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DYNAMICS OF ROTATING BOSE–EINSTEIN CONDENSATES AND
ITS EFFICIENT AND ACCURATE NUMERICAL COMPUTATION ∗

WEIZHU BAO† , QIANG DU‡ , AND YANZHI ZHANG§

Abstract. In this paper, we study the dynamics of rotating Bose–Einstein condensates (BEC)
based on the Gross–Pitaevskii equation (GPE) with an angular momentum rotation term and present
an efficient and accurate algorithm for numerical simulations. We examine the conservation of the
angular momentum expectation and the condensate width and analyze the dynamics of a stationary
state with a shift in its center. By formulating the equation in either the two-dimensional polar
coordinate system or the three-dimensional cylindrical coordinate system, the angular momentum
rotation term becomes a term with constant coefficients. This allows us to develop an efficient
time-splitting method which is time reversible, unconditionally stable, efficient, and accurate for the
problem. Moreover, it conserves the position density. We also apply the numerical method to study
issues such as the stability of central vortex states and the quantized vortex lattice dynamics in
rotating BEC.
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1. Introduction. Since its realization in dilute bosonic atomic gases [3, 20, 21],
Bose–Einstein condensation of alkali atoms and hydrogen has been produced and
studied extensively in the laboratory [45] and has permitted an intriguing glimpse
into the macroscopic quantum world. In view of potential applications [26, 43, 44],
the study of quantized vortices, which are well-known signatures of superfluidity, is
one of the key issues. Different research groups have obtained quantized vortices in
Bose–Einstein condensates (BEC) experimentally, e.g., the JILA group [39], the ENS
group [36, 37], and the MIT group [45]. Currently, there are at least two typical
ways to generate quantized vortices from the ground state of BEC: (i) impose a laser
beam rotating with an angular velocity on the magnetic trap holding the atoms to
create an harmonic anisotropic potential [17, 33, 1, 13]; (ii) add to the stationary
magnetic trap a narrow, moving Gaussian potential, representing a far-blue detuned
laser [29, 7]. The recent experimental and theoretical advances in the exploration
of quantized vortices in BEC have spurred great excitement in the atomic physics
community and renewed interest in studying superfluidity.

The properties of BEC in a rotational frame at temperature T much smaller
than the critical condensation temperature Tc are well described by the macroscopic
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wave function ψ(x, t), whose evolution is governed by a self-consistent, mean field
nonlinear Schrödinger equation (NLSE) in a rotational frame, also known as the
Gross–Pitaevskii equation (GPE) with an angular momentum rotation term [26, 17,
24, 25, 15]:

i�∂tψ(x, t) =

(
− �

2

2m
∇2 + V (x) + NU0|ψ|2 − ΩLz

)
ψ(x, t), x ∈ R

3, t ≥ 0,

(1.1)

where x = (x, y, z)
T

is the Cartesian coordinate vector, m is the atomic mass, � is
the Planck constant, N is the number of atoms in the condensate, Ω is the angular
velocity of the rotating laser beam, and V (x) is an external trapping potential. When
an harmonic trap potential is considered, V (x) = m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

with ωx,
ωy, and ωz being the trap frequencies in the x-, y-, and z-direction, respectively. U0 =
4π�

2as

m describes the interaction between atoms in the condensate with as (positive
for repulsive interaction and negative for attractive interaction) the s-wave scattering
length, and Lz = xpy − ypx = −i� (x∂y − y∂x) is the z-component of the angular

momentum L = x×P with the momentum operator P = −i�∇ = (px, py, pz)
T
. It is

convenient to normalize the wave function by requiring that

‖ψ(·, t)‖2 :=

∫
R3

|ψ(x, t)|2dx = 1.(1.2)

Under such a normalization, we introduce the dimensionless variables as follows: t →
t/ωm with ωm = min{ωx, ωy, ωz}, Ω → ωmΩ, x → a0x with a0 =

√
�

mωm
, and

ψ → ψ/a
3/2
0 . We also let

γx =
ωx

ωm
, γy =

ωy

ωm
, γz =

ωz

ωm
, β =

U0N

a3
0�ωm

=
4πasN

a0
.

The dimensionless angular momentum rotational term then becomes

Lz = −i(x∂y − y∂x) = i(y∂x − x∂y) = −i∂θ(1.3)

with (r, θ) being the polar coordinates in two dimensions (2D) and (r, θ, z) the cylin-
drical coordinates in three dimensions (3D). In the disk-shaped condensation, i.e.,
ωy ≈ ωx and ωz � ωx (⇔ γx = 1, γy ≈ 1, and γz � 1 with choosing ωm = ωx),
the three-dimensional GPE can be reduced to a two-dimensional GPE [13]. Thus,
here we consider the dimensionless GPE with a rotational term in the d-dimensions
(d = 2, 3) [13]:

i∂tψ(x, t) = −1

2
∇2ψ + Vd(x)ψ + βd|ψ|2ψ − ΩLzψ, x ∈ R

d, t > 0,(1.4)

ψ(x, 0) = ψ0(x), x ∈ R
d, with ‖ψ0‖2 :=

∫
Rd

|ψ0(x)|2dx = 1,(1.5)

where

βd =

{
β
√
γz/2π,

β,
Vd(x) =

{
(γ2

xx
2 + γ2

yy
2)/2, d = 2,

(γ2
xx

2 + γ2
yy

2 + γ2
zz

2)/2, d = 3,
(1.6)
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with γx > 0, γy > 0, and γz > 0 being constants. Two important invariants of (1.4)
are the normalization of the wave function

N(ψ) =

∫
Rd

|ψ(x, t)|2dx ≡
∫

Rd

|ψ(x, 0)|2dx = N(ψ0) = 1, t ≥ 0,(1.7)

and the energy

Eβ,Ω(ψ) =

∫
Rd

[
1

2
|∇ψ|2 + Vd(x)|ψ|2 +

βd

2
|ψ|4 − ΩRe(ψ∗Lzψ)

]
dx

≡ Eβ,Ω(ψ0), t ≥ 0,(1.8)

where f∗ and Ref denote the conjugate and the real part of the function f , respec-
tively.

In order to study effectively the dynamics of BEC, especially in the strong re-
pulsive interaction regime, i.e., βd � 1 in (1.4), an efficient and accurate numer-
ical method is one of the key issues. For nonrotating BEC, i.e., Ω = 0 in (1.4),
many numerical methods were proposed in the literature. For example, Bao, Jaksch,
and Markowich [7], Bao and Jaksch [6], and Bao and Zhang [14] proposed a fourth-
order time-splitting sine or Fourier pseudospectral (TSSP) method, and Bao and
Shen [11] presented a fourth-order time-splitting Laguerre–Hermite (TSLH) pseu-
dospectral method for the GPE when the external trapping potential is radially or
cylindrically symmetric in 2D or 3D. The key ideas for the numerical methods in
[7, 4, 6, 14, 11, 9, 10] are based on (i) a time-splitting technique being applied to
decouple the nonlinearity in the GPE [7, 6, 9, 10]; (ii) proper spectral basis functions
being chosen for a linear Schrödinger equation with a potential such that the ODE
system in phase space is diagonalized and thus can be integrated exactly [14, 11].
These methods are explicit, unconditionally stable, and of spectral accuracy in space
and fourth-order accuracy in time. Thus they are very efficient and accurate for com-
puting the dynamics of nonrotating BEC in 3D [8] and for multicomponent [4]. Some
other numerical methods for nonrotating BEC include the finite difference method
[18, 41, 40], the particle-inspired scheme [19, 40], and the Runge–Kutta pseudospec-
tral method [16, 40]. Due to the appearance of the angular momentum rotation term
in the GPE (1.4), the TSSP and TSLH methods proposed in [7, 14, 11] can no longer
be used for rotating BEC. Currently, the numerical methods proposed in the litera-
ture for studying the dynamics of rotating BEC remain limited [1, 22, 33], and they
usually are low-order methods. Thus it is of great interest to develop an efficient,
accurate, and unconditionally stable numerical method for the GPE (1.4) with an
angular momentum rotation term. Such a numerical method is proposed here and
is applied to the study of the dynamics of the rotating BEC. The key features of
our numerical method are based on (i) the application of a time-splitting technique
for decoupling the nonlinearity in the GPE; (ii) the adoption of polar coordinates or
cylindrical coordinates so as to make the coefficient of the angular momentum rota-
tion term constant; (iii) the utilization of Fourier pseudospectral discretization in the
transverse direction and a second- or fourth-order finite difference or finite element
discretization in the radial direction. Our extensive numerical results demonstrate
that the method is very efficient and accurate.

