the interaction between equatorial waves and
moist convection. Nevertheless, these high-frequency local os-
cillations may be, a priori, unimportant for the results presented
here, because the focus of the present study is the non-linear in-
teractions. Consequently, we have adopted a phenomenological
model with the goal of analyzing only the dynamics of the in-
teraction among equatorial waves through the non-linear terms
into the governing equations. The role of reducing the equiva-
lent depth of system (2.1), which implies the incorporation of the
interaction between convection and dynamics in the model, on
the non-linear dynamics explored here would be an interesting
subject for a future work.

The lower-frequency modulation in the amplitude of these lo-
cal oscillations is resultant from the energy modulations associ-
ated with the interactions among the wave modes in the resonant
triad. This can be concluded by comparing Figs. 2 and 1. The
time when the magnitude of the zonal wind is maximal corre-
sponds exactly to the time when the energy of the EGW (mode
2) peaks. On the other hand, when the WGW energy is maximal
(and the EGW energy is minimal) corresponds to the time when
the amplitude of the zonal wind oscillations is minimal. This is
in agreement with the spatial structure of these equatorial waves,
because the zonal kinetic energy of the inertio-gravity modes in-
creases as zonal wavenumber increases (shorter waves) (Silva
Dias and Schubert, 1979).

Thus, the periodic exchanges of energy among waves con-
stituting a resonant triad imply in periodic changes of regime
in the physical space solution. Such changes of regime, in turn,
occur on a longer time-scale than the period of the local high-
frequency oscillations. This periodic change of regime in the

solution in physical space due to the internal dynamics of the
model is known as vacillation (Lorentz, 1963). Other mecha-
nisms are also known to induce vacillating solutions, such as
wave-zonal flow interactions (Pedlosky, 1977; Boville, 1980)
and interference between linear waves with the same wavenum-
ber and different phase speeds (Lindzen et al., 1982). As our
results point out, non-linear interactions among waves consti-
tuting a resonant triad can also lead to vacillations. The high
peak magnitudes of the order of 100 m s−1 observed in Fig. 2,
which are somewhat unrealistic, are resultant from the unreal-
istically high value of the mode 2 amplitude set in Fig. 1. We
have selected this unrealistic initial wave amplitude in order to
more clearly observe the features associated with the dynamics
of resonant triads. Exaggerating the high values of the initial
amplitudes as done in Fig. 1 makes the dynamical features of the
resonant triads, such as the parametric instability of the highest
frequency mode, more clearly noticeable. However, it is impor-
tant to mention that, in a qualitative sense, the results shown in
Figs. 1 and 2 are not affected by the unrealistic initial amplitude
set in Fig. 1. That is, had we selected lower values for the initial
amplitudes in Fig. 1, the behavior of the solution would have
been the same as observed in Figs 1 and 2, but the value of the
period of the low-frequency amplitude modulation (vacillation)
resultant from the energy exchanges would have been different
(longer). The only caution that we should have is regarding the
conclusions drawn from the periods of the vacillations observed
in Fig. 2, as shall be discussed later.

Therefore, the dependence of the period and amplitude of
the energy modulation of the modes constituting resonant tri-
ads previously discussed have an important implication for the
numerical weather prediction. This sensitivity demonstrates that
the period of the vacillation cycle of the flow is dependent on the
magnitude of the initial field and the way in which this initial
field is projected onto the modes that represent the atmospheric
flow. The way in which a given state of the atmosphere (which
can be used as initial condition in a weather prediction) projects
onto the modes, in turn, is very dependent on the manner in
which a numerical model represents certain physical process in
the atmosphere. For example, gravity waves are directly linked to
moist convection. As a consequence, the projection of the initial
field onto gravity modes, and consequently the vacillation cycle
of the atmospheric flow, can be sensitive to the representation
of such moist process in the numerical model, which is highly
dependent on the convective parametrization.