The paper is organized as follows. In section 2, the conservation of the angular
momentum expectation and the dynamics of condensate widths are first established.
We then analyze the stationary state with a shift in its center and provide some study
on the decrease of the total density in the presence of dissipation. In section 3, a
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numerical method is presented for the efficient and accurate simulation of GPE (1.4)
in 2D and 3D. It is then applied to study the vortex state and the dynamics of rotating
BEC in section 4. Finally, some conclusions are drawn in section 5.

2. Dynamics of rotating BEC. In this section, we provide some analytical
results on the conservation of the angular momentum expectation in a symmetric
trap, i.e., γx = γy in (1.6), derive a second-order ODE for time evolution of the
condensate width, and present some dynamic laws of a stationary state with a shifted
center in rotating BEC.

2.1. Conservation of angular momentum expectation. As a measure of
the vortex flux, we define the angular momentum expectation:

〈Lz〉(t) :=

∫
Rd

ψ∗(x, t)Lzψ(x, t) dx = i

∫
Rd

ψ∗(x, t)(y∂x − x∂y)ψ(x, t)dx(2.1)

for any t ≥ 0. For the dynamics of angular momentum expectation in rotating BEC,
we have the following lemma.

Lemma 2.1. Suppose ψ(x, t) is the solution of the problem (1.4)–(1.5); then we
have

d〈Lz〉(t)
dt

=
(
γ2
x − γ2

y

)
δxy(t), where δxy(t) =

∫
Rd

xy|ψ(x, t)|2dx, t ≥ 0.(2.2)

Consequently, the angular momentum expectation and energy for the nonrotating part
are conserved; that is, for any given initial data ψ0(x) in (1.5),

〈Lz〉(t) ≡ 〈Lz〉(0), Eβ,0(ψ) ≡ Eβ,0(ψ0), t ≥ 0,(2.3)

at least for radially symmetric trap in 2D or cylindrically symmetric trap in 3D, i.e.,
γx = γy.

Proof. Differentiating (2.1) with respect to t, noticing (1.4), integrating by parts,
and taking into account that ψ decreases to 0 exponentially when |x| → ∞, we have

d〈Lz〉(t)
dt

= i

∫
Rd

[ψ∗
t (y∂x − x∂y)ψ + ψ∗(y∂x − x∂y)ψt] dx

=

∫
Rd

[(−iψ∗
t ) (x∂y − y∂x)ψ + (iψt) (x∂y − y∂x)ψ∗] dx

=

∫
Rd

[(
−1

2
∇2ψ∗ + Vd(x)ψ∗ + βd|ψ|2ψ∗ − iΩ(x∂y − y∂x)ψ∗

)
(x∂y − y∂x)ψ

+

(
−1

2
∇2ψ + Vd(x)ψ + βd|ψ|2ψ + iΩ(x∂y − y∂x)ψ

)
(x∂y − y∂x)ψ∗

]
dx

=

∫
Rd

[
− 1

2

[
∇2ψ∗(x∂y − y∂x)ψ + ∇2ψ(x∂y − y∂x)ψ∗]

+
(
Vd(x) + βd|ψ|2

)
[ψ∗(x∂y − y∂x)ψ + ψ(x∂y − y∂x)ψ∗]

]
dx

= −
∫

Rd

|ψ|2(x∂y − y∂x)Vd(x)dx = (γ2
x − γ2

y)

∫
Rd

xy|ψ|2dx, t ≥ 0,(2.4)
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which gives (2.2). As for the conservation properties, since γx = γy, (2.2) reduces to
the first-order ODE:

d〈Lz〉(t)
dt

= 0, t ≥ 0.(2.5)

We thus get the conservation of 〈Lz〉 immediately.
Noticing Eβ,Ω(ψ) = Eβ,0(ψ) − ΩRe〈Lz〉 and Re〈Lz〉 = 〈Lz〉, we get (2.3) from

(2.5) and (1.8).

2.2. Dynamics of condensate widths. Another quantity characterizing the
dynamics of rotating BEC is the condensate width defined as

σα(t) =
√

δα(t), where δα(t) = 〈α2〉(t) =

∫
Rd

α2|ψ(x, t)|2dx(2.6)

for t ≥ 0 and α being x, y, or z. For the dynamics of condensate widths, we have the
following lemmas.

Lemma 2.2. Suppose ψ(x, t) is the solution of problem (1.4)–(1.5); then we have

d2δα(t)

dt2
=

∫
Rd

[
(∂yα− ∂xα)

(
4iΩψ∗(x∂y + y∂x)ψ + 2Ω2(x2 − y2)|ψ|2

)
+ 2|∂αψ|2 + βd|ψ|4 − 2α|ψ|2∂α(Vd(x))

]
dx, t ≥ 0,(2.7)

δα(0) = δ(0)
α =

∫
Rd

α2|ψ0(x)|2dx, α = x, y, z,(2.8)

δ̇α(0) = δ(1)
α = 2

∫
Rd

α
[
−Ω|ψ0|2 (x∂y − y∂x)α + Im (ψ∗

0∂αψ0)
]
dx,(2.9)

where Im(f) denotes the imaginary part of f .
Proof. Differentiating (2.6) with respect to t, applying (1.4), and integrating by

parts, we obtain

dδα(t)

dt
=

d

dt

∫
Rd

α2|ψ(x, t)|2dx =

∫
Rd

α2 (ψ∂tψ
∗ + ψ∗∂tψ) dx

=

∫
Rd

[
i

2
α2

(
ψ∗∇2ψ − ψ∇2ψ∗) + Ωα2 (x∂y − y∂x) |ψ|2

]
dx

=

∫
Rd

[
iα (ψ∂αψ

∗ − ψ∗∂αψ) − 2Ωα|ψ|2 (x∂y − y∂x)α
]
dx.(2.10)

Differentiating the above equation again, applying (1.4), and integrating by parts, we
get

d2δα(t)

dt2

=

∫
Rd

[
iα (∂tψ∂αψ

∗ + ψ∂αtψ
∗ − ∂tψ

∗∂αψ − ψ∗∂αtψ)

− 2Ωα (ψ∂tψ
∗ + ψ∗∂tψ) (x∂y − y∂x)α

]
dx

=

∫
Rd

[
2iα (∂tψ∂αψ

∗ − ∂tψ
∗∂αψ) + i (ψ∗∂tψ − ψ∂tψ

∗)

− 2Ωα(x∂y − y∂x)α

(
i

2

(
ψ∗∇2ψ − ψ∇2ψ∗) + Ω(x∂y − y∂x)|ψ|2

)]
dx,(2.11)
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d2δα(t)

dt2

=

∫
Rd

[
− α

(
∂αψ

∗∇2ψ + ∂αψ∇2ψ∗) + 2α
(
Vd(x) + βd|ψ|2

)
(ψ∂αψ

∗ + ψ∗∂αψ)

− 2iΩα [∂αψ (x∂y − y∂x)ψ∗ − ∂αψ
∗ (x∂y − y∂x)ψ] − 1

2

(
ψ∗∇2ψ + ψ∇2ψ∗)

+ 2
(
Vd(x)|ψ|2 + βd|ψ|4

)
− iΩ [ψ (x∂y − y∂x)ψ∗ − ψ∗ (x∂y − y∂x)ψ]

− 2iΩψ∗ [∂xα (α∂y + y∂α)ψ − ∂yα (α∂x + x∂α)ψ]

+ 2Ω2|ψ|2
[(
y2 − αx

)
∂xα +

(
x2 − αy

)
∂yα

] ]
dx

=

∫
Rd

[
−4iΩψ∗ [∂xα (α∂y + y∂α)ψ − ∂yα (α∂x + x∂α)ψ] + 2|∂αψ|2 + βd|ψ|4

+ 2Ω2|ψ|2
[(
y2 − αx

)
∂xα +

(
x2 − αy

)
∂yα

]
− 2α|ψ|2∂α (Vd(x))

]
dx

=

∫
Rd

[
(∂yα− ∂xα)

[
4iΩψ∗(x∂y + y∂x)ψ + 2Ω2

(
x2 − y2

)
|ψ|2

]
+ 2|∂αψ|2 + βd|ψ|4 − 2α|ψ|2∂α (Vd(x))

]
dx.(2.12)

Furthermore, noticing (1.5), (2.6), and (2.10) with t = 0, we get (2.8) and (2.9)
immediately.

Lemma 2.3. (i) In 2D with a radial symmetric trap, i.e., d = 2 and γx = γy := γr
in (1.4), for any initial data ψ0 = ψ0(x, y), we have, for any t ≥ 0,

δr(t) =
Eβ,Ω(ψ0) + Ω〈Lz〉(0)

γ2
r

[1 − cos(2γrt)] + δ(0)
r cos(2γrt) +

δ
(1)
r

2γr
sin(2γrt),(2.13)

where δr(t) = δx(t) + δy(t), δ
(0)
r := δx(0) + δy(0), and δ

(1)
r := δ̇x(0) + δ̇y(0). Further-

more, when the initial condition ψ0(x, y) in (1.5) satisfies

ψ0(x, y) = f(r)eimθ with m ∈ Z and f(0) = 0 when m �= 0,(2.14)

we have, for any t ≥ 0,

δx(t) = δy(t) =
1

2
δr(t)

=
Eβ,Ω(ψ0) + mΩ

2γ2
x

[1 − cos(2γxt)] + δ(0)
x cos(2γxt) +

δ
(1)
x

2γx
sin(2γxt).(2.15)

This and (2.6) imply that

σx = σy =

√
Eβ,Ω(ψ0) + mΩ

2γ2
x

[1 − cos(2γxt)] + δ
(0)
x cos(2γxt) +

δ
(1)
x

2γx
sin(2γxt).

(2.16)

Thus in this case, the condensate widths σx(t) and σy(t) are periodic functions with
frequency doubling the trapping frequency.
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(ii) For all other cases, we have, for any t ≥ 0,

δα(t) =
Eβ,Ω(ψ0)

γ2
α

+

(
δ(0)
α − Eβ,Ω(ψ0)

γ2
α

)
cos(2γαt) +

δ
(1)
α

2γα
sin(2γαt) + fα(t),(2.17)

where fα(t) is the solution of the following second-order ODE:

d2fα(t)

dt2
+ 4γ2

α fα(t) = Fα(t), fα(0) =
dfα(0)

dt
= 0,(2.18)

with

Fα(t) =

∫
Rd

[
2|∂αψ|2 − 2|∇ψ|2 − βd|ψ|4 +

(
2γ2

αα
2 − 4Vd(x)

)
|ψ|2 + 4Ωψ∗Lzψ

+ (∂yα− ∂xα)
(
4iΩψ∗ (x∂y + y∂x)ψ + 2Ω2(x2 − y2)|ψ|2

) ]
dx.

Proof. From (2.7) with d = 2, we have

d2δx(t)

dt2
+ 2γ2

xδx(t)

=

∫
R2

[
2|∂xψ|2 + β2|ψ|4 − 4iΩψ∗ (x∂y + y∂x)ψ − 2Ω2

(
x2 − y2

)
|ψ|2

]
dx,(2.19)

d2δy(t)

dt2
+ 2γ2

yδy(t)

=

∫
R2

[
2|∂yψ|2 + β2|ψ|4 + 4iΩψ∗ (x∂y + y∂x)ψ + 2Ω2

(
x2 − y2

)
|ψ|2

]
dx.(2.20)

For case (i) with γx = γy := γr in (1.4), summing up (2.19) and (2.20) together and
applying (1.8) and (2.3), we have the following ODE for δr(t):

d2δr(t)

dt2
= −2γ2

rδr(t) +

∫
R2

[
2|∇ψ|2 + 2β2|ψ|4

]
dx

= −2γ2
rδr(t) − 4

∫
R2

[
V2(x)|ψ|2 − Ωψ∗Lzψ

]
dx

+ 4

∫
R2

[
1

2
|∇ψ|2 + V2(x)|ψ|2 +

β2

2
|ψ|4 − Ωψ∗Lzψ

]
dx

= −2γ2
rδr(t) − 2γ2

rδr(t) + 4Ω〈Lz〉(t) + 4Eβ,Ω(ψ(·, t))
= −4γ2

rδr(t) + 4Eβ,Ω(ψ0) + 4Ω〈Lz〉(0), t ≥ 0,(2.21)

δr(0) = δ(0)
r , δ̇r(0) = δ(1)

r .(2.22)

Thus, (2.13) is the unique solution of the second-order ODE (2.21) with the initial
data (2.22). Furthermore, when the initial data ψ0(x) in (1.5) satisfies (2.14), due to
symmetry, the solution ψ(x, t) of (1.4)–(1.5) satisfies

ψ(x, y, t) = g(r, t)eimθ with g(r, 0) = f(r).(2.23)
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This implies

δx(t) =

∫
R2

x2|ψ(x, y, t)|2 dx =

∫ ∞

0

∫ 2π

0

r2 cos2 θ|g(r, t)|2r dθdr

= π

∫ ∞

0

r2|g(r, t)|2r dr =

∫ ∞

0

∫ 2π

0

r2 sin2 θ|g(r, t)|2r dθdr

=

∫
R2

y2|ψ(x, y, t)|2 dx = δy(t), t ≥ 0.(2.24)

Since γx = γy, by Lemma 2.1, we know in this case that

〈Lz〉(t) = 〈Lz〉(0) = −i

∫
R2

ψ∗
0(x, y)∂θψ0(x, y) dx

= 2πm

∫ ∞

0

|f(r)|2r dr = m‖ψ0‖2 = m.(2.25)

Thus, (2.15) is a combination of (2.13), (2.24), and (2.25).
(ii) From (2.7) and noticing the energy conservation (1.8), we have

d2δα(t)

dt2
=

∫
Rd

[
(∂yα− ∂xα)

[
4iΩψ∗(x∂y + y∂x)ψ + 2Ω2

(
x2 − y2

)
|ψ|2

]
+ 2|∂αψ|2 + βd|ψ|4 − 2γ2

αα
2|ψ|2

]
dx

= −4γ2
αδα(t) + 4

∫
R2

[
1

2
|∇ψ|2 + Vd(x)|ψ|2 +

βd

2
|ψ|4 − Ωψ∗Lzψ

]
dx

+

∫
Rd

[
2|∂αψ|2 − 2|∇ψ|2 − βd|ψ|4 +

(
2γ2

αα
2 − 4Vd(x)

)
|ψ|2 + 4Ωψ∗Lzψ

+ (∂yα− ∂xα)
(
4iΩψ∗ (x∂y + y∂x)ψ + 2Ω2(x2 − y2)|ψ|2

) ]
dx

= −4γ2
αδα(t) + 4Eβ,Ω(ψ(·, t)) + Fα(t)

= −4γ2
αδα(t) + 4Eβ,Ω(ψ0) + Fα(t), t ≥ 0.(2.26)

Thus (2.17) is the unique solution of the second-order ODE (2.26) with the initial
data (2.8), (2.9).