5.2. Problem of two resonant triads coupled by one mode

In the previous subsection we discussed the dynamics of the
energy exchanges among equatorial waves constituting a sin-
gle resonant triad. Nonetheless, in a more realistic situation,
a unique equatorial wave can participate in several resonantly
triadic interactions. Thus, in the equatorial wave spectrum are
numerous coupled resonant triads, allowing the spectral energy
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redistribution. This shows that resonant interactions can have
an important role in the generation of turbulence, making the
analysis of the dynamics of resonant triads very useful in un-
derstanding the transition to turbulent regimes in dynamical sys-
tems. Loesch and Deininger (1979) investigated the effectiveness
with which resonant interactions among equatorial waves can
redistribute energy generated at selective scales. They analyzed
the dynamics of closed systems composed of several resonant
triads and pointed out that the energy transference throughout
the system is very dependent on the energy projected onto the
maximum-frequency modes of individual triads. Here, we ex-
plore the dynamics of a more simplified system constituted by
only two resonant triads coupled by a unique mode in order to
further explore the energy transference between different triads
as well as the implications of this process for the tropical atmo-
spheric climate.

Let us consider mode 1 as the mode which couples the two
triads. Thus, considering the triads (1, 2, 3) and (1, 4, 5), this
problem is formulated in terms of the spectral amplitudes as
follows:

dc1

dt
− iω1c1 = σ 23

1 c∗
2c∗

3 + σ 45
1 c∗

4c∗
5 (5.5a)

dc2

dt
− iω2c2 = σ 13

2 c∗
1c∗

3 (5.5b)

dc3

dt
− iω3c3 = σ 12

3 c∗
1c∗

2 (5.5c)

dc4

dt
− iω4c4 = σ 15

4 c∗
1c∗

5 (5.5d)

dc5

dt
− iω5c5 = σ 14

5 c∗
1c∗

4 . (5.5e)

Problem (5.5) has the same Hamiltonian form given by
eq. (5.2) with the Hamiltonian given by

H =
∑
abc

γabc Im (cacbcc) = constant, (5.6)

where the subscripts a, b and c range from 1 to 5. However,
unlike the three-wave problem, nothing can be said a priori on
the integrability of the five-wave system. As in the three-wave
problem, the initial condition is given by eq. (5.4) but with j =
1, 2, 3, 4, 5 and the initial phases are chosen in order to obtain
the maximum energy exchange.

Examples of numerical solutions of eq. (5.5) are shown in
Fig. 3 for the case in which the modes 1, 2, 3, 4 and 5 are given
by, respectively: an MRGW with k = 5, an MRGW with k = 1,
an EGW with k = 4 and n = 1, a WGW with k = 1 and n = 2 and
an EGW with k = 4 and n = 3. Thus, it can be noted that, in this
case, the mode that couples the triads is the lowest-frequency
mode in the two triads, i.e. the energetically less active member
of the two triads.

Figure 3a shows the time evolution of the mode energies for
the case in which the initial condition is almost projected onto
mode 5, which corresponds to the highest-frequency mode of
the second triad. As in the three-wave problem, when the initial

condition is almost projected onto the highest-frequency mode,
there is an initial parametric instability followed by an inversion
of the energy transference and a consequent periodic evolution
of the energy with time, as shown in Fig. 3a. It is interesting to
observe that modes 2 and 3 of the first triad are not significantly
excited, that is, their energy is kept suppressed in time. Thus,
the solution converges to the three-wave problem and there is
no an intertriad energy distribution. The same occurs when the
initial condition is equally projected onto the two stable waves
of a particular triad, as can be noted in Fig. 3b. In this case, as
in Fig. 3a, there is a catalytic energy exchange between the two
gravity waves (highest-frequency modes) of the second triad,
whereas the MRGW with k = 5 (which is in the low-frequency
category) remains essentially energetically unaltered.

Figure 3c illustrates the case in which all five waves have
the same amplitude, i.e. for a ‘white noise’ initial perturbation.
In this case, as observed in Fig. 3c, there are catalytic energy
exchanges involving the two highest-frequency modes of each
triad. An energy exchange among components of different tri-
ads does not occur. In other words, there is no effective intertriad
coupling. An interesting feature regarding the solution of system
(5.5) occurs when the energy associated with the initial perturba-
tion is equally distributed between two modes of different triads.
In this case, as can be seen in Fig. 3d for the case in which
the initial perturbation is essentially projected onto components
3 and 5, there are the same catalytic and periodic energy ex-
changes among modes of the same triad. However, it is clear
in the time evolution of the energy of modes 2 and 3 the al-
ternation of large and small energy peaks, suggesting that the
period of the energy exchange between these wave components
has doubled. This period-doubling seems to be a result of the
larger number of degrees of freedom of system (5.5) in compar-
ison to the three-wave problem. The higher the number of triads
included in the three-wave problem (5.1), the larger the degrees
of freedom of the resulting system, and thus the more irregular
the time evolution of the mode energies, tending to a chaotic
behavior as the number of degrees of freedom becomes higher.
Therefore, the period-doubling of the energy modulation noted
in Fig. 3d seems to be an indication of the non-integrability of
system (5.5) and, consequently, a possible path to chaos, because
the period-doubling rout to chaos is a very well-known example
of bifurcation in dynamical systems (Ott, 1993).