2.3. Dynamics of a stationary state with its center shifted. Let φe(x) be
a stationary state of the GPE (1.4) with a chemical potential μe [13, 12], i.e., (μe, φe)
satisfying

μeφe(x) = −1

2
∇2φe + Vd(x)φe + βd|φe|2φe − ΩLzφe, ‖φe‖2 = 1.(2.27)

If the initial data ψ0(x) in (1.5) is chosen as a stationary state with a shift in its center,
one can construct an exact solution of the GPE (1.4) with an harmonic oscillator
potential (1.6). This kind of analytical construction can be used, in particular, in the
benchmark and validation of numerical algorithms for the GPE. In [27], a similar kind
of solution was constructed for the GPE and a second order ODE system was derived
for the dynamics of the center, but the results there were valid only for nonrotating
BEC, i.e., Ω = 0. Modifications must be made for the rotating BEC, i.e., Ω �= 0.
Later, in [15], similar results were extended to the case of a general Hamiltonian but
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without specifying the initial data for the ODE system. For the convenience of the
reader, here we present a simple derivation of the dynamic laws for rotating BEC.

Lemma 2.4. If the initial data ψ0(x) in (1.5) is chosen as

ψ0(x) = φe(x − x0), x ∈ R
d,(2.28)

where x0 is a given point in R
d, then the exact solution of (1.4)–(1.5) satisfies

ψ(x, t) = φe(x − x(t)) e−iμet eiw(x,t), x ∈ R
d, t ≥ 0,(2.29)

where for any time t ≥ 0, w(x, t) is linear for x, i.e.,

w(x, t) = c(t) · x + g(t), c(t) = (c1(t), . . . , cd(t))
T , x ∈ R

d, t ≥ 0,(2.30)

and x(t) satisfies the following second-order ODE system:

ẍ(t) − 2Ωẏ(t) +
(
γ2
x − Ω2

)
x(t) = 0,(2.31)

ÿ(t) + 2Ωẋ(t) +
(
γ2
y − Ω2

)
y(t) = 0, t ≥ 0,(2.32)

x(0) = x0, y(0) = y0, ẋ(0) = Ωy0, ẏ(0) = −Ωx0.(2.33)

Moreover, if in 3D, another ODE needs to be added:

z̈(t) + γ2
zz(t) = 0, z(0) = z0, ż(0) = 0.(2.34)

Proof. For d = 2, we introduce

J =

(
0 1
−1 0

)
, A =

(
γ2
x 0

0 γ2
y

)
, ∇ =

(
∂x
∂y

)
.

Differentiating (2.29) with respect to t and x, respectively, plugging into (1.4), chang-
ing variable x − x(t) → x, and noticing (2.27), we obtain for φe = φe(x) and
w = w(x + x(t), t) that

φe∂tw + iẋ(t) · ∇φe =
1

2

[
iφe∇2w − φe|∇w|2 − x(t)TA(2x + x(t))φe

]
+i∇φe · ∇w − φeΩ(x + x(t)) · (J∇w) + iΩx(t) · (J∇φe).(2.35)

Taking the real and imaginary parts in (2.35) and noticing (2.30), we have

[ẋ(t) −∇w(x + x(t), t) − ΩJx(t)] · ∇φe = 0,(2.36) [
∂tw +

1

2
|∇w|2 +

1

2
x(t)TA(2x + x(t)) − Ω(x + x(t)) · (J∇w)

]
φe = 0.(2.37)

We thus get

ẋ(t) = ∇w(x + x(t), t) + ΩJx(t),(2.38)

∂tw(x + x(t), t) = −1

2

[
|∇w|2 + x(t)TA(2x + x(t))

]
+ Ω(x + x(t)) · (J∇w).(2.39)
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Differentiating (2.38) and (2.39) with respect to t and x, respectively, and noticing
(2.30), which implies that |∇w|2 is independent of x, we obtain

0 = ẍ(t) − ∂t(∇w(x + x(t), t)) − ΩJ ẋ(t)

= ẍ(t) −∇(∂tw(x + x(t), t)) − ẋ(t) ∇2w(x + x(t), t) − ΩJ ẋ(t)

= ẍ(t) −∇(∂tw(x + x(t), t)) − ΩJ ẋ(t)

= ẍ(t) + Ax(t) − ΩJ [ẋ(t) − ΩJx(t)] − ΩJ ẋ(t)

= ẍ(t) − 2ΩJ ẋ(t) + (A + Ω2J2)x(t)

= ẍ(t) − 2ΩJ ẋ(t) + (A− Ω2I)x(t), t ≥ 0.(2.40)

From (2.29) with t = 0, we get

x(0) = x0, w(x, 0) ≡ 0, x ∈ R
d.(2.41)

Thus (2.33) is a combination of (2.41) and (2.38) with t = 0. For d = 3, the proof is
similar, and the details are omitted here.

In the literature, constructions similar to the above are often numerically verified
by directly simulating the dynamics of the GPE in nonrotating BEC [14, 27]. To our
knowledge, the above lemma gives the first rigorous derivation for rotating BEC.

Notice that if u = ẋ(t) − ΩJx(t), then (2.40) gives a coupled first-order system⎧⎨⎩
ẋ(t) = ΩJx(t) + u,
u̇(t) = −Ax(t) + ΩJu,
x(0) = x0, u(0) = 0,

(2.42)

which is a Hamiltonian system with the Hamiltonian H(x,u) = ΩuTJx + (uTu +
xTAx)/2. The characteristic roots λ of the system are given by the equation

λ4 + (γ2
x + γ2

y + 2Ω2)λ2 + (γ2
x − Ω2)(γ2

y − Ω2) = 0.(2.43)

The exact solutions of (2.42) may thus be completely determined.
We note not only that results on the dynamics of a stationary state with its center

shifted are physically interesting this type of exact solution of the time-dependent
GPE can also serve as a good benchmark for numerical algorithms and is useful in
the mathematical studies of the dynamic stabilities of the vortex state in BEC. In
section 4.2, we will study this kind of dynamics by directly simulating the GPE in
a rotational frame and explore different motion patterns of a stationary state center
under different rotation speed Ω.

2.4. Dynamics of the total density in the presence of dissipation. Con-
sider a more general GPE of the form

(i− λ)∂tψ(x, t) = −1

2
∇2ψ + V (x, t)ψ + βd|ψ|2ψ − ΩLzψ, x ∈ R

d, t > 0,(2.44)

ψ(x, 0) = ψ0(x), x ∈ R
d,(2.45)

where λ ≥ 0 is a real parameter that models a dissipation mechanism [2, 30, 32] and
V (x, t) = Vd(x) + W (x, t) with W (x, t) an external driven field [16, 31]. Typical
external driven fields used in physics literature include a Delta kicked potential [31]

W (x, t) = Ks cos(ksx)

∞∑
n=−∞

δ(t− nτ),(2.46)
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with Ks being the kick strength, ks the wavenumber, τ the time interval between
kicks, and δ(τ) the Dirac delta function, or a far-blue detuned Gaussian laser beam
stirrer [16]

W (x, t) = Ws(t) exp

[
−

(
|x − xs(t)|2

ws/2

)]
(2.47)

with Ws(t) being the height, ws the width, and xs(t) the position of the stirrer. In
addition, we note that to study the onset of energy dissipation in BEC stirred by a
laser field, another possibility is to view the beam as an translating obstacle [2] instead
of introducing the Gaussian potential.

While the total density remains constant with λ = 0, in the more general case,
we have the following lemma for the dynamics of the total density.

Lemma 2.5. Let ψ(x, t) be the solution of (2.44)–(2.45); then the total density
satisfies

Ṅ(ψ)(t) =
d

dt

∫
Rd

|ψ(x, t)|2 dx = − 2λ

1 + λ2
μβ,Ω(ψ), t ≥ 0,(2.48)

where

μβ,Ω(ψ) =

∫
Rd

[
1

2
|∇ψ|2 + V (x, t)|ψ|2 + βd|ψ|4 − ΩRe(ψ∗Lzψ)

]
dx.