Nevertheless, despite the period-doubling of the energy modu-
lations indicating a possible path to chaos as more triads of waves
are included to the problem (5.1), the time evolution of the modal
energies shown in Fig. 3d also does not display a significant cou-
pling between components of different triads. This absence of an
effective intertriad coupling can be due to the fact that the mode
that couples the triads is exactly the lowest-frequency mode of
the two triads (i.e. the less energetically active member of the
system).

In fact, Fig. 4 shows that when the mode coupling the two
triads is exactly the highest-frequency mode of the two triads,
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Fig. 3. Time evolution of the modal quadratic energies associated with the solution of problem (5.5) composed of an MRGW with k = 5 (mode 1),
an MRGW with k = 1 (mode 2), an EGW with k = 4 and n = 1 (mode 3), an WGW with k = 1 and n = 2 (mode 4) and an EGW with k = 4 and
n = 3 (mode 5). The total quadratic energy given by the sum of the energy of the individual components is also displayed. The initial amplitudes of
the modes are given by: (a) A1 = A2 = A3 = A4 = 1 and A5 = 10; (b) A1 = A4 = 5 and A2 = A3 = A5 = 1; (c) A1 = A2 = A3 = A4 = A5 = 1;
(d) A1 = A2 = A4 = 1 and A3 = A5 = 5.

Tellus 58A (2006), 2



DYNAMICS OF EQUATORIAL WAVES 273

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

t ( days )

E
(2

)  (
 D

im
e

n
s
io

n
le

s
s
 )

mode 1 (5,0,MRGW)

mode 2 (1,0,MRGW)

mode 3 (4,1,EGW)

mode 4 (1,2,WGW)

mode 5 (4,3,EGW)

Total Energy

(c)

0 5 10 15 20 25 30 35 40

0

10

20

30

40

50

60

t ( days )

E
(2

)  (
 D

im
e

n
s
io

n
le

s
s
 )

mode 1 (5,0,MRGW)

mode 2 (1,0,MRGW)

mode 3 (4,1,EGW)

mode 4 (1,2,WGW)

mode 5 (4,3,EGW)

Total Energy

(d)

Fig. 3. (cont’d).

a significant intertriad coupling takes place. Figure 4 shows the
time evolution of the mode energies associated with the problem
(5.5) where the constituting modes are: an EGW with k = 6 and n
= 2 (mode 1); a WGW with k = 6 and n = 1 (mode 2); a zonally

symmetric MRGW (k = 0); a WGW with k = 1 and n = 3 (mode
4) and an MRGW with k = 7 (mode 5). It is important to point out
that, in this case, the mode which couples the two triads is exactly
the highest-frequency mode of the problem. Figure 4a shows the
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Fig. 4. Similar to Fig. 3, but for the
components given by an EGW with k = 6
and n = 2 (mode 1), an WGW with k = 6
and n = 1 (mode 2), an MRGW with k = 0
(mode 3), an WGW with k = 1 and n = 3
(mode 4) and an MRGW with k = 7 (mode
5). The initial amplitudes in this case are
given by: (a) A2 = A3 = 5 and A1 = A4 =
A5 = 1 and (b) A1 = 0.25 and A2 = A3 =
A4 = A5 = 1.

example in which the initial condition is essentially projected
onto the two stable components of the first triad, the modes 2 and
3. Unlike the previous case (Fig. 3b), a significant redistribution
of energy occurs, as can be noted by the excitation of mode 4. It
is interesting to note that, besides the energy exchanges among
components of the same resonant triad, a noteworthy energy
exchange between modes of different triads occurs, as can be
seen by the noticeable exchange of energy between modes 4 and
2. Another important feature to be noticed in Fig. 4a is that the
period associated with the intertriad energy exchanges is longer
than that associated with the intratriad interactions. This longer
time-scale of the intertriad energy exchanges is because of the
fact that the intertriad coupling is indirect, unlike the intratriad
one, as can be seen by eq. (5.5). In order for the mode 2 to supply
energy to mode 4, for example, it has to supply energy to mode
1 at first.

The same intertriad energy exchange observed in Fig. 4a can
be more clearly noted in Fig. 4b, which corresponds to the case

in which the initial condition is given by a ‘white noise’ ini-
tial perturbation, except that mode 1 has one-quarter of the
amplitude of the other modes (A1 = 0.25; A2 = A3 = A4 =
A5 = 1). It is important to observe that the longest period of
the energy modulation associated with the intertriad interac-
tions in this case is of order of 30 d (i.e. even longer than in
Fig. 4a).

Figure 5 shows the time evolution of u (zonal component of
the wind field) at a certain point of the domain correspondent to
the solution of the problem (5.5). Figure 5a corresponds to the
numerical solution of Fig. 4b, while Fig. 5b refers to the same
numerical solution as Fig. 5a, but with component 1 having four
times the amplitude of the other components (A1 = 4; A2 = A3 =
A4 = A5 = 1). Similarly to the three-wave problem, the u field
in Fig. 5 is obtained by the spectral expansion (2.3) truncated
in order to consider the five components of problem (5.5). One
can note in Fig. 5a three distinct oscillations: a high-frequency
oscillation associated with the phase propagation of the
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Fig. 5. Time evolution of the zonal
component of the velocity field at a certain
point of the domain correspondent to the
solution of problem (5.5) with the same
mode components as Fig. 4 for (a) A1 =
0.25 and A2 = A3 = A4 = A5 = 1 and (b)
A1 = 4 and A2 = A3 = A4 = A5 = 1.

inertio-gravity waves of the two triads; a modulation with longer
period (5–8 d), which can be noticed by the alternation of smaller
and larger peaks in the high-frequency oscillation’s amplitude;
and another modulation in the amplitude of the local oscillations
with period of the order of 30 d. As discussed in Section 5.1, the
short period of high-frequency local oscillations observed in Fig.
5 stems from the absence in our model equations of a convection
parametrization. Comparing Figs. 4b and 5a shows that the mod-
ulation with intermediate period (5–8 d) is a result of the energy
exchanges among modes of the same triad. The same compari-
son indicates that the longest time-scale modulation, with period
of the order of 30 d, is associated with the energy exchanges be-
tween modes of different resonant triads (i.e. with the intertriad
energy exchanges). Thus, Fig. 5 shows that the inclusion of two
modes in the resonant three-wave problem implies in the increase
of the vacillation cycles in the physical space solution, with the

longest vacillation cycle being resultant from intertriad energy
exchanges.

Figure 5b indicates that with the amplitude of the highest-
frequency mode multiplied by a factor 4, the same local oscil-
lations and changes of regime occur, but in a shorter period.
It can be noted in Fig. 5b that the longest cycle modulation
of the local oscillations has a period of the order of 20 d. As
in Fig. 2, the unrealistic peak magnitude of the wind field ob-
served in Fig. 5b (of the order of 40 m s−1) is due to the some-
what unrealistic high initial wave amplitudes set in this nu-
merical simulation (A1 = 4). Nevertheless, it is important to
state again that this somewhat unrealistic high amplitude has
been chosen in order to more clearly notice the dependence of
the period of the longest period vacillation resultant from the
intertriad interactions upon the initial amplitudes of the wave
modes.
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Therefore, the numerical results of the problem of two res-
onant triads coupled by a single mode discussed in the present
item of this section show that a significant interaction between
modes of different triads is only possible if the mode coupling the
two triads is a high-frequency mode (inertio-gravity or Kelvin
mode). Especially, significant intertriad energy exchanges can
occur if the mode that couples the triads is the highest-frequency
mode of the two triads, as shown in the numerical results of
this subsection. In this case, in addition to the interaction among
wave components of the same resonant triad, effective energy
exchanges involving modes of different triads take place in a
longer time-scale than the intratriad ones. As the main energy
source of the tropical atmospheric circulation is very scale selec-
tive (Kuo, 1975; Lau and Peng, 1987; Wang and Rui, 1990), the
results suggest that the high-frequency modes, such as inertio-
gravity and Kelvin waves, are important in redistributing energy
throughout the spectrum of the atmospheric motions and, in turn,
in generating large-scale turbulence in the atmospheric flow. As
shown in Figs. 4 and 5, for the initial conditions considered here
we have obtained periods for the lowest-frequency modulation
of the solution of problem (5.5), associated with the intertriad
energy exchanges, between 10 and 30 d, depending on the value
of the initial energy and the way in which this initial energy
is distributed among the wave components. Certainly, had we
considered initial conditions with amplitudes smaller than those
considered here, these low-frequency modulations associated
with intertriad energy exchanges would have undergone periods
longer than those observed here. Moreover, in a more realistic
model containing more coupled resonant triads, based on the
results presented here, there might be modulations with periods
even longer. Thus, the results obtained here also suggest that the
low-frequency variability of the atmospheric circulation, such
as the intraseasonal and/or even longer period variability, can
also be associated with non-linear energy exchanges involving
modes of different resonant triads. In this process, as shown in the
numerical results, the presence of the high-frequency modes cou-
pling the resonant triads is crucial. Thus, the results also suggest
the importance of inertio-gravity waves for the low-frequency
variability (intraseasonal and/or even longer term) of the atmo-
spheric flow.