Consequently, the total density decreases when λ > 0 and |Ω| ≤ γxy := min{γx, γy}.
Proof. Dividing (2.44) by (i − λ), multiplying it by ψ∗ and summing with its

complex conjugate, and integrating by parts, we obtain

dN(ψ)

dt
=

∫
Rd

[
− i + λ

1 + λ2

(
−1

2
∇2ψ + V (x, t)ψ + βd|ψ|2ψ − ΩLzψ

)
ψ∗

+
i− λ

1 + λ2

(
−1

2
∇2ψ∗ + V (x, t)ψ∗ + βd|ψ|2ψ∗ − Ω(Lz)

∗ψ∗
)
ψ

]
dx

=
λ

1 + λ2

∫
Rd

[
1

2

(
ψ∗∇2ψ + ψ∇2ψ∗)− 2

(
V (x, t)|ψ|2 + βd|ψ|4

)
+ Ω (ψ∗Lzψ + ψ(Lz)

∗ψ∗)

]
dx

=
−2λ

1 + λ2

∫
Rd

[
1

2
|∇ψ|2 + V (x, t)|ψ|2 + βd|ψ|4 − ΩRe(ψ∗Lzψ)

]
dx

=
−2λ

1 + λ2
μβ,Ω(ψ).(2.49)

When γ > 0 and |Ω| < γxy, by a completion of square [1, 13], we have

1

2
|∇ψ|2 + V (x, t)|ψ|2 − ΩRe(ψ∗Lzψ) =

1

2
|(∇− iA)ψ|2 +

[
V (x, t) − |Ω|2

2
(x2 + y2)

]
|ψ|2

for a vector potential A = A(x, y) = (y,−x)Ω in 2D and A = A(x, y, z) = (y,−x, 0)Ω
in 3D. Thus, μβ,Ω(ψ) > 0. Consequently, we get

dN(ψ)

dt
< 0, t ≥ 0,(2.50)

which immediately implies the decreasing of the total density.
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3. Numerical methods. In this section, we will present an efficient and ac-
curate numerical method to solve the following GPE for the dynamics of rotating
BEC.

Due to the trapping potential Vd(x) given by (1.6), the solution ψ(x, t) of (2.44)–
(2.45) decays to zero exponentially fast when |x| → ∞. Thus in practical computation,
we truncate the problem (2.44)–(2.45) into a bounded computational domain with the
homogeneous Dirichlet boundary condition:

(i− λ)∂tψ(x, t) = −1

2
∇2ψ + V (x, t)ψ + βd|ψ|2ψ − ΩLzψ, x ∈ Ωx, t > 0,(3.1)

ψ(x, t) = 0, x ∈ Γ = ∂Ωx, t ≥ 0,(3.2)

ψ(x, 0) = ψ0(x), x ∈ Ω̄x,(3.3)

where we choose Ωx = {(x, y), r =
√
x2 + y2 < R} in 2D and, respectively, Ωx =

{(x, y, z), r =
√
x2 + y2 < R, a < z < b} in 3D with R, |a|, and b sufficiently large.

The use of more sophisticated radiation boundary conditions is an interesting topic
that remains to be examined in the future.

3.1. Time-splitting. We choose a time step size Δt > 0. For n = 0, 1, 2, . . . ,
from time t = tn = nΔt to t = tn+1 = tn+Δt, the GPE (3.1) is solved in two splitting
steps. One first solves

(i− λ) ∂tψ(x, t) = −1

2
∇2ψ − ΩLzψ(3.4)

for the time step of length Δt, followed by solving

(i− λ) ∂tψ(x, t) = V (x, t)ψ + βd|ψ|2ψ(3.5)

for the same time step. Equation (3.4) will be discretized in detail in the next two
subsections. For t ∈ [tn, tn+1], after dividing (3.5) by (i − λ), multiplying it by ψ∗,
and adding with its complex conjugate, we obtain the following ODE for ρ(x, t) =
|ψ(x, t)|2:

∂tρ(x, t) = − 2λ

1 + λ2

[
V (x, t)ρ(x, t) + βdρ

2(x, t)
]
, x ∈ Ωx, tn ≤ t ≤ tn+1.(3.6)

The ODE for the phase angle φ(x, t) (determined as ψ =
√
ρeiφ) is given by

φt = − 1

1 + λ2
[V (x, t) + βdρ(x, t)] , x ∈ Ωx, tn ≤ t ≤ tn+1.(3.7)

For λ �= 0, by (3.6), the above is equivalent to

φt =
1

2λ
∂t ln ρ, x ∈ Ωx, tn ≤ t ≤ tn+1.(3.8)

Denoting Vn(x, t) =
∫ t

tn
V (x, τ)dτ , we can solve (3.6) to get

ρ(x, t) =
ρ(x, tn) exp[−2λVn(x,t)

1+λ2 ]

1 + ρ(x, tn) 2λβd

1+λ2

∫ t

tn
exp[−2λVn(x,τ)

1+λ2 ] dτ
.(3.9)
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Consequently, in the special case V (x, t) = V (x), we have some exact analytical
solutions given by

ρ(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(x, tn), λ = 0,

(1 + λ2)ρ(x, tn)

(1 + λ2) + 2λβd(t− tn)ρ(x, tn)
, V (x) = 0,

V (x)ρ(x, tn) exp[−2λV (x)(t−tn)
1+λ2 ]

V (x) +
(
1 − exp[−2λV (x)(t−tn)

1+λ2 ]
)
βdρ(x, tn)

, V (x) �= 0.

(3.10)

Plugging (3.9) into (3.5), we get, for t ∈ [tn, tn+1],

ψ(x, t) = ψ(x, tn)
√
Un(x, t) exp

[
− i

1 + λ2

(
Vn(x, t) + βd

∫ t

tn

ρ(x, τ)dτ

)]
,(3.11)

where

Un(x, t) =
exp[−2λVn(x,t)

1+λ2 ]

1 + |ψ(x, tn)|2 2λβd

1+λ2

∫ t

tn
exp[−2λVn(x,τ)

1+λ2 ] dτ
.(3.12)

Again, with V (x, t) = V (x), we can integrate exactly to get

ψ(x, t) = ψ(x, tn)

⎧⎪⎨⎪⎩
exp

[
−i(βd|ψ(x, tn)|2 + V (x))(t− tn)

]
, λ = 0,√

Ûn(x, t) exp[ i
2λ ln Ûn(x, t)], λ �= 0,

(3.13)

where

Ûn(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 + λ2

1 + λ2 + 2λβd(t− tn)|ψ(x, tn)|2 , V (x) = 0,

V (x) exp[− 2λ(t−tn)V (x)
1+λ2 ]

V (x) +
(
1 − exp[− 2λ(t−tn)V (x)

1+λ2 ]
)
βd|ψ(x, tn)|2

, V (x) �= 0.

Remark 3.1. If the function Vn(x, t) as well as other integrals in (3.9), (3.11),
and (3.12) cannot be evaluated analytically, numerical quadrature can be used, e.g.,

Vn(x, tn+1) =

∫ tn+1

tn

V (x, τ) dτ ≈ Δt

6
[V (x, tn) + 4V (x, tn + Δt/2) + V (x, tn+1)] .

3.2. Discretization in 2D. To solve (3.4), we try to formulate the equation
in a variable separable form. When d = 2, we use the polar coordinate (r, θ) and
discretize in the θ-direction by a Fourier pseudospectral method, in the r-direction
by a finite element method (FEM), and in time by a Crank–Nicolson (C–N) scheme.
Assume that

ψ(r, θ, t) =

L/2−1∑
l=−L/2

ψ̂l(r, t) eilθ,(3.14)
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where L is an even positive integer and ψ̂l(r, t) is the Fourier coefficient for the lth
mode. Plugging (3.14) into (3.4) and noticing the orthogonality of the Fourier func-
tions, we obtain, for −L

2 ≤ l ≤ L
2 − 1 and 0 < r < R,

(i− λ) ∂tψ̂l(r, t) = − 1

2r

∂

∂r

(
r
∂ψ̂l(r, t)

∂r

)
+

(
l2

2r2
− lΩ

)
ψ̂l(r, t),(3.15)

ψ̂l(R, t) = 0 (for all l), ψ̂l(0, t) = 0 (for l �= 0).(3.16)

Let P k denote all polynomials with degree at most k, let M > 0 be a chosen integer,
and 0 = r0 < r1 < r2 < · · · < rM = R be a partition for the interval [0, R] with a
mesh size h = max0≤m<M {rm+1 − rm}. Define a FEM subspace by

Uh =
{
uh ∈ C[0, R] | uh

∣∣
[rm,rm+1]

∈ P k, 0 ≤ m < M, uh(R) = 0
}

for l = 0, and for l �= 0,

Uh =
{
uh ∈ C[0, R] | uh

∣∣
[rm,rm+1]

∈ P k, 0 ≤ m < M, uh(0) = uh(R) = 0
}

;

then we obtain the FEM approximation for (3.15)–(3.16): Find ψ̂h
l = ψ̂h

l (·, t) ∈ Uh

such that for all φh ∈ Uh and tn ≤ t ≤ tn+1,

(i− λ)
d

dt
A(ψ̂h

l (·, t), φh) = B(ψ̂h
l (·, t), φh) + l2C(ψ̂h

l , φ
h) − lΩA(ψ̂h

l , φ
h),(3.17)

where

A(uh, vh) =

∫ R

0

r uh(r) vh(r) dr, B(uh, vh) =

∫ R

0

r

2

duh(r)

dr

dvh(r)

dr
dr,

C(uh, vh) =

∫ R

0

1

2r
uh(r) vh(r) dr, uh, vh ∈ Uh.