6. Summary and conclusions

In the present work we have investigated the kinematical and
dynamical properties of resonant interactions among equatorial
waves in the context of the shallow-water model on the equato-
rial β-plane. The spectral method with the basis functions given
by the eigensolutions of the linear problem was applied to the
governing equations. In this context, from the phase space ex-
pansion of some quadratic to lowest-order integrals of motion
of the model, some constraints were obtained which the cou-
pling coefficients must satisfy in order to ensure the invariance
of such integrals up to third order. From the numerical computa-

tion of the coupling coefficients, these constraints were used to
determine the possible resonant interactions among equatorial
waves. In general, the resonant triads obtained involve all the
equatorial wave types and are strongly dominated by triads with
two high-frequency modes (Kelvin or inertio-gravity) and one
low-frequency mode (Rossby or mixed Rossby–gravity). Some
strictly low-frequency and strictly high-frequency triads also ex-
ist, but no triads involving solely the inertio-gravity modes could
be found. In order to analyze the dynamics of these resonant in-
teractions, the results of numerical integrations of the resonant
three-wave problem and the problem of two resonant triads cou-
pled by a single mode have also been discussed. In general, as
a consequence of the conservation of the quadratic part of to-
tal energy and pseudo-momentum, the resonant triads involving
equatorial waves form closed systems in which the mode ener-
gies evolve periodically in time, with the period and amplitude
of the energy modulations being dependent on the initial con-
dition, that is, dependent on the initial energy and the way in
which this energy is distributed among the triad components.
From the spectral reconstitution of the physical space solution,
the time evolution of this solution shows that the periodic en-
ergy exchanges among the triad components imply in periodic
changes of regime in the physical space solution. These changes
of regime, in turn, occur in a longer time-scale than the period
of the local oscillations associated with the phase propagation
of the waves. This mechanism provides a possible source of in-
traseasonal variability in the model atmosphere.

As a consequence of the conservation of the quadratic part of
total pseudo-momentum, the coupling coefficients in a resonant
triad are proportional to the individual frequencies of the triad
components. As a result, in the numerical integrations of both
the resonant three-wave problem and the problem of two tri-
ads coupled by one mode the high-frequency modes were found
to be energetically more active than the low-frequency modes.
The latter tend to act as catalytic components in resonant inter-
actions, with the exception occurring for the triads containing
only strictly low-frequency modes. The numerical results of the
problem of two triads coupled by one mode highlight the im-
portance of the high-frequency modes for the redistribution of
energy between different triads. As the main source of energy
to the tropical atmosphere is latent heat release, which is very
scale selective (Kuo, 1975; Lau and Peng, 1987; Wang and Rui,
1990), the results obtained here suggest the importance of the
Kelvin and/or inertio-gravity waves for the redistribution of en-
ergy throughout the atmospheric motion spectrum and, conse-
quently, for generating large-scale turbulence in the atmospheric
flow.