The ODE system (3.17) is then discretized by the standard C–N scheme in time.
Although an implicit time discretization is applied for (3.17), the one-dimensional
nature of the problem makes the coefficient matrix for the linear system band-limited.
For example, if the piecewise linear polynomial is used, i.e., k = 1 in Uh, the matrix
is tridiagonal. Fast algorithms can be applied to solve the resulting linear systems.

In practice, we always use the second-order Strang splitting [49]; i.e., from time
t = tn to t = tn+1 (i) evolve (3.5) for half time step Δt/2 with initial data given at
t = tn; (ii) evolve (3.4) for one time step Δt starting with the new data; (iii) evolve
(3.5) for half time step Δt/2 with the newer data. For more general discussion on
splitting methods, we refer the reader to [28, 38] for more details.

For the discretization considered here, the total memory requirement is O(ML)
and the total computational cost per time step is O(ML lnL). Furthermore, following
the similar proofs in [6, 7, 14], the total density can be shown to be conserved in the
discretized level when λ = 0 and to be decreased in the discretized level when λ > 0.

Remark 3.2. As noticed in [35, 34], another way for discretizing (3.15)–(3.16) is
to use the finite difference in space on a mesh with a shifted grid and the C–N scheme
in time. Choose an integer M > 0, a mesh size Δr = 2R/(2M + 1), and grid points
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rm = (m−1/2)Δr for 0 ≤ m ≤ M +1. Let ψ̂l,m(t) be the approximation of ψ̂l(rm, t).
A second-order finite difference discretization for (3.15)–(3.16) in space is

(i− λ)
dψ̂l,m(t)

dt
= −

rm+1/2ψ̂l,m+1(t) − 2rmψ̂l,m(t) + rm−1/2ψ̂l,m−1(t)

2(Δr)2rm

+

(
l2

2r2
m

− lΩ

)
ψ̂l,m(t), m = 1, 2, . . . ,M, tn ≤ t ≤ tn+1,(3.18)

with essential boundary conditions:

ψ̂l,0(t) = (−1)lψ̂l,1(t), ψ̂l,M+1(t) = 0, tn ≤ t ≤ tn+1.(3.19)

The ODE system (3.18)–(3.19) may then be discretized in time by the C–N scheme so
that only a tridiagonal linear system is to be solved with O(M) arithmetic operations.
We may further obtain a fourth-order finite difference discretization [35] for (3.15)–
(3.16) on the interval t ∈ [tn, tn+1]:

(i− λ)
dψ̂l,m(t)

dt
=

(
l2

2r2
m

− lΩ

)
ψ̂l,m(t)

− −ψ̂l,m+2(t) + 16ψ̂l,m+1(t) − 30ψ̂l,m(t) + 16ψ̂l,m−1(t) − ψ̂l,m−2(t)

24(Δr)2

− −ψ̂l,m+2(t) + 8ψ̂l,m+1(t) − 8ψ̂l,m−1(t) + ψ̂l,m−2(t)

24Δr rm
, 1 ≤ m ≤ M,(3.20)

(i− λ)
dψ̂l,M+1(t)

dt
=

(
l2

2r2
M+1

− lΩ

)
ψ̂l,M+1(t)

− 11ψ̂l,M+2(t) − 20ψ̂l,M+1(t) + 6ψ̂l,M (t) + 4ψ̂l,M−1(t) − ψ̂l,M−2(t)

24(Δr)2

− 3ψ̂l,M+2(t) + 10ψ̂l,M+1(t) − 18ψ̂l,M (t) + 6ψ̂l,M−1(t) − ψ̂l,M−2(t)

24Δr rM+1
,(3.21)

ψ̂l,−1(t) = (−1)lψ̂l,2(t), ψ̂l,0(t) = (−1)lψ̂l,1(t), ψ̂l,M+1(t) = 0.(3.22)

Again the ODE system (3.20)–(3.22) may be discretized in time by the C–N scheme,
and only a pentadiagonal linear system is to be solved, which can be done very
efficiently too, i.e., via O(M) arithmetic operations.

3.3. Discretization in 3D. When d = 3 in (3.4), we use the cylindrical coordi-
nate (r, θ, z) and discretize in the θ-direction by the Fourier pseudospectral method,
in the z-direction by the sine pseudospectral method, and in the r-direction by the
finite element or finite difference method and in time by the C–N scheme. Assume
that

ψ(r, θ, z, t) =

L/2−1∑
l=−L/2

K−1∑
k=1

ψ̂l,k(r, t) eilθ sin(μk(z − a)),(3.23)

where L and K are two even positive integers, μk = πk
b−a (k = 1, . . . ,K − 1), and

ψ̂l,k(r, t) is the Fourier-sine coefficient for the (l, k)th mode. Plugging (3.23) into
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(3.4) with d = 3 and noticing the orthogonality of the Fourier-sine modes, we obtain,
for −L

2 ≤ l ≤ L
2 − 1, 1 ≤ k ≤ K − 1, and 0 < r < R, that

(i− λ) ∂tψ̂l,k(r, t) = − 1

2r

∂

∂r

(
r
∂ψ̂l,k(r, t)

∂r

)
+

(
l2

2r2
+

μ2
k

2
− lΩ

)
ψ̂l,k(r, t)(3.24)

with essential boundary conditions

ψ̂l,k(R, t) = 0 (for all l), ψ̂l,k(0, t) = 0 (for l �= 0).(3.25)

The discretization of (3.24)–(3.25) is similar as that for (3.15)–(3.16) and is omitted
here.

For the algorithm in 3D, the total memory requirement is O(MLK) and the total
computational cost per time step is O(MLK ln(LK)).

4. Numerical simulations. In this section, we first test the accuracy of our
numerical method. Then we apply it to study the dynamics of condensate width, a
central vortex state with a shift in its center, and a quantized vortex lattice. Properties
such as the conservation of energy and the angular momentum expectation and the
stability of central vortices in rotating BEC are also discussed.

4.1. Numerical accuracy. To test the accuracy of our method, we take d = 2,
λ = 0, γx = γy = 1, Ω = 0.8, and W (x, t) ≡ 0 in (2.44). The initial condition in
(2.45) is taken as

ψ0(x) =
21/4

π1/2
e−(x2+2y2)/2, x ∈ R

2.

We take R = 12 for the bounded computational domain Ωx and the piecewise linear
polynomial for Uh. Let ψ be the exact solution which is obtained numerically using
our method with a very fine mesh and small time step, e.g., Δr = 1

1024 , Δθ = π
128 ,

and Δt = 0.0001, and let ψ(Δr,Δθ,Δt) be the numerical solution obtained with mesh
size (Δr,Δθ) and time step Δt.

First, we test the spectral accuracy in the θ-direction by choosing a very small
mesh size in the r-direction Δr = 1

1024 and the time step Δt = 0.0001 and by solving
the problem for each fixed β2 with different mesh size Δθ so that the discretization
errors in the r-direction and in time can be neglected comparing to that in the θ-
direction. The errors ||ψ(t) − ψ(Δr,Δθ,Δt)(t)||l2 at t = 2.0 are shown in Table 4.1 for
different values of β2 and Δθ.

Then we test the second-order accuracy in the r-direction by choosing a very fine
mesh size Δθ = π

128 and time step Δt = 0.0001 and by solving the problem with
different values of β2 and Δr. Table 4.2 shows the errors at t = 2.0 for different
values of β2 and Δr.

Table 4.1

Discretization error ‖ψ(t) − ψ(Δr,Δθ,Δt)(t)‖l2 at t = 2.0 in the θ-direction.

Mesh size Δθ π/2 π/4 π/8 π/16 π/32
β2 = 0 9.448E-2 1.203E-2 5.059E-4 4.981E-7 6.987E-13
β2 = 10 0.3351 1.868E-2 4.408E-4 3.078E-7 7.597E-13
β2 = 50 0.8577 8.609E-2 2.221E-3 1.527E-6 1.059E-12
β2 = 100 1.1345 0.1994 9.415E-3 1.008E-5 3.553E-11
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Table 4.2

Discretization error ‖ψ(t) − ψ(Δr,Δθ,Δt)(t)‖l2 at t = 2.0 in the r-direction.

Mesh size Δr 1/32 1/64 1/128 1/256 1/512
β2 = 0 2.716E-4 6.771E-5 1.673E-5 3.983E-6 7.968E-7
β2 = 10 6.349E-3 1.586E-3 3.921E-4 9.337E-5 1.868E-5
β2 = 50 0.1118 2.959E-2 7.358E-3 1.753E-3 3.507E-4
β2 = 100 0.5203 0.1840 4.734E-2 1.131E-2 2.263E-3

Table 4.3

Discretization error ‖ψ(t) − ψ(Δr,Δθ,Δt)(t)‖l2 at t = 2.0 in time.

Time step Δt 1/160 1/320 1/640 1/1280 1/2560
β2 = 0 7.812E-5 1.952E-5 4.864E-6 1.201E-6 2.856E-7
β2 = 10 2.236E-3 5.582E-4 1.391E-4 3.433E-5 8.155E-6
β2 = 50 0.1111 3.581E-2 9.394E-3 2.328E-3 5.531E-4
β2 = 100 0.5445 0.3044 0.1032 2.654E-2 6.319E-3

Next, we test the second-order accuracy in time. Table 4.3 lists the errors at
t = 2.0 for different values of β2 and time steps Δt with a very fine mesh in space,
e.g., Δr = 1

1024 and Δθ = π
128 .

From Tables 4.1–4.3, we can conclude that our method is of spectral-order accu-
racy in the θ-direction, second-order accuracy in time, and second-order accuracy in
the r-direction when the piecewise linear FEM is used. Usually, for given parameter’s
setup and initial data, the bigger the β2, the larger the errors. This implies that
more grid points and a small time step should be used when β2 is larger in order to
get high accuracy. Furthermore, additional numerical experiments have been tested
to verify the fourth-order accuracy in the r-direction when the continuous piecewise
cubic element space is used. Such cubic elements are always used for the Uh in the
following simulations.

4.2. Dynamics of a stationary state with a shifted center. To verify the
analytical solution (2.29) and to study the dynamics of a stationary state with a
shifted center through the direct simulation of the GPE for the rotating BEC, we
take d = 2, λ = 0, γx = γy = 1, β2 = 100, and W (x, t) ≡ 0 in (2.44). The initial
condition in (2.45) is taken as

ψ0(x) = φe(x − x0), φe(x) = f(r)eiθ, x ∈ R
2,

where φe(x) is a central vortex state with winding number m = 1 under the same
parameter set; i.e., f(r) is found numerically by the methods proposed in [5, 13].
This setup corresponds to a shift of the trap center from the origin to −x0. We
take x0 = (1, 1)T , R = 12 for Ωx, mesh size Δr = 0.004, Δθ = π

64 , and time step
Δt = 0.0001. The trajectory and position of the central vortex center with respect
to time t are shown in Figure 1 for different rotation speed Ω. Notice that for the
parameters chosen, the characteristic roots of (2.43) are given by ±(|Ω| ± 1)i. When
Ω = 0 or Ω = ±1, we get roots with higher multiplicities; otherwise, we have four
distinct pure imaginary roots, and the periodicity of the orbits is thus implied for
rational values of the frequency Ω. For Ω = 0, (2.31)–(2.33) reduces to ẍ(t)+x(t) = 0
with ẋ(0) = 0. It is easy to see that the trajectory is a straight line. For Ω = ±1,
(2.31)–(2.33) reduces to ẍ(t) ∓ 2J ẋ(t) = 0, which leads to ẋ(t) = Q(±2t)ẋ(0) with
Q(2t) being a rotation of angle ±2t. The trajectory thus stays as a circle. In addition,
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Fig. 1. Trajectory of the central vortex center, x(t) = (x(t), y(t))T for 0 ≤ t ≤ 100, for different
rotation speed Ω.

for all other values of Ω, we can check that the equation is invariant under the rotation
transformation, due to the fact that Q(θ)J = JQ(θ) for any rotation matrix Q(θ).
Thus, if Ω �= 0,±1, and Ω is a rational number, there always exists a time t such that
e±i(Ω±1)t = −1; the trajectory thus always has the inversion symmetry (with respect
to the origin). Other symmetries may also be explored for special values of Ω.
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Fig. 1. (cont’d): Coordinates of the trajectory x(t) = (x(t), y(t))T (solid line: x(t); dashed
line: y(t)). (a): Ω = 0; (b): Ω = −0.5; (c): Ω = −1; (d): Ω = −4; (e): Ω = 1/π; (f): Ω = π. In
(a)–(d), the solid and dashed lines are obtained from solving the GPE (1.4), where “*” is obtained
from solving the ODE (2.31)–(2.33).

From Figure 1, we indeed see that when Ω = 0, the center moves like a pendulum
with period T = 2π; when Ω = −1, it moves along a circle with period T = π.
For other cases, the trajectory curve has inversion symmetry as predicted through
the theoretical analysis. The solution trajectory and the coordinates in Figure 1 are
obviously consistent with the above description of the solutions of the ODE system
(2.31)–(2.33) for any given Ω. This provides a numerical verification of the exact
solution constructed earlier for the GPE with an angular momentum rotation term
and the reliability of our numerical scheme. Furthermore, based on Figure 1 and
additional numerical experiments conducted, we find the following: (i) When Ω is a
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Fig. 2. Time evolution of condensate widths (cf. (a): γx = γy = 2; (b): γx = 1.8 and γy = 2),
energy E(ψ) := Eβ,Ω(ψ) (cf. (c)) and angular momentum expectation (cf. (d)). In (a), the solid
line is obtained from solving the GPE (1.4) and “*” is obtained from the analytical solution (2.15).

rational number, i.e., |Ω| = q/p with q and p nonnegative integers and no common
factor, then the trajectory of the vortex center moves periodically with period pπ if q
and p are odd integers, and 2pπ otherwise. (ii) When Ω is an irrational number, the
trajectory of the vortex center moves chaotically, but the envelope of the trajectory is
a circle centered at the origin with radius r = |x0| =

√
2 in our example (cf. Figure 1).

4.3. Dynamics of condensate width, energy, and angular momentum
expectation. To verify the conservation of energy and angular momentum expecta-
tion as well as dynamics of condensate width, we take d = 2, λ = 0, β2 = 100, Ω = 0.8,
and W (x, t) ≡ 0 in (2.44). The initial condition in (2.45) is taken as the central vortex
state with winding number m = 1 of the GPE with γx = γy = 1 [5, 14, 13], which is
computed numerically by the method proposed in [5, 13]. Then at t = 0, we change
the trap frequency by setting γx = γy = 2, or γx = 1.8 and γy = 2, respectively.
Figure 2 shows the time evolution of condensate widths σx(t) and σy(t), the energy
Eβ,Ω(ψ), and the angular momentum expectation.