As also shown by the numerical results of the problem of
two resonant triads coupled by one mode, the intertriad energy
exchanges provided by the high-frequency modes coupling the
two triads occur in a longer time-scale than the intratriad in-
teractions. Thus, the results also suggest that the low-frequency
variability of the atmospheric flow, such as the intraseasonal and
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even longer period variability, can also be associated with vac-
illations resultant from the energy exchanges among modes of
different resonant triads. In this process, as pointed out by the
numerical results, the role of high-frequency modes is crucial,
suggesting the importance of Kelvin and inertio-gravity waves
(and therefore of the latent heat release) for the generation of the
low-frequency variability of the tropical atmospheric circulation.
As the inertio-gravity waves are directly associated with precip-
itation and moist convection, the results obtained in this paper
clearly link the predictability and realistic representation of in-
traseasonal oscillations in atmospheric models on well founded
moist convective parameterization. Dynamical forecast atmo-
spheric models generally exhibit rather poor simulation and low
predictability of the Madden–Julian Oscillation (MJO; Chen and
Alpert, 1990; Lau and Chan, 1992; Hendon et al., 2000; Jones
et al., 2000) and the results presented here propose that such
a low skill may be due, at least in part, to the difficulty of the
models in representing the interaction between moist convection
and large-scale dynamics. An interesting analysis on the theo-
retical limit of predictability of the MJO by ensembles of twin
predictability experiments has been performed by Waliser et al.
(2003).

Therefore, considering the results of the problem of two res-
onant triads coupled by one mode presented in Section 5.2, this
paper has also provided an alternative explanation for the ori-
gin of the MJO in the tropics. Since the discovery by Madden
and Julian over two decades ago (Madden and Julian, 1972),
the MJO has continued to be a topic of significant interest due
to its clear modulation on the weather conditions and the wide
range of phenomena with which it interacts. The main theo-
retical efforts to physically explain the origin of the MJO and
the associated intraseasonal variability of the atmospheric circu-
lation have been basically associated with either the dynamics
of convectively coupled Kelvin–Rossby modes or the extrat-
ropical forcing mechanism. The former explains the MJO in
terms of the linear equatorial Kelvin–Rossby wave dynamics
modified by frictional damping and/or coupling with convection
(Chang, 1977; Emanuel, 1987; Neelin et al., 1987; Lau and Peng,
1987; Chang and Lim, 1988; Wang, 1988; Wang and Rui, 1990;
Moskowitz and Bretherton, 2000). The latter argues that the
MJO can be triggered by extratropical Rossby-wave disturbances
propagating intermittently toward the equator (Hsu et al., 1990;
Kiladis and Weickmann, 1992; Matthews and Kiladis, 1998).
The results presented here suggest a possible excitation mech-
anism in which the intraseasonal variability is associated with
vacillations resultant from energy exchanges involving modes
of different resonant triads of equatorial waves. In this non-
linear mechanism, as discussed previously, the role of the inertio-
gravity modes coupling different triads is essential. However, it
is important to say that certain caution is necessary in posing
the results of this paper as another possible explanation for the
origin of the MJO and the associated intraseasonal variability
of the tropical atmospheric circulation, because the period of

the vacillations resultant from the energy modulations is rather
sensitive to the initial wave amplitudes.

Finally, although the present paper displays the potential im-
portance of non-linear mechanisms coupling large-scale equato-
rial waves in the context of the equatorial shallow-water equa-
tions, caution is necessary in interpreting these results for the
fully vertically stratified atmosphere, because the Galerkin pro-
jection of the non-linear three-dimension primitive equations
onto a particular vertical mode does not fall naturally into the
non-linear shallow-water equations given by eqs. (2.1) and (2.2),
as discussed in Section 2. Moreover, the model adopted in the
present work does not consider important physical mechanisms
present in the real atmosphere, such as the interaction between
moist convection and large-scale dynamics, forcing and dissi-
pation, along with the vertical density stratification. We plan a
future study which analyzes the existence of resonant interac-
tions involving the main modes of variability of the large-scale
atmospheric circulation (Rossby, inertio-gravity, mixed Rossby–
gravity and Kelvin modes) in a baroclinic atmospheric model, i.e.
associated with different vertical modes. However, the simplified
model used here might capture some of the essential ingredients
of the more complex atmospheric dynamics.
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