From Figure 2, we can see that (i) the condensate widths σx(t) and σy(t) are
periodic functions of period T = π/2 when γx = γy = 2 (cf. Figure 2(a)) and periodic
functions of period T = π/2 with a perturbation when 1.8 = γx �= γy = 2 (cf. Figure
2(b)), again confirming the analytical results (2.16) and (2.17), respectively; (ii) the
energy Eβ,Ω(ψ) is conserved in the discretized level (cf. Figure 2(c)); (iii) the angular
momentum expectation is conserved when γx = γy (cf. Figure 2(d) and the analytical
result (2.3)). Furthermore, when γx �= γy and the initial condition is chosen as a
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central vortex state with winding number m = 1, the angular momentum expectation
is no longer conserved (cf. Figure 2(d)). We note that in the literature, there have been
more studies both analytically and numerically on the thermodynamic stability of the
central vortex state, though there is not much discussion available on the dynamic
stability in real time. The experimental results shown here are thus of interest.

4.4. Dynamics of a quantized vortex lattice. Now we present the simulation
results, via the algorithm discussed here, on the dynamics of a vortex lattice in rotating
BEC under an anisotropic external perturber. We take d = 2, λ = 0, β2 = 1000,
γx = γy = 1 := γr, and Ω = 0.9 in (2.44). The initial condition in (2.45) is taken as
the ground state [13, 1] of the GPE with W (x, t) ≡ 0, which is computed numerically
by the normalized gradient flow with the backward Euler finite difference discretization
proposed in [13]. For t ≥ 0, an external perturber is introduced; i.e., W (x, t) in (2.44)
is chosen as

W (x, t) =
ε

2
γ2
r

[
(x2 − y2) cos(2Ω̃t) + 2xy sin(2Ω̃t)

]
, x ∈ R

2, t ≥ 0.

This implies the total potential V (x, t) in (2.44) is taken as

V (x, t) =
1

2
γ2
r

[
(1 + ε)X(t)2 + (1 − ε)Y (t)2

]
,

where X(t) = x cos(Ω̃t) + y sin(Ω̃t), Y (t) = y cos(Ω̃t) − x sin(Ω̃t).

This kind of time-dependent potential was used in [46] for studying the dynamics
of nonrotating BEC. In our computation, we take ε = 0.35, Ω̃ = 0.75, R = 30 for Ωx,
mesh size Δr = 0.0075 and Δθ = π

128 , and time step Δt = 0.0001. Figure 3 shows
contour plots of the density function |ψ(x, t)|2 at different time steps.

For Figure 3, at t = 0, there are about 45 quantized vortices in the ground state.
During the time evolution, the lattice is rotated due to the angular momentum term
with different lattice patterns being formed due to the anisotropic external stirrer
W (x, t). One may compare our numerical results with the experimental observations
in [23], where the anisotropic compression of the vortex lattices was observed due to
the dynamic distortion of the trap potentials.

4.5. Stability of central vortex states. Similarly as in [14, 16, 29, 30] for
nonrotating BEC, we hereby also study numerically the stability of central vortex
states in rotating BEC. We take d = 2, γx = γy = 1, β2 = 100, Ω = −0.8, and λ = 0
in (2.44). The initial condition in (2.45) is taken as a central vortex state [14, 5, 13]
with winding number m of the GPE with W (x, t) ≡ 0; i.e., ψ0(x) = fm(r)eimθ, where
fm(r) is computed numerically by the method proposed in [5, 14]. In order to study
the stability, when t ∈ [0, π/2], we introduce a far-blue detuned Gaussian laser beam
stirrer (2.47), and when t ≥ π/2, the perturber is removed. The parameters in (2.47)
are chosen as

(xs(t), ys(t)) ≡ (3, 0), ωs = 1, Ws(t) =

{
5 sin2(2t), t ∈ [0, π/2],
0, t ≥ π/2.

In our computation, we take R = 12 for Ωx, mesh size Δr = 0.004 and Δθ = π
64 , and

time step Δt = 0.0001.
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Fig. 3. Contour plots of the density function |ψ(x, t)|2 for dynamics of a vortex lattice at
different times.

To quantitatively analyze the numerical results, we define the hydrodynamic ve-
locity as

u = (u, v) = Im(ψ∗∇ψ)/|ψ|2.

Figure 4 shows the velocity fields during the time evolution of the central vortex states
with winding number m = 1 and m = 2, while the dynamic evolution of the energy
and that of the angular momentum expectation are shown in Figure 5.
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Fig. 4. Velocity field at different times for stability of a central vortex state. I. For winding
number m = 1.

From Figure 4 and additional numerical experiments conducted, we find that
the central vortex states with an index (or degree, winding number) m = ±1 are
dynamically stable, but they are unstable when |m| > 1 in rotating BEC. Furthermore,
Figure 5 depicts the increase in the energy and the decrease of the angular momentum
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Fig. 4. (cont’d): II. For m = 2.

expectation when t ∈ [0, π/2] due to the appearance of the perturber. After removing
the perturber at t = π/2, they are conserved with time, which again confirm the
conservation laws (1.8) and (2.3).
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Fig. 5. Time evolution of energy E(ψ) := Eβ,Ω(ψ) and angular momentum expectation 〈Lz〉
in studying the stability of central vortex states.

4.6. Dissipation effect on the GPE. In order to study the effect of the damp-
ing mechanism in the GPE (2.44), we take d = 2, γx = 1, γy = 1.1, β2 = 500, Ω = 0.9,
and W (x, t) ≡ 0 in (2.44). The initial condition in (2.45) is taken as

ψ0(x) =
(γxγy)

1/4

√
π

e−(γxx
2+γyy

2)/2, x ∈ R
2.

We take R = 30 for Ωx, mesh size Δr = 0.0075 and Δθ = π
64 , and time step Δt =

0.0001. Figure 6 shows the normalized density |ψ(x,t)|2
‖ψ(·,t)‖2 at different times for λ = 0.03,

while Figure 7 illustrates the time evolution of the energy and angular momentum

expectation per particle, i.e.,
Eβ,Ω(ψ)
‖ψ(·,t)‖2 and 〈Lz〉

‖ψ(·,t)‖2 for different λ > 0.

From Figures 6 and 7, we can see that when a dissipation term is applied to
the GPE, a dent appears in the center of the density function during time evolution.
The larger the damping parameter λ, the faster the energy per particle decreases and
the slower the angular momentum expectation per particle increases. In fact, the
change in the angular momentum expectation is due to the anisotropy of the external
trapping potential, i.e., γx �= γy.

5. Conclusion. We have studied the dynamics of the Gross–Pitaevskii equation
with an angular momentum rotation term for rotating BEC both analytically and
numerically. Along the analytical front, we proved the conservation of the angular
momentum expectation when the external trapping potential is radially symmetric
in 2D and, respectively, cylindrically symmetric in 3D. A second-order ODE was also
derived to describe the time evolution of the condensate width as a periodic func-
tion with/without a perturbation, and the frequency of the periodic function doubles
the trapping frequency. We also presented an ODE system with a complete initial
data that governs the dynamics of a stationary state with a shifted center, and we
also illustrated the decrease in the total density when a damping term is applied
in the GPE. On the numerical side, we proposed an efficient, accurate, and uncon-
ditionally stable numerical method for simulating the rotating BEC with/without
a time-dependent external perturber or a damping term. We also applied the new
method to study numerically the dynamics of condensate including the condensate
widths, energy, and angular momentum expectation as well as a quantized vortex lat-
tice and a stationary state with a shifted center. We numerically found that, for the
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Fig. 6. Surface plots of the normalized density function
|ψ(x,t)|2
‖ψ(·,t)‖2 in section 4.6 for GPE with

a damping term at different times.

real time dynamics, the central vortex states are dynamically stable only for the one
with index (or winding number) m = ±1. In the future, this efficient and accurate
numerical method can be used to study the dynamics and interaction of vortex line
states in 3D for rotating BEC and to make more close comparisons with experimental
findings [42, 47, 48].
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